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Abstract

Understanding flow localization in materials containing high concentrations of Stacking Fault Tetrahedra (SFT’s) depends on delineation
of the mechanisms by which they are destroyed as effective dislocation obstacles. The elastic interaction between glissile dislocations and
SFT’s in FCC metals is examined, both analytically and numerically. Numerical calculations are performed for both full and truncated
tetrahedra interacting with edge dislocations, while a new analytical formula is derived for the elastic energy of a full tetrahedron-dislocation
system. Calculations confirm that the stress field of glissile dislocations is not sufficient to re-configure SFT’s into faulted Frank loops by
reverse glide of stair-rod dislocations. This mechanism of SFT destruction by shear unfaulting of Frank loops seems to be unlikely. It is
proposed that the destruction of SFT’s in irradiated materials is enabled by dislocation drag of interstitial clusters, followed by subsequent

recombination and melting of the SFT core. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Lattice defects in metals have a noticeable effect on
their bulk mechanical properties. Stacking Fault Tetra-
hedra (SFT’s) are vacancy-type extended defects, which
are formed in low stacking fault energy face-centered
cubic (FCC) metals and alloys [1,2]. The SFT’s can be
produced under such diverse experimental conditions as
quenching from high temperatures, electron irradiation with
high-voltage electron microscope, irradiation with ener-
getic particles, and during heavy plastic deformation [3,4].
Since the first discovery of SFT’s in quenched gold foils
[5], theoretical investigations of their properties have been
extensively pursued [6-9]. However, the main mechanism
of SFT destruction by passing glissile dislocations re-
mains unresolved. Recently, the molecular dynamics (MD)
method has been used to study the growth and shrinkage of
SFT’s, and their short-range interaction with point defects
[3,10,11]. Such studies give valuable insight into detailed
evolution processes of SFT’s. Nevertheless, the MD method
provides limited information on the long-range elastic in-
teraction between SFT’s and other defects such as glissile
slip-dislocations. It is also of interest to determine the limi-
tations of elastic theory in the resolution of such short-range
dislocation interactions.
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Since defects from SFT’s are believed to cause irradiation
strengthening by their interaction with glissile dislocations
[12-14], it is of considerable interest to investigate the in-
teraction process when a glissile dislocation passes close to
a stationary SFT. Under irradiation and in quenched metals,
“flow channels” are observed to be virtually free of SFT’s,
while neighboring lattice regions are unaffected. Flow lo-
calization thus appears to be controlled by the ability of
glissile dislocations to destroy SFT’s. The purpose of this
work is to elucidate the mechanisms of SFT destruction
as a result of its interaction with glissile dislocations. The
elastic interaction energy between undissociated glissile
dislocations and SFT’s is analytically determined. A numer-
ical quadrature procedure is implemented to evaluate line
integrals for elastic energy of full or truncated SFT’s, and
to examine the interactions of dissociated near-by glissile
dislocations with SFT’s. Viability of various possible mech-
anisms for destruction of SFT’s is discussed. The present
computations are carried out on the basis of the isotropic
linear theory of elasticity.

2. Analytical and numerical formulas for the elastic
energy

2.1. Analytical procedures

For FCC crystals as shown in Fig. 1, the glissile dislo-
cation EF is assumed to have a Burgers vector a/2[10 1],

0921-5093/01/$ — see front matter © 2001 Elsevier Science B.V. All rights reserved.

PII: S0921-5093(00)01683-X



L.Z. Sun et al./Materials Science and Engineering A309-310 (2001) 178-183 179

N

Plane-2

d;]_

X

* / i y Plane-1
/% .
o

Fig. 1. Local coordinate system for the SFT and the glissile dislocation.
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where (a) is the lattice constant, and is mobile on {111}
planes. The stacking fault tetrahedron ABCD is composed
of four triangular faces of ABC, ABD, BCD, and ACD, all
of which are within the {111} family of planes. In addi-
tion, there are a total of six straight dislocation segments,
each of which is a stair-rod dislocation with a Burgers vec-
tor parallel to the opposite side of the SFT [8]. The elastic
interaction energy of a glissile dislocation and an SFT is de-
termined as the sum of the interaction energies between the
glissile dislocation and each individual stair-rod dislocation
segment.

For simplicity, a local coordinate system (x, y, z) is used
to derive the analytical expression for the interaction en-
ergy, as shown in Fig. 1. The glissile dislocation is repre-
sented by an infinite straight line EF (y = —d> L, z = d|L)
in Plane 2 with L as the length of tetrahedron edge. The
local Burgers vector of an undissociated glissile disloca-
tion is l;l = a(—\/z/4, \/6/4, 0). The line representation of
stair-rod dislocations and their corresponding Burgers vec-
tors are taken from [1]. The interaction energy between the
glissile dislocation and each dislocation segment of the SFT
is first calculated from Blin’s formula [15,16]. After cum-
bersome but straightforward calculation of each interaction
energy of the infinite dislocation and dislocation segments
of the SFT, the total interaction energy Ej,; of the infinite
glissile dislocation and the SFT is expressed as

Eint
ub1bo L/

1
T 1R200-vw \

1 NG 13
+|:8(1—v)+1_8<1_3(1—v)>d1

2v3 4 2 2
+55 (1 ~ 30 U)>d2:| In(d? + d3)

12d} — 12+/2d,d> + 9d3
4(d} + d3)

4 4(1 —v) 12
1 V3 ?
x<—4+—>d2] In d12+<—+d2)
1—v 2
1 7 V6 26
+|:Z<1_4(1—v)>+¥(_5+3(1—v))d1
NE 55 o\
+7—2 (—4+ m) d2:| 111 (T—Ch)

+<£ +d2)2 +£(—1+L)>d1

[(_)ii

6 2 31 —v
. V3d,

xXarctan

2d? + d? + /3d>

V3 2

— 1= —— ) (d1 +2~2d
18( 3(1—v)>(1+ V2dy)

V3di +2+/6d,

xarctan
6d} + 6dy — 2+/6d) + ~/3d;

+“/—§ (1 — L) (V6 = 2dy + 2v/2d)
12 1—v

—4+/3d) + 4+/6d> + 67/2

xarctan (1)
12d} + 12d; — 44/6d + 8+/3dy + 3

where by and b, are the Burgers vector norms of the glis-
sile dislocation and dislocation segments of the SFT, re-
spectively. Thus, the elastic interaction energy of a glissile
dislocation and an SFT is explicitly expressed in terms of
the climb and glide distances d; and d> of the dislocation
EF.

2.2. Numerical procedures

To calculate the interaction and self-energy of dislocation
loops, we derived compact vector forms for the elastic field
variables as functions of convenient parameters that describe
the shape of dislocation segments. Each curved dislocation
segment is represented in a general parametric form, and
the field variables are obtained by numerical quadrature in-
tegration with respect to a shape parameter [17]. The dis-
placement vector, strain and stress tensors as well as the self
and mutual interaction energies are all expressed in terms
of three vectors: the unit tangent (7), the unit radius (¢) and
the Burgers vector (b). The resulting differential vector and
tensor equations, which are composed on of various vector
products, can be readily integrated to obtain the total field
of closed dislocation loops. The following equation for the
interaction energy of two dislocation loops is numerically
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Fig. 2. Change in energy per vacancy in the SFT as a function of the climb distance d; in units of L. Negative values indicate reduction in the vacancy
formation energy.

integrated setting 1;1 = 1;2 = b and dividing Eq. (2) by 2, i.e.
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Fig. 3. Change in energy per vacancy in the SFT as a function of the glide distance d> in units of L. Maximum interaction energy occurs when the
dislocation is inside the SFT (d; = 0).
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Note that these forms are different from Blin’s for-
mula, because they contain only vector products with no
second-order tensor components. The results agree with
Blin’s formula only for closed loops, as already noted by
deWit [8].

3. Results

Consider Cu as a typical example of an FCC material,
the shear modulus @ and Poisson’s ratio v are chosen as
50 GPa and 0.31, respectively. The edge length L of an SFT
is taken as 2.5nm [18]. The Burgers vector norms of glis-
sile dislocation and SFT dislocation segments are ~/2/2a
and +/2/6a, respectively, where a = 0.36 nm represents the
lattice constant of Cu. From Eq. (1), the interaction energy
Ej is calculated as a function of the distance d; and d»,
as shown in Figs. 2 and 3. The energy parameters is ex-
pressed in the convenient unit of (eV/vacancy) in the SFT,
and the glissile dislocation is assumed to be undissociated
for simplicity of analytical calculations. It is noted that the
interaction energy decays slowly as the glissile dislocation
moves away from the SFT. As can be seen from Fig. 2,
the interaction energy is negative when the SFT is on the
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Fig. 5. 3D display of SFT self-energy energy dependence on its size (L, Angstroms) and its truncated height L’ (64 quadrature points).
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Fig. 4. Self-energy of truncated SFT for Au as a function of the reduced
truncated height (L'/L). The solid lines represent the analytical results
[7], while the dashed lines are to present numerical calculations (128
quadrature points).
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Fig. 6. Change in energy per vacancy for the SFT as a result of its interaction with split partial dislocations in Au (the size of the tetrahedral is L = 17 nm
and the length of partial dislocations is 950 nm). The dotted line represents the position of glide plane.

compressive side of the edge dislocation (i.e. for negative
dy). This negative interaction becomes significant with the
glissile dislocation is closest to the SFT. The strong interac-
tion is also shown in Fig. 3, where the glissile dislocation
moves horizontally towards the SFT. However, it is shown
that the interaction energy does not change sign as the glis-
sile passes by the SFT from the positive to the negative
side. If the glissile dislocation glides along the (1 1 1) plane
which is above the bottom of SFT, it will feel a strong resis-
tance force (the derivative of this interaction energy), which
is maximum when the dislocation is just above (or inside)
the SFT. On the other hand, the glissile dislocation will en-
counter attraction from the SFT if it moves horizontally un-
der its bottom. The present model ignores the deformation
of the glissile dislocation line as it approaches the SFT.

Fig. 4 shows the results of numerical integration of the
self-energy Eq. (3) for truncated SFT in Au as a function
of the reduced truncated height of the SFT. The agreement
between the numerical calculations and analytical results is
quite good, even though the form of the energy equation is
different from Blin’s formula used in the analytical calcu-
lations. The dependence of the self-energy of perfect and
truncated tetrahedra on their size (in Angstroms) is shown
in Fig. 5. As already observed by Jossang and Hirth [7], the
energy of a perfect tetrahedron is smaller than its truncated
counterpart, indicating that its tendency to reconfigure by
pulling down the stair-rod dislocations is indeed negligible
until it is of unrealistically large size. Experimental observa-
tions [18] of irradiated materials show that very small (L =
2.5nm) SFT’s are stable.

The possibility of a nearby glissile dislocation providing
enough energy to the perfect tetrahedron to assist in its re-

configuration into a Frank loop is examined next. Fig. 6
shows the change in energy per vacancy for the SFT as a
result of its interaction with split partial dislocations in Au
(the size of the tetrahedron is L = 17 nm and the length of
partial dislocations is 950 nm). It is observed that the change
in the vacancy formation energy due to the contraction of
the elastic field surrounding the SFT is 0.176eV in Au for
the 17 nm tetrahedron. Such a change in the vacancy for-
mation energy is indeed small, and would not by itself lead
to significant vacancy emission rate at room temperature.
The influence of a nearby glissile dislocation on the change
in vacancy formation energy is also shown in Fig. 6. It is
clear that the stress field of a split dislocation with two par-
tials would not lead to a great modification of the energy,
which is, at most, 0.19 eV. Smaller size tetrahedra are found
to be more sensitive to the stress field of nearby glissile
dislocations.

4. Discussion and conclusions

The current results indicate that the contribution of the
stress field of glissile dislocations to the total elastic energy
(self and interaction) is small. The change in energy as a
result of glissile dislocations passing by tetrahedra does not
appear to be sufficiently large to reconfigure it into a faulted
Frank loop. Destruction of the tetrahedron by this mecha-
nism appears to be unlikely, since stable tetrahedra of very
small size are experimentally observed. Contraction of the
elastic field around the tetrahedron can change the vacancy
formation energy, and hence may lead to accelerated va-
cancy emission and dissolution of the tetrahedron. However,
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this mechanism may not be totally responsible for the re-
moval of SFT’s by glissile dislocations, unless some local
heating is also present.

Assuming that dislocations can drag interstitial atoms or
interstitial clusters as they approach stationary dislocations,
simple calculations for the adiabatic temperature rise within
the tetrahedron volume when it is fully recombined with
interstitials indicate that the local temperature exceeds the
melting point. These calculations are based on 5eV energy
release for each recombination event between vacancies and
interstitials, and the simple adiabatic results give a tempera-
ture rise of ~7500 K within the tetrahedron volume. If only
a few interstitials recombine, the local temperature rise will
be sufficient to accelerate vacancy emission and absorption
into the dislocation core. Thus, if this scenario is plausible,
local melting of the tetrahedron will follow, and all of most
of its vacancies would be absorbed in the dislocation core,
leading to further formation of climb jogs.

In summary, we draw the following conclusions from the
present work:

1. The contribution of glissile dislocations to the total elastic
energy of nearby SFT’s is small, as compared to the SFT
self-energy.

2. The mechanism of reverse glide of stair-rod dislocations,
assisted by its interaction with partial glissile dislocations
seems to be an unlikely explanation for its destruction.

3. The change in the vacancy formation energy within the
SFT in only significant for very small size SFT (<3 nm).
Vacancy emission followed by pipe diffusion requires
local high temperatures.

4. It is suggested that massive recombination of vacancies
within the SFT occurs as a result of its interaction with

jogged/decorated dislocations. Energy release may pro-
vide a sufficient temperature rise for SFT dissolution.
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