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ABSTRACT

The elastic field of closed dislocation loops in isotropic crystals is developed
for differential geometric parametric segments in covariant—contravariant vector
forms. The displacement vector field, strain and stress tensor fields, as well as the
self-energy and mutual interaction energies are all expressed in terms of three
covariant basis vectors: the unit tangent t, the unit radius e and the Burgers
vector b, and their contravariant reciprocals. Differential affine transformations
are shown to map directly the scalar unit interval (€ [0,1]) on to vector
displacement, and second-rank tensor strain and stress fields of a dislocation
segment, described by the parameter w. The resulting affine differential
mappings are independent of coordinate systems and can be readily integrated
by analytical or numerical methods to obtain the total field of closed dislocation
loops. The method is applied to simplified geometry, where analytical expressions
can be obtained and is illustrated in numerical simulations of mesoscopic plastic
deformation.

§ 1. INTRODUCTION

A relatively recent approach to investigations of mesoscopic plastic deformation
is based on direct numerical simulation of the interaction and motion of dislocations.
This approach, which is commonly known as dislocation dynamics (DD), was first
introduced for two-dimensional (2D) straight, infinitely long dislocation distribu-
tions, and then later for a complex three-dimensional (3D) microstructure (for exam-
ple Kubin and Canara (1992), Hirth et al. (1996), Schwarz (1997), and Ghoniem et al.
(2000)). Since the computational requirements for 3D simulations of plastic defor-
mation are very challenging, it is advantageous to reduce the total number of dis-
location segments during such large-scale calculations. However, dislocation
configurations at short range can be quite complex because of significant line defor-
mation during short-range interactions (e.g. the formation of junctions and dipoles,
annihilation, or interaction with defect clusters). One has therefore two conflicting
requirements, where both accuracy and computational speed are determined by the
shape of dislocation segments. Recently, we developed and applied a computational
method for 3D calculations of mesoscopic plastic deformation (Ghoniem and Sun
1999, Ghoniem et al. 2000, 2001), where the elastic field is determined as a fast
numerical sum from contributions of curved segments, which are parametrically
represented. The field calculations of large dislocation ensembles are used in a
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variational principle to determine the equations of motion of generalized coordinates
that are associated with each parametric segment (e.g. the position, tangent and
normal vectors at end nodes of each segment). In this letter, we recast the elastic
field equations, which we derived earlier (Ghoniem and Sun 1999), in compact and
more convenient forms. The current formulation of the elastic field generalizes the
idea of parametric dislocations discussed by Sedlacek (1997) and Ghoniem et al.
(2000). Utilization of these forms is demonstrated in two respects. First, a few known
cases for the stress field of dislocations of special geometry are analytically derived.
Then, we illustrate a numerical application of the method to the computer simula-
tion of mesoscopic plastic deformation of large dislocation ensembles.

§ 2. FORMULATION
The displacement vector u and strain & and stress o tensor fields of a closed
dislocation loop have been given by deWit (1960):

b; 1 1
Up = — E%C A/c dl/c + Q%C <6iklblR,pp + ITI/ 6/cmnbnR,mi> dl/ca (1)
1 elcmnbnR.mi'
€ T g i <—% (iR )+ €gqb;R ) — €y R — ej/(lblR,i), PP#) di,, (2)

=

_ M 1
Ojj — E %C <% R,mpp (Ejmn dll + € dlj) + ITI/ Cemn (R,ijm - 6in,ppm) dl/c) (3)

where p and v are the shear modulus and Poisson’s ratio respectively, b is the
Burgers vector of Cartesian components b;, and the vector potential
A (R) =€ X;5;/[R(R+R-s)] satisfies the differential equation: e,;4; ,(R) =
X;R™3, where s is an arbitrary unit vector. The radius vector R connects a source
point on the loop to a field point, as shown in figure 1, with Cartesian components
R;, successive partial derivatives R ;; ~ and magnitude R. The line integrals are

X

Figure 1. Differential geometry representation of a general parametric curved dislocation
segment.
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carried along the closed contour C defining the dislocation loop, of differential arc

length dl of components d/,. Also, the interaction energy between two closed loops
with Burgers vectors b, and b, respectively can be written as:

by by 2
E = —% i; i; [R " <d12] diyy+ 7= diy dzlj>
T c) Jc®@

+ (le - 5in,/1) diyy dll/c:| . (4)

1—v

The higher-order derivatives R ;; and R j; of the radius vector are components of
second- and third-order Cartesian tensors respectively, which can be given in the

forms
Xf)/ e

R
X, X, X, X,
?— <5 = +6]k L4 & Rﬂ/Rz’

where X; are Cartesian components of R. Substituting R; and R ;; in equations
(1)~(4), and considering the contributions only due to a differential vector element dl,
we obtain the differential relationships

()

bl 1 1
dui - 4 + 87T,R(1 . I/) <(1 2V)ei/(lbl dl/c R2 6/cn/mbn)(m)(i dl/c) ) (6)
1/ 3
dEij - Q F (ej/(lbin + 6i/(lbj)(l) dl/c =+ m 6/cmnbn)(i)(j)(m dl/c
1 v v
) €kmnbn X6y Al + =0 €0 X dly +m€ilmbn)(j diy |,
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1 3
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Figure 1 shows a parametric representation of a general curved dislocation line
segment, which can be described by a parameter w that varies, for example, from 0 to
1 at end nodes of the segment. The segment is fully determined as an affine mapping
on the scalar interval € [0, 1], if we introduce the tangent vector T, the unit tangent
vector t, the unit radius vector e and the vector potential A, as follows:

dl T R
T—@, t—m, e—E, A=

exs
R(1 +e's)

The following relations can be readily verified:
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A dl, = A Tdw
=Tdw(A-t)
_Tdw(exs)t
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tmnbn X0 A1y €€, = [(T dw x R)- b]l
= RT dw[(t x e)- b]l.

b

€lemn

Let the Cartesian orthonormal basis set be denoted by 1= {1,,1,,1.},1=1®1
as the second-order unit tensor and & denotes a tensor product. Now define the three
vectors (g, =e,g, =t and g; =b/|b|) as a covariant basis set for the curvilinear
segment, and their contravariant reciprocals as g'- g, = 6;, where & is the mixed
Kronecker delta and V' = (g, x @,)- g; is the volume spanned by the vector basis,
as shown in figure 1 (Holzapfel 2000). When the previous relationships are substi-
tuted back into equations (6)—(8) with ¥, = (s x g,)- d,, and s an arbitrary unit
vector, we obtain
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The superscripts I and II in the energy equations are for loops I and II respectively,
and g, is the unit vector along the line connecting two interacting points on the
loops. The self-energy is obtained by taking the limit of half the interaction energy of
two identical loops, separated by the core distance. Note that the interaction energy
of prismatic loops would be simple, because g5 g, = 0. The field equations are affine
transformation mappings of the scalar interval neighbourhood dw to the vector du
and second-order tensor de and do neighbourhoods respectively, such that
du =Udw, do=S dw, de = E dw. The maps are given by the covariant, contravar-
iant and mixed vector and tensor functions

U=ug +ug
S=sym [Tr(4';9,®9’)] +4" (39,9, —1&1), (10)
E =sym [Tr (B ;9,2 9’)] + B" (39, ® g, +1®1).

The scalar metric coefficients u;, u', A';, B';, A" and B'" are obtained by direct reduc-
tion of equation (9) into equation (10).

§ 3. APPLICATIONS

3.1. Analytical

In some simple geometry of Volterra-type dislocations, special relations between
b,e and t can be obtained, and the entire dislocation line can also be described by
one single parameter. In such cases, one can obtain the elastic field by proper choice
of the coordinate system, followed by straightforward integration. Solution variables
for the stress fields of infinitely long pure and edge dislocations are given in table 1,
while those for the stress field along the 1. direction for circular prismatic and shear
loops are shown in table 2. The corresponding variables are defined in figure 2 for
infinitely straight dislocations, and figure 3 for circular dislocation loops. Note that,
for the case of a pure screw dislocation, one has to consider the product of V" and the
contravariant vectors together, since ¥ =0. When the parametric equations are
integrated over z from —oo to +oo for the straight dislocations, and over 6 from 0
to 2r for circular dislocations, one obtains the entire stress field in dyadic notation as
follows.

For an infinitely long screw dislocation,

b
GZ%(—sinH1x®1z+cosﬁ1},®1Z+cosﬁ1z®1},—sin01z®1x). (11)

For an infinitely long edge dislocation,

o= _ﬁfy)r {sin@[2 + cos(20)]1, ® 1, — [sinfcos (20)]1, ® 1,
+ (2usin0)1, ® 1, — [cosfcos(20)](1, @1, +1,®1,)}. (12)

For a circular shear loop (evaluated on the 1, axis),

pbr?

ISR (v=2)("+ )+ 321, @1 +1.01,). (13

o=
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Table 1. Variables for screw and edge dislocations.

Screw dislocation Edge dislocation
1 1
g;(e) E(rcosﬂh+rsin91),+z12) E(rcosﬂh+rsin91),+z12)
gz(t) 12 12
93 (b) b1z b1x
1
g' 0 T
br 1
2 .
g —————(—sinf1, +cosb1,
V(2 +22)1/2( t 2 V(r? +22)1/2(—z1), +rsinf1,)
3 r Iz . r )
g m (Sll’l91x - COSQ"A‘,) m(smmx - COSQ"A‘,)
T dz 1 dz 1
dw dw ©
R (1”2 + 22)1/2 (1”2 + 22)1/2
brsin@
4 0 (”? + 22)1/2
Table 2. Variables for circular shear and prismatic loops.
Shear loop Prismatic loop
91(3) m(l‘00591'\.+1‘8in¢91},+Z1:) m(l‘00591'\.+1‘8in¢91},+Z1:)
g, (t) —sinf1, +cosf1, —sinf1, +cosf1,
g:(b) m, b1.
bcosd 1
1 _ — .
g % 1, V(cos(91A.+51n91},)
) 1 . br .
g (=z1, +rsinf1,) (=sinf1, 4 cosf1,)

V(,,z +Zz)l/2 V(,,z +Zz)l/2

, 1 1

g m(—ZCOS@1A.—ZSiIl¢91y+l‘1:) m(—zcos(ﬂx—zsin(ﬂy+r1:)
< <
T -r sin@j—e 1, + rcos(ﬂg—e 1, —rsin(ﬂg—e 1, + rcos@? 1,
w w w w
R (],2 +Z2)1/2 (1‘2 +Z2)1/2
v zcos b br
- (],2 + 22)1/2 (1,2 + 22)1/2
For a circular prismatic loop (evaluated on the 1. axis),
o= pibr (RO -)P+2) =31, 21, +1,&1)]
)+ 2" e

242+ ). 21} (14)
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Figure 2. Geometry and variables for infinitely long screw and edge dislocations.
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Figure 3. Geometry and variables for circular shear and prismatic loops.

As an application of the method in calculations of self-energy and interaction
energy between dislocations, we consider here two simple cases. Firstly, the interac-
tion energy between two parallel screw dislocations of length L and with a minimum
distance p between them is obtained by making the following substitutions in
equation (9):

d/ Zy—2Z
I I — 0 — I _ _ _ 2 1
9,=9, =9;=9; =1, [TI[=—=1, 1,9, = :
? ? ’ ’ dz : [P+ (z, — 21)2]1/2

where z; and z, are distances along 1. on dislocations 1 and 2 respectively, connected
along the unit vector g,. The resulting scalar differential equation for the interaction
energy is
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dzEI — sz v . (22 — Zl) (15)
dzydz; 4=V \[? + (=27 [P+ (@ —2) 1)
Integration of equation (15) over a finite length L yields identical results with
those obtained by deWit (1960), and by application of the more standard Blin
formula (Hirth and Lothe 1982). Secondly, the interaction energy between two
coaxial prismatic circular dislocations with equal radius can be easily obtained by
the following substitutions:

gg = ggl = 1za g£ = —SinSOI 1x+COS(pl 1ya gg = —Sil’l(pz 1x+COS(p2 1ya

1-gl=0, R2=2+ [2p sin (@)r, 1.9, ==.

Integration over the variables ¢; and ¢, from 0 to 2r yields the interaction energy,
which can be verified to be identical with the form obtained by deWit (1960), and by
application of Blin’s formula (Hirth and Lothe 1982). Details of all integrations in
this letter can be readily verified or checked in the textbook by Walgraef and
Ghoniem (2002).

3.2. Numerical problems

The vector forms in equation (9) can be integrated for complex-shape loop
ensembles, by application of the fast sum method (Ghoniem and Sun 1999). In
typical DD computer simulations, the shape of loop ensembles is evolved using
equations of motion for generalized coordinates representing the position, tangent
and normal vectors of nodes on each loop (Ghoniem et al. 2000, 2001). Figure 4
shows the results of such computations for simulation of plastic deformation in
single-crystal copper under the action of a slow stress ramp. The initial dislocation
density p =2 X 103 m™2 has been divided into 68 complete loops, of average side
length [, = l/pl/z. Each loop contains a random number of straight glide and super-

2

Figure 4. Dislocation loop microstructure for an initial density of 10" m™
corresponding to applied stresses oy; of (@) 120 MPa, and (b) 165 MPa.

, and
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jog segments. When a generated or expanding loop intersects the simulation volume
of 3 um side length, the segments that lie outside the simulation boundary are
periodically mapped inside the simulation volume to preserve translational strain
invariance, without loss of dislocation lines. The initially straight segmented disloca-
tion microstructure evolves under an applied stress o;; = 120 MPa in figure 4 (a) and
165 MPa in figure 4(b). Superjogs (shown as thin lines) are sessile, while glide
segments expand considerably under the action of applied stress.

§ 4. CONCLUSIONS

The elastic field of arbitrary shape parametric dislocation loops and loop ensem-
bles is determined on the basis of differential geometry representation of covariant—
contravariant vector bases that are linked to the parametric shape of piecewise
segmented loops. Determination of the vector displacement and stress and strain
tensor fields is independent of the coordinate system. These forms can be utilized in
analytical verifications by judicious choice of the coordinate system and are also
advantageous for large-scale computer simulations of mesoscopic plastic deforma-
tion because of their simple and vectorial form. Instead of third-rank tensor com-
ponents in the stress and strain fields (for example Ghoniem and Sun (1999)) and
second-rank tensor components in the interaction energy fields (for example
Ghoniem and Sun (1999)) and second-rank tensor components in the interaction
energy (for example Hirth and Lothe (1982) and Kubin and Kratochvil (2000)), one
uses tensor and dot products respectively of these vectors.
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