
begell house, inc. 
Vicky Lipowski  Article Reference #: 0401‐003 
Production Manager  Date Proof Sent: 3‐6‐07 
50 Cross Highway  Total Pages: 17 
Redding, Connecticut 06896 
Phone: 1‐203‐938‐1300 
Fax:       1‐203‐938‐1304  
Email:   vicky@begellhouse.com 

Journal:   International Journal for Multiscale Computational Engineering 

Year: 2006  Volume: 4  Issue: 1 

Article Title: Multi‐scale Total Lagrangian Formulation for Modeling Dislocation Induced Plastic 
Deformation in Polycrystalline Materials 
 
Dear Prof.  Jiun‐Shyan Chen: 
 
Attached is a PDF file containing the author proof of your article. If you are unable to access this file, 
please let me know and I will fax your proof. 

This is your only opportunity to review the editing, typesetting, figure placement, and correctness of 
text, tables, and figures. Answer copyeditor’s queries in the margin. Failure to answer queries will 
result in the delay of publication of your article, so please make sure they are all adequately addressed. 
You will not be charged for any corrections to editorial or typesetting errors; however, you will be 
billed at the rate of $25 per hour of production time for rewriting, rewording, or otherwise revising 
the article from the version accepted for publication (“author’s alterations”); any such charges will 
be invoiced and must be paid before the article is published. 

Please return your corrections in one of the following ways: (1) Fax: Clearly mark your corrections on 
the page proofs and fax the corrected pages only, along with the offprint order form, if applicable. (2) 
E‐mail: Indicate your corrections in a list, specifying the location of the respective revisions as precisely 
as possible. Please DO NOT annotate the PDF file. 

The deadline for your corrections or your notification that you have reviewed the proof and have no 
corrections is 48 hours after receipt of your proof.  No article will be published without confirmation of 
the author’s review.  If we do not hear from you within the allotted time, we will be happy to hold your 
article for a future issue, to give you more time to make your corrections. 

Attached is a form for ordering offprints, issues, or a subscription. As corresponding author, you will 
receive a complimentary copy of this issue. If you wish to order extra issues or offprints, please fill in 
the appropriate areas and fax the form to me with your corrections. 

Thank you for your assistance, and please reference JMC0401‐003 in your correspondence. Also, kindly 
confirm receipt of your proofs. 

Sincerely, 

Vicky 
Vicky Lipowski 
Production Manager 



begell house, inc. 
JOURNAL PRODUCTION DEPARTMENT 
50 Cross Highway 
Redding, Connecticut 06896 
203-938-1300  (Phone) 
203-938-1304  (Fax) 
vicky@begellhouse.com  

Journal Name: 

Volume/Issue #: 

    Article Title: 

Int J for Multiscale Computational Engineering 
 
Volume 4, Issue 1 

JMC0401-003 Multi‐scale Total Lagrangian 
Formulation for Modeling Dislocation Induced 
Plastic Deformation in Polycrystalline 
Materials 

                    

BILL TO: SHIP TO: 
 
 
 
 
 

Dear Prof. Jiun‐Shyan Chen: 
As corresponding author, you will receive a complimentary copy of this issue. Please use the order form below 
to order additional material and/or indicate your willingness to pay for color printing of figures (if applicable).  
To purchase individual subscriptions or a personal copy of your article, please go to www.begellhouse.com  
Allow approximately 3 weeks, from receipt of your page proofs, for the issue to be posted to our website.  For 
institutional pricing on PDF files contact Dahlia De Jesus at 1-203-938-1300 or dahlia@begellhouse.com 
If placing an order, this form and your method of payment must be returned with your corrected page proofs.  
Please include cost of shipment as indicated below; checks should be made payable to Begell House, Inc., and 
mailed to the above address. If a purchase order is required, it may arrive separately to avoid delaying the return 
of the corrected proofs. 

OFFPRINTS OF ARTICLE* WIRE TRANSFER 
 PAGE COUNT OF ARTICLE  

 (round off to highest multiple of 8) 
QTY. 4 8 16 24 32 
  25   72 115 151 187 223 
  50   84 127 163 199 236 
100  108 193 254 314 375 
200 156 327 435 544 652 
300 205 459 616 773 930 

Bank:                         Valley National Bank 
Routing #:                  0 2600 6 790 

            Account #:                 07 011343 
CREDIT CARD PAYMENT 

 CREDIT CARD # _____________________________________ 

 NAME ON CREDIT CARD _____________________________ 

 AMEX/ VISA/MC/ DISC/ EURO/ ________  EXP. __________ 

 OTHER: _____________________________________________ 

CORPORATE PURCHASE ORDER 

P. O. # _______________________________________ 

 *If your page count or quantity amount is not listed please 
  email a request for prices to vicky@begellhouse.com 

Black and White Offprints:  Prices are quoted above  
Offprint Color Pages: Add $3 per color page times the 
quantity of  offprints ordered  
Shipping: Add 20% to black and  white charge  

Offprint Qty:  __________   $ ____________ 

Color Pages for Offprints:   $ ____________ 

Shipping Charges:               $ ____________  

PAYMENT BY CHECK 

INCLUDE THE FOLLOWING INFO ON YOUR CHECK: 
Article Reference # and Offprints/Color/Subscription 

Make checks payable to Begell House, Inc. 

COST FOR COLOR PAGES PRINTED IN JOURNAL 

Price Per Color Pg.:    $ ____________ 

Number of Color Pages: ____________  

Total Cost for Color Pages in Journal: $_______   

COPY OF JOURNAL ISSUE (AUTHOR  DISCOUNT) 

Price Per Copy:  $             Number of Copies:_____ 

Total Cost for Copies: $: ________ 

SUBSCRIPTION — 2006 
Institutional Subscription$           *  6 Issues Per Year *Add $10.00 for shipments outside the United  States 

REVISED 2/11/06 



International Journal for Multiscale Computational Engineering, 4(1)x–x(2006)

Multiscale Total Lagrangian Formulation for
Modeling Dislocation-Induced Plastic

Deformation in
Polycrystalline Materials

Xinwei Zhang, Shafigh Mehraeen, Jiun-Shyan Chen*
Civil & Environmental Engineering Department, University of California,
Los Angeles (UCLA), 5731G Boelter Hall, Los Angeles, CA 90095, USA

Nasr Ghoniem
Mechanical and Aerospace Engineering, University of California,

Los Angeles, Los Angeles, CA 90095, USA

ABSTRACT

Multiscale mathematical and computational formulation for coupling mesoscale dis-
location mechanics and macroscale continuum mechanics for prediction of plastic
deformation in polycrystalline materials is presented. In this development a total
Lagrangian multiscale variational formulation for materials subjected to geometric
and material nonlinearities is first introduced. By performing scale decomposition
of kinematic variables and the corresponding dislocation kinematic variables, several
leading-order equations, including a scale-coupling equation, a mesoscale disloca-
tion evolution equation, and a homogenized macroscale equilibrium equation, are ob-
tained. By further employing the Orowan relation, a mesoscopic plastic strain is ob-
tained from dislocation velocity and its distribution, and a homogenized elastoplas-
tic stress-strain relation for macroscale is constructed. The macroscale, mesoscale,
and scale-coupling equations are solved interactively at each macroscopic load incre-
ment, and information on the two scales is passed through the macroscale integration
points. In this multiscale approach the phenomenological hardening rule and flow
rule in the classical plasticity theory are avoided, and they are replaced by a homog-
enized mesoscale material response characterized by dislocation evolution and their
interactions.
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2 ZHANG ET AL

1. INTRODUCTION

Plastic deformation in metals occurs mainly
due to the breaking and reforming of atomic
bonds, which allows dislocations to glide
through crystalline materials. This process, to-
gether with dislocation mutual interactions as
well as interactions with other mesoscopic de-
fects, results in a heterogeneous plastic defor-
mation in crystalline grains. The macroscale
phenomenological description of material plas-
tic behavior has intrinsic limitations in incorpo-
rating mesoscale information and local defects
in the material law.

The classical theory of dislocations has led to
significant understanding of the behavior of in-
dividual crystal defects and elementary interac-
tions among them. However, it does not seem
to be well suited to the description of the highly
organized and complex behavior of dislocation
populations under dynamic conditions. For
that reason, two new approaches have emerged
over the last decade: direct computer simula-
tion of dislocation dynamics [1–3] of the col-
lective dynamics of dislocations and the self-
organization approach [4–6] for describing dis-
location structure formation. The computer
simulation approach incorporates the behav-
ior of individual dislocations, as known from
classical theory, and the complexity of their in-
teractions is explicitly handled by numerical
methods. For example, Kubin and Canova [7]
and Kubin et al. [8] divided dislocation lines
into pure edge and screw segments without
any mixed dislocations, which requires small
segmentation as well as a large number of
subsegments during the dislocation evolution.
H. M. Zbib and others [9,10] proposed another
model based on a straight segment with mixed
character. A superdislocation model was also
introduced to deal with the long-range dislo-
cation interactions. Ghoniem et al. [3] and
Ghoniem and Sun [11] developed the paramet-
ric dislocation dynamics approach by utilizing

parametrized curves to describe the dislocation
lines that yield enhanced computational accu-
racy and efficiency.

The mathematical theory of homogenization
has been introduced by Bensoussan et al. [12].
Multiscale methods have received significant
attention in recent years, and many of these
developments have been applied to the mod-
eling of heterogeneous materials [13–17]. The
homogenized Dirichlet projection method by
Oden et al. [18] and Oden and Zohdi [19] was
developed based on the concept of hierarchi-
cal modeling. In this method the mathemat-
ical model at the coarsest level is represented
by homogenized material properties. This is
referred to as the homogenized problem, and
the exclusion of heterogeneity generally makes
the homogenized problem computationally in-
expensive compared to models of finer scale.
An error estimate was developed for identi-
fying the error between the coarse-scale so-
lution using homogenized properties and the
fine-scale solution of the heterogeneous mate-
rial with microstructures [19]. This approach
was further extended to a hierarchical model-
ing of heterogeneous materials where the most
essential scales of the problem can be adap-
tively selected in the discretization [18]. In
the asymptotic expansion approach introduced
by Bensoussan et al. [12] the relationship be-
tween the coarse-scale and fine-scale solution
can be derived, and the corresponding homog-
enized differential operator and homogenized
coefficients for solving the macroscopic solu-
tion can be obtained. This method has been
applied to multiscale modeling of microstruc-
tural evolution in the process of grain growth
by Chen and Mehraeen [13,14]. Alternatively, a
multigrid method for a periodic heterogeneous
medium has been introduced by Fish and Bel-
sky [20] and Fish and Shek [21]. In this ap-
proach a multigrid method was employed to
develop a fast iterative solver for differential
equations with oscillatory coefficients. An in-
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MULTISCALE TOTAL LAGRANGIAN FORUMLATION 3

tergrid transfer operator was constructed fol-
lowing the asymptotic expansion so that the
problem on the auxiliary grid gives rise to a
homogenization problem. Wavelet-based mul-
tiscale homogenization has been introduced
by Dorobantu and Engquist [22], Chen and
Mehraeen [13], and Mehraeen and Chen [23] for
problems with fixed microstructures.

For inelastic materials, Fish et al. [24] in-
troduced a multiscale analysis of composites,
where continuum plasticity in the matrix is
taken into consideration. On the basis of
the two-scale asymptotic expansion of the dis-
placement field, a close form expression re-
lating eigenstrains in the inclusion to the me-
chanical fields was derived, and an averag-
ing theorem was employed for solving the
overall structural response. This work con-
sidered small strain in the macroscopic struc-
ture. A multiscale approach presented by Smit
et al. [25] considered a large deformation ef-
fect, in which the micro-macro structural re-
lations in large deformations were obtained,
and the method was implemented in a mul-
tilevel finite element framework. In the con-
text of nonlinear analysis a homogenization-
based multiscale method was also proposed by
Cricri and Luciano [26], where a macroscopic
failure surface is defined with microstructure
taken into consideration. Recently, a homog-
enization method was proposed by Takano et
al. [27,28], in which the scale-coupling func-
tion between macroscopic and mesoscopic vari-
ables was defined in a general, nonlinear form.
Although the aforementioned approaches in-
troduced multiscale formulation for model-
ing inelastic behavior of heterogeneous materi-
als, the phenomenological laws have been em-
ployed.

This work aims to develop a multiscale vari-
ational and computational formulation, which
allows the modeling of plastic deformation in
a continuum by incorporating mesoscopic dis-
location evolution and the corresponding ho-

mogenized stress-strain relation in a multi-
scale framework. In this approach the aver-
aged plastic strain in the microstructure is ob-
tained by the mesoscopic simulation of dislo-
cation evolution, and this information is uti-
lized to form the homogenized elastoplastic
tangent modulus for macroscopic computation.
The mesoscopic deformation and dislocation
evolution are linked to the macroscopic defor-
mation through the integration points in the
macroscopic continuum. The outline of this
paper is as follows. Section 2 reviews dis-
location mechanics and describes how plas-
tic strain and elastoplastic tangent modulus
can be constructed in grain structures. In
Section 3, the variational equation for cou-
pled continuum mechanics and dislocation me-
chanics is presented, and scale decomposition
based on asymptotic expansion is introduced.
The multiscale variational equations, includ-
ing a scale-coupling equation, the mesoscale
dislocation evolution equation, and a homoge-
nized macroscale equilibrium equation, are de-
rived. The linearization of these multiscale
equations for general nonlinear problems as
well as numerical procedures for multiscale
computation are also presented in this section.
Numerical procedures of the proposed multi-
scale formulation are given in Section 4. In
Section 5, a numerical example demonstrating
multiscale modeling of the elastoplastic behav-
ior of a CS.016 cold-worked carbon steel is pre-
sented. Conclusion remarks are outlined in Sec-
tion 6.

2. OVERVIEW OF DISLOCATION
MECHANICS

Plastic deformation in polycrystalline materials
can be described microscopically by consider-
ing point defects (vacancies interstitials and im-
purities), dislocations, grain boundaries, micro-
cracks, and voids in grain structures. In this
work, discrete dislocation evolution is modeled

Volume 4, Number 1, 2006



4 ZHANG ET AL

to characterize the plastic yielding and harden-
ing process. The internal length scales within
grain structure, such as Burgers vector and dis-
location density, are embedded in the meso-
scopic model. In what follows, dislocation me-
chanics is introduced as the basic mechanism
of plastic deformation via a multiscale homog-
enization.

2.1 Discrete Description of Dislocation
Mechanics

The primary mechanisms at the mesoscale
level controlling plastic deformation in contin-
uum are the dislocation formation, evolution,
and interactions between dislocation loops
[3,10,16,22]. In this work, two-dimensional ge-
ometry and the double slip systems with dis-
crete edge dislocations are considered in each
grain as shown in Fig. 1. Frank-Read sources,
shown as solid dots in Fig. 1(b), are introduced
at discrete nucleation points. Periodic bound-
ary conditions are imposed for both dislocation
motions and grain boundary geometry.

Following Ghoniem et al. [3], the virtual
work of a dislocation motion can be expressed
as

δEI
d =

∮

SI
d

δr · fPKds−
∮

SI
d

δr · B · v̂ds (2.1)

where B is the inverse mobility matrix, v̂ is the
dislocation velocity, SI

d is the Ith dislocation
loop, and fPK is the Peach-Koehler force, which
is defined as

fPK = [(σ + σd) · b]× ξ (2.2)

where σ is the external applied Cauchy stress
field, σd is the Cauchy stress field induced by
other dislocations, b is the Burger’s vector, and
ξ is the dislocation line vector as shown in
Fig. 2. In two dimensions the equation of mo-
tion (Eq. (2.1)) can be simplified in the follow-
ing linear drag relationship:

v̂ = MgfPK (2.3)

where Mg is the mobility of dislocation glide.
Here we assume that the motion of disloca-
tion is limited to glide along the slip plane, and
the dislocation climbing process related to high
temperature is not considered.

Following the general coordinate convection
for two interacting dislocations as shown in
Fig. 2, the stress tensor σd of an arbitrary test
dislocation is given by

(a) (b)

FIGURE 1. (a) Microstructure of AL-6XN stainless steel; (b) unit cell/microstructure with grain bound-
aries and slip planes utilized in multiscale analysis

International Journal for Multiscale Computational Engineering
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FIGURE 2. General coordinate convection for two
interacting dislocations

σd=
µb

2π(1−υ)
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(2.4)

where rx and ry are the components of posi-
tion vector measured in the coordinate system
shown in Fig. 2, b is the magnitude of Burgers
vector, µ is shear modulus, and υ is Poisson’s
ratio.

Dislocation multiplication is introduced by
Frank-Read source points, which generate new
dislocations when the resolved shear stress is
beyond the critical nucleation stress over a
given nucleation time period. Annihilation of
two dislocations on the same slip plane with
opposite Burgers vectors occurs when they are
within critical annihilation distance. In addi-
tion, if the resolved shear stress on a disloca-
tion is below the friction stress, the dislocation
becomes immobilized. It can be remobilized if
the resolved shear stress is higher than the fric-
tion stress. The plastic deformation of a crys-
talline material is largely dependent on the abil-

ity for dislocation to move within a material.
Therefore grain structural parameters that im-
pede the movement of dislocations, such as the
existence of grain boundaries, results in reduc-
ing plastic deformation of the material. In this
work we consider grain boundaries as the en-
ergy barrier of dislocation motions, and trans-
mission and absorption of dislocations across
grain boundaries are ignored.

2.2 Dislocation and Plastic Deformation

On the basis of Orowan [29], the plastic strain
rate produced by gliding dislocations can be ex-
pressed as

ε̇p = ρm v̄ bM (2.5)

where ρm is the mobile dislocation density, v̄ is
the average dislocation velocity, b is magnitude
of Burgers vector, and M is the Schmid tensor
of slip system, defined as

M = 1
2(m⊗ n + n⊗m) (2.6)

where m is slip direction and n is slip plane nor-
mal direction. On the basis of the discrete dis-
location mechanics and Orowan equation, the
plastic strain rate in a double slip system, as
shown in Fig. 1(b), can be expressed as

ε̇p = 1
2

∑

i

ρ(i)
m v̄(i)b(m(i)⊗ n(i) + n(i)⊗m(i)) (2.7)

where i is a given slip system. Further consid-
ering strain rate ε̇, decomposition into elastic
strain rate ε̇e and plastic strain rate ε̇p:

ε̇ = ε̇e + ε̇p (2.8)

A general stress-strain rate relation can be ex-
pressed by

σ̇ = C : ε̇e (2.9)

Volume 4, Number 1, 2006



6 ZHANG ET AL

where ε̇ is the Cauchy stress rate and C is the
elastic modulus tensor. Substituting Eqs. (2.7)
and (2.8) into Eq. (2.9), we have

σ̇=C :
[
ε̇− 1

2ρm v̄b(m⊗ n + n⊗m)
]

(2.10)

3. COUPLED DISLOCATION AND
CONTINUUM MECHANICS

3.1 Variational Equation

Define macroscopic and mesoscopic coordi-
nates as shown in Fig. 3 in the undeformed con-
figuration as X and Y, respectively, and macro-
scopic and mesoscopic coordinates in the de-
formed configuration as x and y, respectively.
To start, we consider a continuum with a do-
main ΩX and boundary ΓX = Γh

X ∪ Γg
X , sub-

jected to an external traction h and body force
b. At any point X in the macroscale domain,
there is an associated representative mesoscale
unit cell describing the fine-scale material het-
erogeneity and deformation expressed in both
mesoscale coordinate Y and macroscale coor-
dinate X. To set up the multiscale variational
equation, we first account for all the macro- and
mesoscale features and mechanisms in the con-
tinuum domain ΩX . If a virtual material dis-

placement δu and a virtual dislocation motion
δr are imposed on this system, we have the fol-
lowing variational equation:

∫

ΩX

δui,JPjidΩ

+
NUC×ND∑

I=1




∮

SI
d

δrifPKids−
∮

SI
d

δriBij v̂jds




−
∫

ΩX

δuibidΩ−
∫

Γh
X

δuihidΓ = 0 (3.1)

with boundary conditions

PjiNj = hi on Γh
X

ui = gi on Γg
X (3.2)

where Γh
X and Γg

X are natural and essential
boundaries in the undeformed configuration,
respectively, (.),J = ∂ (.)/∂Xj , Pji is first Piola-
Kirchhoff stress, bi is the body force defined in
ΩX , hi is the surface force divided by the un-
deformed surface area, Nj is the surface nor-
mal defined on Γh

X , B is the inverse mobility
matrix, v̂ is the dislocation velocity, fPK is the

FIGURE 3. Micro- and mesocoordinate systems
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Peach-Koehler force, SI
d is the Ith dislocation

loop, NUC is the total number of mesoscale
unit cells in ΩX , and ND is the total num-
ber of dislocations within each mesoscale unit
cell. It is understood immediately that since
this equation is expressed in the macroscale do-
main with all macroscale and mesoscale fea-
tures considered, incorporating all dislocation
loops on this scale is computationally impos-
sible. In Section 3.2, a multiscale decompo-
sition of macroscale and mesoscale kinematic
variables will be introduced so that certain vari-
ables are only solved at their appropriate scale
level, and a scale-coupling relation will be in-
troduced to bridge variables at different scales.

3.2 Multiscale Decomposition

Define a representative mesoscale unit cell in
the mesoscale coordinate with domain ΩY as
shown in Fig. 4, and periodicity in the unit cell
at any deformation state is assumed. The inter-
relation of macroscopic and mesoscopic coordi-
nates in the undeformed configuration is iden-
tified by

Yi =
Xi

λ
(3.3)

where the scale ratio λ is a very small number.
Similarly, Eq. (3.3) in deformed configuration
reads

FIGURE 4. Periodic grain structure with domain
ΩY and ΓY boundary

yi =
xi

λ
(3.4)

For notational convenience in this work, any
multiscale variable t is defined in the following
asymptotic form

t = t[0] + λt[1] + O
(
λ2

)
(3.5)

where t is the mesoscopic variable, t[0] is re-
ferred to as the macroscopic variable (coarse-
scale component of t), and t[1] is defined as the
fine-scale component of t.

By employing the asymptotic theory, the
mesoscopic displacement in the unit cell (with
fixed X) measured using mesoscopic coordi-
nates can be expressed by the asymptotic ex-
pansion in Eq. (3.5) (scaled by 1/λ) to yield

ui (Y) =
1
λ

ui
[0] (X) + ui

[1] (X,Y)

(holding X fixed) (3.6)

where ui (Y) is the mesoscopic displacement
and ui

[0] (X) and ui
[1] (X,Y) are coarse- and fine-

scale components of displacement, respectively.
Here, the coarse-scale component ui

[0] (X) is in-
dependent of mesoscale coordinate Y, whereas
ui

[1] (X,Y) is a perturbed term caused by the het-
erogeneity of the grain structure.

Furthermore, we adopt the following coarse-
fine scale interrelation

ui
[1](X,Y)= αkli(Y)

(
∂uk

[0]

∂Xl

)
= αkli(Y)F [0]

kl (3.7)

where the coupling function αkli (Y) is inde-
pendent of macroscopic coordinates X. From
the stress-strain relation, and considering that
the coarse-scale component of displacement
is independent of mesoscopic coordinates Y,
Cauchy stress can be expressed as

σij = σ
[0]
ij + λσ

[1]
ij + O

(
λ2

)
(3.8)

Volume 4, Number 1, 2006



8 ZHANG ET AL

Consequently, the dislocation velocity v̂ and
dislocation stress σd induced by the multi-
scale stress field can be expressed by the same
asymptotic form:

v̂ = v̂[0] + λv̂[1] + O
(
λ2

)
(3.9)

σd = σd[0] + λσd[1] + O
(
λ2

)
(3.10)

where v̂[0] and v̂[1] are the dislocation veloci-
ties induced by the coarse-scale and fine-scale
stress fields, respectively, and σd[0] and σd[1]

are the corresponding coarse- and fine-scale
dislocation-induced stresses, respectively. In-
troducing Eq. (3.8) into Eq. (2.2) gives rise to

fPK(σ,σd) = f[0]
PK(σ[0], σd[0])

+λf[1]
PK(σ[1], σd[1]) + O

(
λ2

)
(3.11)

σ
[0]
PK(σ[0], σd[0]) = [(σ[0] + σd[0]) · b]× ξ (3.12)

f[1]
PK(σ[1],σd[1]) = [(σ[1] + σd[1]) · b]× ξ (3.13)

Subsequently, the energy due to an evolving
dislocation follows the same asymptotic form:

δEI
d =

∮

SI
d

δr · fPKds−
∮

SI
d

δr · B · v̂ds

=
∮

SI
d

δr · f[0]
PKds−

∮

SI
d

δr · B · v̂[0]ds

+λ




∮

SI
d

δr·f[1]
PKds−

∮

SI
d

δr·B·v̂[1]ds


+ O

(
λ2

)

= δE
I[0]
d +λδE

I[1]
d +O

(
λ2

)
(3.14)

where

δE
I[0]
d =

∮

SI
d

δr·f[0]
PKds−

∮

SI
d

δr·B·v̂[0]ds (3.15)

δE
I[1]
d =

∮

SI
d

δr·f[1]
PKds−

∮

SI
d

δr·B·v̂[1]ds (3.16)

To obtain multiscale variational equations,
Eqs. (3.6) and (3.14) are introduced to the varia-
tional Eq. (3.1) to yield

∫

ΩX

(
∂δu

[0]
i

∂Xj
+

∂δu
[1]
i

∂Yj

)
PjidΩ

+
NUC×ND∑

I

(δE
I[0]
d + λδE

I[1]
d )

=
∫

ΩX

(
δu

[0]
i + λδu

[1]
i

)
bidΩ

+
∫

Γh
X

(
δu

[0]
i + λδu

[1]
i

)
hidΓ (3.17)

in which we used the scaling relation in
Eq. (3.3) and employed the following chain
rule:

∂ (.)
∂Xi

=
∂ (.)
∂Yl

∂Yl

∂Xi
=

1
λ

∂ (.)
∂Yi

(3.18)

Treating δu
[0]
i , δu

[1]
i , and δri as independent

variations and considering the limit of λ → 0,
Eq. (3.17) gives rise to three multiscale varia-
tional equations:

3.2.1 Scale-Coupling Equation

∫

ΩX

∂δu
[1]
i

∂Yj
Pji(σd, v̂, u)dΩ = 0 (3.19)

where the fine-scale variable u
[1]
i is related to

the coarse-scale variable ∂u
[0]
k

∂Xl
via the scale-

coupling function αkli (Y), as given in Eq. (3.7).
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Note that the first Piola-Kirchhoff stress is a
function of dislocation evolution. This equation
is to be used to solve for the coupling function
αkli (Y), where the details will be discussed in
the next section.

3.2.2 Macroscale Equilibrium Equation

∫

ΩX

∂δu
[0]
i

∂Xj
Pji(σd, v̂, u)dΩ

=
∫

ΩX

δu
[0]
i bidΩ +

∫

Γh
X

δu
[0]
i hidΩ (3.20)

where the homogenized stress-strain relation-
ship required in this macroscale equation is to
be obtained from the scale-coupling function
solved in Eq. (3.19) and the mesoscale disloca-
tion evolution equation given below.

3.2.3 Mesoscale Dislocation Evolution
Equation

Utilizing the coarse-scale component of the
strain obtained by Eq. (3.20), the third decou-
pled equation gives rise to

NUC×ND∑

I=1

δE
I[i]
d = 0, i = 0, 1 (3.21)

from which dislocation velocity v̂[i] can be
solved. Separating the summation operator in
Eq. (3.21) into two levels, one over each unit
cell, and the other over all unit cells in the do-
main ΩX reads

NUC∑

m=1

ND∑

l=1




∮

Sl,m
d

δr·f[i]
PK(σ[i], σd[i])ds−

∮

Sl,m
d

δr·B·v̂[i]ds




= 0, i = 0, 1 (3.22)

where NUC is the total number of unit cells in
ΩX and ND is the total number of dislocations
within each unit cell. A sufficient condition to
satisfy Eq. (3.22) reads

ND∑

l=1




∮

Sl
d

δr·f[i]
PK(σ[i],σd[i])ds−

∮

Sl
d

δr·B·v̂[i]ds




= 0, i = 0, 1 (3.23)

Given coarse-scale components of the strain
at quadrature points of global structure,
Cauchy stress is computed through an elas-
tic trial predictor at each unit cell. If elastic
trial stress is greater than the nucleation stress,
Eq. (3.23) is then solved for dislocation veloc-
ity v̂, which leads to the incremental plastic
strain. Consequently, an elastic trial stress is
corrected by means of calculated plastic strain.
It is important to note that since the driving
force of dislocation evolution is a linear func-
tion of stresses σ and σd, we have f[0]

PK+λf[1]
PK =

[(σ[0]+λσ[0])+(σd[0]+λσd[0])·b]×ξ = fPK . Thus
it is straightforward to show that the disloca-
tion velocity can be solved from the combined

equation
ND∑
l=1

δE
l[0]
d + λδE

l[1]
d =

ND∑
l=1

δEl
d = 0, i.e.,

ND∑

l=1




∮

Sl
d

δr·fPK(σ, σd)ds−
∮

Sl
d

δr·B·v̂ds


= 0 (3.24)

This implies that dislocation velocity can be
treated strictly as a mesoscale variable. Al-
though the dislocation evolution equation now
can be expressed at the mesoscale level, the
stress fields involved in the evolution equation
need to be calculated from coarse- and fine-
scale displacements that are to be solved from
the macroscale equilibrium equation and scale-
coupling equations, respectively.
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3.3 Linearization of Multiscale Equations

The multiscale Eqs. (3.19) and (3.20) are, in
general, nonlinear with respect to ui, and lin-
earization of these two equations is needed.
We first consider that coarse-scale component
u

[0]
i (X) varies linearly with respect to X in the

mesoscale unit cell:

u
[0]
i (X)≈

(
∂u

[0]
i

/
∂Xj

)
Xj =λ

(
∂u

[0]
i

/
∂Xj

)
Yj (3.25)

in which ui (X,Y) is measured in macroscopic
scale, and we ignore higher-order terms O

(
λ2

)
.

Substituting Eq. (3.25) into the incremental
form of Eq. (3.6) yields

∆ui (Y) = ∆F
[0]
ij Yj + ∆u

[1]
i (X,Y) (3.26)

where ∆F
[0]
ij = ∂∆ui

[0]
/

∂Xj is the incremental
macroscopic deformation gradient, and incre-
mental fine-scale component of displacement
∆u

[1]
i (X,Y) is obtained from Eq. (3.7) as

∆ui
[1] (X,Y) = αkli(Y)∆F

[0]
kl (3.27)

3.3.1 Incremental Scale-Coupling Equation

Introducing Eqs. (3.26) and (3.27) into the incre-
mental form of Eq. (3.19) yields

∫

ΩX

∂δui
[1]

∂Yj
(Dijkl+Tijkl)

(
∂∆uk

[0]

∂Xl
+

∂∆uk
[1]

∂Yl

)
dΩ

= −
∫

ΩX

∂δui
[1]

∂Yj
PjidΩ (3.28)

where

Dijkl = FimC2
jmlnFkn, Tijkl = Sjlδik (3.29)

Here C2
jlmn is the second elasticity tensor and

Sij is the second Piola-Kirchhoff stress. Further,
substituting Eq. (3.27) into Eq. (3.28) and taking
the average over the unit cell gives rise to

∫

ΩX

1
AY

[ ∫

ΩY

∂δui
[1]

∂Yj
(Dijkl+Tijkl)

×
(
δkmδnl+

∂αmnk(Y)
∂Yl

)
dΩ

]
∂δum

[0]∂Xn

d
Ω

= −
∫

ΩX

1
AY




∫

ΩY

(
∂δui

[1]

∂Yj

)
PjidΩ


dΩ (3.30)

where AY is the area of the unit cell in the
undeformed configuration and ΩY is the do-
main of the unit cell. Since the length scale of
the mesoscale unit cell is considerably smaller
than the macroscopic length scale, the residual
(R.H.S.) in the mesoscopic Eq. (3.30) can be ig-
nored, and it yields

∫

ΩY

∂δui
[1]

∂Yj
(Dijkl + Tijkl)

∂αmnk(Y)
∂Yl

dY

= −
∫

ΩY

∂δui
[1]

∂Yj
(Dijmn + Tijmn) dY (3.31)

Note that mesoscale displacement ui must be
used to calculate Dijkl and Tijkl in Eq. (3.31).
Once the scale-coupling function αmnk is ob-
tained from Eq. (3.31), the fine-scale incre-
mental displacement can be calculated using
Eq. (3.27).

3.3.2 Incremental Macroscale Equilibrium
Equation

Substituting Eqs. (3.26) and (3.27) into the in-
cremental equation of Eq. (3.20) and perform-
ing an average process over the unit cell, the

International Journal for Multiscale Computational Engineering



MULTISCALE TOTAL LAGRANGIAN FORUMLATION 11

following incremental equilibrium equation is
obtained:

∫

ΩX

∂δui
[0]

∂Xj

{
1

AY

∫

ΩY

(Dijkl+Tijkl)

×
(
δkmδnl+

∂αmnk(Y)
∂Yl

)
dY

}
∂∆um

[0]

∂Xn
dΩ

=
∫

ΩX

δui
[0]bidΩ+

∫

Γh
X

δui
[0]hidΓ

−
∫

ΩX

(
∂δui

[0]

∂Xj

)
P

[0]
ji dΩ (3.32)

Recall that the inner integral in Eq. (3.32) is
calculated over the unit cell, which leads to
homogenized geometric and material response
tensors in each unit cell. Recasting the inner in-
tegral in Eq. (3.32) leads to homogenized mate-
rial and geometric response tensors as follows:

D̄ijmn=
1

AY

∫

ΩY

Dijkl

×
(

δkmδnl +
∂αmnk (Y)

∂Yl

)
dΩ (3.33)

T̄ijmn=
1

AY

∫

ΩY

Tijkl

×
(

δkmδnl +
∂αmnk (Y)

∂Yl

)
dΩ (3.34)

where D̄ijmn is the homogenized material re-
sponse tensor and T̄ijmn is the homogenized
geometric response tensor. Equation (3.32) is
rewritten as

∫

ΩX

∂δu
[0]
i

∂Xj
A

[0]
ijmn

∂∆um
[0]

∂Xn
dΩ =

∫

ΩX

δui
[0]bidΩ

+
∫

Γh
X

δu
[0]
i hidΓ−

∫

ΩX

(
∂δui

[0]

∂Xj

)
P

[0]
ji dΩ (3.35)

A
[0]
ijmn = D̄ijmn + T̄ijmn (3.36)

At each macroscopic iteration, homogenized
tensor A

[0]
ijmn is calculated from the unit cell

that corresponds to each integration point of
the macroscopic structure using the macro-
scopic information F

[0]
ij . Obtaining the homog-

enized material property at integration points
requires solving the scale-coupling function in
Eq. (3.31). With the homogenized material
property, the macroscopic displacement incre-
ment is computed using Eq. (3.35), and the
macroscopic deformation of structure is up-
dated.

It can be easily identified that both the ho-
mogenized material response tensor D̄ijmn and
the homogenized geometric response tensor
T̄ijmn do not possess major symmetry. The
symmetry property in the material and homog-
enized geometric response tensors can be re-
covered by adopting a consistent homogeniza-
tion procedure [30], as discussed in Appendix
A, where the macroscopic strain energy den-
sity W [0] is first calculated, and the homoge-
nized incremental stress-strain relation is then
obtained consistently.

The dislocation evolution Eq. (3.23) is a lin-
ear function of v̂, and thus the linearized equa-
tion takes the same form as the total form equa-
tion. The multiscale Eqs. (3.24), (3.31), and
(3.35) are solved interactively to yield the com-
plete macroscopic and mesoscopic solutions.

4. NUMERICAL PROCEDURES

In this multiscale analysis the macroscale equi-
librium equation is discretized by a coarse
mesh for computational efficiency. At each
integration point of the macroscopic mesh,
the scale-coupling function is solved on the
unit cell using the scale-coupling equation and
macroscopic stress and strain information. The
mesoscopic deformation and stress are then ob-
tained using the scale-coupling function, and
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this information is employed to calculate dislo-
cation motion using the mesoscopic dislocation
evolution equation. The computed dislocation
velocities and their distributions are used to ob-
tain plastic deformation of the unit cell. Finally,
the homogenized elastoplastic stress-strain re-
lation is returned to the macroscopic equilib-
rium equation for solving macroscopic defor-
mation at the next load step. These computa-
tional procedures are illustrated in Fig. 5.

5. NUMERICAL EXAMPLE

The elastoplastic behavior of a CS.016 cold-
worked carbon (0.2% C) steel rod subjected
to uniaxial tension is analyzed by the pro-
posed multiscale method, and the results are
compared with experimental data reported by
Brooks [17]. This model problem is shown in
Fig. 6, in which the rod is subjected to an uniax-
ial tension of 400 MPa. The mesoscopic para-

FIGURE 5. Computational algorithm of multiscale analysis

FIGURE 6. CS.016 cold-worked carbon steel rod subjected to an uniaxial tension
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meters are given in Table 1. The grain structures
of the unit cell (size = 100 µm × 100 µm) are
taken from Mehraeen and Chen [23], as shown
Fig. 3, and the Young’s modulus of each grain is
assigned randomly in the range of E0±(20%)E0

such that the averaged modulus is consistent
with the macroscopic Young’s modulus E0 give
in Table 1.

The macroscopic tension increment of
20 MPa is used. At each macroscopic load
step, macroscopic strains and stresses based on
elastic trial at the integration points are com-
puted. For a given macroscopic incremental
strain, mesoscopic incremental displacement is
obtained through the scale-coupling function
by Eq. (3.31), and consequently, the mesoscopic
strain increment is computed. The dislocation
computations in the grains are invoked if the
trial stress is greater than the dislocation nu-
cleation stress. On the basis of the dislocation
calculations given in Section 4, the mesoscopic
plastic strain increment is computed, and the
elastoplastic tangent operator is returned to
the macroscopic integration points for macro-
scopic equilibrium calculation. Figure 7 shows
the evolution of dislocations with increasing
strain in the grain structure. The dislocation
pileups increase with increasing deformation.
The predicted axial stress-strain response, as
shown in Fig. 8, agrees well with experimental
observations [17].

6. CONCLUSIONS

This work aims to develop a dislocation-based,
multiscale formulation for modeling disloca-
tion formation and evolution in grain structures
and for characterizing how mesoscale disloca-
tions are related to plastic deformation in the
continuum. This paper addresses the follow-
ing issues: (i) multiscale variational equations
between continuum scale and mesoscale for
general, large deformation conditions; (ii) cou-

pling of mesoscale dislocations and continuum
plastic deformation; (iii) numerical procedures
for multiscale modeling of plastic deformation;
and (iv) dislocation-based, multiscale analysis
of plastic deformation of a CS.016 cold-worked
carbon steel without using phenomenological
plasticity flow and hardening rules.

An asymptotic, expansion-based, homoge-
nization method incorporated with mesoscale
dislocation mechanics has been proposed to
provide a systematic approach for multiscale
modeling of plastic deformation in polycrys-
talline materials. To yield the multiscale vari-
ational equations and scale-coupling relation,
a total Lagrangian formation and its lineariza-
tion have been adopted. By introducing the
asymptotic expansion of the material displace-
ment in the test and trial functions in the
variational equation and by averaging strain
energy density of the unit cell, the result-
ing leading-order equations yield the scale-
coupling relation, coarse-scale homogenized
equilibrium equation, and fine-scale disloca-
tion evolution equation. At every integration
point in the macroscopic structure, the point-
wise macroscale strain is passed onto the cor-
responding mesoscale unit cell. Within the
mesoscale unit cell, the scale-coupling function
was first solved numerically, and mesoscale
incremental displacement, strain, and trial
stress were computed using the scale-coupling
function and macroscale strain information.
The mesoscale dislocation evolution in the
grain structures was then simulated, and the
mesoscale incremental plastic strain was ob-
tained from the dislocation velocity and dis-
tribution. By incorporating the scale-coupling
function and the mesoscale plastic strain, a
homogenized elastoplastic stress-strain relation
was obtained and returned to the macroscale
integration points. Using the elastoplastic tan-
gent moduli at integration points in the contin-
uum domain, the macroscopic discrete equilib-
rium equation was constructed and solved. In

Volume 4, Number 1, 2006
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TABLE 1. Material properties of AL-6XN stainless-steel and microstructure parameters

Young’s modules (E0) 207 GPa
Poisson’s ratio 0.30
Dislocation mobility 1.1× 103

(
Pa−1s−1

)
Dislocation nucleation time 3.0× 10−7s
Dislocation nucleation stress 150 MPa

FIGURE 7. Evolution of dislocations at different stain stages

International Journal for Multiscale Computational Engineering
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FIGURE 8. Comparison of macroscopic stress-
strain curve obtained from proposed multiscale ap-
proach with the experimental results of Brooks [17]

this multiscale approach, the phenomenologi-
cal hardening rule and the flow rule in classi-
cal plasticity theory are avoided, and they are
replaced by a homogenized mesoscale material
response characterized by dislocation evolution
and their interactions.

In the numerical example, the elastoplas-
tic deformation of a CS.016 cold-worked car-
bon steel has been demonstrated. The macro-
scopic stress-strain response has been obtained
by means of the proposed multiscale formu-
lation and numerical algorithms. This stress-
strain relation depicted a good agreement with
the experimental data.
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APPENDIX A: CONSISTENT
HOMOGENIZATION OF THE
MACROSCALE EQUILIBRIUM EQUATION

In this section we follow the consistent homog-
enization method proposed by Bensoussan et
al. [12]. First, the macroscale strain energy den-
sity function is defined by

W [0] =
1

AY

∫

ΩY

W (F) dΩ (A1)

Fij = ∂ui/∂Xj (A2)

where f and W are the mesoscopic deformation
gradient and strain energy density in the unit
cell, respectively, and W [0] is the pointwise
macroscopic strain energy density. Conse-
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quently, it is demonstrated that [12] the macro-
scopic first PK stress tensor is obtained by

P
[0]
ij =

∂W [0]

∂F
[0]
ji

=
1

AY

∫

Y

∂W

∂F
[0]
ji

dΩ

=
1

AY

∫

Y

PnmKnmijdΩ (A3)

Pnm =
∂W

∂Fmn
(A4)

where

Knmij = deltajmδin + ηjimn,

ηklin =
∂αkli (Y)

∂Yn
(A5)

Recasting Eq. (A3) in the incremental form
yields

∆P
[0]
ij = A

[0]
ijkl∆F

[0]
lk (A6)

A
[0]
ijkl = 1

AY

∫
ΩY

ApqrsKpqijKrskldY ,

Apqrs =
∂2W

∂Fqp∂Fsr
= C2

pntrFqnFst + Sprδsq (A7)

Recall that Eq. (A6) demonstrates the ma-
jor symmetry property of the homogenized
first elasticity tensor A

[0]
ijkl. Furthermore, un-

like other asymptotic, expansion-based meth-
ods [12, 20, 24, 25, 28], the second elasticity ten-
sor in above proposed method also possesses
a major symmetry property [12]. On the basis
of the incremental form of macroscopic equilib-
rium Eq. (3.35) and the above consistent ho-
mogenization procedures, the macroscopic in-
cremental equation is obtained:

∫

ΩX

∂du
[0]
i

∂Xj
A

[0]
ijmn

∂∆u
[0]
m

∂Xn
dΩ =

∫

ΩX

du
[0]
i bidΩ

+
∫

Γh
X

du
[0]
i hidΓ−

∫

ΩX

∂du
[0]
i

∂Yj
P

[0]
ij dΩ (A8)
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