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Surface roughening instabilities driven by a competition between elastic and surface energy
contributions are shown to be saturated by plastic energy dissipation. It is shown that these
morphological instabilities do not experience unbounded growth as predicted by consideration of
elastic energy alone and that their growth is limited by dislocation emission from higher curvature
grooves. © 2008 American Institute of Physics. �DOI: 10.1063/1.2842412�

Roughening phenomena of stressed solid surfaces are
important in applications such as chemical etching,1 het-
eroepitaxial thin film growth,2 solidification,3 stress corro-
sion cracking,4 etc. A flat surface is unstable to morphologi-
cal perturbations on the surface.5 Under these conditions, it
has been recognized that the driving force for the instability
is the reduction in the elastic energy of the solid when its
surface becomes corrugated, in agreement with the Griffith
fracture criterion of brittle solids.5 Thus, flat surfaces tend to
develop cusps and valleys when a threshold level of stress is
applied. Based on the Griffith concept of fracture,5 several
models have been proposed to explain the development of
surface roughness in essentially flat surfaces. Asaro and
Tiller6 and Grinfeld7 have advanced the basic concepts be-
hind stress-driven surface instabilities, in what is known as
the Asaro–Tiller–Grinfeld �ATG� instability. Gao et al.8 fol-
lowed similar evaluations utilizing perturbation theory to in-
vestigate the initial growth stages of surface grooves. Recent
numerical assessments include application of phase field
theory to the problem of morphological instabilities during
melting and solidification.9 In addition, Yang and Srolovitz10

developed a numerical method for the later stages of surface
crack growth instabilities.

In ductile materials, experimental observations indicate
that surface instabilities do not experience unbounded
growth, as predicted by either perturbation theory,8 or nu-
merical treatments.10 Moreover, numerical methods designed
to capture the later stages of grooving breakdown when the
groove tip curvature becomes sharp.9,11 We show here that
stress-driven grooving instabilities will not develop into
cusps and that the growth rate of these instabilities is satu-
rated as a result of energy dissipation in the nucleation and
motion of subsurface dislocations. We present here a surface
roughening model that accounts for plastic energy dissipa-
tion. First, we verify the numerics of the model by compar-
ing to the predictions of perturbation theory8 and to the nu-
merical solutions of Yang and Srolovitz.10,12 Then, we
account for plastic energy dissipation and show the effects of
dislocation emission from stressed surfaces on the growth of
roughening instabilities. Finally, we present numerical results
showing that the growth rate of surface roughening perturba-
tions becomes almost constant rather than exponential as a
result of dislocation emission.

Consider the upper surface of a semi-infinite uniaxially
stressed solid to be periodic, y=h�x�, with amplitude and
wavelength A and �, respectively. The surface is free of trac-
tions. The solid is then subjected to a biaxial bulk stress ��.
The boundary integral equation for the displacement field
u��� at a point � in the solid is given by Ref. 10 as

ui��� = 2�ui
���� − �

s

T̄ij�x,��uj���dS�x�� , �1�

where u� is the displacement associated with the bulk stress

and T̄ij is the elastic Green’s function that satisfies the peri-
odic boundary conditions.12 The surface is modeled with a
cubic spline function to keep C-2 continuity, which will be
important for calculating curvature along the surface. The
stress field can be calculated using Hooke’s law, which pro-
vides the elastic strain energy density as �e= �1 /2E��tt

2,
where �tt is the tangential stress along the surface.

The chemical potential � is given as �=�*+��	
+��e, where �* is the chemical potential of a flat surface
associated with the bulk stress, � is the surface free energy, 	
is the surface curvature, and � is the atomic volume. The
Nernst–Einstein relation J=−�Ds /kT���� /�s� can then be
utilized to define material transport along the surface, where
the diffusion flux J is related to the gradient of the chemical
potential along the surface. Here, the atomic surface diffu-
sivity is Ds, the Boltzmann’s constant is k, and the tempera-
ture is T. The normal velocity of the surface is determined
from the mass conservation equation13 and the divergence of
the diffusion flux as Vn=−�Ds�
s /kT���2� /�s2�, where 
s is
the number of atoms per unit area on the plane normal to the
flux direction. The vertical component of the normal
velocity10 can be used to determine the surface profile h�x , t�
as

�h

�t
= D

�

�x
��1 + h,x

2 �−1/2 �

�x
��	 + �e�� , �2�

where D=Ds�
2
s /kT and h,x=�h /�x. Surface evolution

poses particular numerical difficulties because of high-order
derivatives, so three-point filtering technique along with fit-
ting cubic spline functions to the surface is used to describe
surface evolution.

We first consider the results of linear perturbation theory,
given an initial surface profile, h0=A cos�2�x /��.10 When
�� is applied, the maximum and minimum tangential stressa�Electronic mail: m.andersen@ucla.edu.
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is found in the valley and peak, respectively. The lowest
order tangential stress at the valley and peak is found to be
�tt=���1�4�A /��. The perturbation analysis also shows
the amplitude to grow as A�t�=A�0�et, where the growth
rate, =D�2H�2k3−�k4� and k is the wave number of the
perturbation with H= �1−
� /E for plane strain. We can then
find that the surface amplitude will grow when ��

����E /� or in nondimensional form �=���� /�E�1/2

��� / �1−
2�. If we take 
=1 /3, then perturbation theory
shows that the amplitude will grow when �c�1.88.8

To validate the present numerical solution, we compare
the solution to that of Ref. 8 for the initial growth phase and
Ref. 10 for the later stages. At this point, the chemical po-
tential has only elastic energy released by grooving at the
expense of the surface energy that need to be supplied when
deeper grooves form. We begin with a sinusoidal surface
with A /�=0.05. Equation �1� is used to solve for the dis-
placements. A free surface problem is setup where traction
boundary conditions are used to cancel out the tractions gen-
erated from the external normal stress. The calculated dis-
placements are then transformed into stresses along the sur-
face through Hooke’s law and ultimately into elastic strain
energy. In turn, this is used to calculate the chemical poten-
tial and through Eq. �2� the movement of the surface is
found. The surface is evolved with a Galerkin finite element
method utilizing a backward Euler �BE� implicit time inte-
gration. The BE method is controlled by setting the growth
per time step. The time is scaled as �=�4 / �D��.

Figure 1�a� shows the effect on the surface at time,
t /�=2.7�10−5, with �� higher than the instability level at
�=3.0. The groove begins to cusp quickly and forms two

bumps next to the groove as has been seen in previous
work.10,12 The bumps are regions where the material diffus-
ing out of the groove accumulates and are noted as a com-
mon feature of surface diffusion.13 As material moves away
from the area with the highest strain energy, the groove deep-
ens steadily until the cusp is formed. Once the cusp is
formed, the stress concentration increases and the groove
deepens exponentially.

When we compare the growth to linear perturbation
theory,8 we find strong agreement only during the initial
stages. The maximum stress is at the groove opening and the
stress falls off to near zero at the adjacent peaks while most
of the material is at the applied bulk stress. The perturbation
results are only useful for small values of A /� ��0.1� �Ref.
8� because the theory predicts the stress at the peaks to be-
come negative.

In Fig. 2, the dependence of the surface profile ampli-
tude on time is shown for the numerical model �dotted
points� and linear perturbation theory �solid lines�.14 The
present numerical model agrees well with perturbation
theory8 at early times, as expected, and with the numerical
solutions of Ref. 10 The perturbation theory underestimates
the growth rate for high stress and later time steps. It should
be noted that the surface is stable for stresses below ���c
=1.88, but surface perturbations decay for lower stress val-
ues. When �=2.0, the growth is linear and comparatively
very slow, but it is indeed growing at that point. About mid-
way through the simulation �t /�	2.0�10−5�, the surface no
longer looks sinusoidal as the cusp forms.

Next, we consider the chemical potential along the sur-
face when the energy dissipated in plastic work is included.
Here, the chemical potential is written as �=�*+��	
+���e+�p�, where �p is the plastic strain energy density.
The plastic strain energy density is calculated as the work
done due to dislocation motion near surface regions of high
stress concentrations. Thus, the plastic strain energy density
is summed over all dislocations ND as �p=
i

ND���i
p, where

�i
p is the plastic strain produced by the ith dislocation. The

plastic strain is calculated by �i
p=bli /A, where li is the length

swept by ith dislocation and A is the area of the plastic zone.
Once the resolved shear stress on a plane oriented at 70.5°
from the crack plane �maximum shear� reaches the critical
resolved shear stress �CRSS�, nucleated dislocations move
away from the crack tip. Dislocation nucleation is possible
only in ductile materials, and we adopt here the nucleation

FIG. 1. The tangential stress field around the groove at t /�=2.7�10−5 is
shown for a groove �a� with and �b� without dislocation emission. The initial
surface as in all figures is a sine wave with A0 /�=0.05 and �=3. The stress
is from 0.5 to 1.25 normalized to the bulk stress.

FIG. 2. The time dependence of the surface amplitude
�hmax−hmin� /� is shown for several stress values. The results for the numeri-
cal model are displayed as symbols, while the perturbation analysis is shown
by lines.

081908-2 Andersen, Ghoniem, and Takahashi Appl. Phys. Lett. 92, 081908 �2008�

Downloaded 09 Jul 2009 to 128.97.248.155. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp



criterion of Rice and Beltz.15 Thus, dislocations are assumed
to be nucleated when �us��, where �us is the unstable stack-
ing fault energy.

The emitted dislocations move in the material based on
dislocation dynamics �DD�.16 In the DD method, the forces
on the dislocations f i can be calculated by the Peach–Koehler
formula given as f i=�ijk� jlbtk, where �ijk is the permutation
tensor, b is the Burgers vector, and tk is the unit tangent
vector of the dislocation. The stress �ij is the sum of the
external stress, stresses generated by other dislocations and
the image stress from the free surface which is the solution to
Eq. �1�. The stress of an infinitely straight edge dislocation is
given in analytical form. The velocity of the dislocation is
given by v=v0�� /�0�m, where � is the resolved shear stress
on the slip plane of the dislocation, and v0, �0, and m are the
temperature dependent material constants, respectively.
Since the wavelength is large compared to the Burgers vec-
tor, superdislocations are used with an effective Burgers vec-
tor of 100b.

Figure 1�b� shows the tangential stress field contours
around the groove after dislocations are emitted. These spe-
cific calculations are performed for tungsten, which has a
yield stress of 550 MPa, Young’s modulus of 411 GPa, and

=0.28. Comparing Figs. 1�a� and 1�b� reveals that the sur-
face profile and stress field distribution are significantly
changed as a result of dislocation emission from the crack
tip. The surface profiles are calculated at a normalized time
of t /�=2.7�10−5. It is seen that while the stress is all tensile
and reaches values as high as 1.25 � /�� near the crack tip in
the elastic case �Fig. 1�a��, emitted dislocations actually
shield the tip from tensile stresses, as can be ascertained
from Fig. 1�b�. The region between emitted dislocations and
the crack tip is on the compressive side of the dislocations
and would, hence, tend to close the crack tip and oppose its
sharpening. The surface profile is also dramatically altered
from cusplike to a shallow groove.

The groove stays at relatively the same depth once dis-
locations are emitted while the groove without dislocation
emission deepens and turns into a cusp. Emitted dislocations
result in decreasing the tip curvature immediately after form-
ing, as shown in Fig. 3. The decreased curvature relaxes the
stress, but as the dislocation moves from the tip, the stress
builds and the process is repeated.

The change in the growth rate of surface perturbations as
a result of plasticity is illustrated in Fig. 4 where the surface
amplitude is shown as a function of normalized time with
and without dislocation emission. The surface no longer
grows exponentially once dislocations are emitted. The
growth becomes nearly linear, and the growth rate ap-
proaches a constant value after the emission of dislocations
and continues so as long as dislocations are emitted.

We were able to reproduce similar results that have been
witnessed in the elastic regime and with the inclusion of
plasticity, we show that the classical ATG instability is satu-
rated as a result of dislocation emission in ductile materials.
The key factor in limiting surface crack growth instabilities
is the ease by which dislocations are nucleated, and not their
mobility. Nucleated dislocations in the vicinity of the crack
tip keep the curvature from unbounded growth as a result of
two mechanisms: �1� with each emitted dislocation, the crack
geometry is changed by reducing the curvature and �2� emit-
ted dislocations that linger around the crack tip induce a
compressive stress �pressure� that tends to close it up. These
mechanisms keep the overall growth bounded. As the dislo-
cations move away, the stress builds until more dislocations
are emitted repeating the saturation cycle.
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FIG. 3. The curvature normalized with the wavelength at the cusp is shown
with plasticity effects for three stress values. As dislocations are emitted the
curvature is decreased immediately with the dislocation emission.

FIG. 4. The time dependence of the amplitude of the surface is shown with
plasticity effects �solid symbols� and with the elastic energy contribution
alone �hollow symbols�. Dislocations are emitted from the tip of the groove,
which change the exponential growth into a linear region.

081908-3 Andersen, Ghoniem, and Takahashi Appl. Phys. Lett. 92, 081908 �2008�

Downloaded 09 Jul 2009 to 128.97.248.155. Redistribution subject to AIP license or copyright; see http://apl.aip.org/apl/copyright.jsp


