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Utilizing Fourier transforms, the elastic field of three-dimensional dislocation
loops in anisotropic multilayer materials is developed. Green’s functions and
their derivatives, obtained first in the Fourier domain and then in the real
domain by numerical inversion, are used in integrals to determine the elastic
field of dislocation loops. The interaction forces between dislocations and free
surfaces or interfaces in multilayer thin films are then investigated. The developed
method is based on rigorous elasticity solutions for dislocations approaching to
within one to two atomic planes from the interface. For a dislocation in one layer,
the interface image force is determined mainly by the elastic moduli and
thicknesses of neighbouring layers. When a dislocation approaches an interface
between two layers, within 10–20 atomic planes, the image force changes rapidly.
Interaction forces are then kept constant up to the interface. The model shows
that, when a dislocation crosses an interface from a soft to a hard layer,
additional external forces must be applied to overcome an elastic mismatch
barrier. The developed method extends the concept of the Kohler barrier in 2D,
and shows that the interface force barrier not only depends on the relative
ratio of the elastic moduli of neighbouring layers, but also on the 3D shape
of the dislocation, the number of interacting adjacent layers, and on layer
thicknesses.

1. Introduction

The physics of strength in confined small volumes requires development of accurate
methods for the determination of dislocation interaction mechanisms. In particular,
the influence of confining surfaces on dislocation motion, configuration, and force
distribution as dislocations approach or cross interfaces needs precise quantification.
Many recent technology applications are based on thin films or coatings that are
composed of alternating layers of different materials. Other important systems where
the dislocation–interface interaction plays a significant role can be found in sand-
wiched interphases, nano-layered materials, quantum dots on substrates and fine
precipitate dispersions in alloys. For these systems, free surfaces and interfaces
have important effects on the stress field of dislocations and hence on plastic
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deformation at the nano- and micro-scales. In nano-scale and micro-scale applica-
tions, the ratio of interface to volume becomes very large compared with bulk
applications, and hence interfacial effects are expected to become dominant. Yield
and post-yield properties of multi-layer nano-scale materials deviate from the
properties of bulk materials, and cannot be explained by conventional plasticity
theory. New mechanisms and relationships between the mechanical properties and
interfacial properties (including structure) in nano-scale multilayer materials need
to be explored with accurate theoretical methods.

The strength of multilayer materials is derived from the resistance of interfaces
between layers to dislocation motion, as dislocations cross them from one layer
to another. To design ultra-strong, yet ductile materials, one needs to understand
how dislocations interact with interfaces. Resistance forces to dislocation motion
can result from structural effects and/or elastic moduli mismatches. The influence
of interface structure is attributed to several sources: lattice constant mismatch
that generates coherency strains, misfit interfacial dislocations in semi-coherent
and incoherent interfaces, stacking fault energy mismatch of the incoming and
outgoing slip planes, slip system mismatch that forces cross-slip of dislocations
across the interface, and dislocation core spreading into the interface [1–3].
Elastic moduli mismatch (discontinuity across the interface) induces dislocation
image forces, which appear to be the dominant source of resistance [1–3]. We
will therefore focus our attention here on dislocation image forces in multilayer
materials.

The computational framework of Dislocation Dynamics (DD) has been devel-
oped for fundamental descriptions of plasticity and fracture. The approach relies
on direct numerical simulations of the collective motion of dislocation ensembles
without ad hoc assumptions, e.g. [4–7]. However, most DD applications so far are for
the deformation of bulk, isotropic materials. Very little attention has been paid
to finding solutions for the elastic field of three-dimensional dislocations near inter-
faces, and no exact analytical solutions exist even for the simple case of a straight
dislocation segment in two half-space materials. Using approximate methods or
numerical calculations, a few recent studies have attempted to treat the influence
of free surfaces (i.e. image effects) on the dynamics of dislocation systems. These are
summarized as

(i) In the superposition method, combined with the finite element or boundary
element methods, numerical techniques are utilized to satisfy traction
equilibrium at free surfaces [8, 9].

(ii) In the surface dislocation method, surface dislocation loop distributions are
invoked so as to approximately satisfy interfacial or free surface traction
conditions at specific surface collocation points [10].

(iii) Approximate methods are based on Lothe’s solution [5, 11], or assume rigid
interfaces [12].

(iv) Elasticity methods for the solution of a dislocation segment near a free
surface [13, 14], or the Boussinesq solution for a point force on a free
surface [15].

(v) The phase field approach, where use is made of a regular grid to efficiently
compute the Fourier functions [16].

(vi) An extension of the method developed by Devincre, Kubin and co-workers,
where Green’s functions need not be defined [17].
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The approaches described above have their limitations. Numerical methods
(the finite element (FEM) or the boundary element (BEM)) suffer from the necessity
to re-calculate the superposed FEM or BEM solution every time step. As disloca-
tions approach the surface or interface, the mesh must be refined, and the solution is
not convergent if special care is not exercised with dislocation singularities. Other
methods are limited to the simplest free surface boundary condition, and their
extensions to anisotropic multilayered materials are not readily attainable without
ad hoc approximations. The numerous interfaces in multilayer thin films pose
particular difficulties for all existing methods. No precise solutions for 3D arbitrary
shape dislocations in anisotropic multilayer materials are thus available.

The objective of the present work is to develop rigorous and precise solutions
for the elastic field of dislocation loops of arbitrary shape in anisotropic multilayer
thin films, and to investigate interfacial image forces on dislocations. Methods for
determination of the stress field and interface/free surface interaction forces will be
considered for a number of cases currently of practical interest:

(i) A single thin film layer on a substrate. Here, we consider variations of hard/
soft films on a substrate.

(ii) A capped thin film on a substrate, with variations of the thickness of the
capped layer.

(iii) A dislocation loop crossing an interface between two adjacent layers.

The selected examples are intended to show features of the stress field and interaction
forces of dislocations in anisotropic, multilayer thin films.

We will first utilize the method of Yang and Pan [18, 19] to calculate Green’s
functions and their derivatives in anisotropic multilayers in section 2. The elastic field
of dislocations in multilayer thin films is then presented in section 3, with numerical
applications for infinitesimal and finite dislocation loops. Analysis of the effects of
image forces due to free surfaces and interfaces will be presented for static disloca-
tion loops in section 4, where we consider dislocations in a film-on-substrate, capped
film-on-substrate, and a dislocation crossing an interface. We finally present our
conclusions in section 5.

2. Green’s tensor functions and their derivatives

Elastic Green’s functions, which describe the displacement response of a linear
elastic solid to a point force, are fundamental ingredients in many methods
developed for understanding the mechanics of materials. A description of the
internal or self stress field of materials containing defects is critically dependent on
accurate knowledge of elastic Green’s functions. Interaction forces between defects
and the elastic energy stored around them can be obtained once Green’s functions
are determined. More recently, Molecular Dynamics (MD) computer simulations of
defect interactions have utilized Green’s functions to connect atomistic simulation
regions to the elastic continuum, e.g. [20]. Computer simulations of defect interac-
tions by Kinetic Monte Carlo (KMC), e.g. [21], or by DD, require Green’s functions
as essential elements. Unfortunately, however, analytical solutions of Green’s
functions are not available, with the exception of a few cases. Moreover, numerical
methods for 3D Green’s functions in finite spaces of general elastic anisotropy are
also very limited [22].

Dislocations in anisotropic multilayer thin films 1207



Using 2D Fourier transforms, numerical solutions for anisotropic Green’s
functions in half-space and bimaterials have recently been obtained [23]. Pan and
co-workers developed Green’s functions in anisotropic layered structures, such as
bimaterials [24], trimaterials [19], and multilayers [18, 25]. In this section, we briefly
present the basic procedure to calculate Green’s functions in anisotropic multilayered
materials using the 2D Fourier transform combined with the generalized Stroh’s
formalism. The presentation in this section follows [18, 19, 22–24]. Subsequent
developments for the elastic field and dislocation–interface interaction forces in the
following sections will utilize the methods of these references, and hence a concise
outline of the method for the determination of Green’s tensor functions will be given.

Consider a stack of N layers, each of uniform thickness, perfectly bonded at their
interfaces, as shown in figure 1. Variables describing the geometry and coordinates
are also shown in the figure. We assume here that each layer is homogeneous,
anisotropic and with distinct elastic properties.

The Green’s tensor function Gijðx, x
0
Þ is the displacement component in the xi

direction at point x in response to a unit body force in the xj direction, applied at
point x0. These functions satisfy the equilibrium equation

CijklðxÞGkm, ljðx, x
0
Þ ¼ ��im�ðx, x

0
Þ ð1Þ

Now, introduce the 2D Fourier transform, applied to the in-plane coordi-
nates (x1, x2), for any function f ðx1, x2, x3Þ in the real domain. The corresponding
function in the Fourier domain, ~ff ð�1, �2, x3Þ, is given by

~ff ð�1, �2, x3Þ ¼

ð1
�1

ð1
�1

f ðx1, x2, x3Þ e
ið�1x1 þ �2x2Þ dx1 dx2 ð2Þ

Transforming equation (1), we obtain

Ci�k����� ~GGkm þ iðCi�k3 þ Ci3k�Þ�� ~GGkm, 3 � Ci3k3
~GGkm, 33 ¼ ei��x

0
��im�ðx3, x

0
3Þ ð3Þ

where �,� ¼ 1, 2.

Figure 1. Geometry of a multilayered thin film system.
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The system of ordinary differential equations (3) is second order, with the inde-
pendent variable being the out-of-plane coordinate x3. The general solution for this
system, which gives Green’s functions in the Fourier domain, is

~GGð�1, �2, x3; x
0
Þ

¼ ei��x
0
� ½ ~GG1

ð�1, �2, x3; x
0
3Þ þ i��1

ð �AAhe�i�pp�x3iVþ Ahe�ip�x3iWÞ� ð4Þ

where ð�, �Þ are the polar coordinates of ð�1, �2Þ, V and W are unknown constant
matrices to be determined from boundary conditions, he�ip�x3i ¼ diag½e�ip1�x3 ,
e�ip2�x3 , e�ip3�x3 �, pi (Im( piÞ>0) and A ¼ ða1, a2, a3Þ being the eigenvalues and
eigenmatrix of

½Qþ piðRþ R
T
Þ þ p2i T�ai ¼ 0, ð5Þ

Qik ¼ Cijksnjns, Rik ¼ Cijk3nj, Tik ¼ Ci3k3

with n1 ¼ cos � and n2 ¼ sin �.
In the solution given by equation (4), Green’s functions (displacements) are

separated into two parts: a singular full-space solution ~GG1 (with elastic properties
being those where the field point x is located, and the point force is applied at
x
0
¼ ð0, 0, x03Þ), and a regular complementary part. Details of the separated solution,

and the numerical procedure for matching boundary conditions in the Fourier
domain and subsequent inversion to the real domain are given in appendix A.

3. Stress field of dislocation loops

3.1. General procedure

Once Green’s tensor functions are determined, the elastic field of a dislocation
loop can be constructed by numerical integration. The displacement vector field of
a dislocation loop can be expressed as [26]

uiðxÞ ¼ �

ð
S

Cjlmnðx
0
Þbm

o

ox0l
Gjiðx

0, xÞnnðx
0
Þ dSðx0Þ ð6Þ

where Gjiðx
0,xÞ are the Green’s functions at x0 due to a point force applied at x, S is

any arbitrary surface capping the loop, nn is a unit normal to S and bm is the Burgers
vector. Equation (6) can be rewritten in another convenient form as

uiðxÞ ¼ �

ð
S

�mniðx
0, xÞbmnnðx

0
Þ dSðx0Þ ð7Þ

where �mniðx
0, xÞ is the mnth Green’s stress component at a field point x0 due to a unit

point force in the i direction applied at the source point x.
The stress field produced by the dislocation loop can be expressed as

�ijðxÞ ¼ �CijklðxÞ

ð
S

Cpqmnðx
0
Þbm

o2

oxlox
0
q

Gpkðx
0, xÞnnðx

0
Þ dSðx0Þ ð8Þ

or

�ijðxÞ ¼ �CijklðxÞ

ð
S

o

oxl
�mnkðx

0, xÞbmnnðx
0
Þ dSðx0Þ ð9Þ
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When the dimensions of the dislocation loop are much smaller than the distance
between any source point on the loop and the field point, the loop can be considered
as infinitesimal, and its field can be obtained directly from equations (6)–(9) without
the surface integration:

�ijðxÞ ¼ �CijklðxÞ
o

oxl
�mnkðx

0, xÞbmnnðx
0
Þ �A ð10Þ

where �A is the loop area.
The derivatives of Green’s functions with respect to both field and source points

are needed. First, we consider derivatives with respect to a source point. From
expressions (A4) and (A5), the derivatives with respect to x01 and x02 in the Fourier
domain are obtained as

o~GGk=ox
0
� ¼ i�� ~GGk, � ¼ 1, 2 ð11Þ

where ~GGk denotes Green’s functions or Green’s stresses of the kth layer in the
Fourier domain. The derivatives of Green’s functions with respect to x03 can be
expressed as

o~GGk=ox
0
3

¼ ei��x
0
�
o~GG

1

k

ox03
þ i��1 �AAkhe

�i�ppk�ðx3�zk�1Þi
oVk

ox03
þ Akhe

�ipk�ðx3�zkÞi
oWk

ox03

� �" #
: ð12Þ

Similarly, one can obtain the derivatives of Green’s stresses. When we calculate
Green’s functions, Vk and Wk can be determined. However, their derivatives
oVk=ox

0
3 and oWk=ox

0
3 are not available, and we need to calculate them separately

for determination of the stress field. Performing derivatives on the boundary
conditions, equations (A7) (and (A8) if the nth layer has a free surface), we obtain

ZkðzkÞ � Zkþ1ðzkÞ
� �

oVk=ox
0
3

oWk=ox
0
3

oVkþ1=ox
0
3

oWkþ1=ox
0
3

0
BBBBBB@

1
CCCCCCA

¼
o~uu1kþ1=ox

0
3

o~tt
1

kþ1=ox
0
3

 !
ðzkÞ �

o~uu1k =ox03

o~tt
1

k =ox03

 !
ðzkÞ,

k ¼ 0, . . . , n� 1, ð13Þ

�BBnhe
�ippn�hniBn

� � oVn=ox
0
3

oWn=ox
0
3

 !
¼ �

o~tt
1

n ðznÞ

ox03
: ð14Þ

Solving the linear algebraic equations (13) (and (14) when needed), oVk=ox
0
3 and

oWk=ox
0
3 ðk ¼ 0, . . . , nÞ can be determined. Because the coefficient matrices of

equations (13), (14) and (A7), (A8) are the same, the inverse matrix needs to be
calculated only once. Taking the inverse Fourier transforms of equations (11) and
(12), the derivatives with respect to x

0 are finally obtained.

3.2. Method validation

Before presenting numerical examples for dislocations, we validate the numerical
accuracy of the present method. First, the Green’s functions are carried out to

1210 X. Han and N. M. Ghoniem



compare the present results with existing solutions. It is found that we predict the
same results as those obtained by Pan and Yuan [24] for anisotropic half/bi-half
space, and Pan [27] for isotropic/transverse isotropic multilayers to relative accura-
cies of less than 10�6. Table 1 shows Green’s functions and stresses in a half-space
(x3 � 0) compared with known results by Pan and Yuan [24]. In this example, the
material is transversely isotropic with E1 ¼ E2 ¼ 1, E3¼ 10, G13 ¼ 1, �12 ¼ �31 ¼ 0:3.
The source and field points are located at ð0, 0, �1Þ and ð0, 0, �0:75Þ, respectively.

After validating the accuracy of Green’s functions, the fields of an infinitesimal
dislocation in infinite space are calculated and compared with the analytical results
of Kroupa [28], see table 2. In this example, the material constants are: E¼ 1, �¼ 0.3,
the dislocation is located at (0, 0, 0) with the Burgers vector b ¼ ½100� and has a
surface area �A on the plane ð001Þ, and the field point is at ð1,�0:5, 0:1Þ. In the
table, the stress is normalized to the volume jbj�A. It can be seen that the results
agree to a relative error of less than 10�9. The same relative accuracy was also found
when the present method is compared with the results for a circular dislocation
loop in an infinite anisotropic medium [29].

3.3. Infinitesimal dislocation loop in film-on-substrate

Here, we show results for a small (infinitesimal) dislocation loop in a thin film on top
of a very thick substrate, which is approximated as half-space. The film–substrate
system is shown in figure 2, with a thin film (of thickness h) on top of a half-space
substrate. The substrate material (z<0) is copper, and the thin film is either
aluminium or nickel. The materials selected for this example are all fcc cubic
anisotropic crystals, with their crystallographic axes [100], [010] and [001] taken
to coincide with the x, y and z directions, respectively. The elastic constants are
taken from [30]. The anisotropic ratio A ¼ 0:5ðC11 � C12Þ=C44 is 3.21, 1.21 and
2.52 for Cu, Al and Ni, respectively (A¼ 1 for isotropic materials).

Table 1. Green’s functions and stresses in a transversely
isotropic half-space.

Present [24]

Gij

(11)¼ (22) 0.64233731 0.64233732
(33) 0.39504885 0.39504886
�ijk
(131)¼ (232) �1.34601662 �1.34601664
(113)¼ (223) 0.65825907 0.65825908
(333) �11.9102534 �11.9102536

Table 2. Stress components of an infinitesimal dislocation loop
in infinite medium.

Present Analytical [28]

�11 2.1848151419� 10�2 2.1848151417� 10�2

�12 �1.3500288206� 10�2
�1.3500288215� 10�2

�13 �3.1747583852� 10�2
�3.1747583875� 10�2

�22 4.3579468058� 10�3 4.3579467801� 10�3

�23 9.5804728556� 10�3 9.5804728141� 10�3

�33 �7.0685196040� 10�3
�7.0685195763� 10�3
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Assuming an infinitesimal dislocation is located at the middle of the thin film (i.e.
x
0
¼ ð0, 0, 0:5hÞ), with its surface area �A lying on the (111) plane, and b along the

½�1110� direction. Figures 3 and 4 show contour lines for the out-of-plane stress �32 and
the in-plane stress �12 on the plane y¼ 0, respectively. The stresses are normalized
to jbj�Ah�3

� 1010. From these figures, it can be seen that the out-of-plane stresses
are forced to decrease identically to zero at the surface to satisfy free traction
boundary conditions. On the other hand, in-plane stresses are released at the free
surface. At the interface (z¼ 0), the out-of-plane stress components are continuous,
while in-plane components experience jumps as a result of the discontinuity in
the elastic properties. As one approaches the interface from a softer material to a
harder one (e.g. Al to Cu), the stress fields, especially in-plane components, are
arrested. Once one moves across the interface, in-plane components are released,
and experience a jump. It is also observed that the stress fields are usually
more complex for a source in a material with a high anisotropic ratio (e.g. Ni),
while they show smoother variations in nearly isotropic materials (e.g. Al).

3.4. Dislocation loop in film-on-substrate

To understand the effects of free surfaces and the interfaces on stress distributions
around finite-size dislocation loops, we present here results for a circular loop. As an
example, we choose the same (Al) film and (Cu) substrate, as shown in figure 2. The
circular shear loop (radius, R ¼ 0:5h) is located in the middle of the film ð0, 0, 0:5hÞ,
and lies on the (111) plane, with b along the ½�1110� direction. Figure 5(a) shows the
�23 ¼ 0:15 iso-surface (normalized to jbjR�1

� 1010). For comparison purposes, the
same iso-surface in an Al infinite space is shown in figure 5(b). To satisfy the zero
traction boundary condition at the top surface, the out-of-plane stress iso-surface is
totally confined below it. The volume of the same iso-surface expands into the softer
material across the interface. This means that the range of influence of a dislocation
loop in a harder layer expands into neighbouring softer layers, as compared with the
infinite medium case.

4. Dislocation–interface interaction

So far, we have determined the main characteristics of the elastic stress field induced
by finite-size or infinitesimal dislocations in a multilayer material. However, an area

Figure 2. Geometry and coordinate system for the film-on-substrate arrangement.
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of great interest, especially in relationship to DD simulations, is the distribution
of configurational forces on dislocations as they move or change their shapes.
A dislocation will experience a configurational force (so-called Peach–Koehler
force) if it attempts motion or change in shape in a stress field, p. The force, f, on
a dislocation loop segment, dl, of a 3D loop of a burgers vector b can be determined
by the Peach–Koehler formula:

f ¼ p � b� dl: ð15Þ

We will divide the stress field induced by a dislocation into two parts: the full-
space solution p1 and the image contribution pI. This separation will allow us to
consider interface effects on dislocation forces, and to calculate the dislocation self-
force without ambiguities. For a dislocation loop which is located totally within
a single material layer, the stress separation is clear. p1 corresponds to the stress
field induced by the dislocation in a homogeneous, infinite medium with a material
that is identical to the layer where the dislocation is located. The stress field p1
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Figure 3. �32 stress contours on the y¼ 0 plane due to an infinitesimal dislocation loop at
ð0, 0, 0:5hÞ in (a) Al (film) on a Cu (substrate) and (b) Ni (film) on a Cu (substrate).
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of a dislocation in an infinite anisotropic material can be expressed as a line integral
along the dislocation loop by the formula of Mura [26]. p1 will then induce a self-
force on the dislocation, which can be obtained by the procedure of Gavazza and
Barnett [31]; for details, see the work of Han et al. [29]. The force induced by
the regular part of the stress field, pI, is usually called the image force, and can be
calculated directly by applying the Peach–Koehler formula.

When a dislocation loop does not reside totally in one single layer, but crosses
one or more interfaces and material layers, the separation of self-force from the
image force is not so straightforward. In this case, we distinguish between them
in the following way. Consider a point P on the loop, and assume that the whole
loop is in a homogeneous, infinite medium, with a material identical to that in which
the point P is located. This loop will induce a stress field p1 and self-force on the
unit dislocation segment where P is located. Now, subtract p1 from the total stress
field to obtain the image stress pI, which is regular. We use this part of the stress field
to calculate, unambiguously, the image force on the dislocation segment at P.

x/h

z/
h

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0.5
0.4
0.3
0.2
0.1
0

-0.1
-0.2
-0.3
-0.4
-0.5

o

Interface

Free surface

Cu half space

Al film

[100]

[001]

(a)

x/h

y/
h

-1 -0.5 0 0.5 1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

2
1.6
1.2
0.8
0.4
0

-0.4
-0.8
-1.2
-1.6
-2

oNi film

Free surface

Cu half space

Interface

[100]

[001]

(b)

Figure 4. �12 stress contours on the y¼ 0 plane due to an infinitesimal dislocation loop
at ð0, 0, 0:5hÞ in (a) Al (film) on a Cu (substrate) and (b) Ni (film) on a Cu (substrate).
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In the following, we focus our attention on image forces on dislocations in
a variety of representative surface/interface conditions.

4.1. Film-on-substrate

Anisotropic thin films on extended substrates are common in many nano-scale and
micro-scale applications. The distribution of image forces on dislocations in such
systems determines how dislocations approach free surfaces or the interface
between the film and substrate. We consider here the same film-on-substrate system
with a representative circular dislocation loop as in the previous section. The
distribution of image forces on a circular dislocation loop in an Al and Ni film
on top of an extended Cu substrate is shown in figures 6a and b, respectively.
The force is per unit length, and is normalized to jbj

2R�1
� 1010. The free surface

tends to attract the entire dislocation line. However, the closer a dislocation seg-
ment is to the free surface, and the harder the material is, the larger the surface
image force. When a dislocation segment approaches an interface from a softer
material to a harder one (Al to Cu), the interface tends to block it, while from a
harder material to a softer side, the dislocation is attracted to the interface. It is
noted from the figures that the image force is truly three-dimensional, and that the

0
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1
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z/
R
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(b)

Figure 5. �23 stress iso-surface for a circular shear dislocation loop in (a) Al (film) on a
Cu (substrate) and (b) Al infinite space.
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distribution, magnitude and direction cannot be easily obtained from simple image
constructions based only on 2D analysis. This complexity presents significant com-
putational challenges to the development of DD models that faithfully account for
surface and interface effects. The other observation here is that while glide is the
dominant component of surface and interface image forces, there are considerable
contributions from climb as well.
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0.5

1

1.5

z/
R

-1

0

1
x/R

-1
0

1

y/R

Magnitude = 0.2

b

Cu half space

Free surface

Al film

(a)

0

0.5

1

1.5

z/
R

-1

0

1
x/R

-1
0

1

y/R

Magnitude = 0.2

b

Cu half space

Free surface

Ni film

(b)

Figure 6. Free surface and interface image force distributions on a circular dislocation loop
in (a) Al (film) on a Cu (substrate) and (b) Ni (film) on a Cu (substrate).
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4.2. Capped film-on-substrate

A capping layer is often deposited on top of thin films for environmental protection,
or to engender additional and desirable physico-chemical properties. Also, if the thin
film is oxidizable, and is used at ambient conditions, a naturally grown oxide capping
layer will be present. We consider here the influence of capping layers on the
behaviour of dislocations confined within thin films. Strong interaction between
the dislocation and a free surface or an interface results in its deformation, such
that a large section of a dislocation loop is straight and parallel to the free surface or
interface. We examine here interaction forces between dislocation loops and multiple
interfaces and a free surface. We use a proto-typical dislocation loop to examine
these interaction forces. We choose an Al film (width h) on a Cu substrate. However,
the film here is capped with another thin Cu film, of width hc. An oblong dislocation
loop is located in the middle of the Al thin film. The oblong loop is composed of two
straight segments parallel to the interfaces, and connected by two half-circular
segments, as shown in figure 7. The length of the straight part, and the width
of the oblong section of the loop, respectively, are L and D, with L¼ 2D and
D¼ h. The distribution of image forces on the loop is shown in figures 7a and b
for various thicknesses of the capping layer. Image forces are normalized to
jbj

2h�1
� 1010.

Numerical results show that image forces on the straight section of the loop near
the capping layer display a strong dependence on the layer thickness. Image forces
vary rapidly with increasing capping layer thickness for hc< h. However, the
magnitude and direction of forces tend to those for hc ! 1. These conclusions
mean that, for thin capping layers (e.g. hc< h), other nearby interfaces (e.g. the
free surface of the capping layer) have strong coupling effects on force distributions
of the dislocation. Thus, and in this case, the stress field and image force distribu-
tions are controlled by interacting nearby interfaces. For thicker capping layers,
however, one may be able to use image forces resulting from an infinitely extended
half-plane. We also consider image force variation as the dislocation approaches the
Al–Cu interface. When a dislocation segment is very close to an interface, and
distances to other interfaces are comparatively far, the image force exerted on this
dislocation segment is dominated by the closest interface.

4.3. Dislocation loop across an interface

One of the most critical considerations in designing ultra-strong materials is
the ability to confine dislocations in very thin layers, without allowing them to
penetrate across interfaces. The strength of a nano-layered system is greatly
enhanced if interfaces can indeed offer the necessary resistance to their motion,
even if high levels of stresses are applied. The maximum difference between the
image force on a dislocation segment in one material and the corresponding force
after the dislocation segment has crossed the interface into a neighbouring material is
known as the Koehler barrier [32]. The applied stress must be large enough to over-
come this barrier, in addition to other configurational resistance forces arising from
structural effects of the interface itself. As such effects are outside the scope of the
present investigation, and require atomistic simulations, we address here the
behaviour of dislocation segments in as much as the Kohler barrier is concerned.
It is to be noted here that the origin of this barrier is the change in the stiffness
of the interatomic potential (e.g. the curvature of the pair part of the potential)
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as dislocations cross from one material to another. In other words, sudden changes
in the elastic constants across an interface are reflected in a jump in the magnitude of
the image force on a dislocation segment. Since infinitesimal linear elasticity is
used here, we would not expect the results to be rigorously accurate very near
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Figure 7. Image force of an oblong dislocation loop in an Al film on a Cu substrate.
The Al film is capped by a Cu layer of thickness hc ¼ 0:1h (a), 0.2h (b) and 0.5h (c).
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the interface, and some approximation is required. The original concept of Koehler
was based on saturating (i.e. truncating) the image force as the dislocation comes
within a specified minimum distance of a dislocation core width of 2jbj [32]. We
follow here the same model to deduce the resistance of an interface to dislocations
crossing it. Image forces will be calculated with the methods outlined earlier, and
assumed to be valid up to a cut-off distance of one to two atomic layers from the
interface. This assumption is also consistent with evaluations of self-forces using
infinitesimal linear elasticity [7].

To examine the nature of the Koehler barrier, we choose here the case of
a circular dislocation loop approaching an interface across two half-spaces.
Figures 8a–c show the force distributions, including the self-force and the image
force on the loop, as the loop is brought to closer proximity from the interface,
and then finally crosses the interface. In this example, the loop is on the (111) plane
with b along ½�1110� and a radius R ¼ 200jbj. The Al–Cu interface is along the [001]
direction. The image force is very large only on the part of the loop that is close to
the interface. The force is relatively small everywhere else, and decreases rapidly with
distance away from the interface, as can be observed in figures 8a–c.

Force variations, for the two points A and B (which are the closest points when
the corresponding loop segment approaches the interface), are displayed in
figures 9a and b, respectively. Forces are plotted as functions of the distance of
the point from the interface, and they include self- and image contributions. They
are also separated into glide and climb components. The 2D image force approx-
imation (Koehler barrier), estimated for an infinite straight dislocation near the inter-
face, is calculated and shown in the figures as dashed lines [32]. It can be seen that
when the loop is in one material (not across the interface), only the glide component
of the image force at the leading point (nearest to the interface) is close to the
Koehler estimate. The climb component and other loop configurations show drastic
differences from the Koehler estimate as a result of the three-dimensionality of the
problem.

The direction of the in-plane curvature of the loop is chosen as the positive
direction for the self- and glide forces, while the positive direction of the climb
force is defined along the plane normal to (111). It is observed that when the
distance between the leading point on the dislocation and the interface is less
than 20jbj, image forces increase sharply and interface effects become dominant. If
linear elasticity is taken as strictly valid, the force is singular at the interface.
Here, however, we assume its validity up to a minimum approach distance on the
order of the dislocation core width of 2jbj. The results displayed in figures 9a and b
show the complexity of loop force variations in the close proximity of the inter-
face. First, the jump in the self-force is a result of the sudden change in the elastic
constants of the medium, and the magnitude of the force scales with the stiffness
of the material. What is interesting to note here is that while the climb component of
the image force (including the Koehler barrier) is dominant on the closest segment
when the loop crosses from the softer (Al) to the harder (Cu) material, as seen in
figure 9a, the situation is reversed when the loop crosses from Cu into Al (see
figure 9b). This unique asymmetry is a result of the fact that the entire loop geometry
determines the split between the climb (fc) and glide (fg) components of the force.
Such detailed behaviour can be critical to whether the dislocation segment would
prefer to climb and cross-slip across an interface, or just simply continue gliding on
the same glide plane if the orientation is favourable.
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5. Summary and conclusions

The interest in the mechanical behaviour of ultra-strong materials, prepared by
sputter deposition of multiple nano-layers, and in the reliability and failure of thin
films in microelectronic and other applications, demands thorough understanding
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Figure 8. Force distributions on a dislocation loop: (a) as it approaches the interface, but is
contained in a softer material of small elastic anisotropy; (b) as it straddles the interface; and
(c) the loop is totally contained in a harder material of large elastic anisotropy.
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of dislocation behaviour in such material systems. In these applications, interfaces
play a prominent role in controlling dislocation motion and, hence, the strength
and deformability. The present investigation provides a computational method by
which one can assess forces and interactions amongst dislocations in anisotropic
multi-layer materials. Future developments of DD, including applications in these
systems, rely on understanding accuracy limits of approximate numerical methods.
For example, the limits of existing methods for incorporation of free surface effects
in DD simulations (e.g. FEM, BEM, surface dislocations, etc.) may be determined
by detailed comparisons with the present method. We have shown here that the
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Figure 9. Dependence of force components on (a) the leading point A and (b) the trailing
point B, as functions of their distance from the interface. Koehler’s 2D solution is represented
by dashed lines.
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elastic field and configurational forces of dislocation loops of arbitrary geometry and
in any type of anisotropic layered thin film can be rigorously determined if the
thickness of the film is much less than its in-plane dimensions. Starting from the
point force problem of Green’s functions in a multi-layer thin film, the elastic field of
dislocation loops is obtained by a surface integral. The key issue here is that 2D
Fourier transforms can be used, together with the generalized Stroh’s formalism, to
obtain the solution, first in Fourier space, and then in real space by numerical
inversion. To expedite the computational aspects of these steps, the approach
recently proposed by Yang and Pan [19] is adopted.

Elastic field calculations of dislocations in anisotropic multilayer materials can
be performed with great accuracy, without any limits on the number of material
layers, or dislocation shapes. However, direct implementation of this procedure in
DD simulations may still be limited to systems containing few dislocations at present
as a result of the heavy computational cost, despite efforts to expedite calculations
of Fourier inversion integrals. Approximate methods to develop line rather than
surface integrals will benefit from the present investigation, since numerical errors
due to approximations can be readily determined.

Through a systematic numerical study of stress fields and forces induced by
dislocations in multi-layered materials, we draw the following conclusions.

(i) Stress fields and image forces on dislocations are greatly influenced by the
presence of interfaces. Thus, interface image forces cannot be ignored or
simply approximated without careful considerations. Generally, however,
the nearest interface to a dislocation segment determines the majority
of image effects. However, in layered systems where layer thicknesses are
small (e.g. nano-layered materials), several neighbouring interfaces
(approximately two to four) participate simultaneously.

(ii) If applied forces on dislocations are large, the influence of interfaces on dis-
locationmotionmay be only significant very close to the interface, within less
than 10 nm. In such cases, the closest interface becomes the most dominant.

(iii) When a dislocation segment is near an interface, the image force usually
drives the segment towards a softer material and away from a harder one.
Thus, when we consider events occurring near an interface, such as disloca-
tion threading, or dislocation nucleation from interfaces, the force induced
by the interface becomes very large and local. As an approximation, one
may consider the effect from this interface only, and ignore interaction
effects from other interfaces.

(iv) Stress fields emanating from dislocations are confined or released by a
neighbouring harder layer or softer layer, respectively.

(v) Interfacial image forces are inherently three-dimensional, since they cannot
be simply determined by geometric image constructions, as is customary in
some DD simulations. Both glide and climb components must be consid-
ered in the analysis of near-interface processes, such as nucleation and
threading. The barrier to climb may be smaller than that for glide, and
hence screw components may prefer to cross-slip rather than glide across
an interface. Only the glide component of the image force at the leading
point (nearest to the interface) is close to the 2D Koehler estimate, when
the loop is totally within one layer. The climb component and other loop
configurations show drastic differences from the Koehler estimate.
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(vi) Dislocation segments crossing interfaces display irreversibility of motion.
When a dislocation crosses from a softer to a harder material, it may prefer
to climb. If the same segment attempts to return from the harder to the
softer material, however, its glide Koehler barrier is smaller, and will hence
glide across rather than retrace its previous path. This mechanism cannot be
explained by 2D approximations, since it is a result of the asymmetry
created across the interface by the presence of the dislocation loop itself
in two different media.
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Appendix A: Numerical evaluation of Green’s tensor functions

In the Fourier domain, we have

~GG1
ð�1, �2, x3; x

0
3Þ ¼ i��1 Ahe�ip�ðx3�x03ÞiA

T, x3 < x03,

� �AAhe�i�pp�ðx3�x03Þi �AAT, x3 > x03

(
ðA1Þ

Green’s stress tensor is defined as �jki ¼ Cjklmuli,m. Thus, the out-of-plane traction
vector is t ¼ ð�31i, �32i, �33iÞ, and the in-plane stress vector is s ¼ ð�11i, �12i, �22iÞ.
These can be expressed as

~ttð�1, �2, x3; x
0
Þ ¼ ei��x

0
� ½~tt1ð�1, �2, x3; x

0
3Þ

þ ð �BBhe�i�pp�x3iVþ Bhe�ip�x3iWÞ�, ðA2Þ

~ssð�1, �2, x3; x
0
Þ ¼ ei��x

0
� ½~ss1ð�1, �2, x3; x

0
3Þ

þ ð �CChe�i�pp�x3iVþ Che�ip�x3iWÞ�, ðA3Þ

with

~tt1ð�1, �2, x3; x
0
3Þ ¼

Bhe�ip�ðx3�x03ÞiA
T, x3 < x03,

� �BBhe�i�pp�ðx3�x03Þi �AAT, x3 > x03,

(

~ss1ð�1, �2, x3; x
0
3Þ ¼

Che�ip�ðx3�x03ÞiA
T, x3 < x03,

� �CChe�i�pp�ðx3�x03Þi �AAT, x3 > x03

(

The vectors B and C are related to A as

bi ¼ ðR
T
þ piTÞai, ci ¼ Diai,

with

Dkli ¼ C1kl�n� þ piC1kl3 for k ¼ 1, 2, and D3li ¼ C22l�n� þ piC22l3
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The general solutions (equations (4), (A2), and (A3)) have translational invari-
ance with respect to x3 (i.e. they remain valid if x3 in he�i�pp�x3i and he�ip�x3i is replaced
with ðx3 � gÞ, with g being an arbitrary real constant). Thus, Green’s displacements
and stresses for any layer k (zk�1 < x3 < zk) can be rewritten as

~GG
~tt

� �
k

ðx3Þ ¼ ei��x
0
�

~GG
~tt

� �1

k

ðx3Þ þ Zkðx3Þ
V

W

� �
k

� �
, ðA4Þ

~sskðx3Þ ¼ ei��x
0
� ½~ss

1
k ðx3Þ þ ð �CCkhe

�i�ppk�ðx3�zk�1ÞiVk þ Ckhe
�ipk�ðx3�zkÞiWkÞ�, ðA5Þ

with

Zkðx3Þ ¼
i��1

AAk i��1
Ak

BBk Bk

 !
he�i�ppk�ðx3�zk�1Þi 0

0 he�ipk�ðx3�zkÞi

 !
ðA6Þ

If the 0th layer is a half-space, the finite solution requirement gives V0 ¼ 0.
Similarly, if the nth layer is a half-space, Wn ¼ 0.

The boundary conditions for perfectly bonded interfaces are expressed as

ZkðzkÞ � Zkþ1ðzkÞ
� � Vk

Wk

Vkþ1

Wkþ1

0
BBB@

1
CCCA ¼

~GG

~tt

 !1

kþ1

ðzkÞ �
~GG

~tt

 !1

k

ðzkÞ,

k ¼ 0, . . . , n� 1: ðA7Þ

If the nth layer has a free surface along x3 ¼ zn, we have

BBnhe
�ippn�hniBn

� � Vn

Wn

� �
¼ �~tt

1

n ðznÞ: ðA8Þ

Equations (A7) and (A8) form a banded (with width 12) linear algebraic system
of equations, which can be easily solved. After the unknowns Vk and Wk

ðk ¼ 0, . . . , nÞ are determined, the solutions for every layer in the Fourier domain
are obtained. The corresponding physical-domain solutions are then recovered by
the inverse Fourier transform:

f ðx1, x2, x3Þ ¼
1

ð2pÞ2

ð1
0

ð2p
0

� ~ff ð�, �, x3Þ e
�i�ðx1 cos �þx2 sin �Þ d� d� ðA9Þ

When applying the inverse transform to Green’s functions (A4) and stresses
(A5), we need only to carry out the 2D transform on the regular complementary
part by standard numerical integration methods, since the full-space solution is
available. Because there are no explicit expressions for the complementary part of
the solution, we adopt the novel approach proposed by Yang and Pan [18]. The basic
idea is as follows. We separate the complementary solution. A known bimaterial
solution (two infinite bonded half-spaces), which reflects the mismatch effects
of the adjacent upper and lower interfaces in each layer, is subtracted out. Explicit
solutions can be obtained for these special terms, and involve only line integrals.
Since the bimaterial solution captures the main character of the interface, the
remaining complementary part is more smooth and regular. It can be easily obtained
with fewer integration quadrature points.
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