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Abstract

A new computational method for the elastic interaction between dislocations and precipitates is developed and applied

to the solution of problems involving dislocation cutting and looping around precipitates. Based on the superposition

principle, the solution to the dislocation–precipitate interaction problem is obtained as the sum of two solutions: (1) a

dislocation problem with image stresses from interfaces between the dislocation and the precipitate, and (2) a correction

solution for the elastic problem of a precipitate with an initial strain distribution. The current development is based on a

combination of the parametric dislocation dynamics (PDD) and the boundary element method (BEM) with volume

integrals.The method allows us to calculate the stress field both inside and outside precipitates of elastic moduli different

from the matrix, and that may have initial coherency strain fields. The numerical results of the present method show good

convergence and high accuracy when compared to a known analytical solution, and they are also in good agreement with

molecular dynamics (MD) simulations. Sheared copper precipitates (2.5 nm in diameter) are shown to lose some of their

resistance to dislocation motion after they are cut by leading dislocations in a pileup. Successive cutting of precipitates by

the passage of a dislocation pileup reduces the resistance to about half its original value, when the number of dislocations

in the pileup exceeds about 10. The transition from the shearable precipitate regime to the Orowan looping regime occurs

for precipitate-to-matrix elastic modulus ratios above approximately 3–4, with some dependence on the precipitate size.

The effects of precipitate size, spacing, and elastic modulus mismatch with the host matrix on the critical shear stress (CSS)

to dislocation motion are presented.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Alloy design requires optimization of many, and often conflicting requirements, such as strength, ductility,
corrosion resistance, etc. Phase transformations are at the heart of the tools available to create desirable
microstructure, and hence engender optimized properties. For example, the strength of steels can be varied
from several hundred MPa to over 2GPa by appropriate heat treatments, composition control, precipitate
strengthening, and cold-working. Precipitation strengthening is one of the most effective techniques to design
e front matter r 2007 Elsevier Ltd. All rights reserved.
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advanced alloys with superior strength characteristics. However, excessive strengthening may lead to loss of
ductility and plastic flow localization. The mechanism is based on blocking the motion of dislocations by
second phase precipitates that are dispersed in the alloy’s matrix, and thus results in significant improvements
in the yield strength and hardness of the alloy. It is therefore essential that the interaction between dislocations
and precipitates is accurately and efficiently modeled in order to explore the basic physics of these interactions
and to enable rational alloy design.

When dislocations approach precipitates, they experience attraction/repulsion forces that can significantly
retard their motion. Such forces result from a number of factors: (1) mismatch between the elastic properties
of the matrix and precipitate; (2) coherency strains between the precipitate and matrix; (3) misfit dislocations
at incoherent precipitate–matrix interfaces; and (4) changes in the core structure of dislocations as they
penetrate precipitates. In practice, however, not all these factors exist simultaneously, and one or several of
them are utilized for strengthening. We will focus here on the influence of the first two factors on precipitation
strengthening. The key parameter in understanding the physics of dislocation–precipitate interaction is the
critical stress required to move a dislocation past a distribution of precipitates, either by cutting through them
or by looping around them (the Orowan mechanism). The parameters that determine the critical stress are: the
precipitate shape, elastic constants, crystal structure, and spacing between precipitates.

Friedel developed a statistical model to evaluate the critical shear stress of metals with randomly distributed
precipitates (Friedel, 1964). He introduced an effective spacing between precipitates, which is a function of the
critical shear stress, the volume fraction of the precipitate, the Burgers vector of the dislocation and the self-
force on the dislocation. The critical shear stress is evaluated with the effective spacing and the maximum force
in the interaction between the dislocation and the precipitate. On the other hand, Nembach studied the effect
of the difference in the elastic shear modulus between a spherical precipitate and the matrix on the maximum
force in the interaction with a straight dislocation, and found that the critical shear stress is proportional to
Dm1:5 and r0:22p , where Dm is the modulus difference and rp is the radius of the spherical precipitate (Nembach,
1983). Fleischer also gave an equation to calculate the maximum force in the interaction between a straight
edge dislocation and a solute atom (Fleischer, 1961, 1963). However, in all these attempts, the shape of the
dislocation is restricted to straight, and the precipitate to be spherical or ellipsoidal. During a dynamic
interaction process, dislocations can re-configure in complex curved shapes that frequently change during the
interaction process. Moreover, precipitates are not generally spherical or ellipsoidal. In the present work, we
remove all these restrictions and develop an efficient computational method to resolve the detailed interaction
physics.

Recently, computer simulations to investigate the dynamics of dislocation ensembles (based on the method
of dislocation dynamics (DD)), have been developed and successfully applied to the study of many aspects of
the metal plasticity (Devincre and Kubin, 1994; Zbib et al., 1998; Schwarz, 1999; Ghoniem et al., 2000; Wang
et al., 2001; Xiang et al., 2003). One of the advantages of DD simulations in comparison with analytical
approaches is the ability to deal with flexible dislocations with complex shapes. van der Giessen and
Needleman (1995) introduced boundary conditions to treat free surfaces and cracks into DD simulations using
the superposition principle and the finite element method (FEM). Shin et al. (2003, 2005) applied the idea of
the superposition principle to dislocation–impenetrable precipitate interaction problems, and studied the effect
of the elastic constant mismatch between the precipitate and the matrix on the critical shear stress for the
Orowan mechanism using DD and FEM. However, and up till now, no method has been advanced for the
interaction between dislocations and penetrable precipitates in the most general sense (i.e. different elastic
constants, coherency strains, etc.).

The objective of the present study is to develop a computational method for solving dislocation–precipitate
interaction problems based on linear elasticity theory, which enables us to investigate the interaction between
flexible dislocations and penetrable precipitates. Based on the superposition principle, the solution for the
dislocation–precipitate interaction problem can be obtained as the sum of the solutions to two different
problems: (1) a dislocation with image stresses from interfaces between precipitates and the matrix, and (2) a
precipitate problem with initial stresses, which result from the elastic constants mismatch between the
precipitate and the matrix and the eigen strain in the precipitate. The dislocation problem is solved here by the
parametric dislocation dynamics (PDD) method (Ghoniem et al., 2000). For the precipitate problem with
initial stresses, a boundary integral equation is formulated and solved by the boundary element method
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(BEM). The accuracy of the method will be confirmed by comparing the numerical results to a known solution
of the image stress attributed to the interaction between a screw dislocation and a spherical precipitate. Also,
the consistency of the results of the present method with the results of a corresponding atomistic molecular
dynamics (MD) method is examined. Finally, the present method is applied to investigations of the critical
shear stress (CSS) of precipitates slipped by dislocation cuttings, and with different diameters, spacings and
elastic constants.

The paper is organized as follows. First, an inhomogeneous inclusion problem with dislocations,
which is the most general description of the precipitate problem, is defined and represented as a sum of two
different problems based on the superposition principle in Section 2. The computational methods to
solve the two problems are presented in Section 3. Numerical convergence and accuracy of the present
method and the consistency of the results with MD simulations are examined in Section 4. The CSS of
multiply-cut precipitates is investigated in Section 5.1. The effects of the diameter, spacing and elastic
constants mismatch on the CSS are then investigated in Section 5.2. Finally, discussions and conclusions are
given in Section 6.

2. Inhomogeneous inclusions and dislocations

The term ‘‘inhomogeneous inclusion’’ is used to describe the situation where an eigen strain �ij is prescribed
in a finite sub-domain O within a body D, and is zero in the matrix D� O, and the domain O has different
elastic properties from the matrix D. In this case, O is called an inhomogeneous inclusion, or simply an
inhomogeneity. Inhomogeneous inclusions can be considered as the most general description of coherent
precipitates. Let us consider Np inhomogeneous inclusions with eigen strains �m

ij and elastic constants Cm
ijkl in

an infinite body with elastic constants Cijkl . The superscript m denotes the mth inhomogeneous inclusion. The
infinite body D contains an arbitrary number of dislocations, and is subjected to an external stress s0ij at
infinity. Following Mura (1982), we describe the stress in D� O as

s0ij þ sij ¼ Cijklðe0kl þ eklÞ in D� O, (1)

where, e0ij ¼ C�1ijkls
0
kl , eij is the strain produced by dislocations and the external stress s0ij . The domain O

contains the total volume of Np inhomogeneous inclusions (precipitates). Similarly, the stress in the mth
inhomogeneous inclusion Om can also be defined as

s0ij þ sij ¼ Cm
ijklðe

m;0
kl þ em

kl � �
m
klÞ in Om, (2)

where em;0
ij ¼ Cm;�1

ijkl s0kl . Eshelby (1957) gave an analytical solution to an inhomogeneous inclusion problem by
the equivalent inclusion method. However, application of his solution is limited only to cases where the shape
of the inhomogeneous inclusion is an ellipsoid, and the prescribed strain field such as the eigen strain is
uniformly distributed within the inhomogeneity. Therefore, we need an alternative and more general method
to solve general inhomogeneous inclusion problems.

To treat boundary and interface problems, van der Giessen and Needleman (1995) have developed a hybrid
of the DD and FEM techniques, and they again based the solution on the superposition principle. In their
approach, there is no limitation on the shape of the inhomogeneous inclusion, and on the strain distribution.
As shown in Fig. 1, using the superposition principle, the problem can be decomposed into two problems: (1) a
dislocation problem in an infinite homogeneous body, and (2) a correction problem, which is an elastic
problem of precipitates. At first, the stress field in the original inhomogeneous inclusion problem is
decomposed into two parts for the dislocation and correction problems, as follows:

s0ij þ sij ¼ ~sij þ ŝij in D, (3)

where, ~sij and ŝij are the stresses in the dislocation problem and in the correction problem, respectively. The
stress in the dislocation problem ~sij is defined by

~sij ¼ Cijklðe0kl þ ~eklÞ in D, (4)

where ~eij is the strain produced by dislocations in D. The stress in the correction problem ŝij can be obtained as
the difference between the stresses in the original inhomogeneous inclusion and the dislocation problems,
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Fig. 1. Schematic for the dislocation–precipitate interaction problem with the superposition principle: (a) original problem; (b) the

dislocation problem with image stresses; and (c) the correction (precipitate) problem with initial stresses Sm
ij .
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which gives

ŝij ¼ Cijkl êkl in D� O, (5)

ŝij ¼ Cm
ijkl ê

m
kl � Cm

ijkl�
m
kl þ ðC

m
ijkl � CijklÞðe

m;0
kl þ ~eklÞ in Om. (6)

For the sake of simplicity, Eq. (6) is rewritten as

ŝij ¼ Cm
ijkl ê

m
kl þ Sm

ij in Om, (7)

where Sm
ij ¼ �Cm

ijkl�
m
kl þ ðC

m
ijkl � CijklÞðe

m;0
kl þ ~e

m
klÞ. From Eqs. (5) and (7), the correction solution can be

considered as the solution to an inhomogeneity problem with an initial stress Sm
ij .

3. Computational method

Utilization of the FEM method to solve for the boundary correction problem in DD simulations has
recently been proposed by a number of investigators (van der Giessen and Needleman, 1995; Shin et al., 2003,
2005; Gracie et al., 2007). Nevertheless, a number of difficulties arise in FEM-based methods, especially for
3D applications, as described below:
(1)
 The entire domain (volume) must be discretized into elements, while in the BEM-based method, only
surfaces are discretized.
(2)
 Infinite domains cannot be modeled with finite elements, and special elements are to be developed.

(3)
 The stress between two neighboring elements is not continuous, because the elements used in FEM

generally satisfy only the C0 continuity conditions.
The first of these three difficulties is a significant impediment to the development of DD simulations involving
a large number of inhomogeneous inclusions. To avoid the disadvantages associated with FEM-based
boundary corrections in 3D DD simulations involving many precipitates, we develop here the BEM as an
alternative. The BEM method requires only boundary discretization, which can greatly simplify the process of
the mesh generation, deals easily with an infinite domain, and will be shown to be of the same form as the
PDD method. The stress field calculated by the BEM method is also continuous everywhere in the domain.

3.1. The parametric dislocation dynamics

One of the main ingredients of the PDD method (Ghoniem et al., 2000) is to calculate the stress field within
inhomogeneous inclusions induced by dislocation loops. In the PDD method, a dislocation loop of an
arbitrary 3D shape is discretized into Ns curved parametric segments. For each segment j, we choose a set of
generalized coordinates q

ðjÞ
ik and corresponding shape function NiðoÞ to represent the configuration of the
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segment, that is

x
ðjÞ
k ðoÞ ¼

X
i

NiðoÞq
ðjÞ
ik , (8)

where x
ðjÞ
k is the Cartesian position of a point on segment j, and o is a parameter with an interval 0pop1. In

this study, we employ cubic spline segments, and then the shape functions NiðoÞ take the form

N1ðoÞ ¼ 2o3 � 3o2 þ 1; N2ðoÞ ¼ �2o3 þ 3o2,

N3ðoÞ ¼ o3 � 2o2 þ o; N4ðoÞ ¼ o3 � o2. (9)

In this case, the generalized coordinates q
ðjÞ
ik are the position and tangent vectors associated with the beginning

and end nodes on segment j.
Let us assume that there are Nd dislocation loops, and each dislocation loop has Ns curved parametric

segments. A stress at a point produced by curved dislocation loops can be calculated by the fast sum method
(Ghoniem, 1999; Ghoniem and Sun, 1999), which is given by

sij ¼
m
4p

XNd

g

XNs

b

XQmax

a

bnwa
1

2
R;mppð�jmnx

ðbÞ
i;o þ �imnx

ðbÞ
j;oÞ

�

þ
1

1� n
�kmnðR;ijm � dijR;ppmÞx

ðbÞ
k;o

�
, ð10Þ

where m is the elastic shear modulus, n is the Poisson’s ratio, bn is the n component of the Burgers vector, wa is
the weight in the standard Gaussian quadrature, and R is the magnitude of a relative position vector between a

point x
ðbÞ
k on o dislocation loop and a field point at which the stress is evaluated.

Once the dislocation stress field and the image stress is obtained, the PDD method enables us to simulate the
dynamics of dislocation ensembles. A variational form of the governing equation of motion of a dislocation
loop G is given byZ

G
ðF k � BakVaÞdrkjdsj ¼ 0, (11)

where Fk is the force, Bak is the resistivity matrix and V k is the velocity. Further details of the PDD method
can be found elsewhere (Ghoniem et al., 2000).

3.2. Boundary integral equations

Boundary integral equations for the correction problem are derived on the basis of a multi-zone BEM,
which enables us to solve for the elastic field in a body containing domains with different elastic constants. For
an inhomogeneous inclusion, Om, the boundary conditions for the displacement ūm

i and traction t̄m
i vectors are

given by

ûm
i ¼ ūm

i on Gm
u ,

t̂
m

i ¼ ŝijn
m
j ¼ ðC

m
ijkle

m
kl þ Sm

ij Þn
m
j ¼ t̄m

i on Gm
t , (12)

where nm
j is the unit outward vector normal to the surface of the mth inhomogeneous inclusion, and Gm

u and
Gm

t are the boundaries of the mth inhomogeneous inclusion with the displacement and the traction boundary
conditions, respectively. The boundary integral equation for the correction field is then written as

cijðPÞû
m
j ðPÞ ¼

Z
Gm

Um
ij ðP;QÞft̂

m

j ðQÞ � Sm
jkðQÞn

m
k ðQÞgdG

�

Z
Gm

Tm
ij ðP;QÞû

m
j ðQÞdGþ

Z
Om

Sm
jk;kðqÞU

m
ij ðP; qÞdO, ð13Þ

where cij is the coefficient matrix, which can generally be computed using the rigid body translation, and Um
ij

and Tm
ij are the kernel functions of displacement and traction defined with elastic constants of the mth
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inhomogeneous inclusion, respectively. The volume integral term for the initial stress Sm
ij is found using

integration by parts:Z
Om

Sm
jk;kðqÞU

m
ij ðP; qÞdO ¼

Z
Gm

Sm
jkðQÞn

m
k ðQÞU

m
ij ðP;QÞdG

�

Z
Om

Sm
jkðqÞU

m
ij;kðP; qÞdO. ð14Þ

Substituting Eq. (14) into Eq. (13), we have

cijðPÞû
m
j ðPÞ ¼

Z
Gm

Um
ij ðP;QÞt̂

m

j ðQÞdG�
Z
Gm

Tm
ij ðP;QÞû

m
j ðQÞdG

�

Z
Om

Sm
jkðqÞU

m
ij;kðP; qÞdO. ð15Þ

On the other hand, for an infinite body D with interfaces between an inhomogeneous inclusions O and the
infinite body D, the boundary integral equation can be written as

cijðPÞûjðPÞ ¼

Z
G

UijðP;QÞt̂jðQÞdG�
Z
G

TijðP;QÞûjðQÞdG. (16)

Assuming that the infinite body and inhomogeneous inclusions are perfectly bonded, the displacements and
the tractions on the interfaces between the infinite body and inhomogeneous inclusions must satisfy

ûj � ûm
j ¼ 0

t̂j þ t̂
m

j ¼ 0

)
on Gm. (17)

Finally, substituting these conditions into Eq. (15), the boundary integral equation for the mth
inhomogeneous inclusion takes the following form, with displacements and tractions defined on the surfaces
surrounding each inclusion in the infinite body,

cijðPÞûjðPÞ ¼ �

Z
Gm

Um
ij ðP;QÞt̂jðQÞdG�

Z
Gm

Tm
ij ðP;QÞûjðQÞdG

�

Z
Om

Sm
jkðqÞU

m
ij;kðP; qÞdO. ð18Þ

Eqs. (16) and (18) are the final forms of the multi-zone BEM method for the correction field, and can be solved
numerically to compute displacements and tractions on all interfaces. Once displacements and tractions on
interfaces are obtained by solving the above boundary integral equations, the stresses at any point can be
easily computed

ŝijðpÞ ¼

Z
G

Dijkðp;QÞt̂kðQÞdG�
Z
G

Sijkðp;QÞûkðQÞdG, (19)

where

Dijkðp;QÞ ¼ 1
2

CijlnðUlk;nðp;QÞ þUnk;lðp;QÞÞ,

Sijkðp;QÞ ¼ 1
2

CijlnðTlk;nðp;QÞ þ Tnk;lðp;QÞÞ. (20)

On the other hand, the stress inside an inhomogeneous inclusion cannot be accurately calculated even when
the displacements and tractions on interfaces are known, because the volume integral term in Eq. (18) gives
rise to a strong singularity in the stress computation. To solve the problem accurately and effectively, we resort
again to the dislocation and correction problems, and consider the calculation of the stress field inside of the
mth inhomogeneous inclusion. In this case, the dislocation problem is defined in an infinite body D with the
elastic constants of the mth inhomogeneous inclusion:

~sij ¼ Cm
ijklðe

m;0
kl þ ~eklÞ in D. (21)
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The correction problem can be defined by taking a difference between the original inhomogeneous inclusion
problem and the dislocation problem:

ŝij ¼ Cijklðe0kl þ êklÞ þ ðCijkl � Cm
ijklÞ~ekl � Cm

ijkle
m;0
kl in D� O, (22)

ŝij ¼ Cm
ijklðêkl þ �

m
klÞ in Om. (23)

For the sake of simplicity, Eq. (22) can be rewritten as

ŝij ¼ Cijkl êkl þ SD
ij in D� O, (24)

where SD
ij ¼ Cijkle0kl þ ðCijkl � Cm

ijklÞ~ekl � Cm
ijkle

m;0
kl . Then, the correction problem defined by Eqs. (24) and (23)

can be considered as a problem of an infinite body with an initial stress SD
ij containing inhomogeneous

inclusions with eigen strains. The boundary integral equations for the correction problem can be derived in a
similar way to that used for deriving Eqs. (16) and (18):

cijðPÞûjðPÞ ¼

Z
G

UijðP;QÞt̂jðQÞdG�
Z
G

TijðP;QÞûjðQÞdG for D� O

�

Z
D�O

SD
jkðqÞUij;kðP; qÞdO, ð25Þ

cijðPÞû
m
j ðPÞ ¼

Z
Gm

Um
ij ðP;QÞt̂

m

j ðQÞdG�
Z
Gm

Tm
ij ðP;QÞû

m
j ðQÞdG for Om

�

Z
Om

Cm
jkln�

m
lnðqÞU

m
ij;kðP; qÞdO. ð26Þ

Assuming that the eigen strain �m
ij is uniform in the mth inhomogeneous inclusion, Eq. (26) can be rewritten as

cijðPÞû
m
j ðPÞ ¼

Z
Gm

Um
ij ðP;QÞðt̂

m

j ðQÞ þ Cjkln�
m
lnðQÞnkðQÞÞdG

�

Z
Gm

Tm
ij ðP;QÞû

m
j ðQÞdG for Om

¼

Z
Gm

Um
ij ðP;QÞt̂

0m

j ðQÞdG�
Z
Gm

Tm
ij ðP;QÞû

m
j ðQÞdG, ð27Þ

where t̂
0m

j is the actual traction on the interface between the infinite body and the mth inhomogeneous
inclusion, which is defined by t̂

m

j þ Cm
jkln�

m
ln. To solve the boundary integral equations (25) and (27) by the

multi-zone BEM, the infinite body with holes must be discretized by volume elements while the
inhomogeneous inclusions can be modeled with only boundary elements. Then the equations cannot be
solved by the BEM, because the discretization of the infinite body is definitely impossible. In order to calculate
a stress at a point inside of the mth inhomogeneous inclusion, we must obtain only all the displacements ûm

j

and the tractions t̂
0m

j on the interface. An alternative equation to calculate the displacements ûm
j can be derived

from the definition of the dislocation problem and the correction problem:

ûm
j ¼ uj � ~uj, (28)

where uj is the actual displacement. ~uj is the displacement produced by dislocation loops, which can be
calculated by the fast sum method for displacements. The actual displacement on the interface can be obtained
by solving Eqs. (16) and (18) by the multi-zone BEM. Therefore the displacement boundary condition to the
mth inhomogeneous inclusion can be entirely determined by the above equation. Then the remaining
unknown variable is only the traction on the interface, which can be calculated with Eq. (27) with the
displacement boundary condition given by Eq. (28) without any coupling with the equation for the infinite
body. Thus, in order to calculate the displacements and tractions on the interface, we need only the
discretization of the boundary of the inhomogeneous inclusion, and do not need to discretize the infinite body
with volume elements. Once all the displacements ûm

j and the tractions t̂
0m

j are obtained by solving Eq. (27)
with the displacement boundary condition defined by Eq. (28), the stress at a point inside of the mth
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inhomogeneous inclusion can be calculated by

ŝijðpÞ ¼

Z
Gm

Dm
ijkðp;QÞt

0m
k dG�

Z
Gm

Sm
ijkðp;QÞu

m
k dG, (29)

where Dm
ijkðp;QÞ and Sm

ijkðp;QÞ are the kernel functions calculated by Eq. (20) with Um
ij;kðp;QÞ and Tm

ij;kðp;QÞ,
respectively.

It is worth noting that there is a singularity in the image stress calculated by the boundary element method
when the calculation point is close to the boundary. Also the stress of the dislocation involves a strong
singularity within a range of the dislocation core. In this work, these singularities are simply removed by
introducing a cut-off radius rc ¼2b, which is typically used as a radius for the dislocation core. The stresses
within the cut-off distance are kept constant.

In this paper, the methodology of PDD and the boundary integral equations for precipitate problems are
mainly for the isotropic materials. However, the effects of elastic anisotropy on the dislocation behavior and
macroscopic plastic deformation are also of interest. Han et al. (2003) extended the PDD method to the
anisotropic materials, and examined the accuracy and convergence of the method. Vogel and Rizzo (1973)
proposed kernel functions for an anisotropic elastic body, which can be used in the boundary integral
equations instead of the isotropic kernel functions. Applying these to the PDD and boundary integrals
equations, the proposed method can also be easily and directly extended to the anisotropic materials.

4. Numerical accuracy and convergence

The accuracy of the present PDD and BEM procedure (PDD-BEM, for short) for inhomogeneous inclusion
problems with dislocations is examined with an available analytical solution for the interaction between a
screw dislocation and a spherical precipitate in an infinite body, given by Gavazza and Barnett (1974). This
should establish the numerical accuracy of the procedure, and reveal control features needed for a required
level of accuracy. We will also examine the range of applicability of elastic theory used here by comparing the
results with atomistic simulations based on interatomic interactions, and performed with the method of
molecular dynamics (MD). There are several studies using the MD technique for the interaction between an
edge dislocation and a precipitate (Osetsky et al., 2003; Kohler et al., 2005). In this paper, we focus on the
interaction between an edge dislocation and a copper precipitate in an iron matrix, and compare the results of
MD with those of the present PDD-BEM approach.

4.1. Comparison with analytical solutions

Gavazza and Barnett developed an analytical solution for the image stress from an interface between a
spherical precipitate in an infinite body in the presence of an infinitely long straight screw dislocation, given by

tyzðt; 0; zÞ ¼
X1
n¼1

�anþ1ð2m1an þ m1bnÞ þ 6m1KnOn
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r2
� 1

� �
KnOn þ m1KnOn

24
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� �
1

rnþ2
Pn�1

nþ3, ð30Þ

where a is the radius of the spherical precipitate, m1 is the elastic shear modulus of the infinite body, Pm
n is the

Legendre function of cosf, and

Kn ¼ �
l1 þ m1

2fðnþ 2Þl1 þ ð3nþ 5Þm1g
,
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On ¼
2Znðm1 � m2Þa

2nþ1=tn

m1fðnþ 2Þ þ EI
nð2nþ 1Þðnþ 1Þg þ m2ð2nÞ

,

an ¼
ðm1 � m2ÞZn

m1ðnþ 2Þ þ m2ðn� 1Þ

m1fðnþ 2Þ � EI
nð2nþ 1Þðn� 1Þg

m1fðnþ 2Þ þ EI
nð2nþ 1Þðnþ 1Þg þ m2ð2nÞ

a

t

� 	n

,

bn ¼
ðm2 � m1ÞZn

m1ðnþ 2Þ þ m2ðn� 1Þ

m1fðnþ 2Þ þ EI
nð2nþ 1Þðn� 1Þg þ 2m2ðn� 1Þ

m1fðnþ 2Þ þ EI
nð2nþ 1Þðnþ 1Þg þ m2ð2nÞ

a

t

� 	n

,

Zn ¼
b

4p

� �
ð�1Þn2nðn� 1Þ!

ð2n� 1Þ!
,

EI
n ¼

ðn� 1Þl1 � ðnþ 4Þm1
ð2nþ 1Þðnþ 2Þl1 þ ð3nþ 5Þm1

, (31)

where l1 is Lame’s constant of the infinite body, and m2 is the elastic shear modulus of the precipitate.
In the PDD-BEM simulation of the above problem, the simulation volume is taken as the infinite body with

an elastic shear modulus m1 ¼ 81:8GPa, and contains a spherical precipitate with a diameter d ¼ 2:5 nm and
an elastic shear modulus m2 ¼ 54:6GPa. We place an infinitely long straight screw dislocation with a Burgers
vector b ¼ 0:248 nm into the simulation volume. The stress field of the dislocation is analytically calculated
with a stress solution for the screw dislocation. The image stresses from the interface between the infinite body
and the precipitate are calculated at the center of the screw dislocation within a range from 0:5d þ 2b to 2:5d

away from the center of the precipitate by putting the screw dislocation at several positions in this range.
To illustrate the convergence and accuracy of the accuracy of image stress calculations, we used four

boundary and volume element mesh sizes, resulting in different spatial resolutions, as shown in Fig. 2.
Throughout the present work, 8-noded and 20-noded isoparametric elements are used for the boundary and
volume elements of the precipitates, respectively. As an expression of the resolution of the boundary element
mesh, we use a non-dimensional parameter g, defined as the ratio of the average boundary element to total
interface areas.

Fig. 3 shows the dependence of the image shear stress on the relative distance from the precipitate center.
The present PDD-BEM results are displayed together with Gavazza and Barnett’s analytical solution given by
Eq. (30). In the figure, the image stress decreases sharply and becomes negative within the range of 1.5d. The
errors of the calculated image stresses in comparison with the analytical solution are plotted in Fig. 4. In the
figure, the mesh with g ¼ 0.167 gives unacceptable errors of more than 25%. It is especially noted that the
error becomes large near the interface between the infinite body and the precipitate. This might be due to the
singularity in the image stress calculation. The accuracy of the image stress rapidly improves as the resolution
of the mesh is increased. In the case of the mesh with g ¼ 0.0104, the maximum error of the image stress is
almost 0.6%, which can be acceptable as high accuracy for the purposes of DD simulations. Therefore, the
Fig. 2. Boundary element meshes for a spherical precipitate: (a) g ¼ 0:167; (b) 0:0417; (c) 0:0185; and (d) 0:0104.



ARTICLE IN PRESS

-2.5

-2.0

-1.5

-1.0

-0.5

0.5 1.0 1.5 2.0 2.5

τ y
z
/μ

1
x
1
0

3

x/d

Analytical solution

γ=0.167

γ=0.0417

γ=0.0185

γ=0.0104

2b

x
b

o

0.0

Fig. 3. Image stresses generated by an interface between a precipitate and an elastic body in the presence of an infinitely long straight

screw dislocation. The image stresses are calculated by the present PDD-BEMmethod, and are at the closest point on the screw dislocation

to the precipitate. The analytical solution given by Gavazza and Barnett is also plotted with a solid line. As shown in the figure, x is the

closest distance between the screw dislocation and the center of the precipitate.

 0

 10

 20

 30

 40

 50

0.5 1.0 1.5 2.0 2.5

R
e
la

ti
v
e
 e

rr
o
r 

(%
)

x/d

γ=0.167

γ=0.0417

γ=0.0185

γ=0.0104

2b

Fig. 4. Relative error of image stresses calculated by the present PDD-BEM method as compared to the analytical solution given by

Gavazza and Barnett.

A. Takahashi, N.M. Ghoniem / J. Mech. Phys. Solids 56 (2008) 1534–1553 1543
results suggest that the PDD-BEM method has excellent convergence rates and accuracy with boundary mesh
refinement.

4.2. Comparison with molecular dynamics

One of the key phenomena that determine the degree of embrittlement of pressure vessel steels is the
interaction between dislocations in an iron matrix with small copper and copper–iron precipitates in steels.
Several MD simulations have been carried out to determine the atomistic origins of this interaction, for
example the MD simulations of the interaction between an edge dislocation and a spherical copper precipitate
(Osetsky et al., 2003). For iron–copper precipitates, on the other hand, Kohler et al. (2005) performed MD
simulations of the interaction using an embedded atom method (EAM) interatomic potential for iron–copper
binary alloys. In these studies, the size of the simulation volume is 19:7� 19:7� 9:73 nm, and the x; y and z

axes are along [1 1 2̄], [1 1 1] and [1 1̄ 0] directions, respectively. A spherical copper precipitate with a diameter
dCu and an edge dislocation with [1 1 1] Burgers vector on (1 1̄ 0) slip plane are placed in the volume. The center
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of the copper precipitate is on the slip plane of the dislocation. Periodic boundary conditions are applied along
[1 1 2̄] direction, which implies that the edge dislocation is infinitely long, and that the precipitate is one of a
periodic array in the [1 1 2̄] direction. The CSS for the edge dislocation to break away from the copper
precipitate is evaluated by applying and gradually increasing the external shear stress.

In the PDD-BEM simulation of the interaction, the same simulation volume is used, with boundary and
volume elements for the copper precipitate and parametric segments for the edge dislocation. Kohler et al.
calculated the elastic constants of the iron matrix and the copper precipitate using the interatomic potential.
Their calculated elastic shear modulus for the iron matrix and copper precipitate are m1 ¼ 69:76GPa and
m2 ¼ 21:842GPa, respectively. Although the experimental values of the shear moduli are higher, we used the
same elastic constants of Kohler et al. (2005) in the present PDD-BEM simulations. This allows direct
comparison between the elasticity results (present model) and the results of MD simulations, which are based
on interatomic potentials. The CSS is evaluated by gradually increasing the external shear stress by 5MPa
each 1000 time steps. In order to examine the convergence of the accuracy of the PDD-BEM method, we used
different boundary and volume element mesh densities resulting in successively higher resolution, while the
length of each parametric segment is set to be 1 nm in all simulations.

Before showing the results of the accuracy and convergence of the PDD-BEM method, we evaluated the
computation time. Since the precipitate shape is not changed in the simulation, once the stiffness matrix of the
boundary integral equations is calculated and decomposed into lower and upper (LU) matrices, it is not
necessary to do the same thing at every time step. The LU matrices of the stiffness matrix calculated at the first
time step are stored, and can be repeatedly used at every time step to compute quickly the displacements and
tractions on the interface between the precipitate and the matrix. Therefore, in the evaluation, we checked two
kinds of computation time: (1) the computation time to integrate the boundary integral equation and to
decompose it into LU matrices and (2) the computation time for each time step. Fig. 5 shows the computation
time. Regarding to the time for the calculation and decomposition of the stiffness matrix, it is rapidly
increased as the number of nodes for the boundary elements is increased. Generally, the amount of the
computation for the calculation of the stiffness matrix is proportional to the square of the number of nodes,
and, for the decomposition, it is proportional to cube of the number of nodes. Thus the trend of the
computation time is reasonable. On the other hand, as for the time for each time step, the relationship between
the computation time and the number of nodes is approximately linear. If the decomposed LU matrices are
not stored, we need almost the same computation time as that for the calculation and decomposition of the
stiffness matrix. Therefore, the storage of the decomposed LU matrices greatly improves the efficiency and
speed of the PDD-BEM simulations.

Fig. 6 shows the dislocation configurations during the interaction with a 3 nm diameter copper precipitate.
In the figure, the dislocation is first attracted by the copper precipitate. The dislocation then moves
spontaneously to the middle of the copper precipitate to achieve equilibrium in the precipitate interior.
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A higher force is required to pull the dislocation out of the precipitate, and thus the precipitate temporarily
pins the dislocation till a higher force is applied. Finally the dislocation cuts through the copper precipitate
when the external shear stress is sufficiently increased resulting in a break-away configuration (Fig. 6-d).

Fig. 7 shows the dependence of the CSS on precipitate diameter, calculated by the PDD-BEM method and
compared to the results of MD simulations (Kohler et al., 2005). In the figure, the CSS calculated with a
coarse mesh (g ¼ 0:167) displays a large deviation from MD simulation results. However, the CSS converges
gradually to MD results as the mesh resolution is increased (smaller g values). Note that the results for
g ¼ 0.0104 and 0.00667 are almost the same indicating convergence, and that the results are in reasonable
agreement with MD simulations. The difference between the PDD-BEM and MD simulation results at large
diameters is attributed to using a constant cut-off radius 2b to avoid the stress singularity. This difference can
be corrected for by adjusting the cut-off distance as a function of precipitate size, which we did not attempt
here for clarity of comparison.

Kohler et al. (2005) also performed MD simulations for the interaction between an edge dislocation and an
iron–copper complex with a diameter dCu ¼ 2:5 nm in an iron matrix. They used the same simulation volume,
and calculated the CSS of the iron–copper complex with various copper concentrations. Here, we compare
their MD results with our PDD-BEM calculations. In the PDD-BEM simulations, the same simulation
volume is used. The elastic constants of the iron–copper complex is determined by two types of averaging
procedures, namely the Voigt and Reuss approximations. The calculated elastic constants with these rules are
listed in Table 1, where it is noted that the Reuss approximation gives smaller elastic constants compared to
the Voigt approximation. Fig. 8 displays the dependence of the CSS on the atomic fraction of Fe in the copper
precipitate. The PDD-BEM simulation results with the elastic constants calculated by the Voigt
approximation show an approximate linear dependence on the Fe atomic fraction, which is clearly different
from the results of the MD simulations. On the other hand, PDD-BEM simulation results with the elastic
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Table 1

Elastic shear modulus (GPa) for iron–copper complexes calculated by two different rules of mixture: the Voigt and Ruess approximations

Rule of mixture 25% 50% 75%

Voigt 33.8 45.8 57.8

Ruess 26.4 33.3 45.1

The percentage in the table is the concentration of iron in the complex.
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constants calculated by the Reuss approximation are in good agreement with MD simulations, indicating that
the result of the PDD-BEM simulation is very consistent with MD simulations, when the Reuss
approximation is used. This greatly simplify the process of alloy optimization with the present method, as
compared to the limitations of MD simulations and the need to develop interatomic potentials for various
Fe–Cu mixtures within the precipitate.
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5. Applications

5.1. Dislocation interaction with sheared precipitates

When the shear modulus of precipitates is below the Orowan limit (see next section), they can be sheared by
the passage of dislocations through them. Every time a dislocation shears, its resistance to dislocation motion
is reduced. If the precipitate is sheared a number of times, and the overall resistance of the two sheared pieces
becomes sufficiently low, many dislocations can slip through the sheared region in an avalanche fashion, and a
zone of localized plastic deformation is formed in the matrix. This mechanism can result in plastic flow
localization and the formation of cleared dislocation channels in precipitation hardened materials. In this
section, we evaluate the CSS of precipitates with a diameter of 2.5 nm and an elastic shear modulus mp ¼

54:6GPa cut by dislocations in an Fe matrix. Every time the precipitate is completely sheared, the two halves
are shifted relative to one another by the magnitude of the Burgers vector and two new surfaces on the slip
plane of the dislocation are formed. Although the formation and progress of the slip step during the
dislocation cuttings should give an effect on the CSS, it is neglected here as a consequence of the traditional
infinitesimal strain approximation. To simulate the process of dislocation interaction with shared precipitates,
we conducted a series of simulations where the precipitate is initially shared by different degrees. The initial
state of the shared precipitate is assumed to be stress-free, and the dislocation is assumed to approach the
precipitate, which is already in a shared state that may have been created by the passage of previous
dislocations. In other words, we performed multiple infinitesimal strain calculations starting from a stress-free
initial configuration, and hence neglected the effect of precipitate deformation history. In the following series
of simulations, we use a volume of 19.7 � 19.7 � 9.73 nm, with the x; y and z axes along the [1 1 2̄], [1 1 1] and
[1 1̄ 0] directions, respectively. A straight edge dislocation with [1 1 1] Burgers vector on the (1 1̄ 0) slip plane
that cuts through the middle of a spherical precipitate are placed in the simulation volume. Periodic boundary
conditions are applied along the [1 1 2̄] direction, which correspond to a periodic 1D array of precipitates. The
elastic constants of the iron matrix is taken as mm ¼ 81:8GPa. Fig. 9 shows an example of a boundary element
mesh of the slipped precipitate. As shown in the figure, the boundary elements for the newly created surfaces
of the copper precipitate are first generated in a simple manner, and are then improved using a Laplacian
smoothing technique (Field, 1988). Moreover, multiple nodes are located along the edge lines of the newly
created surface of the precipitate to represent the geometrical discontinuity. A multiple collocation approach
(MCA) is utilized only for multiple nodes to solve the problem accurately (Dominguez et al., 2000). In the
simulations, the external shear stress is increased by 1MPa each 1000 time steps to determine the CSS.

Fig. 10 shows the dislocation configuration during the interaction with a 2.5 nm diameter precipitate that
has been completely sheared by the passage of 10 previous dislocations (i.e. the two hemispheres are shifted 10
b with respect to one another). As the dislocation glides along the surfaces of the two precipitate halves, it is
partially locked at the edges, thus forming bow-out pinned configurations. The dislocation bow-out is slightly
extended by the external shear stress and the pinning effect of the precipitate. Finally, the dislocation breaks
Fig. 9. Boundary element mesh generation for newly created surfaces by dislocation cuttings. (a) Slipped precipitate without any

boundary element mesh for the newly created surface, (b) manually generated boundary elements for the newly created surface, and (c)

improved boundary elements using a Laplacian smoothing technique.
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away from the precipitate when the external shear stress is sufficiently increased. Fig. 11 shows the calculated
‘‘relative’’ CSS of slipped precipitates as a function of the number of previous dislocation passages or
‘‘cuttings’’ through the precipitate. Note that the CSS is normalized by t0 ¼ mmb=L, where L is the spacing
between the precipitates. It is shown that the CSS rapidly decreases each time the precipitate is cut by
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a dislocation. As the number of the dislocation cuttings is increased, the CSS decreases further, but gradually
converges to a constant value. We also performed a PDD-BEM simulation for the interaction between an edge
dislocation and half of a precipitate, which corresponds to a precipitate slipped an infinite number of
dislocation cuttings. The calculated relative CSS was found to be 0.0431t0, which is almost half of the CSS of
the spherical precipitate. The present PDD-BEM simulations reveal that the resistance of precipitates to
dislocation motion is rapidly weakened by previous dislocation cuttings, and may decrease to about half of the
CSS of an uncut spherical precipitate.

5.2. The influence of precipitate geometric and elastic parameters on strength

Precipitation strengthening is derived from a number of factors, such as precipitate geometry, spatial
arrangement, and the relative magnitude of the elastic modulus compared to the host matrix. One of the
important aspects here is the effect of the elastic modulus mismatch between the precipitate and the host
matrix. If the shear modulus of the precipitate is smaller than that of the matrix, dislocations can easily cut
through the precipitate. Even if the precipitate shear modulus is somewhat larger than that of the matrix, the
dislocation can still cut through the precipitate and reconfigure to its original form before the interaction.
However, precipitates with much larger elastic modulus compared to the matrix can present impenetrable
obstacles to dislocation motion. In this case, dislocations must completely encircle the precipitate and leave a
small loop surrounding the precipitate before they reconfigure and break-away from the precipitate. This
interaction limit is known as the Orowan mechanism.

In this section, utilizing PDD-BEM simulations, we investigate the influence of a number of important
geometric and elastic parameters on the CSS, and hence on the strengthening effect of precipitates. These are:
(1) the precipitate diameter, (2) the spacing between precipitates, and (3) the ratio of the precipitate-to-matrix
shear modulus. The simulation volume is 50� 50� 50 nm, with the x; y and z axes taken along the [1 1 2̄],
[1 1 1] and [1 1̄ 0] directions, respectively. A spherical precipitate with a diameter of 5 nm is placed in the middle
of the simulation volume. A straight edge dislocation with [1 1 1] Burgers vector on the (1 1̄ 0) slip plane is also
introduced, and is initially placed 10 nm away from the precipitate. Periodic boundary conditions are applied
along the [1 1 2̄] direction to simulate the interaction of a one-dimensional precipitate array with the
dislocation. The elastic shear modulus of the matrix material mm is taken as 81.8GPa, and of the precipitate
shear modulus, mp, is changed in the range from 0:01pmm=mpp5 in order to investigate the effect of the elastic
modulus mismatch between the precipitate and the matrix on the CSS.

To investigate the influence of the precipitate diameter and modulus on the strength, a set of simulations
were performed for a range of precipitate-to-matrix shear modulus ratios, and for initial precipitate diameters
of 5, 7.5, and 10 nm. The results of the PDD-BEM simulations are shown in Fig. 12, where the CSS is
normalized by the reference shear stress t0 ¼ mmb=L. It is shown that larger precipitates have a stronger
strengthening effect, and that the CSS is dependent also on the relative elastic modulus mismatch. Softer
precipitates (mp=mmp1) still result in strengthening (t=t040), and in the limit of very soft precipitates (e.g.
voids), the strengthening effect saturates to t=t0 � 0:3� 0:4. On the other hand, harder precipitates are still
shearable up to mp=mm ratios on the order of 3–4, where the Orowan looping mechanism sets in, as shown in
the figure with hollow symbols. It is also noted that the strength sensitivity to the mp=mm ratio in the Orowan
regime is considerably smaller than in the shearable precipitate regime.

The transition from the shearable precipitate to the Orowan regime depends on the precipitate size, as
shown in the figure. The self-force on the dislocation surrounding the precipitate mainly depends on the
diameter of the precipitate, and is large when the diameter of the precipitate is small. For small precipitates,
the dislocation prefers to cut through them as a result of the strong self-force on the dislocation. Therefore, the
precipitate with a small diameter must have a large elastic shear modulus to stop the dislocation from cutting
it, and hence the onset of the Orowan mechanism must take place at larger mp=mm values for a precipitate with
a smaller diameter.

Next, we investigate the effect of the inter-precipitate spacing on the strengthening effect by changing the
length of the simulation volume in the [1 1 2̄] direction to 50, 75, and 100 nm. The results of the PDD-BEM
simulations are shown in Fig. 13, where the CSS is normalized by the reference shear stress with different
values of L. It is clear from the figure that the normalized shear stress is insensitive to the inter-precipitate
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spacing over a wide range of mp=mm ratios. This is indicative of the direct inverse proportionality between the
CSS and L, as predicted by the Orowan formula. Small deviations from the inverse proportionality can be
seen for very large mp=mm ratios, indicating a slight dependence on the precipitate size as well.
6. Discussion and conclusions

Nembach studied the interaction between an infinitely long straight dislocation and a precipitate, and
developed an equation to calculate the CSS, accounting for the effect of the difference in the elastic shear
modulus between the precipitate and the matrix (Nembach, 1983). The work is based on Friedel’s
approximation for the CSS tcF (Friedel, 1964), given by

tcF ¼ CF

F
3=2
0 f 1=2

rpbð2pSÞ1=2
, (32)
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where CF is the numerical constant, S is the dislocation line tension, and rp and f are the radius and volume
fraction of the precipitates, respectively. F0 is the maximum interaction force between the dislocation and the
precipitate, and is proportional to the difference in the elastic shear modulus between the precipitate and
matrix, Dm. Nembach fitted the calculated maximum interaction force to the following equation:

F0 ¼ a1Dmb2 rp

b

� 	b1
, (33)

where a1 and b1 are adjustable parameters. Substituting Eq. (33) into Eq. (32), the following expression for the
CSS is obtained (Nembach, 1983):

tcF ¼ CF

ðDmb2
Þ
3=2a3=21 r

ð3b1=2�1Þ
p f 1=2

bð3b1=2þ1Þð2pSÞ1=2
. (34)

From Eq. (34), the CSS of is proportional to Dm1:5. Based on this work, we fitted the results of PDD-BEM
simulations for the CSS to an equation of the form tcF ¼ aDmb. The fitted curves for the CSS are plotted in
Fig. 14. As shown in the figure, the exponents b are almost the same in all cases, with an average value of 1.12,
which differs from the analytically estimated exponent of 1.5. This may be attributed to the fact that the
Friedel approximation is for a system with randomly distributed precipitates. However, in our PDD-BEM
simulations, the precipitates are situated as a regular 1-D array as a result of periodic boundary conditions,
and have a constant inter-precipitate spacing. Therefore, instead of using Friedel’s approximation for the
present comparison, we use an equation for a system with the regular array of precipitates, given by

tcF ¼
F0

bL
. (35)

Substituting Eq. (33) into Eq. (35), we have

tcF ¼
Dmb2a1rb1p

bb1þ1L
. (36)

The equation shows that the CSS is proportional to the difference in the elastic shear moduli. Thus, based on
Eq. (36), the exponent of 1.12, calculated from the PDD-BEM simulation results is in reasonable agreement
with the analytically estimated exponent value of 1. The slight difference between the exponents should be
attributed to the fact that the dislocation line is flexible in PDD-BEM simulations, while the dislocation line is
straight in the analytical estimation.

The development of the present PDD-BEM method of computer simulations for precipitate–dislocation
interactions has been shown to give accurate results in comparison with both analytical theory and MD
simulations. The method can be a powerful tool for investigations of dislocation–precipitate interactions and
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alloy design as compared to the MD technique, which is limited by both simulation volume size and the
availability of a well-calibrated interatomic potential . However, the present PDD-BEM method takes into
account only the elastic interaction between dislocations and precipitates, ignoring contributions form
interaction forces within the dislocation core. Dislocation core effects may be dominant in small-size
precipitates. To incorporate dislocation core effect in the framework of the PDD-BEM method, the
Pierels–Nabarro (PN) model, which is a description of the dislocation core displacement based on the
elasticity (Nabarro, 1947) can be used. With the PN model, the dislocation core displacement can be
calculated by balancing the elastic interaction between infinitesimal displacements and the lattice restoring
force that can be readily calculated from ab initio models. Using a reliable lattice restoring force, the PN
model gives a more realistic displacement distribution within the dislocation core. Banejee et al. (2004)
implemented the PN model into the PDD simulation framework, and represented the dislocation core
displacement with an array of infinitesimal dislocations with distributed Burgers vectors. The lattice restoring
force was calculated by taking the derivative of the g surface energy, which can be computed by ab initio
methods (Lu et al., 2000). Such a method can be utilized as a promising approach to incorporate the influence
of the dislocation core on the CSS.

Before closing, we summarize here the salient results of the present work:
(1)
 A new computational method for the dynamics of the most general dislocation–precipitate interaction in
3-D has been successfully developed.
(2)
 The method, which is based on a natural hybridization of the parametric dislocation dynamics (PDD) and
the boundary element method (BEM), PDD-BEM for short, is numerically accurate and convergent, and
is in excellent agreement with MD computer simulation results.
(3)
 Calculations with the present PDD-BEM technique of the CSS for Cu–Fe complexes in an Fe matrix result
in good agreement with MD simulations when the Reuss averaging scheme is used for the elastic constants.
(4)
 Sheared copper precipitates lose some of their resistance to dislocation motion after they are cut by leading
dislocations in a pileup. Successive cutting of precipitates by the passage of a dislocation pileup reduces the
resistance to about half its original value, when the number of dislocations in the pileup exceeds about 10.
(5)
 Precipitation strengthening can be achieved by precipitates that are either softer or harder than the host
matrix. However, the largest gains in strengthening take place when the ratio of precipitate-to-matrix
elastic modulus is not too large or too small. The most critical range for the effect of this ratio is between
0.1 and 4.
(6)
 The transition from the shearable precipitate regime to the Orowan looping regime occurs for precipitate-
to-matrix elastic modulus ratios above approximately 3–4, with some dependence on the precipitate size.
(7)
 The CSS is shown to be inversely proportional to the inter-precipitate spacing over a very wide range of
precipitate-to-matrix modulus ratios. Small deviations take place at high ratios in the Orowan regime.
(8)
 For a regular precipitate array of the same size, the relationship between the CSS and the difference in the
shear modulus of the matrix and precipitate (Dm) is shown to be proportional to Dm1:16.
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