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Abstract
In the parametric dislocation dynamics (PDD), closed dislocation loops are
described as an assembly of segments, each represented by a parametric
space curve. Their equations of motion are derived from an energy
variational principle, thus allowing large-scale computer simulations of plastic
deformation. We investigate here the limits of temporal and spatial resolution
of strong dislocation interactions. The method is demonstrated to be highly
accurate, with unconditional spatial convergence that is limited to distances of
the order of interatomic dimensions. It is shown that stability of dislocation
line shape evolution requires very short time steps for explicit integration
schemes, or can be unconditionally stable for implicit time integration schemes.
Limitations of the method in resolving strong dislocation interactions are
established for the following mechanisms: dislocation generation, annihilation,
dipole and junction formation, pileup evolution.

1. Introduction

Since it was first introduced in the mid-eighties [1, 2], dislocation dynamics (DD) has now
become an attractive tool for investigations of both fundamental and collective processes that
constitute plastic deformation of crystalline materials. In its early versions, the collective
behaviour of dislocation ensembles was determined by direct numerical simulations of the
interactions between infinitely long, straight dislocations. The numerical accuracy and
limitations of the two-dimensional description of dislocation ensemble evolution has been
examined in considerable detail (e.g. [3–11]). Although the numerical issues of stability,
accuracy, convergence and field approximations have been largely resolved in the two-
dimensional case, it has been realized that the fundamental physical nature of dislocation
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loops, being three-dimensional space curves, makes progress with rigorous two-dimensional
simulations rather difficult without additional ad hoc rules of close-range interactions. Such
realization prompted several research groups to consider extensions of the DD methodology
to the more physical, yet, considerably more complex conditions of three-dimensional DD
computer simulations of plastic deformation. Developed methods for three-dimensional DD
can be categorized into two groups, according to the line discretization scheme. The first
group uses straight segments: either pure edge or screw [12–21], or segments of mixed
character [22,23]. The second category is based on curved segments; the so-called parametric
method [30–33].

There is an enormous range of problems related to spatial resolution of plasticity, spanning
from nano-, micro-, and single crystal materials, all the way up to polycrystalline material
deformation. In addition, many physical mechanisms involving dislocations are inherently
either stable or unstable. For example, when an external stress is applied to a Frank–Read
(FR) source, the dislocation develops an equilibrium shape at low values of applied stress.
However, above a critical or threshold stress, the dislocation line becomes unstable, and may
expand significantly without additional increments of applied stress. Most dislocation reactions
have this dynamic feature, where junctions, dipoles, pileups, can all be either stable or unstable,
depending on some critical stress level. It is therefore important to develop an understanding
of the numerical accuracy, convergence and stability, so that one can actually resolve such
critical reactions without the doubt that the results are numerical artefacts. We plan to provide
an exposition of the numerical features of parametric dislocation dynamics (PDD) method,
when applied to the most significant dislocation interaction problems. We limit ourselves to
the numerical features of the PDD, since discretization methods based on straight segments
have other features of resolution that are outside the scope of the current investigation.

The PDD methodology is based on two main principles that are often employed in modern
numerical methods of continuum mechanics (i.e. the finite element method (FEM)). The first is
some energy-based variational principle that would allow one to derive the equations of motion
(EOM) of a reduced set of degrees of freedom (DOF) representing the system. The second
principle is a kinematic assumption regarding how the displacement or strain field is assumed to
vary in a specified region of the continuum. To draw the analogy, a minimization of the Gibbs
free energy of a single loop upon its virtual motion in the external and internal field results in
the EOM, while assumed spline functions between some fixed nodes on the dislocation loop
corresponds to the kinematic assumption of continuum mechanics. The variational principle
guarantees that the global energy is a minimum, but does not guarantee the accuracy of the
dislocation configurations at every instant. Thus, the deviation of an assumed spline shape form
(i.e. kinematic constraint), may actually lead to an erroneous configuration if that configuration
is close to a critical state (e.g. Orowan stress, flow stress for unlocking dislocations from cluster
atmospheres, dipole and junction stability, etc). The basic question here is, therefore, how
crude can one be in imposing the kinematic shape constraint for a specified level of temporal
or spatial resolution? It is fairly obvious that the answer will depend on the mechanism at hand,
and the level of detail for our description of such mechanism. To study the general accuracy
and convergence of the PDD, we plan to present systematic studies of two broad categories
of dislocation mechanisms: generation (including FR sources, and pileups), and hardening
(including finite-size dipoles, junctions).

In section 2, we present a concise description of the PDD in a new dimensionless
form. The temporal and spatial resolution of the PDD in a number of significant dislocation
mechanisms will then be analysed in section 3, for both generation in section 3.1, and
hardening in section 3.2. Finally, a discussion of these results and conclusions are given in
section 4.
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2. Dimensionless EOM for PDD

The method of PDD is described in sufficient detail in [29–33], and we will attempt here to give
only a brief description for completeness. The first step is to calculate the stress field of curved
parametric segments. Let the Cartesian orthonormal basis set be denoted by 1 ≡ {1x, 1y, 1z},
I = 1 ⊗ 1 as the second order unit tensor, and ⊗ denotes out tensor product. Now define the
three vectors ( g1 = e, g2 = t, g3 = b/|b|) as a covariant basis set for the curvilinear segment,
and their contravariant reciprocals as [34]: gi · gj = δi

j , where δi
j is the mixed Kronecker delta

and V = ( g1 × g2) · g3 the volume spanned by the vector basis, as shown in figure 1. The
parametric representation of a general curved dislocation line segment, shown in the figure,
can be described by a parameter ω that varies from 0 to 1 at end nodes. The segment is fully
determined as an affine mapping on the scalar interval {ω ∈ [0, 1]}, if we introduce the tangent
vector T, the unit tangent vector t, and the unit radius vector e as follows:

T = dl
dω

, t = T
|T| , e = r

r

Ghoniem et al [33] have shown that the elastic field of such a parametric segment can
be obtained as an affine mapping transformation of the scalar parameter ω, and that the stress
filed differential dσ introduced by a parametric differential dω are related as:

dσ

dω
= µV |T|

4π(1 − ν)R2
{(g1 ⊗ g1 + g1 ⊗ g1) + (1 − ν)(g2 ⊗ g2 + g2 ⊗ g2) − (3g1 ⊗ g1 + I )}

(1)

Once the parametric curve for the dislocation segment is mapped onto the scalar interval
{ω ∈ [0, 1]}, the stress field everywhere is obtained as a fast numerical quadrature sum from
equation (1) [31].

To simplify the problem, let us define the following dimensionless parameters:

r∗ = r
a
, f ∗ = F

µa
, t∗ = µt

B

Here, a is lattice constant, F is resultant force which may consist of Peach–Koehler force [35]
FPK (generated by the sum of the external and internal stress fields), the self-force Fs generated

Figure 1. Parametric representation of a general curved dislocation segment, with relevant vectors
defined (after [33]).
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by local curvature at the point of interest. µ is shear modulus, and t is time. B is isotropic
dislocation resistivity (inverse mobility). And following [32], a closed dislocation loop can be
divided into Ns segments. In each segment j , we can choose a set of generalized coordinates
qm at the two ends, thus allowing parametrization of the form:

r∗ = CQ (2)

Here,

C =
[

C1(ω) 0 C2(ω) 0
0 C1(ω) 0 C2(ω)

· · · Cm(ω) 0
0 Cm(ω)

]
,

Ci(ω), (i = 1, 2, . . . , m)

are shape functions dependent on the parameter (0 � ω � 1), and Q = [q1, q2, . . . , qm]�,
qi are a set of generalized coordinates. Substitute all these to the variational form of the
governing EOM of a single dislocation loop [32], we obtain:

Ns∑
j=1

∫
�j

δQ�
(

C�f ∗ − C�C
dQ
dt∗

)
|ds| = 0 (3)

Let,

fj =
∫

�j

C�f ∗|ds|, kj =
∫

�j

C�C|ds|

Following a similar procedure to the FEM, we assemble the EOM for all contiguous segments
in global matrices and vectors, as:

F =
Ns∑

j=1

fj , K =
Ns∑

j=1

kj

then, from equation (3) we get,

K
dQ
dt∗

= F (4)

Equation (4) represents a set of ordinary differential equations, which describe the motion
of an ensemble of dislocation loops as an evolutionary dynamical system. Generally, two
numerical time integration methods are available for solving this set of equations: the implicit
and the explicit classes of procedures. We will later discuss the accuracy and stability issues
associated with each scheme.

In the applications presented here, we specifically use cubic splines as shape functions,
and confine dislocation motion to be on its glide plane (i.e. the climb speed is negligible).
Thus, we end up with only eight DOF for each segment with each node associated with four
independent DOF. These cubic spline shape functions are given by

C1 = 2ω3 − 3ω2 + 1

C2 = ω3 − 2ω2 + ω

C3 = −2ω3 + 3ω2

C4 = ω3 − ω2

Q = [P1, T1, P2, T2]�

Here, Pi and Ti (i = 1, 2) correspond to the position and tangent vectors, respectively. In
the following, we present results of studies for some of the main dislocation mechanisms to
determine the effects of space and time discretization on the physical nature of the mechanism.
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3. Spatial and temporal resolution of dislocation mechanisms

3.1. Dislocation generation

3.1.1. FR source. The FR mechanism of dislocation generation has been established as one
of the primary processes which contribute to the increase in plastic strain upon application of
a mechanical load. The main features of the mechanism have been documented in textbooks
by hand sketches (e.g. [36–38]). More recently, details of its evolution have been utilized
as implicit test beds to validate the numerical procedures of three-dimensional DD, outlined
earlier in section 1 [17–23]. Because of the existence of these extensive studies, we will apply
the PDD to analyse the evolution of FR sources, and show new aspects that are relevant to
understanding the limitations of the PDD method in resolving spatial and temporal details. We
examine in this section the following aspects of the FR source evolution: symmetry of stable
and unstable sources, stable/unstable transition, shape accuracy as it depends on the number
of segments (spatial resolution), solution stability (temporal resolution) and its dependence
on time integration, adaptive nodal re-distribution techniques, and the accuracy of resolving
dislocation annihilation and reconfiguration.

FR source symmetry and stability. The influence of the Burgers vector direction on the evolution
of FR sources from an initially straight segment is determined in figure 2. A straight dislocation
segment is pinned at two points ((−800, 0) and (800, 0)) in the local coordinate system of the
(111) glide plane of an FCC metal, and is divided into 20 cubic spline segments. Although
the results can all be given in dimensionless forms, it is instructive to use the properties of Cu
for physical values. These are: a = 0.36 nm, B = 10−4 Pa s, µ ≈ 50 GPa, and ν = 0.31.
These values show that when the dimensionless time is 1000, the physical time is 2 ps. The
segment is subjected to a sudden uniaxial stress σ11 (corresponding to a critical resolved shear
stress (CRSS) τ/µ). σ11 is represented by a step function in time. In figure 2, b = 1

2 [1̄10] is
along the dislocation line sense vector, hence it represents a screw dislocation. For the sake
of numerical studies, we select the vectors: b = (

√
6/3)[1̄1̄1] and b = 1

2 [1̄01] to represent
an edge and mixed dislocation, respectively, as shown in figure 2. The Burgers vectors are
arbitrary in the latter two cases, but were introduced to ascertain the numerical aspects of FR
symmetry during its expansion.

At the beginning, the curvature is almost zero everywhere and thus the effects of the self-
forces are negligible. However, as the dislocation line bows out, the local curvature increases
gradually, and then reaches its maximum value. In figure 2(a), the applied stress is relatively low
(σ11 = 80 MPa, or τ/µ = 0.065%), thus the increase in the curvature everywhere eventually
allows the self-force to balance the applied force and the FR source achieves an equilibrium
shape. It is noted that the shape of the FR source is symmetric with respect to axis normal to
its initial mid-point, for the initially pure screw and edge type of segments. The energy per
unit length of a screw segment is lower than that for an edge segment. As a consequence,
screw components tend to have higher self-forces (i.e. stiffer) than edge components. Figure 2
illustrates these features, where bowing out of initially screw dislocations is less pronounced
than edge, both for the stable (figure 2(a)) and unstable (figure 2(b)) configurations. It is also
noted that the FR source stretches along the Burgers vector direction for the mixed character
case, as it tries to minimize its total elastic energy by increasing the length of its line along the
screw (Burgers vector) direction.

Since the overall curvature of the FR source increases as it bows out, the applied stress
must be increased to maintain successive equilibrium shapes. However, because the FR source
is pinned at the two ends only, other configurations of lower curvature are possible, and can
pass through the same two fixed points. As a consequence, the average curvature of the FR
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Figure 2. Effects of Burgers vector orientation on the evolution of an FR source in FCC crystals
on the (111)-glide plane: (a) stable state (σ11 = 80 MPa, τ/µ = 0.065%); (b) unstable state
(σ11 = 200 MPa, τ/µ = 0.16%). Burgers vectors are (

√
6/3)[1̄1̄1](edge), 1

2 [1̄01](mixed),
1
2 [1̄10](screw), respectively at time t∗ = 4 × 106.

source reaches a maximum at a critical stress value (the Orowan stress), above which an
unstable configuration of lower average curvature is reached. The transition from a stable FR
configuration to an unstable one is illustrated in figure 2(b), where the applied stress is high
(σ11 = 200 MPa (τ/µ = 0.16%)), and the maximum self-force cannot balance the external
driving force. Then dislocation will then continue expanding, which causes the curvature to
decrease even further.

Resolution limits of the FR shape. For large-scale computer simulations, there is an obvious
need to reduce the computational burden without sacrificing the quality of the physical results.
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The smallest number of spline segments with the largest time step increment for integration of
the EOM is a desirable goal. However, one must clearly identify the limits of this approach.
We study here the influence of the nodal density on the dislocation line, and the time integration
scheme on the ability to satisfactorily resolve the shape of a dynamic FR source. In order to
estimate the error for different case, we define absolute error εa and relative error εr , respectively
as follows:

εa = max 	ri, i = 1, 2, . . . , n

εr =
{

1

n

n∑
i=1

(
	ri

r

)2
}1/2 (5)

Here, 	ri = ri −R, which stands for ith sampling point of the position difference between
current interpolation method and reference results. n is the total number of sampling points
for calculating the error.

In figure 3, the dislocation line is divided into different number of segments, and the FR
source is evolved by numerical integration. Different applied external stress is applied to the
dislocation. Figure 3(a) is correspond to low applied stress σ11 = 80 MPa (τ/µ = 0.065%)
with final stable configurations. It is shown that one can achieve very high precision in
describing the stable FR shape with very small number of segments. The corresponding error
is shown in table 1. The reference configuration is chosen as that with 30 segments (thus the
relative and absolute error is set to zero). It is found that with the number of segments
increased, both the relative and absolute error decreased sharply, while the running time
increased significantly. It is interesting to note here that with only two segments, one can
achieve almost the same resolution as that of 30 segments, the relative error is less than 0.2%,
while the running time is trivial compared with that with 30 segments, only 2%. However,
when the FR source becomes unstable, the variation of curvature is considerable between its
middle section and the sections close to the pinning points. Figure 3(b) and table 2 show
the configuration and corresponding absolute, relative error and running time respectively at
higher applied stress σ11 = 200 MPa (τ/µ = 0.16%). The error estimation is shown in table 2
(in this particular case the reference configuration is chosen as that with 40 segments). It is
found that with only two segments the method is unable to achieve high accuracy, although it
still converges. The unstable configuration is more complicated, since the curvature is much
higher at the zone near fixed points. Hence, two segments are not sufficient to to capture such
curvature variation within the cubic spline shape function framework. It is shown in table 2
that with increasing the number of segments, the accuracy increases significantly, albeit at the
expense of an increase in computing time.

The influence of the time integration method on the shape convergence of the FR source
is studied in figure 4, and its corresponding error estimation is shown in table 3. The same
conditions as in figure 3 are chosen, except that the applied uniaxial stress σ11 = 70 MPa
(τ/µ = 0.056%). The results of shape evolution for the explicit integration with different
time steps are compared to those obtained with an implicit scheme. One-step Euler forward
integration explicit scheme is utilized. In the explicit scheme, it is noted that when the time
step is larger than ≈3000, a numerical shape instability sets in. For the parameters chosen
here, this corresponds to a physical time step of ≈6 ps. The shape tends to diverge more along
screw segments of the FR source. For a time step on the order of 1000 (i.e. 	t ≈ 2 ps),
the FR shape is numerically stable, but not accurate. Finally, the FR source shape converges
(i.e. accurate and stable), when the explicit time step is less than 500 (i.e. 	t ≈ 1 ps). Such
small limit on the time step for high mobility crystals (e.g. FCC metals) can result in severe
restrictions on the ability of current day computers to simulate plastic deformation of large



8 J Huang and N M Ghoniem

Figure 3. The influence of number of segments on the shape convergence of an FR source with
Burgers vector 1

2 [1̄01] at different stress levels: (a) stable state (σ11 = 80 MPa, τ/µ = 0.064%),
(b) unstable state—same time: (σ11 = 200 MPa, τ/µ = 0.16%).

Table 1. Error estimation for stable state FR source.

No. of segments Absolute error εa Relative error εr (%) Runtime (s)

2 6.06 0.17 0.12
6 6.01 0.15 0.42

15 1.32 0.018 1.53
30 0 0 5.77

volumes to realistic experimental time. An implicit integration method developed by Gear [40]
is also used to test the same problem. The method is designed for the numerical integration of
stiff, ordinary differential equations, with a variable time step that is automatically determined
on the basis of the fastest variation of any of the DOF. A level of relative accuracy of 10−6 is
selected as a convergence constraint. Since the time step is automatically adjusted to capture
the specified level of accuracy, the overall scheme is stable and convergent. From table 3, it is
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Table 2. Error estimation for unstable FR source at t∗ = 5 × 106.

No. of segments Absolute error εa Relative error εr (%) Runtime (s)

2 1408.8 20.15 0.02
6 191.1 5.04 0.20

15 133.8 3.24 2.53
30 142.0 2.93 24.14
40 0 0 27.57

Figure 4. The influence of the time integration scheme on the shape convergence of an FR
source. The calculation condition is chosen the same as that in figure 3, except the applied stress
σ11 = 70 MPa, τ/µ = 0.056%.

Table 3. Error estimation for different integration schemes. The implicit scheme is chosen as the
reference configuration for error estimation.

Integration scheme Absolute error εa Relative error εr (%) Runtime (s)

Explicit int. (	t∗ = 3000) 168.4 6.11 0.92
Explicit int. (	t∗ = 1500) 141.5 5.40 1.82
Explicit int. (	t∗ = 1000) 56.90 2.34 2.76
Explicit int. (	t∗ = 500) 0.06 0.003 5.68
Implicit integration 0 0 1.52

noted that the overall computational time in implicit integration is much less than that in the
explicit integration scheme of comparable accuracy and stability. This is due to the ability to
adjust the time step during implicit integration in accordance with the stiffness of the equations,
while the stability demands of the explicit Euler method require very small time steps.

Adaptive node re-distribution. To capture details of small-scale processes, such as the
interaction between a dislocation and an atomic size defect cluster, or during the annihilation
reaction between two dislocation segments of the same Burgers vector and of opposite tangent
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vectors, large variations of the local dislocation line curvature would be expected. To effectively
resolve these or similar mechanisms, we develop here a protocol for adaptively re-distributing
the nodal density on the dislocation line according to the variation in the local curvature. To
show the level of resolution gained by this protocol, we study here the mechanism of dislocation
segment annihilation in an expanding FR source, and the subsequent generation of a fresh and
closed dislocation loop. Figure 5 shows the details of this of segment annihilation and the
ensuing recovery process of a fresh closed loop, generated from an asymmetric FR source.
The simulation conditions are the same as in figure 3, except that with different applied uniaxial
stress σ22 = 140 MPa (τ/µ = 0.112%), and the Burgers vector of the loop is b = 1

2 [01̄1].
In order that one can resolve the annihilation event, the distance between any two nodes

is tracked, and when the minimum distance between two segments of opposite tangent vectors
is below a prescribed limit (e.g. 100), the time step is reduced and the integration proceeds
further till the two segments are a distance of 1–2 apart. The nodes are then re-distributed in
the immediate region, resulting in two separate loops, as can be seen in figure 5. After the
annihilation event takes place, both new loops generate cusp regions, where the curvature is
extremely high. It is highly desirable to develop an adaptive method, which can resolve such
essential physical phenomena to sufficient accuracy without excessive computations.

In present algorithm, nodal re-distribution is invoked at prescribed time intervals, not
necessarily related to the integration time step, as follows. Each cubic spline segment is
divided into several sub-segments with equal arc length, and new ghost nodes are assigned.
Thus, the entire loop is now filled with ghost nodes of equal nodal density per unit line length.
Note that the total number of DOF for the loop is not changed up till this point. Also, the
average loop curvature κavg is determined simply as the mean value of the maximum κmax, and
minimum κmin curvatures of all ghost nodes. Now, in order to increase the nodal density per
unit arc length for high curvature regions, we start from one end of the loop that has a current

Figure 5. Expansion of an initially mixed dislocation segment in an FR source under the step
function stress of σ22 = 140 MPa (τ/µ = 0.112%). The FR source is on the (111)-plane of
a Cu crystal with Burgers vector b = 1

2 [01̄1]. The time interval between different contours is
	t∗ = 5 × 105.
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curvature κ , and skip a number of ghost nodes Nskip determined by the relation:

Nskip = C
(κavg

κ

)
(6)

C is an adjustable constant that determines the relationship between the line nodal density and
the local curvature. Thus, in this protocol, more nodes are added to the zone with high curvature
while in the low curvature zone, less nodes are added. In figure 5, node re-distribution is shown
in each closed loop. The total number of nodes in each loop at a given time is generally kept
under 25.

3.1.2. Dislocation pileups. Dislocation generation by the FR mechanism leads to an increase
in the dislocation density, and hence the total strain. This does not go on perpetually, because
generated dislocation loops interact with various obstacles, and can be totally immobilized.
Grain boundaries represent such strong obstacles to dislocation motion, and have a strong
effect on the subsequent dynamics of dislocation loops emitted from FR sources. Strong
grain boundaries can confine dislocations within its grain. If the FR source continues to emit
dislocations, new loops will interact with the immobilized leading dislocation, and as a result
will form a dislocation pileup. The single crystal is represented by a cube, 30 000 (or 10 µm) in
length. One FR source of an initially mixed dislocation character, with Burger’s vector 1

2 [01̄1],
under an applied uniaxial stress σ22 = 140 MPa (τ/µ = 0.112%), will emit closed dislocation
loops continuously. Since the grain boundary is assumed to be rigid, once the first closed loop
reaches the grain boundary, the position of the node will be confined inside the boundary due
to the strong obstructive force. The position vector of node in closed dislocation loop will be
fixed. The subsequent loop will be confined to the previous loop due to its repulsive force.
Figure 6 shows the formation of a three-loop pileup from the same FR source. The same nodal
re-distribution strategy is used for each closed loop in order to get higher accuracy.

3.2. Hardening mechanisms

3.2.1. Dipole formation. In all previous applications of the PDD, strong interactions
between different loops is not a major factor that determines the final outcome of each
mechanism, although in the case of a dislocation pileup, moderate loop reconfiguration takes
place as a result of loop–loop interaction. For large-scale computer simulations of dislocation
ensembles [33], loop–loop and loop-obstacle interactions determine the rate of strain hardening

Figure 6. The effects of a rigid grain boundary of triangular cross-section in Cu on the evolution of a
closed dislocation loop emanating from an FR source. The external uniaxial stress σ11 = 120 MPa
(τ/µ = 0.096%). The glide plane in s (111), and the Burgers vector is b = 1

2 [01̄1].
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or softening [32]. We consider here several interaction mechanisms that are dominant in various
stages of strain hardening. These are dipole formation and breakup, and the formation and
destruction of dislocation junctions.

Finite-size dipole formation and destruction. It has been pointed out [5] that the destruction of
dislocation dipoles plays a significant role in the evolution of persistent slip bands (PSB) under
fatigue loading conditions. Dislocation dipoles play significant roles in a host of hardening
mechanisms, and thus conditions for their formation and destruction must be worked out. The
stability of very long dipoles has been determined from static equilibrium considerations, and
the shear stress necessary to destabilize a dipole of a given width, h, is given in [41].

The more general dynamic stability conditions of infinite length dipoles have been
determined by Huang et al [42]. Here, we focus on the accuracy of the dynamics of
formation and breakup of finite-size dipoles in FCC metals. Figure 7 shows a two-dimensional
projection on the (111)-plane of the dynamic process finite-size dipole formation. Two initially
straight dislocation segments with the same Burgers vector 1

2 [1̄01], but of opposite line
directions are allowed to glide on nearby parallel {111}-planes without the application of
an external stress. The two lines attract one another, thus causing the two loop segments to
move and finally reach an equilibrium state of a finite-size dipole. The two parallel dislocations
are pined at both ends, the upper loop glides on the ‘top’ plane, while the lower one glides on
the ‘bottom’ plane, as shown in figure 7. The mutual attraction between the two dislocations
becomes significant enough to simultaneously reconfigure both of them only during the latter
stages of the process. Because the two dislocations start with a mixed character, a straight and
tilted middle section of the dipole forms. The length of this middle section, which we may
simply ascribe as the dipole length, is only determined by the balance between the attractive
forces on the middle straight section, and the self-forces on the two end sections close to the
pinning points. The separation of the two planes is 25

√
3, which is approximately 60 |b|.

Figure 7. Two FR source dislocations with the same Burgers vector (b = 1
2 [1̄01]) but opposite

tangent vectors gliding on two parallel (111)-planes (distance h = 25
√

3a apart) form a short dipole
in an unstressed state. The view is projected on the (111)-plane. Time intervals are: (1) 2.5 × 105;
(2) 4.75 × 105; (3) 5 × 105; (4) equilibrium state.
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The error estimation of different nodal distribution of the dipole is shown in table 4. It
is shown that with only two segments each dislocation, we can get as high accuracy as with
20 segments, the relative error is less than 5%.

Finite-size dipoles will be stable on their own, so long as perturbing external or internal
stress fields are not present. It is immediately obvious from figure 7 that the dipole configuration
is symmetric with respect to the direction of an applied shear stress parallel to the two glide
planes. Calculations of dipole dynamics under the influence of an externally applied stress
show that it is much easier to unzip the dipole in the reverse direction than to destroy it in the
forward direction. Figure 8 summarizes the relationship between the unzipping stress and the
inverse of the inter-planar distance 1/h∗. A comparison is also made in the same figure with
stress values needed to destabilize an infinite dipole calculated by [41], and the values needed
to destroy it in the forward direction.

As a result of the self-forces generated by the curvature of the two end sections of the
dipole, the unzipping strength is a factor of two smaller than the strength of an infinite dipole.
In the forward destruction case, however, the self-forces tend to hold both dislocations back,
thus a higher external stress is needed to break up the dipole. The present results are calculated
for an initial horizontal separation of 350 for the two straight segments before the dipole forms.

Table 4. Error estimation for different nodal distributions for dipole formation. The configuration
with 20 segments on each dislocation is chosen as the reference configuration.

No. of segments Absolute error εa Relative error εr (%) Runtime (s)

2 26.5 3.16 12.7
4 18.6 2.37 43.3
5 7.8 1.13 84.9

10 3.6 0.36 438.2
20 0 0 1503.1

Figure 8. The relative shear stress (τ/µ) to break up a finite-size dipole as a function of the relative
inverse separation 1/h∗, h∗ = h/a. h is the distance between the two parallel planes. The distance
between the pinning points of the two FR sources L = 1600a, and they are originally separated by
350a horizontally.
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Increasing this distance results in smaller effects of the curved sections of the dipole, and hence
both unzipping and forward destruction stresses approach the infinite dipole values. It is to
be noted here that all these results are for static dipoles, or for initial dislocation velocities
smaller than 1

2 the transverse sound speed. The stability of the dynamic infinite dipole is treated
in [42].

3.2.2. Dislocation junctions. Dislocation–dislocation interaction can result in either their
attraction towards each other, or their repulsion from one another. The interaction of
dislocations at close separation has been found to be associated with significant reconfiguration
of their shapes [25–27]. If dislocation interaction is attractive, the two closest segments are
simultaneously pulled towards each other till a stable common part (junction) of the two
dislocations is formed. However, when the segments repel one another, a stable crossed state
can also form [44]. The dynamics of dislocation junction formation and breakup have attracted
recent attention (e.g. [26,45]), because of the importance of this mechanism in strain hardening
and pattern formation [5]. Especially in FCC metals of low stacking fault energy, dislocation
junction structures are usually complex, since dislocation cores are dissociated into partials
separated by stacking faults [38]. Under these conditions, sessile Lomer–Cottrell junctions are
generated. They significantly impede further dislocation motion resulting in strain hardening.
Also, undissociated locks (Lomer dislocations) can significantly impede dislocation motion.
Because of their stability, sessile junctions can also act as nucleation sites for dislocation cell
walls [5]. In the present PDD method, we introduce a critical length scale rc ≈ |b|, where
the two dislocation cores are not permitted to interpenetrate if they approach one another at
smaller distances. In this simple fashion, complex atomic level simulation of the core structure
is obviated [45], and no specific rules are further introduced.

First, we show in figure 9 the dynamics of attractive junction formation without any
externally applied stress. Two initially straight dislocations of Burgers vectors and slip planes
given by: b1n1 = 1

2 [011̄](111) and b2n2 = 1
2 [101](111̄) are pinned at their ends, and allowed

to move approaching each other until they are locked at equilibrium. Their locked equilibrium
state can be understood to result from the balance between their mutual interaction at the
close separation of rc, and the respective self-forces of their curved arms that form close to
the pinned ends. The length of the straight section (junction) that forms at the intersection of
the two glide planes is approximately 200. Figure 9(a) shows a two-dimensional projection
view of the successive motion of 1

2 [011̄](111), while the three-dimensional view of the junction
structure is shown in figure 9(b). In order to calculate the error generated by different nodal
distribution, the configuration with 12 nodes each dislocation is set as the reference one. The
error estimation is shown in table 5. It is shown that with less than eight segments, one can
get good shape junction.

The intrinsic strength of junctions is the key factor in understanding strain hardening in
crystals [36], thus it is important to study the process of junction destruction under an externally
applied stress. Once an unstressed junction is formed, as shown earlier here, the binding forces
on its middle straight section will be balanced by the self-forces on the four curved arms.
However, if an applied stress is also introduced, the balance of forces is very delicate, because
the dislocation curvature at both ends of the straight junction section changes considerably.
The two ends of the junction act as pseudo-pinning points, and the four arms start to behave
like the normal FR sources at their earlier stages (i.e. bowing out considerably as the applied
stress is gradually increased). The difference is that these two points are not really fixed as in
common FR sources. Self-forces caused by dislocation curvature generate a shear force on the
two pseudo points forcing them to move inward. The destruction process can be viewed as the
competition between dislocation core forces, which stabilize the junction and counter shear
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Figure 9. Dynamics of 2 unstressed FR sources ( 1
2 [011̄](111) and 1

2 [101](111̄)) forming
a three-dimensional junction along (1̄10), b = 1

2 [110]. (a) Two-dimensional view for the
motion of the FR source ( 1

2 [011̄](111) 1
2 [1̄01](11̄1)) on its glide plane (111). Time intervals are:

(1) initial configuration; (2) 1.5 × 104; (3) 5.0 × 104; (4) 1.3 × 105; (5) final configuration.
(b) Three-dimensional view of the junction.

forces on the two pseudo-pining points. Figure 10 shows the detailed dynamics of junction
unzipping under an increasing applied stress σ11/µ. It is interesting to point out that, when
the applied stress is gradually increased, with the bowing out of the four arms, the curvature
near pseudo-pinning points becomes high, resulting in a reduction of the junction length by
the inward motion of the end points of the junction. As a consequence, the entire junction
becomes unstable. At lower applied stress σ11/µ = 0.2%, the shear force on the two end
points of the junction can be balanced by the high junction binding forces. A final equilibrium
state is generated, but with a shorter junction length, as shown in figure 10(a). When σ11/µ
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Table 5. Error estimation for different nodal distributions for junction formation. The configuration
with 12 segments on each dislocation is chosen as the reference configuration.

No. of segments Absolute error εa Relative error εr (%) Runtime (s)

3 27.8 20.05 406.2
4 19.7 14.25 841.1
6 16.0 8.75 2932.6
8 4.97 1.00 4902.4

12 0 0 8320.2

Figure 10. Dynamics of a stressed junction showing configurations at various stress levels:
(a) equilibrium, σ11 = 100 MPa (σ11/µ = 0.2%). (b) Equilibrium, σ11 = 250 MPa (σ11/µ =
0.5%). (c) Unstable, σ11 = 300 MPa (σ11/µ = 0.6%).

is increased to 0.6%, the shear force reaches a critical value, which can no longer be balanced
by binding forces, and a dynamically unstable unzipping process ensues at both ends of the
junction till it totally breaks up, and the two dislocations are freed from one another. The high
spatial and temporal fidelity of the PDD is clear in this example, since only 5–9 segments are
used throughout the entire simulation. The simulation encompasses balance between binding
forces as a result of interaction between straight segments within the junction separated by
only one atomic distance, and forces on the arms of the curved segments at much larger length
scales with only a few segments. The results obtained here with a few DOF for the dynamics
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of junction formation and destruction are in general agreement with the atomistic simulation
of Rodney and Philips [45].

4. Conclusions and discussion

The three-dimensional nature of dislocation processes in deforming metals is quite complex.
Because of the enormous range of applications possible with three-dimensional DD, the field
has progressed very rapidly in recent years. Before integration of many of the dislocation
mechanisms in large-scale computer simulations, it is quite relevant to investigate the numerical
issues of accuracy, convergence and stability, so that large-scale computer simulations can be
reliably utilized in studies of micro- and meso-scale plasticity. This work attempts to present a
comprehensive investigation of some of the fundamental mechanisms involved in the dynamics
of three-dimensionally interacting dislocations. The aim is two fold: (1) to focus on the specific
method of PDD and explore how far it can be used to resolve spatial and temporal events during
the course of dislocation interactions; (2) to unravel physical phenomena that determine the
outcome of salient dislocation mechanisms.

Numerical studies of dislocation generation by the FR mechanism revealed a number
of significant features. The shape accuracy (defined as relative deviation from a convergent
shape) of an equilibrium FR source has been shown to be excellent with only a few parametric
segments. With only two segments, a maximum relative accuracy of 10−3 can be achieved. The
shape accuracy of an unstable FR source requires a larger number of segments, and six segments
produce similar accuracy. The shapes of both equilibrium and unstable FR sources were shown
to absolutely converge as the number of segments is increased. However, resolution of the
annihilation event and subsequent loop reconfiguration requires adaptive node re-distribution
and a higher nodal density on the dislocation line at regions of high curvature. It is also shown
that while implicit integration of the EOM produces stable solutions, the explicit integration
scheme requires more care. As the time step in the explicit method is increased, numerical
instabilities set in. For a numerically stable solution, the time step has to be reduced to less
than 500 dimensionless units (on the order of 1 ps for a mobility of 104 Pa−1 s−1). For such a
small time step and a relative accuracy of 10−6, implicit integration of the EOM is found to be
generally faster by up to 1 orders of magnitude. For isotropic mobility on the glide plane, it is
shown that when the Burgers vector is inclined with respect to the initial tangent vector, the FR
source shape is elongated in the Burgers vector direction so as to minimize the elastic energy
of the loop, even in highly dynamic conditions. When dislocations are generated inside grains
with rigid boundaries, it is shown that the dislocation shape adjusts to the shape of the grain
boundary. The radius of curvature of these dislocation sections is inversely proportional to
the CRSS on the slip plane. The leading dislocation emitted by an FR source expands first to
the closest boundary, and then gradually fills in the outline of the grain boundary. Subsequent
emitted loops are found to be more curved and less conforming to the boundary shape,and they
form a well defined dislocation pileup.

For the hardening mechanisms investigated: dipoles and junction formation, a number of
significant features have been found. In the case of a finite-size dipole, with only 2 segments on
each dislocation, the formation and destruction dynamics are resolved with a relative accuracy
of less than 10−2. The formation dynamics reveal that the two interacting dislocations do
not feel one another till their closest segments are within ≈100. The finite dipole shape
then changes very rapidly achieving equilibrium conditions from that point in less than 105

dimensionless time units (≈200 ps). Fairly long straight sections are formed on the FR source
with screw orientations, perhaps promoting cross-slip communication between the two FR
sources, and possibly forming a dipolar loop. This possibility needs further investigation as a
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cause of dipolar loop formation. It is found that the stress to unzip the dipole is smaller than
the breakup stress of infinite size dipoles, nearly by a factor of 2. On the other hand, to break
up the dipole by pushing the two dislocations past one another (forward destruction) requires
a stress that is nearly 30% higher than the infinite dipole.

Studies of the process of unstressed sessile junction formation with PDD, and its
destruction by an externally applied stress has been consistent with similar recent studies
with other methods. However, the number of required segments for spatial resolution of
less than 10−3, and for temporal resolution of 10−6 requires only eight segments per interacting
dislocation. When an external stress is applied to a stable junction, the two ends of the junction
behave as anchor points for four pseudo FR-sources. The stress causes the FR sources to bow
out thus increasing the reverse force at the anchors and simultaneously moving them inwardly
to shorten the length of the junction. When the stress reaches a critical value, the speed of
motion of the two anchors towards one another increases and the whole junction collapses.
Each two of the pseudo FR-sources join together forming only two freed FR sources that
expand by the usual mechanism.
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