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Abstract
The elastic ®eld of closed dislocation loops in isotropic crystals is developed

for diŒerential geometric parametric segments in covariant±contravariant vector
forms. The displacement vector ®eld, strain and stress tensor ®elds, as well as the
self-energy and mutual interaction energies are all expressed in terms of three
covariant basis vectors: the unit tangent t, the unit radius e and the Burgers
vector b, and their contravariant reciprocals. DiŒerential a� ne transformations
are shown to map directly the scalar unit interval (2 ‰0; 1Š) on to vector
displacement, and second-rank tensor strain and stress ®elds of a dislocation
segment, described by the parameter !. The resulting a� ne diŒerential
mappings are independent of coordinate systems and can be readily integrated
by analytical or numerical methods to obtain the total ®eld of closed dislocation
loops. The method is applied to simpli®ed geometry, where analytical expressions
can be obtained and is illustrated in numerical simulations of mesoscopic plastic
deformation.

} 1. Introduction
A relatively recent approach to investigations of mesoscopic plastic deformation

is based on direct numerical simulation of the interaction and motion of dislocations.
This approach, which is commonly known as dislocation dynamics (DD), was ®rst
introduced for two-dimensional (2D) straight, in®nitely long dislocation distribu-
tions, and then later for a complex three-dimensional (3D) microstructure (for exam-
ple Kubin and Canara (1992), Hirth et al. (1996), Schwarz (1997), and Ghoniem et al.
(2000)). Since the computational requirements for 3D simulations of plastic defor-
mation are very challenging, it is advantageous to reduce the total number of dis-
location segments during such large-scale calculations. However, dislocation
con®gurations at short range can be quite complex because of signi®cant line defor-
mation during short-range interactions (e.g. the formation of junctions and dipoles,
annihilation, or interaction with defect clusters). One has therefore two con¯icting
requirements, where both accuracy and computational speed are determined by the
shape of dislocation segments. Recently, we developed and applied a computational
method for 3D calculations of mesoscopic plastic deformation (Ghoniem and Sun
1999, Ghoniem et al. 2000, 2001), where the elastic ®eld is determined as a fast
numerical sum from contributions of curved segments, which are parametrically
represented. The ®eld calculations of large dislocation ensembles are used in a
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variational principle to determine the equations of motion of generalized coordinates
that are associated with each parametric segment (e.g. the position, tangent and
normal vectors at end nodes of each segment). In this letter, we recast the elastic
®eld equations, which we derived earlier (Ghoniem and Sun 1999), in compact and
more convenient forms. The current formulation of the elastic ®eld generalizes the
idea of parametric dislocations discussed by SedlacÃ ek (1997) and Ghoniem et al.
(2000). Utilization of these forms is demonstrated in two respects. First, a few known
cases for the stress ®eld of dislocations of special geometry are analytically derived.
Then, we illustrate a numerical application of the method to the computer simula-
tion of mesoscopic plastic deformation of large dislocation ensembles.

} 2. Formulation
The displacement vector u and strain e and stress r tensor ®elds of a closed

dislocation loop have been given by deWit (1960):
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where · and ¸ are the shear modulus and Poisson’s ratio respectively, b is the
Burgers vector of Cartesian components bi, and the vector potential
Ak…R† ˆ °ijkXisj=‰R…R ‡ R· s†Š satis®es the diŒerential equation: °pikAk; p…R† ˆ
XiR

3, where s is an arbitrary unit vector. The radius vector R connects a source
point on the loop to a ®eld point, as shown in ®gure 1, with Cartesian components
Ri, successive partial derivatives R; ijk : : : and magnitude R. The line integrals are

56 N. M. Ghoniem et al.

Figure 1. DiŒerential geometry representation of a general parametric curved dislocation
segment.



carried along the closed contour C de®ning the dislocation loop, of diŒerential arc
length dl of components dlk. Also, the interaction energy between two closed loops
with Burgers vectors b1 and b2 respectively can be written as:
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The higher-order derivatives R;ij and R;ijk of the radius vector are components of
second- and third-order Cartesian tensors respectively, which can be given in the
forms
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where Xi are Cartesian components of R. Substituting R;ij and R;ijk in equations
(1)±(4), and considering the contributions only due to a diŒerential vector element dl,
we obtain the diŒerential relationships
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Figure 1 shows a parametric representation of a general curved dislocation line
segment, which can be described by a parameter ! that varies, for example, from 0 to
1 at end nodes of the segment. The segment is fully determined as an a� ne mapping
on the scalar interval 2 ‰0; 1Š, if we introduce the tangent vector T, the unit tangent
vector t, the unit radius vector e and the vector potential A, as follows:

T ˆ dl
d!

; t ˆ T
jTj ; e ˆ R

R
; A ˆ e s

R…1 ‡ e· s†

The following relations can be readily veri®ed:
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Let the Cartesian orthonormal basis set be denoted by 1 f1x; 1y; 1zg, I ˆ 1 1
as the second-order unit tensor and denotes a tensor product. Now de®ne the three
vectors …g1 ˆ e; g2 ˆ t and g3 ˆ b=jbj† as a covariant basis set for the curvilinear
segment, and their contravariant reciprocals as gi· gj ˆ ¯i

j , where ¯i
j is the mixed

Kronecker delta and V ˆ …g1 g2†· g3 is the volume spanned by the vector basis,
as shown in ®gure 1 (Holzapfel 2000). When the previous relationships are substi-
tuted back into equations (6)±(8) with V1 ˆ s g1… †· g2, and s an arbitrary unit
vector, we obtain
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The superscripts I and II in the energy equations are for loops I and II respectively,
and g1 is the unit vector along the line connecting two interacting points on the
loops. The self-energy is obtained by taking the limit of half the interaction energy of
two identical loops, separated by the core distance. Note that the interaction energy
of prismatic loops would be simple, because g3· g2 ˆ 0. The ®eld equations are a� ne
transformation mappings of the scalar interval neighbourhood d! to the vector du
and second-order tensor de and dr neighbourhoods respectively, such that
du ˆ U d!; dr ˆ S d!; de ˆ E d!. The maps are given by the covariant, contravar-
iant and mixed vector and tensor functions

U ˆ uigi ‡ uig
i

S ˆ sym ‰Tr …Ai
: j gi g j†Š ‡ A11…3g1 g1 1 1†;

E ˆ sym ‰Tr …Bi
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…10†

The scalar metric coe� cients ui; ui; Ai
: j; Bi

: j; A11 and B11 are obtained by direct reduc-
tion of equation (9) into equation (10).

} 3. Applications

3.1. Analytical
In some simple geometry of Volterra-type dislocations, special relations between

b; e and t can be obtained, and the entire dislocation line can also be described by
one single parameter. In such cases, one can obtain the elastic ®eld by proper choice
of the coordinate system, followed by straightforward integration. Solution variables
for the stress ®elds of in®nitely long pure and edge dislocations are given in table 1,
while those for the stress ®eld along the 1z direction for circular prismatic and shear
loops are shown in table 2. The corresponding variables are de®ned in ®gure 2 for
in®nitely straight dislocations, and ®gure 3 for circular dislocation loops. Note that,
for the case of a pure screw dislocation, one has to consider the product of V and the
contravariant vectors together, since V ˆ 0. When the parametric equations are
integrated over z from 1 to ‡1 for the straight dislocations, and over ³ from 0
to 2p for circular dislocations, one obtains the entire stress ®eld in dyadic notation as
follows.

For an in®nitely long screw dislocation,
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For an in®nitely long edge dislocation,
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For a circular shear loop (evaluated on the 1z axis),
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4…1 ¸†…r2 ‡ z2†5=2
…¸ 2†…r2 ‡ z2† ‡ 3z2

£ ¤
1x 1z ‡ 1z 1x‰ †: …13†

Elastic field of dislocations in isotropic crystals 59



For a circular prismatic loop (evaluated on the 1z axis),
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Table 1. Variables for screw and edge dislocations.

Screw dislocation Edge dislocation
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Table 2. Variables for circular shear and prismatic loops.

Shear loop Prismatic loop
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As an application of the method in calculations of self-energy and interaction
energy between dislocations, we consider here two simple cases. Firstly, the interac-
tion energy between two parallel screw dislocations of length L and with a minimum
distance » between them is obtained by making the following substitutions in
equation (9):

gI
2 ˆ gII

2 ˆ gI
3 ˆ gII

3 ˆ 1z; jTj ˆ dl

dz
ˆ 1; 1z g1 ˆ z2 z1

‰»2 ‡ …z2 z1†2Š1=2
;

where z1 and z2 are distances along 1z on dislocations 1 and 2 respectively, connected
along the unit vector g1. The resulting scalar diŒerential equation for the interaction
energy is
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Figure 2. Geometry and variables for in®nitely long screw and edge dislocations.

Figure 3. Geometry and variables for circular shear and prismatic loops.
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Integration of equation (15) over a ®nite length L yields identical results with
those obtained by deWit (1960), and by application of the more standard Blin
formula (Hirth and Lothe 1982). Secondly, the interaction energy between two
coaxial prismatic circular dislocations with equal radius can be easily obtained by
the following substitutions:

gI
3 ˆ gII

3 ˆ 1z; gI
2 ˆ sin ’1 1x ‡ cos ’1 1y; gII

2 ˆ sin ’2 1x ‡ cos ’2 1y;

1z· gI
2 ˆ 0; R2 ˆ z2 ‡ 2» sin

’1 ’2

2

± ²h i2

; 1z· g1 ˆ z

R
:

Integration over the variables ’1 and ’2 from 0 to 2p yields the interaction energy,
which can be veri®ed to be identical with the form obtained by deWit (1960) , and by
application of Blin’s formula (Hirth and Lothe 1982). Details of all integrations in
this letter can be readily veri®ed or checked in the textbook by Walgraef and
Ghoniem (2002).

3.2. Numerical problems
The vector forms in equation (9) can be integrated for complex-shape loop

ensembles, by application of the fast sum method (Ghoniem and Sun 1999). In
typical DD computer simulations, the shape of loop ensembles is evolved using
equations of motion for generalized coordinates representing the position, tangent
and normal vectors of nodes on each loop (Ghoniem et al. 2000, 2001). Figure 4
shows the results of such computations for simulation of plastic deformation in
single-crystal copper under the action of a slow stress ramp. The initial dislocation
density » ˆ 2 1013 m 2 has been divided into 68 complete loops, of average side
length la ˆ 1=»1=2. Each loop contains a random number of straight glide and super-
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Figure 4. Dislocation loop microstructure for an initial density of 1013 m 2, and
corresponding to applied stresses ¼11 of (a) 120 MPa, and (b) 165 MPa.



jog segments. When a generated or expanding loop intersects the simulation volume
of 3 mm side length, the segments that lie outside the simulation boundary are
periodically mapped inside the simulation volume to preserve translational strain
invariance, without loss of dislocation lines. The initially straight segmented disloca-
tion microstructure evolves under an applied stress ¼11 ˆ 120 MPa in ®gure 4 (a) and
165 MPa in ®gure 4 (b). Superjogs (shown as thin lines) are sessile, while glide
segments expand considerably under the action of applied stress.

} 4. Conclusions
The elastic ®eld of arbitrary shape parametric dislocation loops and loop ensem-

bles is determined on the basis of diŒerential geometry representation of covariant±
contravariant vector bases that are linked to the parametric shape of piecewise
segmented loops. Determination of the vector displacement and stress and strain
tensor ®elds is independent of the coordinate system. These forms can be utilized in
analytical veri®cations by judicious choice of the coordinate system and are also
advantageous for large-scale computer simulations of mesoscopic plastic deforma-
tion because of their simple and vectorial form. Instead of third-rank tensor com-
ponents in the stress and strain ®elds (for example Ghoniem and Sun (1999)) and
second-rank tensor components in the interaction energy ®elds (for example
Ghoniem and Sun (1999)) and second-rank tensor components in the interaction
energy (for example Hirth and Lothe (1982) and Kubin and Kratochvil (2000)), one
uses tensor and dot products respectively of these vectors.
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