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Abstract

Accumulation of nano-size prismatic defect clusters near slip-dislocations results from their mutual elastic inter-

action. We present here 3-D isotropic elasticity calculations for the interaction energy between radiation-induced nano-

size prismatic loops and grown-in dislocation loops. The current treatment extends the work of Trinkaus et al. in two

respects. First, a computational method for full 3-D analysis of interaction energies in bcc Fe and fcc Cu is developed.

Second, the theoretical method of Kroupa is computationally implemented for rigorous calculations of force, torque

and induced surface energy on defect clusters. It is shown that small clusters are trapped within a zone of �10 nm in bcc

Fe, and �20 nm in fcc Cu at room temperature, in rough agreement with experimental observations. Clusters can be

absorbed in the core of grown-in dislocations because of unbalanced moments, which provide su�cient energy for

rotation of their Burgers vectors in a zone of 2±3 nm in Fe. Near the dislocation core (within a few nanometers), sessile

defect clusters in Cu are shown to convert to a glissile con®guration. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

The phenomenon of radiation hardening has been an

interesting subject of both experimental and theoretical

investigations for more than 40 years. It is well docu-

mented that, when metals and alloys are irradiated at

temperatures below the recovery stage V (i.e., <0.3 Tm,

where Tm is the melting temperature), their upper yield

stresses increase signi®cantly whereas their ductility

decrease drastically. A common feature of the stress±

strain curves obtained during tensile tests of irradiated

metals and alloys is the occurrence of a yield drop,

immediately after the upper yield stress. The occurrence

of the yield drop is dependent on the irradiation dose,

material and irradiation temperature (see [1] for a re-

view). In most polycrystalline metals and alloys, the

yield drop is followed by plastic instability with negative

work hardening. This suggests that the plastic defor-

mation in these irradiated materials is initiated in a lo-

calized and inhomogeneous fashion. The fact that the

plastic deformation occurs in a localized and inhomo-

geneous fashion has been con®rmed by post-deforma-

tion microstructure investigations, showing that the

deformation is concentrated in inhomogeneously dis-

tributed narrow bands, commonly known as `cleared'

channels (see, e.g., [2±4]). These investigations also

showed that there is no evidence of dislocation genera-

tion during deformation in the regions between the

cleared channels.

Under neutron or charged particle irradiation, nano-

size point defect clusters nucleate directly from atomic

collision cascades in irradiated materials. Once these

clusters nucleate, they take the shape of small prismatic

dislocation loops of radial dimensions in the range of 1±

3 nm (i.e., containing several to �100 atoms). Molecular

dynamics (MD) computer simulations [5±9] suggest that,

in both bcc and fcc metals, these clusters of self-inter-

stitial atoms (SIAs) can be rather mobile, and that they

migrate predominantly along close-packed crystallo-

graphic directions. The most stable clusters in bcc Fe are

glissile sets of co-linear h111i-crowdions, with a dislo-

cation loop character of �a=2�h111if111g [5]. In fcc Cu,

hexagonal faulted Frank loops of type�a=3�h111if11 1g
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[5], as well as perfect loops [8] are found to be stable and

sessile. Vacancy clusters in Cu are shown as f111g-
platelets of stacking fault tetrahedra (SFTs) [5]. Exper-

imental evidence [1,10] suggest that, under electron ir-

radiation, with defect clusters not directly produced in

collision cascades, grown-in dislocations are not heavily

decorated with small defect clusters. The work of Sigle

et al. [10] indicates that only SFTs are found within 20 nm

of dislocation cores, and their position is on the com-

pression side of edge dislocations.

In view of these experimental ®ndings on post-irra-

diation deformation behavior and post-deformation

microstructure, the problem of radiation hardening has

been recently re-analyzed and treated in terms of cas-

cade induced source hardening (CISH) model [1]. The

main thesis of the CISH model is that, during irradia-

tion, most of the Frank±Read (FR) sources (i.e., grown-

in dislocations) are locked by an `atmosphere' of small

interstitial loops produced in collision cascades. The

initiation of plastic deformation and the upper yield

stress is then related to the stress that is necessary to

unlock these decorated dislocations in order to operate

as FR sources. To evaluate the model, a simple estimate

was made of the `stand-o�' or `absorption' distance

(from the lead dislocation) at which the decoration may

start [1]. Assuming an un-dissociated edge dislocation to

be the lead dislocation, a lower-bound value of this

distance was found to be of the order of the radius of the

loops forming the decoration. At distances smaller than

the stand-o� distance, the small loops may change their

Burgers vector and get absorbed in the edge dislocation

core.

Trinkaus et al. have examined the central question of

the formation of dislocation decoration [11,12]. They

provided analytical estimates for elastic interactions

between point defects and small defect clusters with an

in®nitely long, straight edge dislocation. In addition, the

accumulation of glissile loops near the edge dislocation

and the conditions for their absorption was estimated.

Results of these calculations were used to determine the

critical unlocking stress of an edge dislocation from a

row of loops, as well as a loop ensemble approximated

by dislocation dipoles.

Fig. 1 shows a TEM micrograph of pure single

crystal Mo irradiated with ®ssion neutrons at 320 K

[11,13], illustrating formation of dislocation loop `raftsÕ
already at a dose level of �0.16 dpa. Grown-in (slip)

dislocations are clearly decorated with small defect

clusters, without any preference to either side of pre-

existing dislocations. From crude TEM micrograph

observations, the attraction (decoration) zone appears

to be on the order of 10 nm in bcc metals [13], and about

20 nm in fcc metals [10]. While defect clusters nucleate

homogeneously under electron irradiation, they can be

directly produced heterogeneously by collision cascades

under ion or neutron irradiation. Experimental evidence

of their interaction with dislocations is consistent with a

high degree of cluster mobility. Thus, decoration of ex-

isting dislocations with nano-size defect clusters and the

formation of rafts of small dislocation loops (Fig. 1) is a

consequence of in-cascade nucleation, followed by co-

herent transport along closely packed crystallographic

directions.

It is well established that neutron irradiation leads to

a substantial increase in the yield strength and hardening

of metals. This phenomenon is particularly severe at low

temperatures (i.e., below recovery stage V). The

decoration of slip dislocations with defect clusters

appears to be the controlling mechanism for blocking

dislocation generation on its glide plane. Moreover,

once plastic deformation commences, it is observed to be

rather heterogeneous and concentrated in `soft'

deformation channels, while the vast majority of

the matrix is in a state of elastic deformation. The onset

of this type of plastic instability is thus associated with

the initiation and propagation of cleared channels that

are nearly free of defect clusters. Decoration of

dislocations with irradiation-produced defect clusters is

possibly the root cause of localized plastic deformation,

leading to premature fracture. This qualitative picture

can explain the initial radiation hardening and the

Fig. 1. A TEM micrograph of pure single crystal Mo irradiated

with ®ssion neutrons at 320 K (after Refs. [1,13]) to a dis-

placement dose level of 0.16 dpa.
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subsequent onset of ¯ow localization. However,

quantitative determination of the detailed mechanisms

by which the phenomenon occurs remains largely un-

explored.

Recently, a new computational method has been

developed [14,15] for accurate evaluation of the elastic

®eld of dislocation aggregates in complex 3-D geometry.

The method extends the capabilities of 2-D estimates of

elastic ®eld variables in realistic material geometry, and

enables calculations of displacements, strain, stress, in-

teraction and self-energies, and ®nally, the work asso-

ciated with rotation and translation of defect clusters. In

this paper, we apply the numerical method developed by

Ghoniem [14] and Ghoniem and Sun [15] to examine the

mechanisms of interaction between small defect clusters

and slip dislocation loops. In this connection, the ap-

proach we present here is a further development of the

foundational work of Trinkaus et al. [11,12]. The addi-

tional features of the present investigation are summa-

rized as:

1. Calculation of all elastic ®eld variables in three di-

mensions, thus enabling determination of complex in-

teraction possibilities between defect clusters and

dislocations.

2. Incorporation of the elastic interaction energy into

the energy balance on dissociated dislocation clusters

in fcc metals. In this fashion, we are able to address

the probability of prismatic loop unfaulting in irradi-

ated Cu.

3. Numerical evaluation of the mechanical work neces-

sary to rotate small defect clusters. Thus, they can

align themselves in directions favorable for absorp-

tion into dislocation cores. This method can accurate-

ly determine the `absorption' zone.

4. Accurate determination of the self and interaction

energies between multiple cluster/ dislocation con®g-

urations. This capability allows determination of the

conditions for `loop raft' formation in some bcc

metals.

In the following, we present the salient features of the

new computational method for determination of

dislocation/cluster geometry and elastic interaction

®elds. Results of interaction energy surfaces and iso-

energy contours will then be shown in Sections 3 and

4 for bcc Fe and fcc Cu, respectively. The contours

that delineate the regions of attraction around

dislocation loops (i.e., `trapping zones'), as well as the

regions of cluster absorption (i.e. `absorption zones')

will also be given in the same section. We also present

the results of our calculations for the temperature

dependence of the attraction zone around several pure

metal. Furthermore, we discuss the possibility of sessile

dislocation cluster unfaulting in the stress ®eld of grown-

in dislocations in fcc Cu. Finally, conclusions and

discussion of outstanding issues are presented in Section

5.

2. Dislocation geometry and elastic ®eld

2.1. Di�erential geometry of dislocations and clusters

The geometry of arbitrary shape dislocation loops is

described as a sequence of segments, continuous to

second parametric derivative (C2 continuity). A single

curved dislocation segment is shown in Fig. 2, for the

sake of de®ning 3-D coordinates and notation used

throughout. Details of the method are given in Ref. [15].

Calculations of all elastic ®eld variables depend on the

radius vector R between a source point on the loop at x̂,

and a ®eld point in the crystal at point x. To bring about

the main physical features of the elastic interaction

problem, without undue geometric complexities, we

perform calculations for simpli®ed yet typical con®gu-

rations. In Fig. 3, a typical geometric representation for

interaction between prismatic defect clusters and defor-

mation slip loops on the primary glide plane of bcc

crystals is shown. The medium is assumed to be in®nite

and elastically isotropic, but the cube size of Fig. 3 is

taken as 1000a, where a is the lattice parameter. The slip

loop is at the center of the cube, and has a diameter of

400a, while the defect clusters are assumed to have a

diameter of 3 nm. The slip loop in fcc crystals is assumed

to be on the h111i-plane, with Burgers vector

�a=2�h110i as schematically illustrated in Fig. 4. The

habit plane of defect clusters in fcc crystals is �110�,
while their Burgers vector is of the �a=2�h110i-type.

Several combinations of loop and cluster Burgers vec-

tors have been studied to determine the geometric

symmetry of interaction energy iso-surfaces in both fcc

and bcc crystals.

A dislocation loop of arbitrary 3-D shape is discret-

ized into parametric segments. For each segment (j), we

choose a set of generalized coordinates q�j�ik and the

corresponding shape functions Ni�u� to represent the

con®guration of the segment, i.e.,

Fig. 2. Coordinate system and notation for geometric repre-

sentation of dislocation loops.
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x̂�j�k �u� � Ni�u�q�j�ik �sum over �i� is implied�; �1�

where x̂�j�k �u� is the Cartesian position of a point on

segment (j), in the kth-direction (k� 1, 2, 3), and

06 u6 1 is a suitable parameter. Speci®c Degrees of

Freedom (DOF) are denoted by �i � 1; 2; . . . ; I�. One

convenient way of parametrizing the segment is to use

cubic splines as shape functions Ni�u�, with I� 4. They

take the form:

N1�u� � 2u3 ÿ 3u2 � 1;

N2�u� � ÿ2u3 � 3u2;

N3�u� � u3 ÿ 2u2 � u;

N4�u� � u3 ÿ u2:

�2�

More general parametric forms are discussed in Ref.

[15]. In the present parametric case, the generalized co-

ordinates q�j�ik are just the position and tangent vectors,

associated with the beginning B and end E nodes on

segment (j).

2.2. Elastic ®eld and interaction energies

Following Kr�oner [16] and DeWit [17], the elastic

®eld tensors (strain eij and stress rij) of a dislocation

loop are given by line integrals over the dislocation loop

line vector. We extend their general theory to the speci®c

case of parametric dislocation loop representation. The

strain components are

eij � 1

8p

I
C

�
ÿ 1

2
2jkl biR;l

ÿ � 2ikl bjR;l ÿ 2ikl blR;j

ÿ 2jkl blR;i

�
;pp �

1

1ÿ m
2kmn bnR;mij

�
dlk ; �3�

where R � kRk � kxÿ x̂k.

Fig. 4. Geometry of a prototypical slip loop and interacting

defect clusters in fcc crystals.

Fig. 3. Geometry of a prototypical slip loop and interacting defect clusters in bcc crystals.
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Since the linear stress±strain relationship is

rij � 2Geij � kerrdij, the stress tensor is also obtained as

a line integral, of the general form [16,17]

rij � Gbn

4p

I
C

1

2
R;mpp 2jmn dli0

��
� 2imn dlj0

�
� m

mÿ 1
2kmn R;ijm

ÿ ÿ dijR;ppm

�
dlk0

�
; �4�

where G is the shear modulus, bn the components of

Burgers vector, R;ijk are derivatives of the radius vector

norm between a loop point at x̂ and a ®led point x, dli0

are di�erential line elements along the dislocation line

vector, and 2ijk is the permutation tensor. Ghoniem [14]

developed explicit forms for the integrals of general

parametric dislocation loops. An e�cient numerical in-

tegration scheme has also been developed for calcula-

tions of the stress ®eld, as a fast summation by Ghoniem

and Sun [15]. Their results read

rij � G
4p

XNloop

c�1

XNs

b�1

XQmax

a�1

bnwa
1

2
R;mpp 2jmn x̂i;u

��
� 2imn x̂j;u

�
� 1

1ÿ m
2kmn R;ijm

ÿ ÿ dijR;ppm

�
x̂k;u

�
; �5�

where Nloop, Ns, and Qmax are the total number of loops,

segments, and Guassian quadrature, respectively. wa is

the quadrature weight, and x̂j;u are parametric deriva-

tives of the Cartesian components of the vector x̂, which

describes the loop geometry.

The interaction energy of two dislocation loops over

the volume V of the material is de®ned as

EI �
Z

V
r�1�ij e�2�ij dV �6�

in which r�1�ij is the stress arising from the ®rst disloca-

tion and e�2�ij the strain originating in the other. For the

present study, if the second loop (defect cluster) is as-

sumed to be in®nitesimal, the interaction energy can be

simpli®ed to [18]

Ei � dA�2�n�2�i r�1�ij b�2�j ; �7�

where n�2�i is the unit normal vector to the defect cluster

habit plane of area dA�2�. By substituting Eq. (5) into Eq.

(7) with Nloop� 1, we can ®nally compute the interaction

energy of the cluster, designated with the superscript (2),

and the slip loop, of Burgers vector b�1�n , as

EI �
GdA�2�n�2�i b�2�j

4p

XNs

b�1

XQmax

a�1

b�1�n wa
1

2
R;mpp 2jmn x̂i;u

��
� 2imn x̂j;u

�
� 1

1ÿ m
2kmn R;ijm

ÿ ÿ dijR;ppm

�
x̂k;u

�
: �8�

In the above equation, we assume that the stress tensor

of the grown-in (slip) dislocation loop is constant over

the cross-section of a small point-defect cluster. In case

we treat one single vacancy or interstitial atom as a

center of dilatation, the interaction energy simpli®es to

[19]

EI � ÿ 4

9
p r3

0e
�2�
ii r�1�jj ; �9�

where e�2�ii is the dilatation and r0 is the e�ective radius of

a point defect. The above equation does not reveal de-

pendence of the interaction energy surface on the ori-

entation of the cluster Burgers vector, unlike Eq. (8).

2.3. Force, torque and induced surface tension on defect

clusters

The total force F and its torque M on the cluster due

to the slip loop can be expressed in component form as

[18]

Fi � ÿn�2�j r�1�jk;ib
�2�
k dA�2�; �10�

Mi � ÿ 2ijk n�2�j b�2�l r�1�lk dA�2�: �11�

Extending the in®nitesimal loop approximation of

Kroupa [18], where we introduce geometric parametri-

zation of the loops and the fast sum formulation, we

obtain the following computational forms for the Car-

tesian components (i) of the total force and torque on

the defect cluster:

Fi � ÿ
GdA�2�n�2�j b�2�k

4p

XNs

b�1

XQmax

a�1

b�1�n wa

� 1

2
R;mpp 2kmn x̂j;u

��
� 2jmn x̂k;u

�
� 1

1ÿ m
2lmn R;jkm

ÿ ÿ djkR;ppm

�
x̂l;u

�
;i

; �12�

Mi � ÿ
2ijk GdA�2�n�2�j b�2�l

4p

XNs

b�1

XQmax

a�1

b�1�n wa

� 1

2
R;mpp 2kmn x̂l;u

��
� 2lmn x̂k;u

�
� 1

1ÿ m
2qmn R;lkm

ÿ ÿ dlkR;ppm

�
x̂q;u

�
: �13�

As the defect cluster moves closer to the core of the

slip loop, the turning moment (torque) on its habit plane

increases, as given by Eq. (13). If the amount of me-

chanical work of rotation exceeds a critical value (taken

as 0.1 eV/crowdion, as estimated by MD calculations of

Forman [20]), it is assumed to change its Burgers vector

and habit plane and move to be incorporated into the

dislocation core. The mechanical work for cluster
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rotation is equated to this critical value, (i.e.,

dW � R h2

h1
Mi dhi � DUcrit). The critical surface for cluster

rotation and hence subsequent absorption into the dis-

location core may thus be determined.

The large local stress ®eld close to the core of a dis-

location loop can result in an induced surface tension on

the loop [18]. This additional (or induced) surface ten-

sion is given by the amount of work done in expanding

the surface area of the loop in the existing ®led:

c0 � n�2�i r�1�ij b�2�j . Since the stress ®eld and cluster orien-

tation are both involved in determining the induced

surface tension, the energy value can be either positive

or negative. Thus, the critical unfaulting radius for a

typical dislocation cluster may increase or decrease from

its unstressed value, depending on whether the addi-

tional virtual work adds or subtracts from the stacking

fault energy. For a circular Frank loop to unfault, the

loop containing the fault and its perfect counterpart is

attained by an additional Schokley partial dislocation of

type: �a=6�h11�2i. The required energy di�erence for

loop unfaulting is given by

DE � p r2c� n�2�i r�1�ij b�2�j

ÿ rGa2

24

2ÿ m
1ÿ m

� �
ln

2r
e0

� �
; �14�

where e0 is a dislocation core radius (taken as half of the

Burgers vector), and a is the lattice parameter.

3. Results for bcc crystals

Fig. 5(a) shows contours of the interaction energy

between interstitial defect clusters of Burgers vector

�a=2�h1�11i and a proto-typical slip loop on the h110i-

plane in bcc-Fe at room temperature. The plane of the

contours is de®ned by the vectors h001i and h1�10i, and

the energy units are all given in (kT/cluster atom). In this

particular orientation of the cluster's Burgers vector, the

iso-energy contours have radial symmetry with respect

to the center of the �1�10�-plane, as can be seen from Fig.

5(b). The symmetry properties of the iso-energy surfaces

depend on the relative orientations of the slip loop and

cluster Burgers vectors.

Clusters are shown to glide along close packed-di-

rections with very low activation energy [5,8]. It is ar-

gued in Ref. [8] that motion of an entire cluster is

unlikely to be described as a di�usion process. In Ref.

[11,12], cluster motion has been modeled as a di�usion

process in the drift ®eld of grown-in dislocations. In this

fashion, the `trapping zone' of a cluster close to a dis-

location has been determined when the cluster interac-

tion energy is greater than (kT). In the present estimate,

we assume the crowdions within the cluster vibrate with

an average thermal energy of (kT). They can migrate

randomly along close package directions as dynamic

crowdions, with some coherence amongst them. There-

fore, we plot the interaction energy contours in units of

(kT) per crowdion in the cluster. If the magnitude of the

interaction energy per atom is higher than (kT) and is

attractive (i.e., negative), the cluster cannot escape from

within the attractive zone by random walk. It will os-

cillate within this surface, until it loses its energy and

gets trapped inde®nitely. This scenario of cluster motion

in the stress ®eld of dislocations my be too simplistic,

and requires further atomistic investigations by the MD

and MC methods. Since there are three other symmetries

for the energy surfaces around the dislocation loop, the

exact shape of the trapping zone will be a complicated

superposition of the four con®gurations. Constant

Fig. 5. (a) Local iso-energy contours for the interaction energy between �a=2�h1�11i-type clusters and the bcc slip loop. Energy levels

are in units of (kT/atom), (b) global iso-energy contours for the interaction energy between �a=2�h1�11i-type clusters and the bcc slip

loop. Energy levels are in units of (kT/ atom).
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energy contours for cluster orientations:

h111i; h�1�11i and h�111i are shown in Figs. 6±8, re-

spectively. Since the cluster habit plane vector n�2�i is

always along the same direction as its Burgers vector b�2�i

because it is prismatic, and the energy is a quadratic

function of their product (see Eq. (8)), then the four

other remaining cluster orientations of Fig. 3 will be

redundant.

The 3-D surface bounding a value of ÿkT/atom is

considered a trapping surface, and clusters which enter

into this zone will oscillate within it. A 3-D picture of

one of the four trapping zones in bcc at room temper-

ature is shown in Figs. 9 and 10 for high and low in-

teraction energy magnitudes, respectively. It is clear that

the zone assumes a crescent-shape, of maximum width

Fig. 6. Global iso-energy contours for the interaction energy between �a=2�h111i-type clusters and the bcc slip loop. Energy levels are

in units of (kT/atom).

Fig. 7. Global iso-energy contours for the interaction energy

between �a=2�h�1�11i-type clusters and the bcc slip loop. Energy

levels are in units of (kT/atom).

Fig. 9. 3-D iso-energy surface for bcc Fe. The value of the

constant energy for this surface is ÿ0.2 kT. It shows the shape

of the trapping zones above and below the slip plane.

Fig. 8. Global iso-energy contours for the interaction energy

between �a=2�h�111i-type clusters and the bcc slip loop. Energy

levels are in units of (kT/atom).
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around the edge component of the slip loop. The trap-

ping zone size diminishes for mixed character segments

on the slip loop, and vanishes at the purely screw com-

ponent. Generally, the surface bounding a value of -kT

is considered a trapping surface, and clusters that enter

into this zone will oscillate within the crystal volume

bound by this surface.

It is found that this stand-o� zone is about one

cluster diameter �3 nm. Figs. 9 and 10 indicate that the

maximum capture zone size (at the edge component)

decreases with temperature, and is greater for fcc-Cu as

compared to bcc-Fe. Both observations result from an

increase in the cluster thermal energy, and a decrease in

its modulus with temperature.

As a result of the non-uniform force distribution on

crowdions composing the core of the dislocation cluster,

it will experience a net torque, as computed by Eq. (13)

above. The habit plane of the cluster will thus tend to

rotate so as to minimize the total system energy. How-

ever, cluster rotation is associated with stretching of the

interatomic distances, and will thus require a critical

amount of energy to overcome this con®gurational

barrier. Forman [20] estimated that the critical energy

for this process is on the order of 0.1-eV/crowdion in Fe.

We calculate the 3-D moments on approaching clusters

via Eq. (13), and then assume that it will undergo ro-

tation to change the direction of its Burgers vector. The

amount of this virtual work done by the cluster is

compared to the critical value computed by Forman

[20]. If this amount of work exceeds the critical value,

the cluster is assumed to make a ®nal change in its

Burgers vector, and head towards the dislocation core. It

is further assumed here that the cluster may have to

undergo another rotation to align its Burgers vector,

subsequent re-arrangement of the cluster habit plane

resulting in absorption is certain to happen, because the

interaction energy for attraction and rotation will dra-

matically increase after the ®rst ¯ip. Figs. 11(a) and (b)

show iso-work contours for clusters in bcc Fe. On each

point on the contour, the dislocation will perform the

same amount of work on the cluster to rotate its Burgers

vector towards its core. The critical surface for Burgers

vector rotation is seen to have an extent of only 2±3 nm

from the dislocation core.

4. Results for fcc crystals

The slip plane in the case of fcc Cu is the f111g-
family, and the slip direction is h110i. Thus, glissile

prismatic defect clusters in Cu of the �a=2�h�110i-type

Fig. 10. 3-D iso-energy surface for bcc Fe. The value of the

constant energy for this surface is ÿ0.01 kT.

Fig. 11. (a) Global iso-work contours for bcc Fe. On each point on the contour, the dislocation will perform the same amount of work

on the cluster to rotate its Burgers vector towards its core; (b) local iso-work contours for the same conditions as in (a). Contour values

are in units of 0.1 eV/ atom. The critical surface for Burgers vector rotation is thus the zone enclosed by the contour at a value of unity.
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have been investigated by Osetsky et al., using MD [8].

However, for these clusters to be glissile, they must ®rst

unfault and change their Burgers vector from the h111i
sessile direction to the �a=2�h�110i-direction on the slip

plane. We will show later that this may be possible if

clusters grow to a large enough size in the presence of an

external stress ®eld. Fig. 12 shows iso-interaction energy

contours between defect clusters and the slip loop in fcc

Cu. The size of the trapping zone in this case is about

twice that of the Fe case, mainly due to di�erences in

their elastic module and lattice constants. It is also ob-

served that the iso-energy contours are not symmetric

with respect to the dislocation core, as is the case for the

straight dislocation calculations of Trinkaus et al.

[10,11]. This is mainly due to the in¯uence of the loop

curvature (self-energy) on the magnitude of the inter-

action energy. The higher the curvature, the larger the

degree of asymmetry. Fig. 13 shows contours of iso-

work for rotation of the cluster's Burgers vector, and

their eventual absorption in fcc Cu. The size of the

critical zone is seen to be about 20 lattice parameters. To

gain a more visual appreciation of where clusters would

be trapped with respect to a slip loop on the �1 11�-plane,

Fig. 14 shows a 3-D iso-energy surface for Cu. The

Fig. 12. (a) Local iso-energy contours for the interaction energy between �a=2�h�111i-type clusters and the fcc slip loop. Energy levels

are in units of (kT/ atom); (b) global iso-energy contours for the interaction energy between �a=2�h�111i-type clusters and the bcc slip

loop. Energy levels are in units of (kT/atom).

Fig. 13. (a) Global iso-work contours for fcc Cu. On each point on the contour, the dislocation will perform the same amount of work

on the cluster to rotate its Burgers vector towards its core; (b) local iso-work contours for the same conditions as in (a). Contour values

are in units of 0.1 eV/ atom. The critical surface for Burgers vector rotation is thus the zone enclosed by the contour at a value of unity.
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surface splits into two crescent-shape zones, one above

and the other below the slip plane. If the slip dislocation

attempts to move on its glide plane, the e�ective elastic

potential of trapped clusters will oppose its motion. The

magnitude of this opposing force will depend on the

character of the loop segment, being greatest at the edge

side of the loop.

In fcc metals of low stacking fault energy, small

clusters can be in the form of faulted Frank loops.

However, if the cluster size is large enough, it is ener-

getically more favorable to unfault and become glissile.

In Eq. (14), we compute the energy required to unfault

the prismatic cluster dislocation loop. In this energy

balance, the induced surface tension by the slip loop on

the cluster has been taken into account. If clusters are

produced very near dislocation cores, it is found that the

critical unfaulting radius can be as small as �6 nm in

fcc-Cu. This point is illustrated in Fig. 15, where the

critical unfaulting radius is plotted against distance

along the h001i-direction in Cu. The stress-free un-

faulting radius of �22 nm is dramatically altered near

the core of the slip loop. On the compressive side, the

stress ®eld shrinks the critical radius to �6 nm, while it

expands it signi®cantly on the tensile side. Fig. 16

summarizes the temperature dependence of the capture

zone size for the three pure metals, Cu, Fe and Mo. As

the temperature increases, the elastic modulus decreases,

and the thermal energy of the cluster increases. Both

factors cooperate to reduce the e�ective trapping zone at

higher temperatures, as can be seen from Fig. 16.

5. Discussion and conclusions

The present study reveals new features of defect

cluster interaction with slip dislocations, and is thus

complementary to the original work of Trinkaus et al.

[11,12]. The interaction between nano-size defect clusters

and slip loops is shown to be highly orientation depen-

dent, unlike the situation with point defects represented

as centers of dilatation in calculations of dislocation bias

factors [19]. The size of the elastic capture zone is pri-

marily determined by the interaction between the edge

components of slip loops, and is not very sensitive to

Fig. 15. Dependence of the critical cluster radius for unfaulting

on its distance from the dislocation loop core. Clusters with a

radius greater than this critical value will unfault, and become

glissile.

Fig. 16. Temperature dependence of the `trapping zone size' for

small defect clusters in several bcc and fcc materials.

Fig. 14. 3-D iso-energy surface for fcc Cu. The value of the

constant energy for this surface is-0.2 kT. It shows the shape of

the trapping zones above and below the �111�-slip plane.
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cluster-cluster interaction. Calculated trapping zone

sizes are in reasonable agreement with experimental

observations.

In bcc crystals, unique interaction energy iso-surfaces

for only four independent cluster orientations have been

identi®ed. These correspond to clusters with Burgers

vectors of the type: h111i; h�111i; h�1�11i and h�11�1i.
Since cluster mobility is constrained by their glide cyl-

inders, the elastic ®eld of slip dislocations can only trap

them, if their glide cylinders intersect with energy iso-

surfaces whose level is more attractive than cluster

thermal energy. Because of this directed motion in bcc

crystals, clusters will tend to accumulate just below and

above the slip plane, depending on their Burgers vector

orientation, and on the character of the adjacent

dislocation segment. Maximum cluster trapping is

shown to occur near the edge component of a slip loop,

while the trapping zone size decreases to zero near

purely screw components. It is therefore expected that

upon mechanical loading, edge components will be held

up by clusters, while screw components will be free to

move on the slip plane by glide and out of the plane by

cross-slip.

It is also shown that clusters, which are very near

dislocation cores (within �3 nm) can be absorbed into

the core by rotation of their Burgers vector as a result of

unbalanced torque exerted on them by slip dislocations.

If such clusters change the direction of their Burgers

vector, they will move toward the dislocation core, and

thus will possibly get absorbed. The dynamics of this

®nal step can be ascertained by MD atomistic studies of

cluster incorporation into the dislocation core. The

distance over which this scenario of cluster incorpora-

tion is estimated by the present method to be on the

order of �3 nm for Cu at room temperature. Estimates

for the size of the trapping and absorption zones are

uncertain, because of the limitations of the model. It is

not clear if there are signi®cant e�ects of elastic

anisotropy, and large deformation close to the disloca-

tion core, on the present results, which are obtained by

linear isotropic elasticity. More accurate atomistic

simulations may shed light on the inherent limitations of

our model.

It appears that the initiation of a dislocation

channel on the slip plane is associated with the stress

required for the dislocation to overcome the collective

elastic potential of trapped clusters. This possibility is

rather high in bcc crystals, and is a consequence of

the high mobility of irradiation defect clusters. It

remains to be seen, however, whether the plastic in-

stability is initiated by `absorption' of small defect

clusters, once they rotate their Burgers vector toward

the dislocation core, or is a result of the leading

dislocation `sweeping' these small clusters. The answer

to this question may require dedicated experiments, as

well as dynamical computer simulations. Both MD

(e.g., Ref. [20]), and dislocation dynamics (DD) may

be required to resolve this question. In either sce-

nario, the type of radiation hardening in bcc metals

appears to be of a `Cottrell' nature, similar to hard-

ening by impurity clouds in alloys. This in contrast to

hardening by dislocations cutting through dispersed

barriers on the glide plane in the normal Orowan

mechanism.

Several features of cluster±dislocation interactions in

fcc crystals are di�erentiated from the conclusions on

bcc crystals. Small prismatic defect clusters in fcc

crystals are sessile, because of the low stacking fault

energy. They immediately dissociate into Schockley

partial dislocations, with out-of-plane Burgers vector,

rendering them sessile. However, we have shown that an

`induced surface tension' is provided if clusters are

nucleated near dislocation cores, or even if moving

dislocations interact with them, thus altering the

energy balance for their dissociation into partials. In

either one of these two possibilities, dissociated, sessile

clusters in fcc crystals may be converted to a glissile

con®guration. If this condition were satis®ed, it would

potentially lead to the initiation of a plastic instability

and the formation of clear channels. These scenarios

cannot be asserted without further analysis with

molecular (MD) and dislocation (DD) types of dynamic

simulations.

It is shown here that the trapping, or `capture'

distance in Cu is on the order of 20 nm at room tem-

perature, while the corresponding absorption zone is �6

nm. The temperature dependence of both zones in Cu is

stronger than in Fe, because their size shrinks by a factor

of two at half the melting point. These estimates should

be checked by mechanistic experiments, where

determination of the trapping zone size is systematically

studied for several pure materials as a function of the

irradiation temperature. Earlier estimates by Trinkaus

et al. [11,12] show that the trapping zone size for a

cluster containing only 10 crowdions to be �90 nm, and

that the zone size increases linearly with the number of

crowdions in the cluster. If we consider mobile clusters

containing hundreds of interstitial atoms, as in the

present study, their estimated trapping zone size would

be on the order of several 1000 nm. The reader should be

aware of the origin of this discrepancy, as it is only

related to the microscopic model for cluster motion.

Detailed experimental observations may more exactly

determine the 3-dimensional structure and extent of

cluster accumulation zones around dislocation loop

segments, while MD computer simulations are required

to ascertain the size dependence of cluster mobility.

Recent MD computer simulations by Stoller et al. [21]

indicate that for the a cluster of only 19 interstitials in

Fe, the activation energy is on the order of 0.1 eV, which

is essentially the migration energy of a single interstitial

(see also [8,9]).
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