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A Novel Way to Fabricate Nanowires by Directed Self-Organization of Atoms
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We propose here a novel way to fabricate self-assembled nanowire structures on atomically flat
substrates during epitaxial deposition. A phase field model is developed for the free energy of
the system, which includes short-range as well as long-range elastic interactions between deposited
atom clusters and mediated by the substrate. We show here that a weak external periodic field
can be utilized to guide the formation of nano-wires on atomically smooth substrates by the self-
assembly of deposited atoms. In particular, we show that a weak sub-surface strain field generated
by buried interfacial dislocations can dramatically control self-organization of deposited atoms and
the emerging atom cluster length scale. The atom composition and field requirement conditions for
nucleation of sharp nano-wires are shown in this study.

PACS numbers: 68.43.De, 68.43.Hn, 68.47.Fg, 81.40.Jj

I. INTRODUCTION

The potential utilization of self-organization phenom-
ena in epitaxial thin film growth has now become an im-
portant direction in nano-science research to manufac-
ture ultra small structures for future electronic and pho-
tonic devices. Nanowires have been the object of intense
theoretical and experimental investigations because of
their unusual properties in thermoelectronic devices[1, 2].

Since traditional lithographic methods to fabricate
nanowires have size limitations [3], more research has re-
cently been directed to self-assembly approaches, such
as chemical synthesis [4], vapor-liquid-solid growth tech-
niques [5] and atom deposition methods [6]. However,
realistic advances in this technology much depends on
providing the means for atoms to assemble themselves in
a precise manner, and to control their size distribution
during the fabrication process. The fabrication of mas-
sive numbers of well-aligned nanowire structures on 2-D
substrates is still clearly challenging, and requires both
theoretical and experimental advances.

The assembly on individually deposited atoms into
self-organized structures on a substrate results in atomic
lusters with characteristic length scale that is typically
two orders of magnitude larger than atomic dimensions.
Atomic cluster shapes and length scales are generally
imprecise for nanotechnology. Thus, there is a need to
control both the shape and length scale of atomic clus-
ters. One solution is to impose an external field that
provide constraints for precise self-assembly of atomic
clusters. Recently a possible solution to the regularized
nanowire fabrication proposed by Liu[7] and Venezuela[8]
is to generate a step-patterned surface during step flow
on a vicinal surface. The nanopattern of surface steps is
formed by relatively uniform step bunching arrays result-
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ing from interlayer step-step elastic interactions. Since
step bunches are much straighter than normal surface
steps, it can be an efficient constraint on the nucleation
of adatoms.

In addition to surface patterning, external fields pro-
vide promising candidates to regulate the self-assembly
of nanostructures. Guiding fields can be imposed either
directly on adatoms (such as electromagnatic fields [9–
11]) or mediated through the substrate (such as elastic
fields by interfacial dislocations [12, 13]). In the latter
case, experimental observations indicate that the applied
external field that exhibits a significant effect on self-
organization is very weak. For example, in the experi-
ments conducted by Kim et. al [12? ], the external field
is induced by misfit interfacial dislocation arrays. The
strain field of buried interfacial dislocations is estimated
to be on the order of νb/h, where ν is Poission’s ratio, b
is Burger’s vector and h is the thickness of the substrate
layer on the surface. In recent experiments on Ge self-
assembled quantum dots on partially relaxed SiGe buffer
layers [12, 13], the buffer layer thickness is about 80 nm,
and the length of the Burger’s vector is about 0.2 nm.
Thus, the strain magnitude is only on the order of 0.1%.
Thus, the diffusion energy barrier for an unclustered sin-
gle atom changes only by 0.01 eV or less [14–16]. This
value is obviously much smaller than strain-free diffu-
sion barriers. In other words, although the change in the
diffusion energy of adatoms is very small, the influence
of a weak external field has already been experimentally
demonstrated [12, 13].

We present here a continuum phase-field approach
to describe the evolution of spatially organized atomic
clusters as a result of interactions between deposited
adatoms and between adatoms and substrates. The re-
sulting self-organization pattern is understood as an un-
derlying instability as a consequence of the interplay be-
tween local interfacial interactions of cell boundaries and
global substrate-mediated interactions. We distinguish
the effects of externally-applied elastic fields from intrin-
sic long-range fields generated by cluster-cluster interac-
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tions. One of the main objectives of the present work
is to show that a nonuniform ultra-weak external strain
field can dramatically change the self-organized pattern
and length scale of atomic clusters resulting from atomic
deposition.. Such external fields can be used as tem-
plates for “directed” self-organization of surface clusters.
It will be shown that if the conditions are selected care-
fully, the imposed weak strain field can be utilized to
fabricate well-aligned nanowire structures.

In section II, a formulation that includes long-range
(L-R) substrate-mediated interactions and the presence
of a nonuniform external elastic field is developed. We
then discuss in section III the nature of the external-
field generated from a buried interfacial dislocation net-
work in Si-Ge heterepitaxial strutures, and show how
nanowire structures can be formed by “directed” self-
organizations. Conclusions are finally given in section
IV.

II. FORMULATION

Surface atomic clusters are formed on substrates by the
process of physical vapor deposition, where single atoms
in the vapor phase impinge on a substrate, stick and dif-
fuse on the surface, leading to the nucleation and growth
of atomic clusters. When the process is performed at
low pressures and with thermalized atoms (i.e. without
high energy neutrals or ions), the substrate surface struc-
ture is not changed, and atomic diffusion is dominated by
hops on the surface, without the assistance of near sur-
face point defects. We assume here that the substrate
surface is atomically smooth, without reconstruction or
surface steps. When adatoms are deposited on the sur-
face, surface diffusion of adatoms is the dominant trans-
port process and thus interdiffusion of adatoms through
vapor and through the substrate will be ignored. A con-
tinuous model for the concentration of surface adatoms
can be constructed within the framework of chemical ki-
netics via the following mass conservation equation:

∂c

∂t
= R(c)−∇ ·J (1)

where c(r, t) is the concentration of adatoms on the sub-
strate. The reaction rate of adatoms is represented by
R(c). If linear adsorption and desorption rates (α and β)
are assumed, then R(c) = α(1− c)− β(c). The diffusion
flux J is determined by linear non-equilibrium thermo-
dynamics. With Onsager’s principle for an isothermal
process, and the fact that the chemical potential is the
functional derivative of the free energy, we have the fol-
lowing expression for the atomic mass flux J for a single
specie adsorbate layer[17].

J = −L∇µc = −L∇δF

δc
(2)

where L is the atomic mobility (L = D/kBT ), and
D = ρ0Ds is the diffusion coefficient [18]. F is the free
energy of adsorbed atoms, which is composed of three
components:

F = F (a) + F (s) + F (c) (3)

where F (a) is the free energy associated with direct inter-
action (nearest-neighbor) between adatoms, F (s) is the
free energy for their interaction with the substrate, and
F (c) is the free energy for the indirect (through substrate
and long-range) interaction between clusters of atoms.

The nearest-neighbor free energy F (a) can be formu-
lated either by variational mean field theory [19, 20] or
by Bragg-williams approach [21]. Both methods result
in the same expression for F (a) as a continuous surface
coordinate (r(x, y)) as [20]

F (a) =
∫

S

dr
[
kBTf(r)− 1

2
ε0c

2(r) +
1
2
ξ2
0 |∇c(r)|2

]
, (4)

where f(r) = [1 − c(r)] ln[1 − c(r)] + c(r) ln[c(r)]. The
chemical potential of this nearest-neighbor (N-N) inter-
action is

µ(a) = kBT ln
( c

1− c

)
− ε0c− ξ2

0∇2c. (5)

Next, let’s consider the calculation of F (s), the free en-
ergy associated with ad-atom interaction with a strained
substrate. When a layer of atoms is adsorbed on a
substrate at equilibrium, the discontinuity of the intrin-
sic surface stress between adatom clusters and the sub-
strate provides a large driving force for self-organization
[22, 23]. On the edge of a cluster, the geometric dis-
continuity can be replaced by a pair of tangential force
dipoles[24]. The relation between the force density (fα)
and surface intrinsic stress (σαβ) is given by

fα(r) =
∂σαβ(r)

∂xα
. (6)

where α and β denotes the coordinate indices (1 or 2) on
the surface. In our monolayer model, if a commensurate
growth is reasonably assumed and the intrinsic stresses
of clusters are treated in an effective manner, we have a
first order approximation[25], expressed by Vegard’s law
in which the stress is assumed to be linearly dependent
on concentration:

σαβ(r) ≈ σαβ c(r), (7)

where σαβ is considered a material constant on the ho-
mogeneous substrate surface in commensurate heteroepi-
taxial structures. In the isotropic case, we have
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σαβ = σδαβ . (8)

where σ denotes a scaler material constant which is about
0.1 eV per Åfor Ge. The free energy induced by the sub-
strate can be generally expressed as the force times the
displacement (u)

F (s) = −
∫

S

dr fα uα = −
∫

S

dr [σ∇αc(r)] uα (9)

Thus, using the interchangable property of derivatives
and variational operators, and integrating by parts with
Gauss’s theorem, the chemical potential simply becomes

µ(s)(r) = σuα,α =
1
2
σ
[
εxx(r) + εyy(r)

]
. (10)

where εαβ is the external strain field applied in the sub-
strate. Since the elastic energy per adatom is approxi-
mated as 1

2σαβ εαβ , it is easy to see that atomic clusters
are considered as part of the substrate surface that store
elastic energy. If this interaction is uniform, there is of
course no effect in the adatom dynamics (Equation 1).
However, when the substrate elastic field is nonuniform,
the term µ(s) will act as a source term in the govern-
ing equation (Equation 1). However, it should be noted
that since this term appears in the gradient of a current,
this does not affect the mean coverage. It also indicates
that the rigorous formulation of system dynamics should
include the deformation of the substrate coupled with
adatoms dynamics. In the case of a weak elastic field,
the “flat-surface” assumption is a good approximation.

Finally we consider the free energy due to cluster-
cluster interactions. This can be formally expressed by
the Green’s function method with substitution of equa-
tion (7) in (6) without any external strain field on the
substrate:

F
(s)
2 = −1

2

∫

S

∫

S

dr dr′σαµ∇µc(r)Gαβ(r− r′)σβν∇′νc(r′)

(11)
where the energy is defined positive for attractive interac-
tions, and we perform a double surface integral in equa-
tion (11). Gαβ(r− r′) is the surface Green’s function
which denotes the displacement component α at posi-
tion r′ caused by a unit point force acting at position
r in direction β. Considering the symmetry of Green’s
Functions and applying the same techniques used in de-
riving equation (10), then using the elastic isotropic con-
dition (8), we obtain a coverage-dependent part of the
chemical potential (µ(s)

c ) as

µ(s)
c = σ2

∫

S

dr′
[
∇αGαβ(r− r′)∇′βc(r′)

]
. (12)

Substituting equations (5), (10) and (12) into equa-
tion (2), and then into (1), we finally obtain a “phase
field” kinetic equation for the continuum concentration c
as

∂tc =
1
τ

(c0 − c)

+
D0

kBT
∇2

[
kBT ln

( c

1− c

)
− ε0c− ξ2

0∇2c

+
1
2
σa2

[
εxx(r) + εyy(r)

]

+ σ2a4

∫

S

dr′∇αGαβ(r− r′)∇′βc(r′)

]
(13)

where c0 = α/(α + β), and τ−1 = α + β. The concen-
tration, c, is in units of atom/atom. The introduction of
a2, where a is the lattice constant, is for consistency of
units in Equation 13.

III. RESULTS AND DISCUSSIONS

A good candidate of external fields to guide nanowire
structure formation is interfacial dislocations in het-
eroepitaxial structures. It is experimentally shown that a
modulated surface strain field can be produced by an ar-
ray of buried 60-degree misfit dislocations on a partially
relaxed semiconductor buffer layer [12, 13]. For cubic
semiconductors, mixed edge-screw dislocation lines lying
at the interface between a thin film and (001) substrate
run along 〈110〉 directions and form rectangular arrays
with spacing in the micron range [12]. According to the
experiments by Kim et al.[12], the fabrication is carried
out in two steps. First is the deposition of Ge atoms with
a slow growth rate of 00.05 Å/s at 700◦C. The second step
is the quenching process where the sample is quenched to
room temperature. The growth pattern is finally formed
at room temperature. Thus in our model, we can reason-
ably ignore the details of the growth process. The depo-
sition and desorption during the self-organization phase
can be considered to have reached equilibrium. Our sim-
ulation starts from an initial random small perturbation
in the spatial concentration.

The elastic field of a buried dislocation array can
be formally obtained using 2-D Fourier transforms in
isotropic or anisotropic single layers[26], or in multilayer
systems[27]. However, we develop here a simpler solution
for a single infinite straight dislocation in a homogeneous
isotropic half space. Using the complex variable repre-
sentation method[28], we represent the strain field with
a simple equation:

εxx =
2
π

1
(1− 2ν)

(bxx + bzh)xh

(x2 + h2)2
(14)

In deriving the interaction part of the chemical po-
tential (equation 10), we may note that the term µ

(s)
e
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is considered only when the field from the substrate is
nonuniform. This means that a uniform strain field on
a flat substrate surface, such as that due to coherent
lattice mismatch in heteroepitaxial structures, will not
influence self-organized patterns on the surface in our
model. Thus we investigate the same material (Ge) de-
posited on a Ge substrate with straight parallel disloca-
tion lines inside. The Ge lattice constant a is 0.566 nm
at room temperature. We take the pair potential ε0 as
about 0.3 eV. The adsorption and evaporation rates, α
and β, respectively, are assumed to be 1.67×10−5 cm2s−1

and 1.67× 10−6 cm2s−1 with an approximate deposition
rate of 1 µm per minute [19]. The surface diffusion of
Ge adatoms is strongly dependent on the temperature
T and the coverage c. For simplicity, we assume that
the surface diffusion coefficient Ds is constant and that
Ds = D0 = 2.57× 10−7cm2s−1[12]. The intrinsic surface
stress σ is 100 meVÅ−2 for Ge(001). The elastic stiff-
ness coefficients for ν = 2.75 × 1010 erg · cm−3 [29]. The
edge components of the Burger’s vector of an interfacial
dislocation in a partially relaxed SiGe buffer layer are
estimated as bx ≈ −1.93 Å and bz ≈ −2.73 Å, with the
negative sign indicating that the extra half plane is ex-
tending away from the surface downwards to the infinity.

Because of the convolution form of the integral in equa-
tion (13), a convenient way to solve the kinetic partial dif-
ferential equation is the Fourier spectral method. Let’s
denote the wave-vector as q, its amplitude as q, and the
concentration in the transformed domain as cq, then by
taking the Fourier Transform (FT) of equation (13), we
get

∂tcq =
1
τ

(c0q − cq)

− D0

kBT
q2

[
1
2
σa2Tr(ε)q + kBT

{
ln

( c

1− c

)}
q

− (
ε0 + ξ2

0q2 + σ2a4qαqβGαβ(q)
)
cq

]
(15)

where Gαβ(q) is the surface Green’s function in Fourier
space, which is evaluated by an analytical solution of
general Green’s functions in anisotropic substrates with
cubic symmetry [30]. It is noted that the numerical tech-
nique relies on the application of periodic boundary con-
ditions. We use a Galerkin approach to solve equation
(15) in transformed space. Moreover, a pseudo-spectral
technique is applied to nonlinear terms in the equation
and a split-radix FFT package is adopted to implement
the transformations [31].

First we start by presenting results of computer sim-
ulations for the surface density profile, c, in a one-
dimensional system, with an initial uniform coverage of
c0 = 0.2, and 0.015, respectively. Results of our simula-
tions are shown in Figure (1A) for an initial coverage of
0.2, and in Figure (1B) for an initial coverage of 0.015.
The strain field generated by a straight interfacial dis-
location line below the 40 nm buffer layer is illustrated
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FIG. 1: Spatial distribution of coverage (fractional surface
concentration of adatoms) for an initial concentration of (A)
c0 = 0.2, (B) c0 = 0.015, where in both figures, the grey lines
denote the initial profiles with random perturbations and the
black line denotes the equilibrium profiles.

above of coverage profile. It can be seen from Figure
(1A) that in the case of c0 = 0.2, the spontaneous self-
organization pattern is biased by the weak strain field
with thickening of the cluster on the compressive side
of the dislocation. Two denuded zones are generated on
both sides of the dislocation. If c0 is reduced below some
critical level, say down to 0.015, a dramatic change occurs
in which the weak strain field of the buried dislocation
sweeps out all the coverage pattern, and strengthens the
only mode around the compressive region, as shown in
Figure (1B). It should be noted that when c0 is reduced
further, the initial random perturbation decays and the
system returns to its initial stable state.

When the system is extended to two dimensions, inter-
nal self-organization cannot be represented by “peaks” as
in the 1-D case. If the temperature is below the critical
value as numerically calculated by [19, 32], a hexago-
nal dot pattern and/or a stripe pattern natually emerge
[20]. The critical temperature can be obtained by linear
stability analysis and is described by a marginal stabil-
ity curve [19]. Within the instability region, the pattern
transitions can be analyzed by weakly nonlinear stabil-
ity analysis [19]. When an external field is present, the
dots and stripes of atomic clusters are guided and redis-
tributed by superimposing the external field profiles. In
another words, a higher density of dots or stripes will ex-
ist in the maximum compressive strain field and a lower
density in tensile strain region. This is exactly what we
observe in the present simulations. As shown in Figure 2,
when c0 = 0.5, the system without external fields forms
a nanostripe pattern. As a result of initially random per-
turbations, stripe orientations are randomly distributed
all over the surface as long as it is elastically isotropic.
Even if some preferential orientations of stripes can be
formed by the elastic anisotropy of the surface [20, 33],
the longitudinal length and spacing between stripes are
at the nano-scale, and cannot be considered as nanowire
structures. However, when a weak external field is in-
cluded, the nanosized stripes are redistributed. In an
equilibrium state as shown in Figure (2D), stripes are
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C D

FIG. 2: 2-D simulation of directed self-organization from an
initial random perturbation at c0 = 0.5 with 40 nm buffer
layer thickness, where (A), (B), (C) and (D) show the results
at 0 sec, 0.22 µsec, 2.75 µsec and 13.75 µsec, respectively.

densely packed along the dislocation line. Despite a shal-
low region of a denuded zone, most stripes will exist in
the open region of the decaying strain field. A similar sit-
uation occurs in the case of the dot-pattern regime of self-
organization [20]. For example, when c0 are around 0.1,
dots which is only along the dislocation line will achieve
a higher density, while dots far away from the line will
decay.

However, when the uniform coverage c0 is small enough
but not so small as to result in a stable system, an inter-
esting phenomenon similar to the 1-D case takes place.
Under these restricted conditions, all atom clusters will
uniformly agglomerate along the dislocation line, and
small clusters that used to exist in the open regions away
from the vicinity of the dislocation line are completely
swept off due to the influence of the very weak disloca-
tion field. Figure 3 shows our simulation results in the
case of c0 = 0.05. It can be noted that under these condi-
tion, the weak external field along one direction provides
a pattern change from dots to a well-aligned stripe that
runs along the dislocation line.

The interesting thing in both 1-D and 2-D simula-
tions is that an external field exhibits a global effect
over micron length scale, although the governing equa-
tion (Equation 13) is based on local balance and interac-
tions. In spite of the weakness of the dislocation strain
field, the sharp alignment phenomena observed in Figure
1B and 3 indicates that the wavevectors associated with
the dynamics are locked by the characteristic wavevec-
tor of the applied strain field under certain combina-
tions of control parameters. Similar to the concept of
frequency locking of a periodic forced oscillator [34, 35],
this wavevector locking or resonance in the adatom dy-

A B

C D

FIG. 3: 2-D simulation of directed self-organization from an
initial random perturbation at c0 = 0.05 with 40nm buffer
layer thickness, where (A), (B), (C) and (D) show the results
at 0 sec, 0.055 µsec, 0.55 µsec and 7.15 µsec, respectively.

namic system cannot be explained by a simple superposi-
tion, and certainly results from nonlinear effects mainly
through the logarithmic and cluster-cluster interaction
terms. In other words, the interactions between two dif-
ferent scales (nanoscale and microscale) are connected by
nonlinear bifurcations.

A detailed discussion for the analysis of locking in spa-
tially extended systems is out of the scope of the present
paper. However, since this scale bridging is consistent
with the character of nanowire structures in which the
lateral extent of atom assembly is constrained to tens
of nanometers or less, while the self-assembly process is
unconstrained in one dimension, , it is proposed here
that this sharp alignment can be utilized for the pre-
cise fabrication of nanowires. Because our phase field
model is based on a monolayer structure of clusters, it
should be understood that it is applicable during the ev-
ery early nucleation stage for cluster evolution (e.g. in
the Stranski-Krastanov growth regime after the wetting
layer is deposited and before the multilayer island struc-
ture is formed). Since island nucleation is mainly deter-
mined by monolayer growth and that 3-D construction
of islands does not have a dramatic effect on the selected
patten of nanostructures or on its stability, it would be a
promising way to adjust a proper combination of control
parameters to realize the desired formation of nanowires
if a corresponding external field network is provided.

IV. CONCLUSIONS

In this work, we developed a phase field model that
descripes the evolution of surface adatom atomic clusters
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on atomically smooth substartes. The model shows that
the self-assembly process of adatoms is in fact a compe-
tition between two length scales. The first is a “natural”
length scale in the nano-meter range, and arises from lo-
cal interactions and overall reduction of system energy
by clustering at this particular length scale. The second
scale is associated with an imposed external and interac-
tive field, such as that supplied by a buried or interfacial
dislocation. However, to utilize this idea in the precise
fabrication of nano-wires requires careful control of sys-
tem parameters. the most significant control parameters
are the temperature and initial coverage. Above a criti-

cal temperature, the system is totally stable against small
concentration fluctuations. the same is also the case for
very low initial coverage. If the initial coverage is in a
restricted range, and the system temperature is below
the critical value, small initial perturbations result in an
instability that sweeps long wave-vectors (i.e. nano-scale
patterns), and re-inforces short wave-length vectors cor-
responding to the imposed weak field. It is proposed
that this technique can have wide applications by cou-
pling weak electromagnetic, electric, or elastic external
fields to adatom deposition for fabrication of on-demand
nano-structures, such as nanowires and quantum dots.
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