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Dislocation motion in anisotropic multilayer materials
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Line integral forms for the elastic field of dislocations in anisotropic, multilayer
materials are developed and utilized in Parametric Dislocation Dynamics (PDD)
computer simulations. Developed equations account for interface image forces
on dislocations as a result of elastic modulus mismatch between adjacent layers.
The method is applied to study dislocation motion in multilayer thin films. The
operation of dislocation sources, dislocation pileups, confined layer slip (CLS),
and the loss of layer confinement are demonstrated for a duplex Cu/Ni system.
The strength of a thin film of alternating nanolayers is shown to increase with
decreasing layer thickness, and that the maximum strength is determined by the
Koehler barrier in the absence of coherency strains. For alternating Cu/Ni
nanolayers, the dependence of the strength on the duplex layer thickness is
found to be consistent with experimental results, down to a layer thickness of
�10 nm.

1. Introduction

Dislocation dynamics (DD) methods have been developed to describe plasticity on

the basis of direct numerical simulations of the collective motion of dislocation
ensembles, with successful applications to deformation problems at the nano- and
micro-scales (e.g. [1–4]). However, the majority of these approaches treat bulk iso-

tropic materials, with a few investigations that account for free surfaces or interfaces
(e.g. [5–12]). However, these approaches have limitations, either because they are
restricted to the simple case of a planar free surface, treat only isotropic materials,

or that they lack sufficient numerical resolution near interfaces and surfaces.
Extension of the DD method to anisotropic bulk crystals demonstrated the

importance of elastic anisotropy in the outcome of key dislocation reactions,
such as the Frank–Read source operation, dislocation junctions, dipoles and
overall microstructure evolution [13]. In anisotropic, multilayer materials, such as

nanolayered thin films, the ratio of interface area to volume is high, and dislocations
are expected to interact with many interfaces. It is desirable, therefore, to extend
the methods of three-dimensional (3D) DD that have been successfully developed

for bulk crystals to anisotropic multilayer materials. However, solutions for
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the elastic field of 3D dislocations near free surfaces or interfaces are very few,

and are not directly suitable for inclusion in the DD framework (e.g. [5, 7, 14–16]).
The elastic field of dislocation loops of general geometry in anisotropic multi-

layer materials can be determined through a surface integral over the dislocation

loop [15, 17, 18], provided that Green’s functions are available for the specific

geometry. In our recent work [18], the Fourier transform method was used to

evaluate Green’s functions and their derivatives, which were then utilized in surface

integrals to calculate the elastic field of dislocation loops. However, surface integral

forms cannot be readily incorporated into DD formulations, which are all based

on line integrals for the elastic field, self-, and interaction forces. Hence we wish

to determine the elastic field variables in the form of line integrals. This would

effectively allow faster computations in anisotropic multilayer materials, and can

be used further to extend the DD method to such material systems. In addition to

the special case of a dislocation loop in a homogeneous infinite space, a line integral

representation of the elastic field due to a general dislocation loop is available only

for an isotropic half-space [7].
Nanolayered structures are candidates for applications requiring thin volumes

(e.g. micro-electronics, opto-electronics, laser mirrors, etc.), or may be developed for

more demanding structural applications (e.g. aircraft, rocket engines, transportation,

advanced energy, etc.). In nanolayer materials, which contain many interfaces, most

of the present methods would either result in low accuracy for the elastic field

variables, especially near the interfaces, or have limitations on their applicability.

Experimental research on the deformation behaviour of multilayer nanocrystal com-

posites shows that very high strength and ductility can indeed be obtained, when

plastic deformation is restricted to flow in confined small volumes [19–21]. The flow

stress in nanolayered structures can approach to within one-third of the theoretical

shear strength of order �=30, where � is the shear modulus [22]. This possibility

raises a host of technological and fundamental considerations related to the max-

imum strength that can be attained in materials. In principle, plastic flow can be

confined to small volumes by controlling the strength and spacing of engineered

dislocation obstacles at the nanoscale [21, 23]. The high strength, and the length

scale of the nanostructure itself may result in new considerations in crystal

plasticity [24].
The purpose of the present investigation is to establish a systematic theoretical

and computational approach for three-dimensional dislocation motion in anisotro-

pic, multilayer materials. Subsequently, we apply the approach to investigate the

influence of elastic property mismatch between layers on the strength of nanolayered

materials. In section 2, we develop the essential equations that govern the elastic

field of an infinitesimal dislocation segment in an anisotropic multilayered material

by using the 2D Fourier transformation method. The elastic field of a general

dislocation loop of arbitrary geometry is then evaluated through a line integral

along the dislocation loop. Computational procedures are obtained for an anisotro-

pic half-space, two half-spaces, and for a multilayered material in section 3, and

the results are incorporated into line integrals for 3D dislocations of arbitrary

shape. Dislocation motion in multilayered thin films is then investigated in

section 4, where the line integral formulation is utilized in 3D dislocation dynamics
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computer simulations. The influence of elastic property mismatch on dislocation
motion and interaction forces is finally discussed in section 5.

2. Line integral field equations

For a 3D dislocation loop of general geometry, the displacement vector can be
expressed as [17]

uiðxÞ ¼ �

ð
S

Cjlmnbm
@

@x0l
Gjiðx

0, xÞnnðx
0
Þ dSðx0Þ, ð1Þ

where Cjlmn are the elastic moduli, Gjiðx
0, xÞ are the Green’s functions at x0 due to a

point force applied at x, S is an arbitrary surface capping the loop, nn is a unit
normal to S and bm is the Burgers vector.

The surface integral in equation (1) is valid for a dislocation loop in either
homogeneous or inhomogeneous materials, assuming that the elastic Green’s
functions for a particular geometry and elastic anisotropy are known. There are
two main difficulties in using equation (1). First, evaluation of surface integrals
for dislocation loops of complex 3D geometry can be computationally demanding
and intensive [18]. Second, elastic Green’s functions are not explicitly known for
inhomogeneous anisotropic materials.

For a dislocation loop in an infinite homogeneous space, the displacement
gradient tensor can be reduced to a line integral along the dislocation as [17]

ui, jðxÞ
1
¼

I
L

�1jihðx� x
0
Þ dlhðx

0
Þ, ð2Þ

where

�1jihðx� x
0
Þ ¼ Cklmnbm�jnhG

1
ik, lðx� x

0
Þ, ð3Þ

and L and dlh are the dislocation line and line element, respectively. The superscript
1 represents quantities in an infinite space, f, l ¼ @f =@xl, and �jnh is the usual

permutation tensor.
The stress field produced by the dislocation can then be expressed as

�ijðxÞ
1
¼

I
L

S1ijhðx� x
0
Þ dlhðx

0
Þ, ð4Þ

where

S1ijhðx� x
0
Þ ¼ CijklCpqmn�lnhbmG

1
kp, qðx� x

0
Þ: ð5Þ

The kernel S1ijhðx� x
0
Þ in equation (5) can be considered as the ij-stress compo-

nent at x produced by a line element of dislocation lying in the h direction at x0, with
Burgers vector b in an infinite space, while �1jihðx� x

0
Þ in equation (3) can be

considered as the corresponding displacement gradient.
For a finite space, the field produced by the elemental dislocation source in

an infinite space is not guaranteed to satisfy prescribed boundary conditions.
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We therefore need to add a complementary solution (denoted as SC
ijhðx, x

0
Þ or

�Cjihðx, x
0
Þ) to the infinite medium solution (S1ijhðx� x

0
Þ or �1jihðx� x

0
Þ), such that all

boundary conditions can be satisfied. For example, on a free surface at x3¼ 0,

we should have: ½S1ijhðx� x
0
Þ þ SC

ijhðx, x
0
Þ�jx3¼0 ¼ 0. If a complementary solution

(with a superscript C) can be obtained, then the elastic field due to a dislocation

loop in the corresponding finite space can be evaluated through the line integral:

ui, jðxÞ ¼

I
L

½�1jihðx� x
0
Þ þ �Cjihðx, x

0
Þ�dlhðx

0
Þ, ð6Þ

�ijðxÞ ¼

I
L

½S1ijhðx� x
0
Þ þ SC

ijhðx, x
0
Þ�dlhðx

0
Þ: ð7Þ

The first terms in equations (6) and (7) are known infinite space solutions, and

contain well-understood singularities. The second (complementary) terms, however,

are regular, and need to be determined according to interface and boundary

conditions. Now, assume that the displacement field of the complementary kernel

is uCkh. The stress field it produces is then: SC
ijhðx, x

0
Þ ¼ Cijklu

C
kh, lðx, x

0
Þ, and the

corresponding equilibrium equation is given by

CijklðxÞu
C
kh, ljðx, x

0
Þ ¼ 0: ð8Þ

For a layered medium, the general solution can be obtained by a Fourier

transform with respect to the in-plane coordinates (x1, x2) as [18]

~uuð�1, �2, x3; x
0
3Þ ¼

ð1
0

ð1
0

uðx; ð0, 0, x03ÞÞe
i��x� dx1 dx2: ð9Þ

The equilibrium equation then becomes

Ci3k3 ~uuCkh, 33 � iðCi�k3 þ Ci3k�Þ�� ~uuCkh, 3 � Ci�k����� ~uuCkh ¼ 0, ð10Þ

where the Greek subscript �¼ 1 or 2, whereas Roman subscripts range over 1, 2, 3.
The general solution of equation (10) can be expressed in a compact form as [25]

~uuCð�1, �2, x3; x
0
3Þ ¼ i��1ð �AAhe�i�pp�x3iVþ Ahe�ip�x3iWÞ, ð11Þ

where ð�, �Þ are the polar coordinates of ð�1, �2Þ (�1 ¼ � cos �, �2 ¼ � sin �), V and W

are unknown functions (of �, � and x03), and he
�ip�x3i ¼ diag½e�ip1�x3 , e�ip2�x3 , e�ip3�x3 �.

pi (Im ðpiÞ > 0) and A ¼ ða1, a2, a3Þ are the eigenvalues and eigenmatrix of the

generalized Stroh eigenproblem [26]:

½Qþ piRþ R
T
Þ þ p2i T�ai ¼ 0, ð12Þ

Qik ¼ Cijksnjns, Rik ¼ Cijksnjms, Tik ¼ Cijksmjms,

with n ¼ ½cos �, sin �, 0�T and m ¼ ½0, 0, 1�T.
The displacement gradient for the complementary solution is

~uuC, �ð�1, �2, x3; x
0
3Þ ¼ n�ð �AAhe

�i�pp�x3iVþ Ahe�ip�x3iWÞ: ð13Þ
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The induced stress field will then be: SC
ijhðx, x

0
Þ ¼ Cijklu

C
kh, lðx, x

0
Þ. We will separate

the field into two contributions: (1) out-of-plane stresses t ¼ ðS13h,S23h,S33hÞ, and

(2) in-plane stresses s ¼ ðS11h,S12h,S22hÞ. In the transformed domain, these can be

expressed as [25]

~ttCð�1, �2, x3; x
0
3Þ ¼

�BBhe�i�pp�x3iVþ Bhe�ip�x3iW, ð14Þ

~ssCð�1, �2, x3; x
0
3Þ ¼

�CChe�i�pp�x3iVþ Che�ip�x3iW: ð15Þ

The matrices B ¼ ðb1, b2, b3Þ and C ¼ ðc1, c2, c3Þ are related to the Stroh eigenmatrix

A as

bi ¼ ðR
T
þ piTÞai, ci ¼ Diai, ð16Þ

with

Dkli ¼ C1kl�n� þ piC1kl3 for k ¼ 1, 2, and D3li ¼ C22l�n� þ piC22l3:

Note that for a half-space x3 � 0, V¼ 0, while for x3 � 0, W¼ 0.
In order to impose the appropriate boundary conditions for layered materials,

the transformed Green’s tensor in an infinite space is needed. This is given by

~GG1ð�1, �2, x3; x
0
3Þ ¼ i��1

Ahe�ip�ðx3�x
0
3ÞiA

T, x3 < x03,

� �AAhe�i�pp�ðx3�x
0
3Þi �AAT, x3 > x03:

8<
: ð17Þ

3. Solutions of field equations

We determine here the complementary terms necessary for obtaining full solutions

for dislocation loops in half-space, bi-materials, and in general anisotropic layered

media.

3.1. Anisotropic half-space

Let us assume that a dislocation loop is situated in an anisotropic half-space,

occupying x3 � 0 and having a free surface on x3¼ 0. The surface equilibrium

boundary condition is expressed as

SC
i3hðx, x

0
Þ þ S1i3hðx� x

0
Þ

h i
jx3¼0 ¼ 0: ð18Þ

In the transformed domain, we have

~SSC
i3hðx, x

0
Þjx3¼0 ¼

~ttCihjx3¼0 ¼ BW, ð19Þ

~SS1i3hðx� x
0
Þ ¼ Ci3klCpqmn�lnhbm ~GG1kp, qðx� x

0
Þ

¼ �i��Ci3klCp�mn�lnhbm ~GG1kp þ Ci3klCp3mn�lnhbm ~GG1kp, 3: ð20Þ
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Substituting (17) (for x03 < x3 � 0) into (20), we obtain

~SS1i3hjx3¼0 ¼ 	ikhpq nqð� �AAhei�pp�x
0
3i �AAT
Þkp þmqð�

�AAhei�pp�x
0
3ih�ppi �AAT

Þkp

h i
, ð21Þ

where 	ikhpq ¼ Ci3klCpqmn�lnhbm.
Substituting (19) and (21) into the free traction surface boundary condition (in the

transformed domain): ~SSC
i3hðx, x

0
Þjx3¼0 þ

~SS1i3hjx3¼0 ¼ 0, we get

W ¼ B
�1	ikhpq nqð �AAhe

i�pp�x03i �AAT
Þkp þmqð

�AAhei�pp�x
0
3ih�ppi �AAT

Þkp

h i
: ð22Þ

The unknown coefficient W in the complementary solution is thus determined.

Substituting (22) into equations (11), (14) and (15) determines the complementary

parts of the displacement vector and stress tensor:

~uuCð�1, �2, x3; x
0
3Þ ¼ i��1Ahe�ip�x3iW, ð23Þ

~ttCð�1, �2, x3; x
0
3Þ ¼ Bhe�ip�x3iW, ~ssCð�1, �2, x3; x

0
3Þ ¼ Che�ip�x3iW: ð24Þ

Written explicitly in component form, the complementary solution for the

displacement vector is

~uuCih ¼ i��1Aik1
e�ipk1x3�B�1k1k2

	k2k3hk4k5 ðnk5 þmk5
�ppk6Þ

�AAk3k6
ei �ppk6x

0
3� �AAT

k6k4
: ð25Þ

Similar forms for the components of the stress tensors are obtained by replac-

ing the first term i��1Aik1 in equation (25) by Bik1 and Cik1 , to obtain ~ttCih and ~SSC
ih,

respectively.
These are complex explicit expressions, but can be written in the following forms:

~uuC ¼ i��1J2he
�ir1�iJ1he

�ir0�iJ0 ð26Þ

for the displacement vector, and

~ttC ¼ J2he
�ir1�iJ1he

�ir0�iJ0 ð27Þ

for the traction tensor. The same expression is also obtained for the in-plane tensor
~SS. In equations (26) and (27), the tensors Jnð�Þ and rnð�Þ are independent of �, but are
functions of �. These solutions are in the transformed domain, and need to be

transformed back to the physical domain by the inverse Fourier transform:

f ðx1 � x01, x2 � x02, x3, x
0
3Þ ¼

1

ð2
Þ2

ð1
0

ð2

0

� ~ff ð�, �, x3, x
0
3Þ

� e�i�½ðx1�x
0
1Þ cos �þðx2�x

0
2Þ sin �Þ� d� d�: ð28Þ
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Carrying out the first integral over ð0 < � <1Þ, the 2D inverse transformation is

reduced to a 1D integral [25]. The reduced integrals for the elastic fields are given by

uCih ¼
1

ð2
Þ2

I2


0

Hih

s
d�, ð29Þ

tCih ¼ �
1

ð2
Þ2

I2


0

Hih

s2
d�, ð30Þ

with Hih ¼ ðJk2Þ2ðJk2k1Þ1ðJk1Þ0, and s ¼ ðrk2 Þ1 þ ðrk1 Þ0 þ ðx1 � x01Þ cos �þ
ðx2 � x02Þ sin �. Note that sih has the same expression as that of tih, and that

all these functions have their own Hih (different from each other), but share the

same s

Hih ¼ Aik1
B�1k1k2

	k2k3hk4k5ðnk5 þmk5
�ppk6 Þ

�AAk3k6
�AAT
k6k4

: ð31Þ

Replacing the first term Aik1 in equation (31) by Bik1 and Cik1 , we obtain the expres-

sionHih for t
C
ih and sCih, respectively. Thus, the complementary parts of the elastic field

of a dislocation in a half-space can be evaluated by line integrals over the interval

½0, 2
�. The complementary parts plus the infinite-space solutions are the total elastic

fields due to an infinitesimal dislocation segment, and the elastic field due to a

dislocation loop is obtained through the line integrals (6) and (7).
We give here an example of a 3D dislocation loop of a simple circular geometry

to verify the present line integral method, and to illustrate the main characteristics

of dislocation fields near interfaces. Consider a circular dislocation loop in a half-

space substrate. The loop lies near a free surface or an interface, as shown in figure 1.

To be specific, we take the substrate material, which extends for all z<0, to be an

z [001]

x [100]

Interface

Nickel
halfspace

Aluminum
halfspace

b

y [010]

Figure 1. Schematic for the geometry of a 3D circular dislocation loop near an interface
or free surface.

Dislocation motion in anisotropic multilayer materials 2815



anisotropic aluminium crystal. The aluminium substrate is bound by a free surface

or is perfectly bonded with an anisotropic nickel half-space along the surface z¼ 0.

Both Al and Ni are fcc cubic anisotropic crystals (see [27] for elastic constants), with

their crystallographic axes [100], [010], and [001] lined up along the x¼ 1, y¼ 2, and

z¼ 3 coordinate axes, respectively. The circular dislocation loop lies on the (111)

plane, and its Burger’s vector b is taken along the ½�1110� direction. The loop radius

R ¼ 200b, and its centre is located at z ¼ �180b, where b ¼ jbj is the magnitude of

the Burgers vector of aluminium.
For verification of the present line integral results, we show in figure 2 the results

of stress field components for infinite space and the exact surface integral solutions.

Calculations of the surface integral, with equation (1) as the starting point, are

performed using an evaluation of Green’s functions and their derivatives in the

corresponding materials [18]. We follow the procedure of Pan and coworkers

for the numerical determination of Green’s functions in anisotropic bi-materials

and multilayered materials [28, 29]. Stress components along the z axis, induced

by the dislocation loop, are shown in figure 2(a) for the case of free surface, and

figure 2(b) for the interface case. Because of symmetry, �11 ¼ ��22, �13 ¼ ��23,
�12 ¼ �33 ¼ 0, and thus we only show the stress components �22 and �23. It can

be observed from the figures that the numerical results of the present line integral

method are nearly identical to those obtained by the surface integration

method [18] for the case of a dislocation in half-space, and are in good agreement

when the dislocation loop is near the interface. As the dislocation loop approaches

the free surface, the out-of-plane stress components are forced to decrease until

they become identically zero at the surface. However, in-plane stresses increase

in order to satisfy overall equilibrium. When the aluminium substrate is bonded

to a harder half-space (e.g. nickel), out-of-plane stresses are continuous across

the interface, and larger than their corresponding values in infinite space. In-plane

stress components, on the other hand, experience jumps because of the discontinuity

in the elastic properties across the interface. The magnitude of stress increases

across the interface, moving from the softer (aluminium) to the harder substrate

(nickel).
In general, the stresses near a free surface are larger than their corresponding

values near an interface to a harder material. The influence of the interface on the

disturbance of the elastic field is somewhat local, and is limited to within a distance

of a few hundred lattice constants from the free surface or an interface.

3.2. Perfectly bonded, anisotropic two half-spaces

Consider an anisotropic bi-material full space, where the lower half-space (x3<0) is

occupied by material (0), the upper half-space (x3>0) by material (1), and quantities

in them are denoted by the corresponding superscripts (0) and (1), respectively.

Suppose now that the interface (at x3¼ 0) is perfectly bonded. This requires the

continuity of the displacement and traction vectors across the interface, i.e.

u
ð0Þ
jx3¼0� ¼ u

ð1Þ
jx3¼0þ , t

ð0Þ
jx3¼0� ¼ t

ð1Þ
jx3¼0þ : ð32Þ
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Instead of the displacement continuity condition (32), however, we will use an

equivalent condition on the tangential displacement gradient, given by [30]

u
ð0Þ
, � jx3¼0� ¼ u

ð1Þ
, � jx3¼0þ : ð33Þ
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Figure 2. Stress components along the z axis for a circular dislocation loop (see figure 1) in
(a) Al half-space and (b) Al–Ni bi-material. Solid lines represent surface integral results,
small square symbols, line integral results, and dashed lines, infinite space solutions.
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Here, �¼ 1 or 2, and u, � is the in-plane component of the displacement gradient

(or so-called tangential distortion).
Without loss of generality, we assume that we have an infinitesimal dislocation

segment, located in material (0). We express the solution for the displacement

gradient in material (0) as

~uu
ð0Þ
, j ¼ ~uu

ð0Þ1
, j þ ~uu

ð0ÞC
, j ¼

~��ð0Þ1jih þ njA
ð0Þ
he�ip

ð0Þ�x3iW: ð34Þ

The first term ~uu
ð0Þ1
, j corresponds to the homogeneous full-space solution, which is

known from equation (3), with the elastic properties of material (0). The second term

corresponds to the complementary solution due to the interface. Correspondingly,

the stress field is also separated into two components, and the traction vector can be

expressed as

~ttð0Þ ¼ ~ttð0Þ1 þ ~ttð0ÞC ¼ ~SS
ð0Þ1
i3h þ B

ð0Þ
he�ip

ð0Þ�x3iW, ð35Þ

where S
ð0Þ1
i3h is known from equation (5), with the elastic properties of material (0).

Likewise, the solutions in material (1) due to the infinitesimal dislocation

segment in material (0) can also be separated. Thus, the displacement gradient in

material (1) is expressed as

~uu
ð1Þ
, j ¼ ~uu

ð0Þ1
, j þ ~uu

ð1ÞC
, j ¼

~��ð0Þ1jih þ nj �AAð1Þhe�i�pp
ð1Þ�x3iV: ð36Þ

The first term ~uu
ð0Þ1
, j is the known full-space solution, with the elastic properties of

material (0), while the second term is the complementary solution (which is to be

determined). The stress field in material (1) can be derived from ~uu
ð1Þ
, j , giving the

traction field as

~ttð1Þ ¼ ~ttð1Þ1 þ ~ttð1ÞC ¼ ~SS
ð1Þ1
i3h þ

�BBð1Þhe�i�pp
ð0Þ�x3iV, ð37Þ

with

S
ð1Þ1
i3h ¼ C

ð1Þ
ijklC

ð0Þ
pqmn�lnhbmG

ð0Þ1
kp, q ðx� x

0
Þ ð38Þ

as the traction field in full-space material (1) due to the displacement field ~uuð0Þ.
Substituting equations (34)–(38) into the interface conditions, we have

B
ð0Þ
Wþ ~SS

ð0Þ1
i3h jx3¼0 ¼

�BBð1ÞVþ ~SS
ð1Þ1
i3h jx3¼0, ð39Þ

n�A
ð0Þ
Wþ ~��ð0Þ1�ih jx3¼0 ¼ n� �AAð1ÞVþ ~��ð0Þ1�ih jx3¼0: ð40Þ

Finally, the full solution is obtained as

W ¼ �ð �BBð1Þ �AAð1Þ�1Að0Þ � B
ð0Þ
Þ
�1� ~SS1i3h,

V ¼ ðB
ð0Þ
A
ð0Þ�1 �AAð1Þ � �BBð1ÞÞ�1� ~SS1i3h, ð41Þ
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with

� ~SS1i3h ¼ ~SS
ð1Þ1
i3h jx3¼0 �

~SS
ð0Þ1
i3h jx3¼0 ¼ ðC

ð1Þ
ijkl � C

ð0Þ
ijklÞ

� Cð0Þpqmn�lnhbm ~GG
ð0Þ1
kp, q ðx� x

0
Þjx3¼0,

~GG
ð0Þ1
kp, q jx3¼0 ¼ �nqð

�AAð0Þhei�pp
ð0Þ�x03i �AAð0ÞTÞkp �mq

� ð �AAð0Þhei�pp
ð0Þ�x03ih�ppð0Þi �AAð0ÞT Þkp: ð42Þ

The displacement and stress (including displacement distortion) solutions have the

same forms as equations (26) and (27), respectively, and all real fields are obtained

by 1D integrals, as in equations (29) and (30).
Dislocations move along the direction of the Peach–Koehler force exerted on

them, which is given by f ¼ r � b� d l, where the virtual force f is exerted on a line

segment d l with the Burgers vector b, and situated in the stress field r. The stress

field may originate from various sources, such as applied forces, residual stresses,

image stresses (due to boundary conditions), other dislocations, and even the dis-

location loop itself (self-forces). When a dislocation resides in a finite medium,

adjustments of the stress field to satisfy surface or interface boundary conditions

result in local changes of the stress tensor close to the dislocation line. Thus, calcula-

tions of the self-force for this altered stress field, which requires integrals along the

dislocation line, would also include the influence of the boundary adjustment. Thus,

the self-force would subsume the image effects of the boundary, and would be

geometry dependent. To remove such ambiguities, and to clearly determine the

effects of the interface or boundary, the stress field induced by a dislocation is

divided into two parts: the full-space stress r1, and the image stress rC. The stress

r1 corresponds to that induced by the dislocation in a homogeneous and infinite

space, with elastic properties of the material where most of the dislocation resides.

The stress field r1 of a dislocation in an infinite anisotropic material can be calcu-

lated by the line integral given by equation (1), and will induce a self-force on

the dislocation. Because of the singularity of r1 along the dislocation line, an

average field is obtained by the Brown procedure [31], or alternatively through the

Gavazza–Barnett limiting process [32]. Details of the numerical procedure for the

stress field and self-force of a dislocation loop in an infinite anisotropic material

are found in our recent work [13].
The force induced by the complementary part of the stress field, rC, which

reflects the interface effect on modifying the infinite medium stress field of the

dislocation, will be termed henceforth the image force, and is calculated directly

by the Peach–Koehler formula. The accuracy of the present line integral method is

investigated by a direct comparison with the surface integral method [18] for

the Peach–Koehler image force distribution around a general, static and circular

dislocation loop near a bi-material interface. In the surface integral method,

displacement continuity across the interface is strictly satisfied, while in the present

line integral approach, we satisfy an equivalent condition for the continuity of

the tangential distortion. However, since the two tangential gradients cannot be

simultaneously enforced to be continuous across the interface, one has to select
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only one of them, and hence obtain an approximate solution. Figure 3 shows the

distribution of image forces around a circular loop in Cu, and compares the two

methods of calculation. The loop is on a glide plane that is inclined at 45� to the

interface. In figure 3(a), image forces are attractive because Al is softer than Cu,

while in figure 3(b), forces are repulsive because of the harder Ni half-plane.

The agreement between the two methods is satisfactory, both in force direction

and magnitude. However, the great simplification of the line integral solution

makes it feasible to calculate image forces within the DD framework.

3.3. Anisotropic multilayer material

Consider a laterally infinite composite thin film made of different layers. Each layer

is homogenous, anisotropic and of uniform thickness. Interfaces between layers are

assumed to be perfectly bonded. A coordinate system ðx1,x2, x3Þ is attached to the

thin film, with the x3 axis perpendicular to all interfaces. A general layer n occupies

the space zn�1 � x3 � zn, and quantities with its properties are denoted by cor-

responding superscripts (n). Assume now that an infinitesimal dislocation segment

is located in layer k. The displacement gradient in layer n can be expressed as

~uu
ðnÞ
, j ¼

~��ðkÞ1jih þ nj �AAðnÞhe�i�pp
ðnÞ�ðx3�zn�1ÞiV

ðnÞ
þ A

ðnÞ
he�ip

ðnÞ�ðx3�znÞiW
ðnÞ

h i
: ð43Þ

The first term is the full-space solution, given by equation (3), with the elastic

properties of material k. The other terms correspond to the complementary part

of the solution. Accordingly, the out-of-plane traction vector is given by

~ttðnÞ ¼ ~SS
ðnÞ1
i3h þ

�BBðnÞhe�i�pp
ðnÞ�ðx3�zn�1ÞiV

ðnÞ
þ B

ðnÞ
he�ip

ðnÞ�ðx3�znÞiW
ðnÞ

h i
, ð44Þ

Figure 3. Peach–Koehler force distributions around a circular loop in Cu near a bi-material
interface: (a) Cu/Al, and (b) Cu/Ni. Results for the surface integral method (red vectors)
are displayed along with those for the current line integral method (blue vectors).
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with S
ðnÞ1
i3h ¼ C

ðnÞ
ijklC

ðkÞ
pqmn�lnhbmG

ðkÞ1
kp, q ðx� x

0
Þ, and the solution for the in-plane traction

~ssðnÞ is similar to that given by (44).
Perfectly bonded conditions along interfaces require that the traction and

displacement (or tangential distortion) vectors are continuous. For interface n,

this gives

�BBðnÞhe�i�pp
ðnÞ�ðzn�zn�1ÞiV

ðnÞ
þ B

ðnÞ
W
ðnÞ
þ ~SS

ðnÞ1
i3h jx3¼0

¼ �BBðnþ1ÞVðnþ1Þ þ B
ðnþ1Þ
he�ip

ðnþ1Þ�ðzn�znþ1ÞiW
ðnþ1Þ
þ ~SS

ðnþ1Þ1
i3h jx3¼0, ð45Þ

�AAðnÞhe�i�pp
ðnÞ�ðzn�zn�1ÞiV

ðnÞ
þ A

ðnÞ
W
ðnÞ

¼ �AAðnþ1ÞVðnþ1Þ þ A
ðnþ1Þ
he�ip

ðnþ1Þ�ðzn�znþ1ÞiW
ðnþ1Þ: ð46Þ

With all interface, bottom and top layer (half-space or free surface) boundary

conditions, a system of algebraic equations can be formed. Solving these equations,

the elastic field is fully determined.

4. Dislocation dynamics in nanolayered materials

In an effort to experimentally explore material parameters that control the strength

of nanolayered composites, Cu–Nb, Cu–Cr and Cu–Ni layered structures were pro-

duced by cold-working, evaporation or sputtering [20]. In addition, aspects of fcc/

bcc duplex structure deformation have recently been considered [33]. The strength

increase associated with reduction of the bilayer thickness has been explained by

a variety of possible mechanisms, including the Hall–Petch model of dislocation

pile-ups at interfaces, the Koehler model of dislocation image interactions, and the

Orowan model of single dislocation bow-out between layers. Considering single

dislocation behaviour, Embury and Hirth [24] attempted to derive the strength

and deformation mechanism maps, allowing for dislocation–dislocation and

dislocation–interface interactions. A number of material design knobs can be used

to impart high strength and control plastic slip in nanolayered structures, including

nanolayer height in single crystals, grain size in polycrystals, lattice and interface

Peierls stress levels, interface structure, coherency strain level, misfit dislocation

structure and spacing, geometry of plastic slip transmission by shear transfer, and

the co-deformation of incompatible slip systems (e.g. fcc/bcc, fcc/hcp, and hcp/bcc).
Plastic deformation of nanolayer materials is influenced by the existence of

large interfacial areas, as compared to bulk polycrystalline materials. It has been

experimentally established that the hardness (or strength) of multilayer thin films

is much greater than corresponding bulk materials, and that it increases as the

thickness of the constituent layers decreases [20, 34]. Several underlying mechanisms

have been proposed in recent years, although relying on approximate treatments

of dislocation fields in such systems. The first set of factors that affect strength

is structural in nature, where forces on dislocations vary across an interface. The

variation can be a result of: (1) lattice constant mismatch that generates coherency

strains; (2) misfit interfacial dislocations in semi-coherent and incoherent interfaces;
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(3) stacking fault energy changes in incoming and outgoing slip planes; (4) slip

system mismatch that forces cross-slip of screw dislocations across the interface;

and (5) the effects of dislocation core spreading into the interface [34–36]. The second

factor is the mismatch across the interface of elastic properties (constants),

which reflect changes in the strength of atomic forces as dislocations cross from

one material to another. This image force effect places additional opposing forces

as dislocations cross an interface, and is known as the Koehler barrier (see, for

example, [36]). Although the strength of nanolayer materials is dominated by

the influence of interfacial image forces on dislocation motion [34–36], current

theoretical estimates of image forces on dislocations often rely on approximate

methods of analysis based on isotropic, infinitely extended materials. Accurate

determination of nanolayer strength and plasticity requires rigorous development

of dislocation theory in layered media.
Experimental results and isotropic elasticity estimates show that the dominant

mechanism that controls the strength and hardness of multilayer thin films is the

influence of the dislocation image force associated with a mismatch in elastic proper-

ties between adjacent film layers [34]. For layered materials with a large mismatch in

elastic properties, a significant hardness enhancement was observed. On the other

hand, for layered materials with small differences in their elastic properties, no

measurable hardness enhancement was detected [34]. Experiments on an Fe/Pt

layered system [37] indicated that when the bilayer thickness ranges from a few to

tens of nanometers, the hardness of this bilayer metal system exhibits a plateau.

Over this bilayer period range, the interface structure, misfit dislocation density

and coherency strains all change rapidly, so they are not likely to be the dominant

mechanism. Hence, the mismatch in elastic moduli was concluded to be the most

likely dominant factor determining hardness enhancements in these layered

materials [37].
Two models are often used to explain the observed behaviour of hardness

(or flow stress) in thin films. In the threading dislocation model [38, 39], the flow

stress is determined by the energy balance between the threading glide dislocation

segment and the misfit dislocation left behind at the interface. This model results in

a flow stress that scales approximately with the inverse of the film/layer thickness.

For a thin film/layer of thickness h, subjected to a uniform applied biaxial stress �a,
the critical stress (�thc ) for threading dislocation motion (and hence strain relaxation

within the layer) is given by [38]

�thc �
�b

4
ð1� �Þh
½ð4� �Þ lnðh=r0Þ � 1� ð47Þ

for an isotropic material with a shear modulus �, Poisson’s ration �, and a

dislocation core cut-off radius r0 � b. In this model, interfaces are introduced as

impenetrable planes for dislocations.
The second model is an extension of the well-known Hall–Petch effect. Here,

dislocations are assumed to form a pile-up at a boundary until a critical stress is

reached. This results in a flow stress which is inversely proportional to the square

root of the layer thickness or grain size. Both models qualitatively explain the
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increase in the flow stress with decreasing film/layer thickness, but not the behaviour

as the layer thickness decreases below tens of nanometers.
A variational form of the governing equation of motion for a dislocation loop

� has been developed for over-damped dislocation dynamics, where the work

exerted on dislocation loop expansion is balanced by viscous dissipation [4],

i.e.
Ð

�ðF
t
k � B�kV�Þ�rkj dsj ¼ 0. Here, F t

k is the total Peach–Koehler force induced

by applied external forces, internal stress fields (such as dislocation interactions,

interface image forces, and the self-force), B�k is the resistance (inverse mobility)

matrix, V� is the velocity, rk is the displacement of the dislocation line, and ds

the dislocation line vector. Because the present formulation results in a line integral

form of the force vector distribution, it can be readily incorporated into the PDD

framework [4]. In this section, we present computer simulation results for dislocation

motion in nanolayered materials using the PDD methodology. We focus on disloca-

tion motion in relatively thin layers, when the individual layer thickness is in the

range of a few nanometers to hundreds of nanometers. This is typically much smaller

than the characteristic length scale of grains occupied by dislocation networks in

bulk materials. Therefore, the number of dislocations needed in order to study thin

layer plasticity is small. In many cases, plasticity and strength can be described

through the behaviour of a single dislocation loop. Although coherency strains

result in a bi-axial in-plane stress state that can be readily included, we do not

consider this effect here. We wish to clarify the influence of elastic property mismatch

alone on dislocation motion.
Consider a Cu thin layer (thickness h), sandwiched between two semi-infinite,

harder Ni substrates. The dislocation is originally located within the thin layer. Cu

and Ni are both fcc crystals with [001] out-of-plane orientations and h110if111g slip

systems. In Cu, b¼ 0.361 nm, and the dislocation mobility is taken to be isotropic

(M ¼ 104 Pa�1 s�1). The system is subjected to a uniform applied biaxial stress �a.
The value of the image force increases as the dislocation segment approaches the

interface, and is singular exactly at the interface. This is a consequence of the

assumption of linear elasticity, which has been successfully used in dislocation

dynamics simulations including similar singular behaviour of the dislocation

self-force, energy and junction formation. If a cut-off radius is introduced for the

dislocation, the results of infinitesimal linear elasticity for self-force, energy,

and junction formation are in good agreement with more detailed atomistic

simulations [40]. We assume also here that dislocations do not dissociate into par-

tials, and take the cut-off radius to be r0 � b [38, 39]. Detailed atomistic simulations

are required to ascertain the most appropriate value of the cut-off distance [36].

In the following simulations, we assume that there is one Frank–Read (F–R) source

inside one of the layers, and that the source dislocation is initially straight and

pinned from both ends.

4.1. Confined layer slip (CLS)

Figure 4 shows the propagation mode of a source dislocation in a Cu layer of

thickness 144 nm at different loading levels. We choose the length L of the original

dislocation to be longer than the layer thickness, h, i.e. L¼ 4h. Under a small applied

stress below a critical value (approximately estimated by Freund’s formula,
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Ni halfspace

(a)

(b)

Cu thinfilm

Ni halfspace

Ni halfspace

Cu thinfilm

Ni halfspace

Figure 4. Dislocation motion in a thin layer with h¼ 144 nm under different applied biaxial

stress levels (a) �a ¼ 210MPa < �thc ¼ 250MPa, and (b) �a ¼ 280MPa > �thc ¼ 250MPa.
Each line corresponds to a time increment of 0.1 ns.
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equation (47)), the dislocation will bow out in the Cu layer towards the interface. As

a result of the image force exerted by the harder Ni layer, the dislocation is repelled

away from the interface and reaches an equilibrium configuration. If the applied

stress is larger than the critical value, the dislocation first bows out towards the

interface then it is blocked by the image force and is confined to propagate within

the layer. The critical stress for the onset of confined layer slip is first estimated

according to equation (47) with equivalent isotropic values of � and �. This value

is then refined by increasing (or decreasing) the applied stress until the dislocation

can no longer achieve its equilibrium configuration.
The influence of the dislocation source size is also considered. Below the critical

stress for threading dislocation motion, �thc , dislocations cannot propagate in the

layer. When the initial source size is larger than the layer thickness, the dislocation

bows out and reaches an equilibrium configuration. If the initial source size is

smaller than the layer thickness, slip propagation is controlled by the Orowan

mechanism, and the critical stress for bowing out can be estimated as [41]

�Oc � ð�b=2
LÞð6Þ
1=2 lnðL=r0Þ.

In comparing the critical stresses for a threading dislocation motion within a

layer, �thc , with that for the activation of a F–R source by the Orowan mechanism,

�Oc , the two values are close when the layer thickness, h, is on the order of the initial

F–R source length, L. In any thin layer, many F–R sources may exist with different

sizes, locations and orientations. If the applied stress is smaller than the critical stress

for threading dislocation motion, � < �thc , some dislocations will expend towards the

interface, but none would be able to propagate within the layer. Once the applied

stress is removed, F–R source dislocations will re-tract to their original length. This

type of dislocation motion does not lead to permanent deformation of the thin film.

We term this regime as quasi-elastic. When the applied stress reaches the critical

value �thc , longer dislocations with L > h will expand, but will still be confined within

the layer. This regime of behaviour is the so-called confined layer slip (CLS) [35].

Finally, if the applied stress is increased further, � > �Oc > �thc , shorter dislocations
L < h are gradually activated, first bowing out from stable shapes, then reach

the interface, and finally propagate within the layer. Thus, dislocations emitted

from longer F–R sources with L > h are controlled by the threading dislocation

mechanism, while shorter ones by the Orowan mechanism.

4.2. Loss of slip confinement

As individual layers become very thin (i.e. in the tens of nanometers), only single

dislocations can propagate and expand upon the application of an externally applied

stress. However, because the layer thickness is very small, the curvature of the

dislocation loop in segments subtended between layers would be extremely high,

and thus self-forces in these regions are very substantial. The externally applied stress

would have to overcome such large self-forces if these curved segments are to

expand. The applied P–K force on those segments that are parallel to the interface

does not have to overcome self-forces because the curvature of these segments is

small. Rather, the image force from neighbouring and other interfaces would have to

be overcome by the applied P–K force. Since we regularized the solution by selecting

a cut-off radius of one Burgers vector on either side of the interface, the dislocation
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will be repelled with a maximum image force on one side of the interface, and

then attracted with a different maximum force once it crosses the interface. If the

applied stress is high enough that the maximum P–K force on the straight dislocation

segments close to the interface overcomes both repulsive and attractive forces,

the dislocation will cross from one layer to the neighbouring one, and CLS is finally

lost. This mode of deformation is shown in figure 5, where successive dislocation

positions at 10 ns time intervals are shown for a F–R source dislocation, initially

with a straight segment pinned at both ends, and is subjected to a suddenly applied

bi-axial stress of magnitude 1.2GPa. The dislocation, which lies on the (111)-slip

plane, has an initial length of 43.2 nm, and its Burgers vector is ða=2Þ½�1101�. After

15 ps, the leading edge of the bowed out dislocation reaches the interface. Since the

applied P–K force is larger than both the attractive and repulsive components of

the image force, the dislocation loses confinement within the copper layer and

expands into the neighbouring nickel layer.
Figure 6 shows results of our calculations for the maximum strength of a

copper layer in a thin film of alternating Cu/Ni layers based on the activation of

a single F–R source, as a function of the layer period. Experimental results for

nano-indentation by Misra et al. [20] and Clemens et al. [34] are also shown.

Since Freund’s formula is often used to estimate the strength of thin films,

film strength using equation (47) is also shown as a solid line in the same figure

Cu thinfilm

Ni halfspace

Ni halfspace

Figure 5. Dislocation motion in a thin layer with h¼ 10.8 nm under an applied stress
�a ¼ 1:2GPa > �thc ¼ 1GPa. Each line corresponds to a time increment of 2 ps.
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for comparison. In this figure, open triangles are the results of calculations with rigid
boundary conditions of an anisotropic material, while solid circles represent the
results when rigid boundary conditions of the corresponding isotropic material are
used, as is assumed in recent work on thin films [11]. Finally, open circles are the
results of the current model for the multilayer anisotropic material with continuous
interface conditions.

For layers of thickness less than approximately 100 nm, a single F–R source will
determine the overall strength of the layer as a competition between confinement in
the layer by image forces generated by elastic modulus mismatch, and resistance to
deformation by self-forces on the curved ends of the dislocation loop. If the modulus
mismatch is not too great, dislocation loops will cross from layer to layer rather
than be confined within a layer. One would expect that the maximum strength is
determined by the layer thickness and the ratio of elastic moduli as well. For thicker
layers, F–R sources can operate many times leading to dislocation multiplication
and the formation of a pile-up. In such a case, the dominant deformation mode is the
Hall–Petch mechanism.

Based on the present simulations, a strength–thickness map for Cu/Ni
multilayer materials is shown in figure 7. Four regions representing different

1 10 100
0

1

2

3

4

Strained layer critical Stress, Freund 1990

Rigid boundary in isotropic material

Rigid boundary in anisotropic material

Continuous interface, anisotropic multilayer

Experimental data, Misra et al., 1998

Cu Layer Thickness, h (nm)

C
ri

ti
ca

l Y
ie

ld
 S

tr
es

s 
(G

P
a)

Figure 6. Yield strength of a Ni–Cu layered thin film as a function of the layer thickness.
Solid line, Freund’s formula [38]; solid triangles, experimental results of Misra et al. [20];
open triangles, rigid boundary of anisotropic material; solid circles, rigid boundary of
isotropic material; and open squares, current multilayer anisotropic material with continuous
interface.
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deformation mechanisms are shown, consistent with earlier investigations [21, 42].

These are:
1. Region I. The applied P–K force is smaller than both the Koehler barrier and

the self-force. Dislocation loops deform to an equilibrium shape, and regain
their original shape upon removal of the applied stress. This is a quasi-elastic
deformation mode.

2. Region II. The applied P–K force is larger than the Koehler barrier.
Dislocation loops are no longer confined in this region, and plastic instability
is manifest in loss of confinement.

3. Region III. The applied P–K force is less than the Koehler barrier but still
greater than the maximum self-force anywhere on the loop. Loops are
forced to propagate within one layer in this confined layer slip (CLS) mode
of deformation.

4. Region IV. The layer thickness is so large that it can support several emitted
dislocations from F–R sources within the layer, but the applied P–K force
is such that the leading dislocation in the pile-up cannot overcome the
Koehler barrier. This is the classical Hall–Petch mode of plastic deformation.

5. Summary and conclusions

The development of a line integral form for the elastic field of dislocations in aniso-

tropic, multilayered materials has enabled an extension of the PDD method to the

simulations of plasticity and strength in these material systems. Earlier efforts in

this area rely on surface integrals for the derivatives of Green’s functions, which
complicates numerical implementation in DD computer simulation programs.
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Figure 7. Plastic deformation mechanism and strength map for thin layered Cu/Ni films.
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The following conclusions can be drawn from applications of the developed method
to a number of material deformation problems at the nano-scale to the micro-scale.
(i) The influence of free surfaces or interfaces on dislocation motion through

image forces extends into the material to several hundred lattice constants.
Thus, for computer simulations of large material volumes (e.g. tens of microns),
image forces can be neglected until the dislocation is within a few hundred
lattice constants. Numerical resolution of any method (including the Finite
Element) must be sufficient close to the surface.

(ii) To retain the original idea of the dislocation self-force in an infinite medium, the
elastic field is separated into two components: one that yields the self-force in an
infinite medium, while the second is due to the effect of interfaces (i.e. the image
force).

(iii) In thin Al films on Cu substrates, it is shown that a small layer of aluminium
oxide can reverse the surface image force from attractive to repulsive.
Also, the interaction between the Al/Al2O3 interface and the Al/Cu interface
can result in near zero image force on curved dislocation segments in the
middle of the film. If the oxide film thickness is greater than the film thickness
itself, its image force can be approximated by the semi-infinite half-space
results.

(iv) Plastic deformation of very thin layers in the tens of nanometers thickness
range is controlled by a competition between the resistance of curved
segments due to high self-forces, and the maximum force to transmit nearly
straight segments across the interface (i.e. the Kohler barrier). If the layer is too
thin, this results in high curvatures and resistance to CLS. Depending on the
ratio of the elastic moduli of adjacent layers, dislocations may find an easier
path to move into adjacent layers, and thus CLS is lost. On the other hand, if
the ratio of elastic moduli between adjacent layers is sufficiently high and the
layer thickness is sufficiently large, dislocations are forced to be confined within
one layer.

(v) Strength calculations from the present model show reasonable agreement
with experimental nano-indentation data on Cu/Ni nanolayered materials.
Strength saturation below layer thicknesses of 	20 nm is a result of the near
independence of the Koehler barrier strength on layer thickness. The present
model is incapable of explaining the decrease in layer strength below 	10 nm,
as shown in the experimental data. This limitation may be attributed to
atomistic dislocation core effects not included in the model.

(vi) Four general deformation mechanisms are identified for layered thin films:
quasi-elastic, plastic instability, confined layer slip, and the Hall–Petch regime,
consistent with recent literature [21, 42].
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