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Multiscale Modelling of Self-Organized

Mono-Layer Surface Atomic Clusters

by

Qiyang Hu

Doctor of Philosophy in Mechanical Engineering
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Professor Nasr M. Ghoniem, Chair

We present here a multi-scale modelling approaches for investigation of self-

organized monolayer atomic clusters on atomically flat substrates during epitaxial

deposition processes. A phase field model is developed for the free energy of the

system, which includes short-range as well as long-range interactions between de-

posited atoms clusters mediated by the substrate. The way of calculating cluster

interactions is the elastic theory of surface stress. The coverage-dependent part in

nonlocal interactions is found to have a q3 destabilizing effect, where q is the mag-

nitude of the wave vector for spatial fluctuations in surface atom concentrations.

The coverage-independent part associated with the presence of an external elastic

field in the substrate is shown to provide an efficient way to control the spatial and

size distributions of clusters. Qualitative and quantitative agreements between

model predictions and experimental observations on self-organized Ge quantum

dots on Si substrate are demonstrated. To precisely determine the influence of

periodic strain fields in the substrate on the nucleation of self-organized surface

atomic clusters, a Kinetic Monte Carlo model was developed. Island diffusion is

found to play a dominant role in the early stage of nucleation.
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CHAPTER I

Introduction

1 Quantum Dots and Atomic Clusters

Nowadays “nanotechnology” has become one of the most important branches

in modern engineering and sciences. Nanoelectromechanical systems (NEMS),

carbon nanotube field effect transistors, bio nanosensors and nanocrystal assem-

blers illustrate the emergence of a promising future in the economic production

of goods and services. Quantum Dots (QDs), which are considered as a perfect

candidate for future quantum computer chips and laser generators, have drawn

special attention because of their special electronic and optical properties [8].

It should be noted that a so-called “nanoscale device” should be denoted by

an object of which at least one of its dimensions is in the nanometer scale. Thus

in a two-dimensional (2-D) case, the nanostructure might be a sheet with a nano-

thickness. In a one-dimensional (1-D) case, it can be a nanowire or a nanocube.

If the scaling is for all three dimensions, the structure would become so small that

it contains only a few atoms (atomic cluster) and sometimes it is described as

a “zero-dimensional”(0-D) or “dot” object. Unlike macroscopic bulk materials,

strong size-dependent properties are magnified in nanostructures. Especially in

atomic clusters, quantum states for electrons become few and sharply separated

in energy. This is the reason why the term “quantum” often appears in the

names of various nano-sized devices. A typical size of such an atomic cluster or
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quantum dot is 10nm and it may contain 104 atoms or more [8]. Figure 1.1 shows

two typical images of single quantum dot [47, 52].

nmA B

Figure 1.1: Experimental observations of single quantum dot. (A) Magnified

STM topography image of Ge nanocrystal on Si(001) [47]. (B) STM topography,

imaged in gradient mode, of a Ge island deposited on Si(111) [52].

One of the basic problems in the research on quantum dots is the fabrication

of such nanometer structures, especially for a massive manufacturing process.

The current research is initiated by this challenge, that is how to fabricate ultra

small structures in a precise manner and control their spatial and size distribu-

tions. Initially researchers employed conventional fabrication techniques, such

as patterning, masking, etching and lithography. All these methods in some

sense belong to a “top-down” approach for fabrication which means that the

ultra-small structures are obtained by manipulating or cutting from macroscopic

objects. However, these methods have some intrinsic limitations, such as the

production of defects during the manufacturing process. Another drawback is

that the lateral resolution is always limited by the length scale of masks or the

wavelength of light in lithography, which is limited on the order of 180nm [82].

In contrast to “top-down” approaches, there are two possibilities to manufac-

ture quantum dots in a “bottom-up” way. One is to manipulate the individual
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atoms and assemble them into an atomic cluster. This technique can be looked as

an extension of the methods of scanning probe microscopy (STM). These scan-

ning probe machines can be imagined as prototype molecular assemblers [82].

However this method cannot meet the need for the massive production in an

industrial sense. The second choice is letting atoms assemble spontaneously by

self-organization effects. The mechanism of atomic self-assembly will be discussed

and reviewed in the next chapter. Generally speaking, however, self-assembly can

be understood as a result of interactions between atoms during a non-equilibrium

process. Since the intrinsic wavelength of self-organized patterns is often on the

order of 10 nm, it is a preferred route to fabricate nano-size structures. Thus,

the basic idea is to apply on the system some specific external field, which is

able to interplay with the self-organized behavior of atoms and make the pattern

biased in an expected way. Specifically, for fabricating self-assembled quantum

dots (QDs), periodic external fields, such as the strain field on the surface gener-

ated by interfacial dislocation lines [34, 33], inclusions [73, 31] or void lattices [18]

buried in the matrix may be utilized for self-assembly. Besides the elastic field

mediated by the substrates, electro-magnetic laser fields which directly act on

the surface adatoms have recently shown to be a good choice to generate regular

distribution of atomic clusters [46, 57].

2 Scope and Contributions of Current Thesis

The present research work is aimed at the study of the influence of externally

applied force fields on the mechanisms of self-assembly of surface atomic clusters

on substrates during atomic deposition processes. In other words, we pursue

here a comprehensive understanding of the nucleation of ad-atom clusters and

the large-scale evolution of these clusters into specific regular patterns as a result
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of the interplay between naturally self-organization and forced-ordering. It should

be noted that in the present thesis, we use the term “directed self-organization” to

denote the organization patterns by the coupling of spontaneous ordering effects

(“intrinsic self-organization”) and the applied external fields.

The main contributions of the current thesis can be summarized in the fol-

lowing:

• Theoretical contributions: Extension the Walgraef’s theory of surface atomic

self-assembly:

1. The influence of external fields, such as those generated by periodic ar-

rays of interfacial dislocations, bulk inclusions or laser electromagnetic

fields has been specifically included.

2. Cluster-cluster interaction energy terms in the general continuum model

has been included.

• Numerical contributions: A series of numerical procedures based on system-

atic numerical Fourier-spectral methods in a Galerkin approach has been

developed. This resulted in the development of new algorithms on single-

processor and multi-processor (MPI) platforms in Fortran 90.

• Atomistic simulations: A relationship between the island size and binding

energy by static MEAM interatomic potential calculations and the corre-

sponding Kinetic Monte Carlo (KMC) simulations based on island diffusion

kinetics have been developed.

The thesis is organized as follows. In Chapter II, experimental observations

and theoretical developments for intrinsic and directed self-organizations surface

atomic clusters are thoroughly reviewed. In Chapter III a phase field model
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is presented in details. Especially the effect of external fields is described as a

coverage-independent term and the cluster-cluster interaction is described as a

global coverage-dependent term. A systematic spectral method is developed in

Chapter IV for numerical solution of the governing equation of the phase field

model. Then Chapter V presents the simulation results with both the natural

self-organization and three possible external fields, which are periodic strain fields

by interfacial dislocation networks, and by buried inclusions and periodic electro-

magnetic fields by lasers. A qualitative and quantitative comparison is made for

the dislocation case. In Chapter VI an atomistic KMC model which is indepen-

dent of the phase field model is presented and it gives the necessary information

during the very early stage of surface cluster nucleation. Finally the conclusions

and discussions are given in the last chapter, Chapter VII.
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CHAPTER II

Literature Review

3 Experimental Observations

3.1 Intrinsic Self-Organization Phenomena

Self-ordering structures on surfaces, especially crystal surfaces, have been ob-

served under a variety of experimental conditions. In Figure 3.1, three typical

atomic images illustrate some of these observations. Figure 3.1 (A) shows a strip

corrugated Au(111) surface formed by the interaction between surface steps and

surface reconstruction processes. The lighter color lines in the STM image are

stacking fault regions from the surface construction. It is found that a discom-

mensuration line is systematically observed parallel to the step at the bottom of

{100} steps, whereas {111} steps are always crossed by discommensuration lines.

Figure 3.1 (B) shows square-shape dots of nitrogen atoms deposited on a copper

surface. It is found that with increasing coverage, the original squares change to

octagonal-like islands by “cutting” the corners, if other nitrogen islands are in the

immediate neighborhood similar to the formation of four-leaf clover structures at

low coverage. Finally the bare copper area between four adjacent octagons forms

a square rotated by 45◦ with respect to the 〈100〉 direction. Fig. 3.1 (C) shows

a self-assembled growth of highly symmetric germanium pyramids when Ge is

deposited onto a T4-boron surface phase on Si(111) at low temperatures (about
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400◦C). The Ge pyramids have heights of about 30 nm and base lengths of about

200 nm. It is also found that the pyramids have a perfect 3-fold symmetry and

the dots are nearly uniform in size. They are aligned parallel to the terrace steps

and all oriented in the same direction.

CBA

10  nm30  nm 500  nm

Figure 3.1: Experimental observations of self-ordering phenomena on the surfaces.

(A) STM image of closed-packed steps on Au(111) surface [61]. (B) Atomically

resolved image of Nitrogen domains on bare Cu substrate [16]. (C) AFM images

of Self-Assembled Ge dots on top of
√

3×
√

3 boron surface phase on Si(111) [15].

From the atomic images shown above, it can be seen that there are mainly

two types of characteristic structures in self-organization, that are the dots and

stripes†. For dot-type structures, it has been theoretically shown that on isotropic

surface the dots will be distributed in hexagons [79]. If the surface is anisotropic

which is a crystal surface, the distribution will much depend on the detailed

property of the anisotropy [59]. In Figure 3.1 (B), the square shape dots are

formed since the χ parameter of copper is χ = c11−c12−2c44 = −1.0 [16]. Another

characteristics in the above experiments is that the internal length scale of the

self-ordering structures is in nano-scale, which is usually very small compared

†Another type of self-ordering structure is the “hole” which is the reciprocal type of dots.
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with the external field applied.

3.2 Interfacial Dislocation Fields

A conventional way to form surface clusters by coupling self- and forced- organi-

zation is to create a periodic elastic field in the substrate generated by a periodic

dislocation array of interfacial dislocations. The non-uniform and periodic stress

field on the surface forces atoms to be “self-” assembled.

An extensive experimental study was undertaken by Kim et al. [32, 34]. In

their experiments, samples were grown in a Riber EVA-32 molecular beam epi-

taxy (MBE) system equipped with two electron beam evaporation sources of Si

and Ge. The entire relaxed buffer layer was grown at 550◦C with the growth

rate of 2 Å · sec−1. The structure is nearly elastically strained as grown. When

the layer exceeds the critical thickness for pseudomorphic growth, the mismatch

strain is relieved by the formation of misfit dislocations. The thin Si capping

layer is thus under a tensile strain, which served to keep the surface flat. Post

growth anneals at 700◦C for 30 minutes were used to introduce the buried misfit

dislocation network. The resulting misfit strain relaxation after the anneal was

approximately 10%. The surface of the relaxed buffer layers has typical roughness

9.9 Å RMS according to atomic force microscopy (AFM). The growth rate of Ge

QDs for all samples was kept constant at 0.05 Å/s for the same coverage of Ge.

The thickness of the partially relaxed Si1−xGex buffer layer (the experimental

variable in this study) varied from 300 Å to 2000 Å in order to study the effect of

the strain field from interfacial dislocations on the self-assembly of Ge QDs.

A Park Scientific AFM operating in the contact mode was used for the charac-

terization of the resulting surface topography. The directions of Burgers vectors of

the interfacial buried dislocations as well as the preferential nucleation sites of Ge
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SAQDs were determined by using a plan-view transmission electron microscope

(TEM). A 200-kV JEOL 2000FX was used for the plan-view TEM micrographs

and Burgers vector analysis using four different g-vectors including g = 〈1̄ 3 1̄〉,
〈1 3 1̄〉, 〈1 1 1̄〉, and 〈1̄ 1 1̄〉 and the g · b = 0 extinction criterion.

400 nm 110

110
-

Figure 3.2: A plan-view STM micrograph of the sample with Ge SAQDs grown

on the relaxed 800Å thick Si0.85Ge0.15 buffer layer is shown [32].

Figure 3.2 is the corresponding plan-view TEM image representing the order-

ing of Ge SAQDs along underlying buried dislocations in the relaxed 800Å thick

Si0.85Ge0.15 buffer layer. The projections of Burgers vectors corresponding to in-

dividual dislocations onto the interface plane are marked by arrows, verifying the

direction of the slip plane. Each array of SAQDs is not only clearly associated

with a single buried dislocation but is also observed to be decisively located on

one side of the buried dislocations.

The average distance (650±13Å) between the dislocation line and the ar-

ray of Ge SAQDs, in Figure 3.2, approximately agrees with a calculated value

of 640 Åwhich is the lateral distance from the buried dislocation to the posi-

tion where the {1 1 1} slip plane intersects the top surface of the 900 Å (800 Å

9



Si0.85Ge0.15 plus 100 Å Si capping) thick underlying layers. A dashed line indicates

the centers of the dots which belong to the horizontal dislocation below.

 

2µm 

Dislocation 

  9.0µm 

b) 

2µm 

a) 

2µm 

c) 

2µm 

d) 

Dislocation 

Figure 3.3: AFM topographic images of Ge SAQDs with 4 − 6 Å coverage on

a partially relaxed Si0.9Ge0.1 buffer layer. From (a) to (d) the Ge coverage is

respectively 4.0 Å, 4.5 Å, 5.0 Å, 6.0 Å [34].

Figure 3.3 shows the existence of three types of surface sites and the resulting

three-stage nucleation at dislocation intersections (a), single dislocation lines (b),

and in regions far away from dislocations (c) respectively. These observations

can also be understood as three different organization patterns resulting from

the coupling between the self-ordering interactions and the external strain fields.

The local coverage, c, can be viewed as the control parameter here. It should

10



be noted that Ge growth on a Si substrate follows the Stranski-Krastanov (SK)

mode, in which the first several monolayers of the deposited material grow in a

layer-by-layer mode due to surface and interface energy minimization. This thin

layer is known as the wetting layer, the thickness of which is about 3 monolayer

(ML) ∼ 4.2 Å. The Ge dot coverage in the figure should be regarded as only

from 0.2 Å to 1.8 Å, which is about 0.14ML to 1.28ML. In the experiment, it is

found that during this range of coverage, the dots are formed with a pyramid

shape with very low aspect ratio around 1 : 10.8(±1) representing slightly lower

angle facet. Thus, it is reasonable to approximate the dots in a monolayer form

with such a low coverage or at the very early stages of cluster nucleation during

atomic deposition.

3.3 Inclusion/Void Fields

Besides interfacial dislocations, a possible source of periodic surface elastic field

is a regular array of buried inclusions. Compared with dislocation sources, the

inclusion source provides a more flexible tool to control the lateral arrangement

and position of atomic clusters. In an experimental sense, the growth of self-

assembled quantum dots on the surface is aimed at a three-dimensional stacking

of quantum dots in multilayers or super lattice structures. Thus we need to

be concerned with not only the lateral correlations between the dots on one

surface, but also the vertical correlations of the dot distribution between different

layers. It is found that various mechanisms can induce different dot stacking

modes [73]. Figure 3.4 shows some representative examples for different types

of interlayer dot stackings in self-assembled quantum dot multilayers in which

we can have an idea about the complexity of the problem. It is found that

the vertical dot alignment along the growth direction is the predominant case
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for most self-assembled quantum dot systems as shown in Fig. 3.4(a) for an

InAs/GaAs superlattice. On the other hand staggered dot stacking were observed

for a number of other systems such as InAs/AlInAs quantum wire superlattices

as shown in Fig. 3.4(e) and (f), as well as an fcc-like ABCABC . . . stacking for

IV-VI dot superlattices as shown in Figure 3.4(b).

Figure 3.4: Examples of some representative types of interlayer dot stackings

in self-assembled quantum dot multilayers as revealed by cross-sectional TEM

[73]: (a) vertically aligned (001) InAs QD superlattice with 20nm GaAs spacer

layer. (b) Staggered stacking in a PbSe/PbEuTe (111) quantum dot superlattice

with 5ML PbSe alternating with 45 nm PbEuTe. (c) Inclined dot correlations

in a Ge dot superlattice of 1.2 nm Ge alternating with 40 nm Si spacers. (d)

Vertically anticorrelated InAs/AlInAs quantum wire superlattice (3 ML/10 nm,

respectively) on InP(001). (e) Anticorrelated multilayer of 2 ML CdTe islands

separated by 15 ML ZnTe spacers.

It is easy to see that the desired field in fabricating quantum dots should all

have two common features. One is the high regularity of the desired distribution

of the fields. The other is that the ordering field should have adequate strength

of the field. With the advancement of nuclear technology, it is found that a

very regular pattern of the strain field can be achieved in irradiated materials

by energetic particles (e.g. electrons, ions and neutrons). In these experiments,
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many self-organized defect clusters, dislocation loops, voids and bubbles can be

observed. Especially implantation of metals with energetic helium can result in

remarkable self-assembled bubble super-lattices with wavelengths (super-lattice

parameters) in the range of 5 − 8 nm as shown in Figure 3.5 [18].

a b c

Figure 3.5: Three void lattice examples collected in [18]: (a) Mo: TEM showing

a BCC void superlattice in molybdenum irradiated with 2 MeV N+ ions to a

dose of 100 dpa at 870◦C. (b) Nb: TEM showing a BCC void superlattice in

niobium irradiated with 7.5 MeV Ta+ ions to a dose of 300 dpa at 800◦C. (c)

TEM observations of helium bubble lattice in Mo irradiated with 40 KeV helium

at 500◦C to an ion flux of 5 × 1021 m−2.

The experimental observations suggest that void superlattice can be formed

over a wide temperature range. And with the summarized experimental data

in [18], it is found that the void lattice parameter is typically about two orders

of magnitude larger than the atomic lattice parameters and about four times

larger than the void diameter in fully-developed void superlattices. Since the

relaxation of voids due to the free surface is only about 3 percent, the self-ordering

void lattice might be able to provide a perfect strain field so that a completely

new method to fabricate the self-assembled quantum dots with highly uniform

distributions. Although there is no real experiment appearing in the literature
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to realize the quantum dot formation in irradiated materials, we believe it would

become a promising method in QD fabrication in the near future.

3.4 Electromagnetic Fields

An alternative way of utilizing external fields is to apply electromagnetic fields

during and after the atomic deposition process (see Figure 3.6 Left). Some-

times this technique is called an optical-mask. In this method, all interactions of

adatoms are mediated by the field itself. A representative experiment is the de-

position onto a silicon substrate of chromium (Cr) atoms, which are focused

by a standing-wave laser fields performed by McClellend [46, 45]. The dye-

laser frequency is set above the atomic resonance by 60 to 240 MHz. The laser

cooling beams (for optical collimation) are frequency shifted with an acousto-

optic modulator (AOM) to just below the atomic resonance. Figure 3.6 (Right)

shows a three-dimensionally rendered view atomic force microscope images of

laser-focused chromium nanostructures. The resulting nanostructures are highly-

regular arrays of Cr with height up to 60 nm, and can be as narrow as 28 nm and

are spaced at exactly half the laser wavelength.

Further experiments have been performed to generate the dot structure by

a 2-D laser intensity. The perfect distribution of chromium dots are formed in

McClelland’s experiments by two-dimensional standing linear polarized waves

(see Figure 3.7).
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Figure 3.6: Left: A standing wave laser field forms a series of cylindrical lenses for

Cr atoms, focusing them into nanometer-sized lines during the deposition onto

a substrate. Right: Atomic force microscope images of laser-focused chromium

nanostructures in which three-dimensionally rendered view showing some of the

narrowest features created in Si [46].

Figure 3.7: Atomic force microscope images of laser-focused chromium dot struc-

tures in which 3-D rendered view created on Si [45].
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4 Review of Theoretical Modelling

4.1 Understanding Self-Organization

Self-organization is a process where the internal structures or organizations spon-

taneously increase without any influence or guidance by an external source. Sys-

tems having self-assembled behavior have been widely observed in many different

areas, such as the Belousove-Zhabotinskii reaction in chemistry, morphogenesis

and homeostasis in biology and cellular automata in mathematics. But the most

profound and robust examples of “self-organized” systems are found in physics,

such as Bénard cells in convection, dendrete formation during crystallization and

the clustering of adatoms on a surface during thin film growth.

In the literature on quantum dot formation and thin film deposition, however,

the word “self-organization” is commonly used to describe two different processes,

both of which are closely related.

In some studies “self-organization” refers to an equilibrium process, which

means that the system to be considered is a thermodynamically static one [8, 64].

From this viewpoint, the equilibrium shapes or positions of a group of QDs is

determined by minimizing the change of total free energy ∆F of the system,

which can be written as

∆F = ∆Esurf + Eedge + ∆Eelastic, (4.1)

where ∆Esurf is surface energy of the tilted facets, Eedge is the short-range energy

of edges and ∆Eelastic is the elastic relaxation energy due to the discontinuity

of the surface stress tensor σij at crystal edges[66]. This thermodynamic ap-

proach has successfully been used to explain the formation of three types of

modes during thin film deposition: the layer-by-layer mode (Frank-van de Merwe
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or FM growth), the island mode (Volmer-Webber or VW growth) and the layer-

plus-island mode (Stranski-Krastanov or SK growth) with an equilibrium phase

diagram of a lattice-mismatched heteroepitaxial system[4]. The geometries and

equilibrium shapes of quantum dots are well analyzed theoretically [65, 66]. The

essence of this approach is that the system considered must be macroscopically

large enough to apply classical elasticity theory and that all kinetic processes are

ignored.

The second description of self-organization refers to a dynamic process, in

which the structure formation achieved in thermodynamic systems away from

equilibrium. Since quantum dot formation is a process that includes nucleation,

size growth and coarsening of different phases, the whole system can be regarded

as a reaction-diffusion type. One famous model to describe this kinetic process

is the classical Lifshitz-Slyozov-Wagner (LSW) theory[78], which is used to ex-

plain the coarsening procedure called Ostwald ripening. In the LSW theory, an

atomic cluster is considered as a particle with a certain size, and that clusters are

distributed dilutely. This implies an assumption that the particle size is small

compared to the distance between particles. The evolution of the dots or the

second phase is characterized by the particle-radius distribution n(r, t), where

n(r, t) dr is the number of particles per unit volume at time t with radius be-

tween r and r + dr. By the conservation law, the distribution function satisfies

the partial differential equation (PDE) as[55]

∂tn + ∂r

(
V · n

)
= 0, (4.2)

where V = dr/dt denotes the growth rate of a particle with radius r at time t.

Lifshitz and Slyozov, and independently Wagner, quantitatively analyzed the

asymptotic behavior of the particle-size distribution in three dimensions. They
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showed that in the limit t → ∞, the radius of the particles (or the linear dimen-

sion of islands) increases following a simple dynamic scaling law, say, R̄3 = Kt,

where R̄ is the average particle size and K is the rate constant. Although this

analysis predicts Ostwald ripening of the microstructure of solid-liquid mixtures,

it obviously contradicts self-organization phenomena during the deposition of het-

ereptaxial thin films. The significant point here is that interparticle diffusional

interaction are assumed to be absent and that the interfacial energy is the driv-

ing force for the process according the Gibbs-Thomson law for local equilibrium.

Hence, equilibrium shapes and mutual arrangements of the dots are unchanged.

Another dynamic model which avoids the shortcoming’s of the LSW theory is

the Asaro-Tiller-Grinfeld (ATG) model[2], in which the surface profile of a bulk

material is described by mass transport due to the surface diffusion of atoms.

Considering the conservation of the mass flux on a solid film surface, the dynamic

rate equation can be written as

∂r

∂t
= −Ω(∇S · J S)n, (4.3)

where r is the position of surface atoms and r = [x, y, h(x, y, t)]. Ω denotes the

atomic volume and n denotes the normal vector of the surface. J S is the surface

atom flux which is taken to be proportional to the surface gradient of the diffusion

potential:

J S = −DSν

kBT
∇S

(
Ee + σij κij

)
on z = h(x, y, z), (4.4)

where DS is the surface diffusion coefficient of atoms, ν is the surface density of

lattice sites, kB is the Boltzmann constant, T is the absolute temperature. Ee

is the elastic energy due to bulk elastic deformation. This can be induced by
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thermal expansion, lattice mismatch relaxation, and/or defect relaxation of the

bulk. The surface energy is the product of the surface tension σij and the surface

curvature κij. By numerically solving Equations (4.3) and (4.4), the morphology

of the surface is simulated. Stability analysis can provide useful information

on the critical thickness of a dislocation-free solid films [72], and the nonlinear

patterns during thin film growth [70]. The equilibrium morphology of an epitaxial

strained layer, which wets the substrate (SK growth) can also be calculated [71].

In the framework of this approach, self-organization is understood as a balance

between the volume elastic energy and the surface energy. This may give a

similar interpretation to the equilibrium self-organization process described at

the beginning of this section (see Equation 4.1).

Another treatment of the problem is based on the coverage of adsorbates on

the surface as the key variables. By considering each species of ad-atoms to

occupy one lattice site on the surface as a phase and the vacancy do a second

phase, the problem acquires a good similarity with that of phase separation in

alloys. One of the fundamental governing equations for phase separation in alloys

is the celebrated Cahn-Hilliard (C-H) nonlinear diffusion equation. This equation

is again based on the mass conservation law as [11]

∂tci(r, t) = ∇Mij∇
δF

δcj(r, t)
. (4.5)

where a continuum and conserved order parameter, ci, usually considered as the

concentration of atomic species, i, is the parameter that describes the evolution

of self-organized structures. Specifically in surface atomic cluster formation prob-

lems, only a scaler is meaningful and then c denotes the concentration or coverage

of second phase particles or adsorbates on the surface. Mij is related to atom

or interface mobility. The variational derivative of the free energy F leads to
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a nonlinear partial differential equation for the evolution of order parameter, c.

For an isotropic case with a constant mobility M , the general form of the C-H

equation becomes:

∂tc = M
[
∇2f ′(c) − ε2∇4c

]
, (4.6)

where f ′(c) is a specific function related to the diffusion flux. The fourth order

derivative term represents the effects of the interfaces between the phases.

It is easy to see that self-organization described by Equation 4.6 stems also

from the interplay between interatomic diffusion and interface energies. The

power of this approach is that it interprets both phase transitions and atomic

interactions.

The conventional way in the literature to determine the local free energy

function f ′(c) is to write a Ginzburg-Landau (GL) energy functional where a

polynomial expansion is made to express the potential having a double-well shape

around the critical point [59]. The advantage of this Landau approach is that

it retains the linear relation around the critical point and makes the instability

analysis possible. However the drawback is that this expression cannot give the

correct information when the system is away from the critical point.

Another remark on the Cahn-Hilliard type modelling is that the continuity of

the variable c implies a continuous interfaces between adsorbates and vacancies.

Other modelling approaches, such as the level-set method, similar to the idea

of the phase separation in alloys, are based on tracking the evolution of sharp

interfaces. Indeed the LSW theory belongs to the sharp-interface approaches. In

the present work, we will only focus on the C-H type of models.

It is noted that in the alloy phase separation problem, two types of order
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parameters exist. One is the composition order-parameter, which is obviously a

conserved quantity. It obeys the Cahn-Hilliard type nonlinear diffusion equation.

The coverage c plays the same role in the adatom cluster formation problem. It

should be mentioned that there is possibly another ghost order parameters φ in

the phase separation problem, which is not a conserved quantity and obeys the

Allen-Cahn equation instead [29]. It may become necessary if we consider both

adatom clustering and the phase changes of clusters.

4.2 Multiscale Modelling Methods

Since most of the models proposed to understand self-organization effects are

based on a conservation law of some continuum variables (e.g. the particle radius

distribution function n(r, t), the position vector of the surface atom volumes

r and the coverage c(r, t)), the question then arises as to whether there is a

need to adopt a first-principle approach, e.g. atomistic simulations, to study the

self-organization. In fact, numerous computer simulations, such as molecular

dynamics (MD) and Monte Carlo (MC) methods, have been performed in the

literature and revealed detailed information on thin films [20, 28]. In most cases,

the length scale of the system characterized by the applied external field is on the

order of microns. However, self-organized patterns are usually much finer, with

a length scale on the order of tens of nanometers. Thus coupling between these

scales becomes a multiscale modelling problem. Atomistic simulations can only

provide information on some of the physical mechanisms. Indeed, we will use

the Kinetic Monte Carlo (KMC) method to study one aspect of the problem in

the last chapter of the present thesis. It is not sufficient to explore the effects of

coupling between self-(nano-sized) and forced-(macroscopic) organizations solely

by MD or MC simulations. In MD simulations, the required deposition rate needs
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to be unrealistically high so that it possibly gives rise to unrealistically large

roughness. And the computational time in Monte Carlo methods to simulate

thin-film growth under realistic deposition rates is still excessive.

A recent interpretation of “multi-scale modelling” classifies simulations bridg-

ing different scales as three methods: hierarchical, concurrent and multi-scale

boundary conditions [38]. The basic idea of hierarchical approaches is simply

a parameter-passing scheme, in which some key parameters are calculated from

the fine scale by atomic physics and used in the macroscopic theory. In con-

current approaches, simulations at different length scales (e.g. MD, MC, and

FEM) are performed simultaneously and the physical parameter is transferred by

some artificial handshake rules. A representative successful model is the quasi-

continuum method [67]. The multi-scale boundary condition method is quite

similar to concurrent approaches, but it replaces the handshake region by a set

of next-to-interface atoms from the coarse grain region.

In the present thesis, however, we will adopt another viewpoint to the word

“multi-scale modelling”. In order to make things clearer, let’s look back at the

types of problems in a wider viewpoint for which multiscale modelling is needed.

Basically, there are two types of physical problems that need bridging differ-

ent scales. The first type is that the local microscopic behavior itself is the

object of the study and it is subjected to the macroscopic body, such as the

nano-indentation on a surface of a bulk and micro-fluidic devices in a moving

fluid. The second type of problems is that microscopic properties do have dra-

matic effects on the macroscopic behavior. An excellent example is the study

of macroscopic quantum phenomena such as superconductivity and superfluidity.

Another perfect example is the nature of microscopic defect patterns during plas-

tic deformation and fatigue. A usual modelling idea in physics is to obtain the
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complete information of the system by an “ab inito” method, which means that

the motion of a mechanical system is described by its degrees of freedom. All of

atomistic simulations, dislocation dynamics etc. follow this route. We may call

it is a “motion”-based viewpoint since the model is based on the description of

the exact motion of each physical quantities (single atoms or single dislocations

etc.). This “motion” viewpoint is good in studying the first type of problems.

However, if a very large number of degrees of freedom must be considered in a

system, the methods of “motion” mechanics becomes completely impracticable.

An alternative way is to utilize the statistical physics which deals with the “state”

not the “motion” of the system in the presence of a very large number of par-

ticles. With this “state” viewpoint, phenomena in the second type of problems

can be considered as phase transition problems. Several systematic approaches,

such as Landau theory and renormalization group theory, have been developed

along this lines.

All three multiscale modelling methods summarized in Liu’s review paper [38]

follow the motion-based idea, in which the degrees of freedom to be considered are

not too large†. The quasi-continuum method, for example, is an excellent exten-

sion of the mechanical description with the application of powerful mathematical

techniques (e.g. finite element methods). On the other hand, kinetic theories in

the form of traditional rate equations combined with the state description by

statical physics provide general methods of theoretical analysis which interpret

the effects of microscopic properties on macroscopic bodies. Macroscopic theo-

ries such as London Theory and Ginzburg-Landau Theory of superconductivity

belong to this category. The attempt to apply the field-theory to model poly-

crystalline plasticity by Hasebe is also a good example of state-based multiscale

modelling [23]. In most cases, self-organization phenomena are similar to phase

†For example, in nano-indentation only the local microscopic deformation is considered.
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transition problems. This is the reason why the mechanisms of self-organized

pattern formation are proposed mostly within the framework of kinetic rate the-

ory.

In our research on pattern formation of self- and force- organized atomic

clusters, we will follow the rate equation approach. Furthermore, to simplify

the problem, we will not consider 3-D island formation, but only 2-D monolayer

cluster formation on the surface. Thus, a phase-field equation of a modified Cahn-

Hilliard type with a variable of the coverage c(r, t) for surface atomic clusters will

be set up instead of the elastic surface roughening equations of an Asaro-Tiller

type with a variable of the position vector r(t) that describes the surface. Specifi-

cally, within the framework of the conservation law of adatoms, nearest-neighbor

interaction terms are obtained by formulating possible states of all individual ad-

particles with two-body interactions by statistical physics, in which the mean field

approximation is introduced. This can be regarded as a “bottom-up” procedure

where microscopic information is brought and transformed into the macroscopic

scale. For long-range interactions between the clusters via the substrate and

applied external fields, we will adopt an important assumption used in the con-

current quasi-continuum approach which hypothesizes that the infinite crystal

with discretized atoms deforms according to a locally continuum deformation

gradient. This is the so-called Cauchy-Born rule, which provides a “top-down”

passage from the macroscopic elastic deformation to the microscopic model. In

addition to the rate-equation approach, we perform KMC simulations to deter-

mine the atomistic nature of organized clusters in Chapter VI. As the general

idea of the KMC approach, the energies of the cluster diffusion are evaluated by

the random cluster scaling theory. Obviously the two approaches are parallel and

not unified in one frame of the modelling.
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CHAPTER III

Proposed Phase Field Model of

Self-Organized Surface Atom Clusters

5 Kinetic Equation

Let us consider the local atomic coverage of the substrate c(r, t) as the variable.

By the conservation law of adatoms, a continuous phase field model can be con-

structed as a result of reaction and diffusion processes within the framework of

chemical kinetics via the following equation

∂c

∂t
= R(c) −∇ · J , (5.1)

where c = c(r, t) is defined as the average occupancy number or average number of

atoms per lattice site. R(c) is the reaction rate. The reaction process is restricted

to only the adsorption and desorption rates (α and β) in the absence of chemical

reactions with the substrate and precursor molecule dissociation. Generally α and

β should be functions of the physical parameters of the deposition mechanisms

and may also be coverage dependent as in the case of reacting adsorbed layers

[25]. However, for some non-equilibrium processes, such as sputtering or laser-

assisted deposition, the reactions are not thermally activated. Thus, in a first

approximation, we will simply consider the reaction rates to be constant, and

express the net adsorption rate as
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R(c) = α(1 − c) − βc. (5.2)

J in Equation 5.1 denotes the atomic diffusion flux on the substrate. When

the interactions between adsorbed atoms are important, the usual Fick’s law

cannot be applied in the adsorbed layer and the diffusion activity is governed

by a spatially varying chemical potential. In this case, a convenient way is to

consider the vacancy which is an empty site unoccupied by adatoms as a “ghost”

atom. Thus for a single species adsorbate layer, the system contains two-species.

Linear non-equilibrium thermodynamics gives a relationship between fluxes and

thermodynamic forces as [22]

J A = LAAXA + LAVXV

J A = −J A,
(5.3)

where J A and J V are the fluxes of occupied and vacancy sites, respectively.

XA and XV are the associated thermodynamic forces. L is the atomic mobility.

Using Gibbs-Duhem and Onsager’s reciprocity relations, one has

LAA = −LAV = −LVA = LVV = L. (5.4)

Thus we can use the general expression of the mobility as L = D/kBT , D is

the surface diffusion coefficient. Basically, the diffusion coefficient should depend

on coverage and the influence of the presence of other clusters or other sinks.

For example, in the case of hopping types of atomic motions, an appropriate

expression can be written as D = D0c(1− c). However, as a first approximation,

we will simply ignore the dependence of D on the coverage c. At the same

time, for diffusion induced by thermally activated atomic jumps, we have D =
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D0 exp(−Ω/kBT ). At sufficiently high temperatures, such that kBT À Ω, we

could also ignore the temperature dependence of D.

In the case of an isothermal process, thermodynamic forces are the gradients

of the chemical potentials. Using the fact that the chemical potential is the

functional derivative of the free energy, the atomic mass flux J ≡ J A becomes

J = L∇(µA − µV) = −L∇µc = −L∇δF

δc
, (5.5)

where F is the free energy of the adsorbed atoms. Thus, an explicit expression

for this functional is needed to obtain. Here we consider F having two part,

F = Fa + Fs, (5.6)

where the subscripts of a and s denote the local nearest-neighbor (N-N) interac-

tion between adatoms and the global interactions from the substrate, respectively.

6 Nearest-Neighbor Interactions

Due to the atomistic nature of the N-N interactions between individual adatoms,

as mentioned in Section 4.2 statistical physics is usually applied to formulate the

free energy Fa. When the spatial fluctuations of the coverage about its mean

value are small, it is convenient to introduce a mean-field approximation in which

a fluctuating local coverage is replaced by a spatially uniform average value. In

the monolayer atomic clustering problem, the model should be understood to

describe the very early nucleation stage of cluster evolution after the wetting layer

is formed. Thus the mean-field approximation applied in the following model is a

valid assumption. It is known that there are formulations of mean-field theory for
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an Ising system, such as the Bragg-Williams and variational mean-field theories.

In the current section, the Bragg-Williams approach will be presented. The model

with a variational mean-field theory which is more versatile and elegant has been

developed by D. Walgraef [79] illustrated in details in Appendix A.

atoms

surface

Cell

Vaccany Lattice Sites

Occupied Lattice Sites

i th cell

j th cell

W ij

Figure 6.1: Bragg-William approach in the phase field modelling.

For a macroscopic surface area, we can imagine dividing it into a set of meso-

scopic cells. Each cell can be treated via statistical mechanics as a grand canonical

ensemble, which means it exchanges energies and particles with other cells. Here

we assume that only two-body interactions between adatoms are important. As

shown in Figure 6.1 considering the ith mesoscopic cell, the number of substrate

sites and the number of adsorbates within the cell are respectively denoted by

N
(i)
S and N

(i)
A . The total number of possible states in this cell, that is the partition

function Z(i) can be written as:

Z(i) =
N

(i)
S !

N
(i)
A !

(
N

(i)
S − N

(i)
A

)
!

[
Ncell∏

j=1

exp

(
−V

(ij)
e

kBT

)]
· Z(i)

s , (6.1)

where Ncell denotes the total number of cells; V
(ij)

e is an effective elastostatic

interaction energy between the ith and jth cells, which is an interaction energy
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mediated via the substrate; Z(i)
s denotes the partition function due to all the

other interactions. Furthermore, if we apply the mean field approximation on

cells and define W (ijk) as an effective pair interaction energy between the jth cell

and the kth ad-particles in the ith cell, then

V
(ij)

e =

N
(i)
A∑

k=1

N
(j)
A

N
(j)
S

W
(ikj). (6.2)

If the adatoms in each cell are assumed to be distributed randomly, we can

further write Equation (6.2) with the effective pair interaction energy between

the ith cell and the jth cell as:

V
(ij)

e ≈ N
(i)
A

(
N

(j)
A

N
(j)
S

)
W

(ij). (6.3)

Using Sterling formula, the N-N free energy of the ith cell can be obtained†:

F
(i)
a = −kBT ln Z(i)

a

= −kBT

{
N

(i)
S ln N

(i)
S − N

(i)
A ln N

(i)
A −

(
N

(i)
S − N

(i)
A

)
ln

(
N (i)

s − N
(i)
A

)

−
Ncell∑

j=1

N
(j)
A

N
(j)
S

N
(i)
A W (ij)

kBT

}

= kBT

{
N

(i)
A ln

N
(i)
A

N
(i)
S

+
(
N

(i)
S − N

(i)
A

)
ln

N
(i)
S − N

(i)
A

N
(i)
S

+

Ncell∑

j=1

N
(j)
A

N
(j)
S

N
(i)
A W (ij)

kBT

}
.

(6.4)

Considering the concentration in this cell ci, which is NA/NS, the free energy

per substrate lattice point is:

†This step signifies that the model is not a motion-based but a state-based approach.
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f (i)
a = kBT





N
(i)
A

N
(i)
S

ln
N

(i)
A

N
(i)
S

+

(
N

(i)
S − N

(i)
A

)

N
(i)
S

ln
N

(i)
S − N

(i)
A

N
(i)
S

+

Ncell∑

j=1

N
(j)
A

N
(j)
S

N
(i)
A

N
(i)
S

W
(ij)





= kBT

{
ci ln ci + (1 − ci) ln (1 − ci) +

∑

j

cicjWij

}
. (6.5)

The total free energy of a system becomes:

Fa = kBT
∑

i

{
ci ln ci + (1 − ci) ln (1 − ci) +

∑

j

cicjWij

}
. (6.6)

Using the relation: 2cicj = c2
i + c2

j − (ci − cj)
2 ,

Fa = kBT
∑

i

{
ci ln ci + (1 − ci) ln (1 − ci) +

1

2

∑

j

Wijc
2
i −

1

4

∑

ij

Wij (ci − cj)
2

}
.

(6.7)

The continuum expression can be obtained by taking the continuous limit of

the above discrete one (
∑

i →
∫

dr, ci → c(r), and Wij → ε(a)(r, r′)), in which we

transit from an average over a collection of lattice sites to an average over coarse-

grained cells. Assuming that we only consider nearest-neighbor interactions (e.g.

ε(a)(r, r′) ≈ −γε δ(|r − r′| = a) where γ is the lattice coordination number, ε is

the pair interaction energy and a is the lattice constant, we could obtain the

interfacial terms using the fact that

c(r)2 + c(r′)2 − (c(r) − c(r′))2 = 2c(r)c(r′)
∫

S

dr′ γε δ(|r − r′| − a)c(r′)2 ≈ γεc(r)2

∫

S

dr′ γε δ(|r − r′| − a)[c(r) − c(r′)]2 ≈ a2γε|∇c(r)|2.
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Finally we have [79]

∫

S

dr′ε(a)(r, r′)c(r)c(r′) = −ε0c(r)
2 + ξ2

0 |∇c(r)|2, (6.8)

in which ε0 = γε, ξ2
0 = a2γε and the integral is taken over the surface.

Thus Equation (6.7) becomes

Fa =

∫

S

dr

[
kBTf(r) − 1

2
ε0c(r)

2 +
1

2
ξ2
0 |∇c(r)|2

]
, (6.9)

where f(r) = [1 − c(r)] ln[1 − c(r)] + c(r) ln[c(r)].

And the chemical potential of N-N interactions is

µa = kBT ln
( c

1 − c

)
− ε0c − ξ2

0∇2c. (6.10)

7 External Field Effects

We can treat the coverage-independent part of the substrate-mediated free energy

by two-body interactions as we did for N-N interactions, which finally will lead to

an integral term similar to that in Equation (6.8). This treatment is physically

equivalent to considering the adatoms as point defects. Although the formulation

is successfully adopted in describing structural transformations in solids [30, 80],

the situation is different on the surface. Both the energy calculation [36] and

the Monte Carlo simulation carried out in Chapter VI show that this point-

defect type interaction on the surface will be so small that it can be completely

neglected. However, the interaction between atomic clusters on the surface must

be taken into account. Here, we adopt a continuum approach as a convenient

way to formulate this many-body interaction effect. The discontinuity of intrinsic
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surface stress between adatom clusters and the substrate provide a large driving

force to self-organization [65, 1].

On the edge of a cluster, the discontinuity can be replaced by a pair of tangen-

tial force dipoles as Marchenko and Parshin indicated [41]. The relation between

the force density (fα) and surface intrinsic stresses (σαβ) is well-known in elas-

ticity theory as:

fα(r) =
∂σαβ(r)

∂xβ

. (7.1)

where the subscripts of α and β denotes the indices (1 or 2) on the surface and

the repeated index implies to be a summation index. In our monolayer model,

the intrinsic stress of clusters is understood as being effective, and is a function

of the concentration at position r. To first order approximation [35], it follows

from Vegard’s law that we have:

σαβ(r) = σαβ c(r), (7.2)

where σαβ is considered to be a material constant on the homogeneous substrate

surface. In the isotropic case where

σαβ = σδαβ, (7.3)

the free energy induced by the substrate can be generally expressed as the force

times the displacement (u) [1]

Fs0 = −
∫

S

dr fα uα = −
∫

S

dr [σ∇αc(r)] uα. (7.4)
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Thus using the interchangable property of the derivative and variational op-

erators and integrating it by parts with Gauss’s Thoerem, the chemical potential

which is the variational derivative of the free energy simply becomes:

µs(r) = σuα,α . (7.5)

Here, if we ignore the interactions between adatom clusters and apply a

nonuniform displacement field on the surface, we obtain a non-variable part of

µs which is independent of the concentration as

µs0(r) = σ
[
εxx(r) + εyy(r)

]
. (7.6)

where εαβ is the external strain field in the substrate. According to Marchenko

[41], the elastic energy per adatom is approximated as σαβ εαβ. It is easy to see

that atomic clusters here are considered as parts of the substrate surface to store

the elastic energy. It should be noted that by Equation (5.5), the term µs0 is

taken into account only when the field from the substrate is nonuniform. This

means a uniform strain field, such as coherent lattice mismatch in heteroepitaxial

structures will not influence a self-organized patterns on the surface.

8 Cluster-Cluster Interactions

If the effects of cluster-cluster interaction in Equation (7.5) are to be considered,

we could express the long-range interaction term in the usual Green’s function

method by substituting Equation (7.2) in (7.1) without any external strain field

on the substrate:
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Fsc = −1

2

∫∫
dr dr′σαµ∇µc(r)Gαβ(r − r′)σβν∇′

νc(r
′), (8.1)

where the energy is defined to be positive for attractive interactions. Gαβ(r − r′)

is the surface Green’s function which denotes the displacement component α at

position r′ caused by a unit force acting at a position r in the direction β. It is

also noted from the symmetry considerations that we must have

Gαβ(r − r′) = Gαβ(r′ − r) = Gβα(r − r′).

The formal method for the Green’s function in half anisotropic materials is

the Stroh formalism proposed by Ting [76] and Pan [56]. However, the Green’s

function Gαβ(r, r′) for half-space elastic medium is given by Maradudin and Wallis

by taking the Fourier transform over the x and y directions [40]:

Gij(r, r
′) =

∫
d2q

(2π2)
Gij(q|zz′) exp

[
iq · (rq − r′

q
)
]
, (8.2)

where i, j = 1, 2, 3. The subscripts of ‖ denotes the surface components x and y.

According to Maradudin et al. [40, 58], the Green’s Function in the transformed

space, Gij(q|zz′), which is defined with a vector basis, can be expressed as tensor

components via rotating the coordinate space over the angle in the reciprocal

space θ by the simple relation:

Gij(q|zz′) =
∑

mn

S−1
im (θ)Gmn(q|zz′)Snj(θ). (8.3)

The transformation matrix S is given by
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S =




cos θ sin θ 0

− sin θ cos θ 0

0 0 1


 S

−1 =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 , (8.4)

where cos θ = qx/q, sin θ = qy/q. It is also noted that the functions G(q|zz′)
depend only on the magnitude of (qx, qy).

For a semi-infinite isotropic elastic medium occupying the half-space z > 0

and bounded by a stress-free surface at the plane z = 0, the speeds of sound for

transverse and longitudinal waves ct and cl are related to Lamé coefficients µ and

λ as

cl =

√
(λ + 2µ)

ρ
and ct =

√
µ

ρ
, (8.5)

where ρ is the density of the material. For reference, we list the conversion

relations between the shear modulus µ, the Poission ratio ν, and the stiffness

matrix components (c11 and c12) for an isotropic material as:

µ = c44 =
1

2
(c11 − c12); λ = c12 =

2µν

1 − 2ν
. (8.6)

All the components of the tensor Gmn(q|zz′) for an isotropic material can be

explicitly calculated in an analytical form and are listed in Appendix B. For an

anisotropic crystal with cubic symmetry, explicit solutions can be numerically

obtained by the formulations presented in Maradurin’s papers [40].

Using the same techniques as in deriving Equation (7.6) and applying the

isotropic condition (Equation 7.3), we obtain the variable part of chemical po-

tential (µsc) as
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µsc = σ2

∫

S

dr′
[
∇αGαβ(r − r′)∇′

βc(r′)
]
. (8.7)

Substituting Equations (6.10), (7.6) and (8.7) into Equation (5.5) and then

into (5.1), we finally have the kinetic equation of the model

∂tc =
1

τ
(c0 − c) +

D0

kBT
∇2

[
kBT ln

( c

1 − c

)
− ε0c − ξ2

0∇2c

+ σa2
[
εxx(r) + εyy(r)

]
+ σ2a4

∫
dr′ ∇αGαβ(r − r′)∇′

βc(r′)

]
, (8.8)

where c0 = α/(α + β), and τ−1 = α + β†. The introduction of the square of the

lattice constant a2 per surface stress is by consideration of appropriate units. It

is important to note that each term in the above equation is per atom and that

we evaluate the long-range terms by averaging over one lattice square.

†Here, α and β denotes the adsorption and desorption rates. It should be distinguished from
the Greek subscripts as surface indices
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CHAPTER IV

Development of Numerical Spectral Method

9 Global Interpolation

Due to the high nonlinearity in Equation 8.8, it is not feasible to pursue any

analytical solution of the problem. The first choice for a numerical solution to

Equation 8.8 is the finite difference (FD) method. For Cahn-Hilliard type PDEs,

a splitting scheme in the FD method can guarantee the accuracy of high order

derivatives [19]. A multigrid method can also be implemented in the FD scheme

to obtain a good balance between ultra-fine spatial grids and the efficiency of

computations. The splitting scheme and multigrid methods are using a “local”

interpolation of the data of adjacent points. These methods are good choices if the

geometry of the system is extremely irregular with complex boundary conditions.

However if the problem has a simple geometry and periodic boundary condi-

tions, spectral methods become a better choice. In contrast to the local interpola-

tion in FD methods, the spectral method relies on “global” interpolation of data

with grid points over the whole domain. The key here is to represent the unknown

function with a group of basic known functions. This function representation is

very analogous with vector representation by a set of linearly independent vec-

tors. By the orthogonality of these basis functions, the problem is converted to

solving the corresponding coefficients. Actually the numerical integration meth-

ods with various Guassian quadratures also apply the global representation ideas.
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The major advantage of spectral method is that it can give much better accuracy

for solving certain classes of problems, such as the ability to completely eliminate

aliasing effects†. With the emergence of the algorithm of Fast Fourier Transform

(FFT) algorithm in the early 70’s, spectral methods have been fully developed in

numerical computations. Examples are psedo-spectral techniques for nonlinear

terms in partial differential equations and the τ method for various boundary

conditions. However, it should be mentioned again that the spectral approach is

not useful in dealing with problems having complicated geometries‡.

Mathematically, any function can be represented as:

f(x) =
+∞∑

q=−∞

f̂qφq(x), (9.1)

where φq(x) are basis or “trial” functions. They constitute a specific function

space, such as the Fourior (trigmetric) space, Chebyshev space or Legendre space.

f̂(q) are the coefficients in the function space. Basis functions are designed to be

orthogonal by defining an inner product as:

〈φq, φl〉 =

∫ b

a

φq(x)φ∗
l (x)w(x) dx = 0 if q 6= l. (9.2)

Substituting Equation (9.1) in the inner product of 〈f, φq〉 and using the

orthognality of Equation (9.2), we obtain:

f̂q =
〈f, φq〉
||φq||2

, (9.3)

†The term aliasing usually refers to the distortion that occurs due to the truncation of the
nonzero wave vectors in the transformed space. It usually happens when a non-periodic problem
is approximately treated to be periodic.

‡In this case, finite element methods (FEM) is of course a reasonable choice. But the main
difficulty in FEM is to construct a proper Ginzburg-Landau free energy [5], especially for a
nonlinear PDE in our problem.
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and the function in real space can be expanded as a generalized Fourier series:

f(x) =
+∞∑

q=−∞

〈f, φq〉
||φq||2

φq(x). (9.4)

The selection of a function space for a specific problem is much determined

by its boundary conditions. If periodic boundary conditions are to be used, then

Fourier functions are the best choice and φq(x) = eiqx. If the boundary is not

periodic such that −1 ≤ x ≤ 1, a natural representation is with a Chebyshev

polynomials, that is φq(x) = Tq(x) where Tq(x) = cos(q cos−1 x). Although there

are other classes of spectral representations for basis functions, such as Legendre

polynomials etc., the Fourier and Chebyshev representations are the two most

widely used classes in numerical calculations due to the development of FFT and

cosine transform algorithms.

To make numerical computations of a differential equation with a global ap-

proximation, an important idea is to enforce a weak form of the problem. The

weak form is commonly defined by the method of weighted residuals. Let us

consider a very general differential equation:

∂u

∂t
= L(u) + N (u), (9.5)

where L and N denote the linear and nonlinear operators of the variable c,

respectively. Suppose that the problem is 1-D, and that the B.C.’s are periodic

with a period of 2π. Using the Fourier representation, we have:

uN(x) =

N/2−1∑

q=−N/2

ûq(t) eiqx. (9.6)

We define a residual of the problem RN = ∂tuN −L(uN)−N (uN) and make:
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∫ 2π

0

RN(x)ψ∗
q (x) dx = 0, (9.7)

where ψq(x) are test functions. Different spectral methods can arise with different

classes of the test functions ψq. If the class of test functions is the same as the

class of basis functions, we have the “Galerkin” method. With Equation (9.6) in

Fourier space, it has ψq(x) = eiqx. If we set the residual to zero at discrete points

in physical space, the technique is called a “Collocation” method. It is easy to

see that the Galerkin method allows the problem in the transformed and physical

space to be converted only when the output is needed. In this context, we will

just focus on the Galerkin approach. More precisely, we will develope the Fourier-

Galerkin approach to solve the problem with periodic boundary conditions. The

details of spectral methods, such as Chebyshev-Collocation-τ methods, can be

found in the books by Canuto [12] and Gottlieb [21].

10 Application to the Kinetic Equation

First we illustrate the spectral method to formulate and numerically solve a

typical isotropic Cahn-Hillard equation. Consider the following equation:

∂tc = M [∇2f(c) − ε2∇4c], (10.1)

where the boundary condition is periodic at [0, 2π], and the initial condition is

c(x, y, 0) = c0(x, y). M and ε are both constants. We use the Fourier-Galerkin

approach:

c(x, y, t) =

N
2
−1∑

qx,qy=−N
2

ĉ(qx, qy, t) ei(qxx+qyy). (10.2)
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Substituting the above equation into Equation (10.1) it is easy to see that

if nonlinear terms are absent, Equation (10.1) converts to a set of de-coupled

equations. However, if nonlinear terms are present, the solution results in coupled

matrices, which are generally difficult to solve. For example, if the nonlinear

term is quadratic, the number of operations will be on the order of N4, which is

too costly. Instead, since it is known that the number of operators in 2-D fast

fourier transform algorithms is on order of O(N2 log2 N) [10], we can calculate

nonlinear terms in physical space and then transform them back to Fourier space.

This is what is called a “Psuedospectral” technique. Such a technique allows

computations of the nonlinear terms economically, even when transforming data

back and forth. However, it should be noted that psuedospectral methods will

always induce aliasing of the data. For simple quadratic terms, such as c∇c, an

additional technique named “3/2 rule” can be applied to completely eliminate

aliasing effects [12]. For general situations, the easiest way to avoid aliasing is

to choose Nx and Ny sufficiently large so that the largest frequency data become

negligible.

Effectively, Equation (10.1) in numerical spectral methods has the same form

as in the Fourier transform method:

dĉ(q, t)

dt
= −Mq2{f̂(c)}q − Mε2q4ĉ(q, t), (10.3)

where qx = −Nx

2
, . . . , Nx

2
− 1 and qy = −Ny

2
, . . . , Nx

2
− 1.

To make a time advancement, the explicit Euler scheme for time integra-

tion steps should always be avoided for numerical stability problems. No mat-

ter how small the time step (∆t) is, the simple explicit Euler scheme is unsta-

ble. The practical choice for a stable time marching scheme is either a semi-

implicit second-order Adams-Bashforth/backward differentiation (AB/BDF [14]
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or a semi-implicit Adams-Bashforth/Crank-Nicolson(AB/CN)) scheme [12]. The

key idea of both methods is to treat linear operators implicitly and nonlinear

operators explicitly. Specifically, to make nonlinear terms explicit, we can use

Adams-Bashforth extrapolation as:

{f̂(cn)}q ' 1

2

[
{f̂(cn+1)}q + {f̂(cn−1)}q

]
. (10.4)

And the second-order BDF/AB scheme of Equation (10.3) is:

(3 + 2Mε2∆tq4)ĉn+1(q) = 4ĉn(q) − ĉn−1(q)

+ 2M∆tq2
[
2{f̂(cn)}q − {f̂(cn−1)}q

]
. (10.5)

For the first iteration step, the first-order semi-implicit scheme is applied:

(1 + ε2∆tq4)ĉn+1(q) = ĉn(q) − M∆tq2ĉn(q). (10.6)

Due to the convolutional form of the integral in Equation (8.7), we can write

the kinetic equation (8.8) in the transformed space by denoting the variables in

the Fourier space as subscripts of q as:

∂tcq =
1

τ
(c0q − cq) −

D0

kBT
q2

[
σa2Tr(ε)q + kBT

{
ln

( c

1 − c

)}
q

−
(
ε0 + ξ2

0q
2 + σ2a4qαqβGαβ(q)

)
cq

]
. (10.7)

The corresponding equation (10.5) of the second-order scheme becomes:
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[
3 + 2∆t

(
1

τ
+ ε0 + ξ2

0q
2 + σ2a4qαqβGαβ(q)

)]
cn+1
q =

4cn
q − cn−1

q + 2∆tD0q
2

[
2
{

ln
( cn

1 − cn

)}
q
−

{
ln

( cn−1

1 − cn−1

)}
q

]

+2∆t

[
1

τ
c0q − D0

kBT
q2σa2Tr(ε)q

]
. (10.8)

And the corresponding equation (10.6) of the first-order scheme is:

[
1 + ∆t

(
1

τ
+ ε0 + ξ2

0q
2 + σ2a4qαqβGαβ(q)

)]
cn+1
q =

cn
q + ∆tD0q

2
{

ln
( cn

1 − cn

)}
q

+ ∆t

[
1

τ
c0q − D0

kBT
q2σa2Tr(ε)q

]
.

(10.9)

The steps for solving Equation (8.8) can be summarized in the following:

1. Transform the original equation into the Fourier space as Equation (10.7).

Nonlinear terms can be considered as forcing terms.

2. Make the time and space discretization (∆t and Nx, Ny).

3. Use FFT to obtain c in Fourier space as ĉn.

4. Increase time from t to t + ∆t.

5. Use FFT to obtain the nonlinear terms in the Fourier space as {f̂(c)}k.

6. If it is the start of iteration, use Equation (10.9). Otherwise, use Equa-

tion (10.8).

7. Use the Inverse-FFT to obtain ĉn in the physical space as c.
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8. Update the nonlinear terms in the physical space using calculated value of

c from Step 7.

9. Repeat step 4.

11 Parallel Computations

In a split-radix FFT algorithm [10], the data has to be divided into 2n, where n

is an integer appreciated with the grid size. This means that if the system in our

problem becomes much bigger than the intrinsic characteristic wavelength, a grid

of 512×512 or 1024×1024 or even more has to be used. The huge amount of data

will require intensive computations, especially during back-and-forth FFT in the

pseudo-spectral method for nonlinear terms in Equation (10.7). An efficient way

to speed up calculations is to carry the heavy computational tasks over multiple

processors, that is to utilize parallel computation techniques.

A direct method of parallel computations to solve the current PDE (Equa-

tion 10.7) is to replace the standard split-radix FFT subroutine for single proces-

sor to that for multi-processors without changing the main algorithm. There are

some multiprocessor FFT algorithms can be used [75]. However, since unavoid-

able time consumptions for transferring the data speed up, it is easy to show that

the FFT routine itself will not have a significant improvement if implemented on

multiprocessors. A more convenient way is to manipulate some steps in the whole

algorithm with multiple processors and keep the FFT routine in the single pro-

cessor mode. One step that can be changed to a parallel mode is computing

different pseudo-spectral terms. This means that the terms needed to make the

FFT separately are submitted to different processors simultaneously. Another

aspect that can be improved by parallel computing is the problem’s dimension.

44



Since the surface problem has two dimensions, further computational task in the

FFT routine for multidimensional problems can be further parallelized.

In the current problem, the multiprocessor algorithm exhibits both of the two

aspects mentioned above. Since the present kinetic equation becomes completely

decoupled in the Fourier-Garlerkin space, the first aspect is to carry out the

calculations of ĉn+1 on spatial grid points of the discretized equation (10.7) over

different processors simultaneously, that is to separate the total Nx × Ny spatial

grids into m smaller regions. For example, processes will contain regions of

(0, Nx/m) × Ny, (Nx/m + 1, 2Nx/m) × Ny, . . . , (Nx − Nx/m + 1, Nx) × Ny. The

second aspect of parallel coding is how to handle pseudo-spectral terms, which

requires the calculations to be taken back-and-forth between the spectral space

and the physical space. Since the FFT routine adopted in our code is the split-

radix code for 2-D problems, the parallel code developed here is to use every

processor for one nonlinear term.

At the programming level, commonly used parallel methods include shared

memory models, message passing models, thread models, and hybrid models

etc. The message-passing paradigm is well suited for computing on distributed-

memory machines, and is adopted in our parallel coding for the current problem.

In the message-passing model, a set of tasks that use their own local memory dur-

ing computation and the data exchange is performed by sending and receiving

messages between different machines. Currently, there are two most frequently

used tools for parallel programming according to the message-passing paradigm:

PVM (Parallel Virtual Machine) and MPI (Message Passing Interface), in which

the PVM is a comparatively older message-passing standard and the MPI has

come into the mainstream more recently than the PVM and is now used as an

industry standard. The parallel code of the current problem is written by the
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MPI in Fortran 90. The “interface” in the MPI contains a rich set of pre-existing

functions for performing point-to-point, many-to-one and many-to-many commu-

nications. Specifically in our code, besides the common functions of MPI Send

and MPI Recv, collective communication commands are widely used. For exam-

ple, the command MPI BCAST is used for broadcasting (sending) various input

parameters to every processor. The combination of the commands MPI Gather

and MPI Barrier are used for sending the distributed data (such as the 2-D ma-

trix of ĉn(qx, qy)) to process with the root while the combination of the commands

MPI Scatter and MPI Barrier are used to distribute the date from the root to

various processors.

It is easy to see that there is a possible drawback in the parallel algorithms

proposed above, and that is the imbalance of the computational load among

processors. One reason is that in the Fourier space, the wave vectors will quickly

emerge to some characteristic value such that the computational region will not

be needed for quickly decaying. Unbalanced computational tasks also occur when

the amount of parallel linear terms is more than the pseudo-spectral nonlinear

terms. Both of these situations can be avoided by carefully planning of the

computational algorithm. However, it is found that if the number of processors

is kept on the order of 4 to 6, we can achieve the required computational results

without much trouble. For example, for a grid of 256×256 and using 4 processors,

a full simulation can be generated within 2 days.
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CHAPTER V

Simulation Results

12 Intrinsic Self-Organization with Cluster-Cluster Inter-

actions

Before we include all the effects of various interactions in an model (e.g. nearest-

neighbor (N-N) interactions, cluster-external field (C-E) interactions and cluster-

cluster (C-C) interactions), we consider the effects of C-C interactions on the

natural self-organization behavior of surface clusters. Thus we assume that there

is no applied external field (εαα = 0) or the external field is uniform (∇2εαα = 0).

More generally, Equation (8.8) can be written in a dimensionless form as:

τ∂tĉ = (ĉ0 − ĉ)

+ D̂∇2

[
−Tc

T
ĉ +

1

4
ln

(1 + 2ĉ

1 − 2ĉ

)
− ξ2

0

4kBT
∇2ĉ

+
σ2a4

4kBT

∫
dr′ ∇iGij(r − r′)∇′

j ĉ(r
′)

]
, (12.1)

where ĉ = c − 1
2
, D̂ = 4τD0 and Tc = ε0/4kB. Considering small perturbations ς

about the steady state ĉ0 (ς = ĉ − ĉ0), we can expand the entropy mixing term

in a first order Taylor series and use the relation

∫
dr′ ∇iGij(r − r′)∇′

j ĉ(r
′) −→ qiqj

{
Gij

}
q
cq
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to rewrite Equation (12.1) in the Fourier space as

τ∂tς(q) = −
[
1 + q2 D̂∗T ∗

c

T

(
T

T ∗
c

− 1 + A2q2

− B2qiqjGij(q)

)]
ς(q), (12.2)

where T ∗
c = Tc(1 − 4ĉ2

0), D∗ = D̂/(1 − 4ĉ2
0), A2 = ξ2

0/4kBTc and B2 = σ2/4kBTc.

It can be seen that a dimensionless form of the governing equation recombines

the various control parameters (such as τ , D0, c0, ε0, σ, a etc.) into the above

four parameters. The marginal stability curve is given by

T = q2D∗T ∗
c

1 − A2q2 + B2qiqjGij(q)

1 + q2D∗
. (12.3)

c
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Figure 12.1: Comparison between the cases having only N-N terms and having

both N-N and C-C terms.

After numerically calculating the maximum point of T in the above equa-

tion, we obtain the relation between the critical temperature T ∗ and the control

parameter c0. In Figure 12.1, we compare the two cases with N-N interactions
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only and with both C-C and N-N terms respectively. It is shown that cluster-

cluster interactions have a destabilizing effect. The maximum change occurring

at c0 = 0.5 is about 1.75% Tc.

Besides this destabilizing effects, C-C interactions have more important effects

on patterning. In Figure 12.2, we compare the case with a small length scale of a

surface (100×100 nm2) without external fields at an average coverage of c0 = 0.5.

The system should develop a stripe pattern [79], similar to the simulations of

Proville [59]. It is noted that in the case of C-C interactions, stripes becomes

sharper and are oriented along the anisotropy axes of the material. In Figure 12.3,

the simulation is carried over a large system (1 × 1µm2) without dislocation

network underneath the surface. It is seen by comparing with Figure 12.3 that

with C-C interactions, the density of dots is increased but the average size of dots

becomes smaller. Also the denuded zone is much sharper if no C-C interaction is

presented.

13 Directed Self-Organization by Interfacial Dislocations

In this and next section, we will work out several examples for applying our phase

field model with the external fields. Specifically, in this section, we will consider

the external elastic field induced by interfacial dislocations in details and compare

with the experimental results presented in Section 3.2. In the next section, we

will present the theoretical modelling work for the external field generated by

inclusions and electromagnetic laser fields.
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Figure 12.2: The equilibrium results at the time of 10µs with the average coverage

of c0 = 0.5 where the gray scale is proportional to coverage. (a): N-N interactions

only. (b): N-N and C-C interactions
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Figure 12.3: Cluster evolution process of N-N interaction only with two crossing

interfacial dislocations buried at 80nm below the surface where the gray scale is

proportional to coverage.
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13.1 Elastic Field by Dislocations

An important application of the proposed dislocation model is the self-organization

of Ge quantum dots on SiGe heteroepitaxial structures, where the external strain

field is induced by an interfacial dislocation network in partially relaxed buffer

layers, as shown in Section 3.2.

As shown in Section 7, the chemical potential induced by external fields (µs0) is

independent of the local coverage and has the form of σuα,α. It can be shown that

in some cases it is convenient to calculate this part by solving for displacement

field since the derivative disappears in the Fourier-Galerkin transformed space. In

the dislocation case, however, it would be straightforward to obtain µs0 directly

from the strain field.

In the present work, the model can be simplified as a system with a semi-

infinite substrate and a thin film above it, where the interfacial dislocation in

between is infinitely straight and is considered to be immobile. As mentioned in

Section 3.2, the Burger’s vector of interfacial dislocations is of the mixed type.

But since screw components can induce only the shear strain, we see from Equa-

tion 7.6 that only edge components contribute to the strain interaction energy.

Figure 13.4 shows a thin film and substrate structure with a single straight,

infinitely long dislocation whose Burger’s vector has only an edge component.

Normally the two materials (film and substrate) have not only different elastic

constants but also different lattice constants. Because of epitaxial deposition, a

mismatch strain ε̃0 will exist in both thin film and substrate. It is important to

notice that this strain is stress-free (or by Mura’s definition eigenstrain). The

total strain on the surface can then be written as

εtotal = εmismatch + εdislocation,
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where εdislocation is the strain induced by interfacial dislocations and εmismatch is

the strain induced by the mismatch strain ε̃0. It should be emphasized that in

the current model we assume both the interface and the top surface to be flat.

In reality, the interface will be distorted into a wavy shape [37]. In the case

of large distances between dislocations, however, the magnitude of distortion is

so small that it can be neglected. As for the top surface, it usually becomes

faceted and rough when the lattice mismatch is present. However, the deposition

of a capping layer supplies additional atoms to fill in the trouphs of the rough

surface [32]. The presence of interfacial dislocations after the critical thickness

is reached relaxes the deformation of surfaces induced by the lattice mismatch.

Since ε̃0 uniformly exists along the whole flat interface, it is easy to see that the

relaxed strain (εrelax) is also uniform along the flat surface. From the final kinetic

equation (8.8), it has already been known that the spatially independent part of

the field has no contribution to the equation.

The formal way to solve the elastic field generated from interfacial disloca-

tions in multi-layer structures developed by Willis’s method is to use the Fourier

transform over the x and y directions and solve ordinary differential equations

with the continuous and stress-free boundary conditions [17, 81]. However, in

the present simulation we use a simplified approach by considering a 2-D plain-

strain problem with an infinitely straight dislocation in a homogenous isotropic

half-space material (Figure 13.4).

Using the complex variable representation method [74], we have the strain

field given by a simple equation:

εxx =
2

π

(c11 − c12)

(c11 + c12)

(bxx + bzh)xh

(x2 + h2)2
. (13.1)

The elastic stiffness coefficients are set as c11 = 15.79 × 1011 erg/cm3, c12 =
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Figure 13.4: Surface strain field of an interfacial dislocation buried at 80nm

underneath the Si surface, calculated by complex variable methods. The material

parameters used is shown in Table C.1
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6 × 1011 erg/cm3 and c44 = 7.65 × 1011 erg/cm3 for Si [24]. It should be noted

that the interfacial dislocation is of the mixed type with both edge and screw

components as shown in Figure 13.5.
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Figure 13.5: The slip planes of the interfacial dislocations with both edge and

screw components

The edge component of the Burger’s vector of an interfacial dislocation in a

partially relaxed SiGe buffer layer is estimated directly from the equivalent lattice

constants as bx ≈ −1.93 Å and bz ≈ −2.73 Å, in which the negative sign means

the extra half plane is downwards to infinity.

In Appendix C, we give a full solution of the elastic field by an interfacial

dislocation in multi-layer structures [17, 81]. The effect of the inhomogeneity in

the structure is shown to be very small in the case of the SiGe material system,

as illustrated in Figure 13.6. Thus it is precise enough to use the simple solution

by the complex variable methods instead of the full solution in our simulation. In

addition, from Figure 13.6, it is noted that the maximum compressive region on

the surface is not always at the intersection of slip plane with the surface plane.

It depends on the Burger’s vector orientation, the position of the extra half plane

and the slip plane.

We may notice from the Figure 13.4 and Figure 13.6 that the position of
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Figure 13.6: Comparison of σxx between inhomogeneous system (Si/Ge) and the

homogeneous system (Si) with a single dislocation at 8nm below the surface.

the maximum compressive strain is at the intersection of the extension of the

extra half plane and the surface. It can be shown that if the extra half plane

is in the upper buffer layer, the maximum compressive region will be at the

intersection of the slip plane and the surface. It is also found that the strain field

decays to zero in the range of 1µm. In the experiments of Kim et al.[32, 34],

the distance between dislocations is about 9µm. Thus, it is reasonable to use

the single dislocation solution (Equation 13.1) as the periodic network solution

if the length scale of the simulated surface is on the order 1µm. As shown in

the experiment, the distance between two parallel dislocations is usually on the

order of µm, which is much larger than the thickness of the thin film. Thus it

is reasonable to ignore the dislocation-dislocation interaction. For intersecting

dislocations, it is noted that the component σxx is large if computed along the

x-direction and small computed along the y direction. To a first approximation,
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we can also ignore interactions between intersecting dislocations that comprise an

interfacial network. If the solution is determined in z − y plane, then by making

the coordinate transformation: x → z and y → y, the elastic field is obtained for

w(i), v(i), σ
(i)
yy , σ

(i)
zz , σ

(i)
yz according to the dislocation array in z − y plane.

Solutions for dislocation networks can be constructed by superposing single

dislocation solutions given above. Assuming d
(kx)
x and d

(kz)
z are the kth disloca-

tions’ locations along the x and z directions, respectively, the solution becomes:

uxi =
nx∑

k=1

uxi

(
x − dk

x, y
)
,

uyi =
nx∑

kx=1

ny∑

kz=1

[
uyi

(
x − dkx

x , y
)

+ uyi

(
z − dkz

z , y
)]

, (13.2)

uzi =
nz∑

k=1

uzi

(
z − dk

z , y
)
.

In the x − y plane problem, since an edge dislocation line is along the z-

direction, the deformation along the z direction is zero, which implies a plain

strain state. It is the same for the z − y plane. Hence, we have:

σxx =
nx∑

kx=1

ny∑

kz=1

[
σxx

(
x − dkx

x , y
)

+ νσzz

(
z − dkz

z , y
)]

,

σyy =
nx∑

kx=1

nz∑

kz=1

[
σyy

(
x − dkx

x , y
)

+ σyy

(
z − dkz

z , y
)]

, (13.3)

σzz =
nx∑

kx=1

ny∑

kz=1

[
σzz

(
x − dkx

x , y
)

+ νσxx

(
z − dkz

z , y
)]

.

A calculated stress map with a capping layer for a 80 nm-thick film is shown

in Figure 13.7.
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Figure 13.7: Strain field for a thin film structure of 1 × 1 interfacial dislocation

buried at 80nm away from buffer layer.
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13.2 Results and Comparisons with Experiments

To illustrate the predictive capabilities of our model, we consider Ge atoms are

deposited on a Si0.75Ge0.25 substrate. The lattice constant for Ge, a, is 5.06 Å

at room temperature. We take the Ge-Ge bond energy to be 0.3 eV where the

experimental conditions of Kim et al.[34]. The adsorption and evaporation rates

are assumed to be 1.67 × 10−5 cm2s−1 and 1.67 × 10−6 cm2s−1, respectively. The

surface diffusion of Ge adatoms is strongly dependent on the temperature T

and the coverage c. For hopping types of motion, it is reasonably assumed that

Ds = D0 c(1− c). However this dependence should only change the linear stabil-

ity analysis quantitatively. For diffusion induced by thermally activated atomic

jumps and at low temperatures, we should have Ds = D0 exp (−Es/T ) [79]. We

take D0 = 2.57×10−7cm2s−1 [33]. For calculations related to elastic interactions,

we use the intrinsic surface stress σ as 100 meVÅ−2 for Ge(001), which is assumed

to be equal to the Si(001) 2×1 surface by an order-of-magnitude estimation [65].

It should be noted that from Walgraef’s results [79], the characteristic length

of self-organized patterns without the external perturbation is only on the order

of 10nm. Compared with the length scale of the stress field from interfacial

dislocations, the difference of dot- or stripe- patterns will not be obvious. For

convenience the present work will be focused on an average coverage c0 below the

critical coverage in which the so-called 0 hexagons of dot pattern are selected. In

practice, we choose c0 = 0.0025 ∼ 0.15. In real experiments, Ge quantum dots are

deposited with Ge coverage ranging from 3Å to 12Å and then quenched to room

temperature. Since the above formulation is for monolayer cluster formation and

the Ge wetting-layer thickness is approximately 3ML ≈ 4.2Å [53], the dynamic

process in our model should be understood as the nucleation stage after a perfect

wetting layer has formed at room temperature. In the following results, the 1 µm2
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surface is divided into 256× 256 grid points, which keeps at least 2 points in the

intrinsic characteristic length of the self-organized pattern.

All of our simulations begin with a small perturbation around c0. Figure 13.8,

Figure 13.9 and Figure 13.10 show the kinetic evolution processes for c0 = 0.025,

c0 = 0.05 and c0 = 0.15 respectively. It is observed that during the first 10−1µs,

a pattern quickly emerges with the intrinsic length scale of a self-organized struc-

ture. At the same time its global distribution is slightly adjusted by the external

fields. As the evolution process continues, for c0 = 0.025, the dots nucleate ex-

clusively at the intersections of dislocation lines. However for c0 = 0.05 all dots

except those along dislocations are completely wiped out by the applied strain

field at about 1µs. Then a clear distribution of dots is formed along dislocation

lines. For the case of c0 = 0.15, the dots keep growing by association. The pat-

tern becomes especially denser in the region with the maximum compressive field

along the dislocations until reaching equilibrium. A blurred denuded zone with a

length scale of the order of 0.1µm is formed in the maximum compression region

on the other side of dislocations. These results clearly show the three quantitative

stages of nucleation which is consistent with experimental AFM images [34].

In order to quantitatively describe different distributions of surface atomic

clusters, we construct a quantity that is analogous to the mass moment of inertia:

Ixx =

∫
d2r (x − xc)

2c(r), (13.4)

where xc is the x component of the center of mass and is defined as

xc =

∫
d2r xc(r)∫
d2r c(r)

.

To make things clearer, we carry out calculations for one buried dislocation along

y direction and compare the results with different average coverage c0. In this
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Figure 13.8: The evolution process of surface island formation by self-and-forced

organization effects, starting with a small perturbation around c0 = 0.025. The

strain field is provided by two buried dislocations (along x and y direction and

intersected at the center) at a depth of 80nm underneath the surface. (A) to

(D) are the 3D-view simulation results at the time of 0µs, 1.1 µs, 6.0 µs, and

9.3 µs, respectively. (E) is the equilibrium state in a 2D view at 9.3 µs. (F) is the

experimental data by Kim et al. at the coverage of 4.0 Å [34] (i.e. c0 ∼ 0 Å).

60



 

2µm 

Dislocation
 

 

 
Dislocation 

E F

A B

C D

0.5   µm

Figure 13.9: The evolution process of surface island formation by self-and-forced

organization effects, starting with a small perturbation around c0 = 0.05. The

strain field is provided by two buried dislocations (along x and y direction and

intersected at the center) at a depth of 80nm underneath the surface. (A) to

(D) are the 3D-view simulation results at the time of 0µs, 8.25 µs, 10.45 µs, and

15.95 µs, respectively. (E) is the equilibrium state in a 2D view at 18µs. (F) is

the experimental data by Kim et al. at the coverage of 4.5 Å [34] (i.e. c0 ∼ 0.5 Å).
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Figure 13.10: The evolution process of surface island formation by self-and-forced

organization effects, starting with a small perturbation around c0 = 0.15. The

strain field is provided by two buried dislocations (along x and y direction and

intersected at the center) at a depth of 80nm underneath the surface. (A) to

(D) are the 3D-view simulation results at the time of 0µs, 0.22 µs, 0.55 µs, and

1.1 µs, respectively. (E) is the equilibrium state in a 2D view at 10.45 µs. (F) is

the experimental data by Kim et al. at the coverage of 6.0 Å[34] (i.e. c0 ∼ 2 Å).
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case, the smaller the value Ixx, the larger the influence of the external field. It is

shown in the Figure 13.11 that when c0 is very small, say 0.01, the adatom cluster

is uniformly distributed, and the distribution is shaped by the external field. In

this case, instability does not take place and dots do not form. When c0 increases

to 0.05, an instability takes place and there will be a strong effect from the strain

field at a time of about 10µs, and all stripes emerge into one sharp soliton profile.

In this case, the forced-organized pattern becomes dominant. As c0 is set to be

larger than 0.05, say equals to 0.15, the self-organized pattern interacts with the

forced pattern. It can be seen that there is a high density of atomic clusters on the

maximum compression area along the dislocation line and a sparse distribution

on the other area. It should be emphasized that the formation of the soliton

profile is explained by the resonance of the wavevector and the amplitude of

the external field and the unstable modes of the self-organized pattern-forming

instability. This coupling is clearly a function of the average coverage c0.

Although our simulation results show a good agreement to the observed ex-

perimental data, we have to point out that the applicability of the proposed

phase-field theory is limited. As described in the previous chapters, the nearest-

neighbor interaction chemical potential part in our continuum model is derived

by the Bragg-Williams approach, which is based on the mean-field assumptions.

It is a valid approximation only if the spatial fluctuations of the coverage about

its mean value are small. However, since the deposition of atoms is usually ex-

tremely low in the real experiments(< 1%), it would become questionable whether

a fluctuating local coverage can be replaced by a spatially uniform average value.

Another limitation of our continuum theory is that we focus only on the mono-

layer system formed above the wetting layer. In reality, due to energetics of the

adatoms and the effects of inter-layer diffusion the stable monolayer can hardly

exist during the experiments. Thus, our model cannot provide any information
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Figure 13.11: The mass moment of inertia as a function of time for a buried

dislocation at 80nm depth from the surface and along the y direction.

about the information about the shape and facets of the dots. It can only be

understood to provide the dynamic nucleation information during the early stage

of deposition.

14 Directed Self-Organization by Other External Field

14.1 Periodic Inclusions

As shown in Section 7, the contribution of external strain to the chemical poten-

tial, which is the variational derivative of the free energy, can be written as:

µs0(r) = σuα,α = σ
[
εxx(r) + εyy(r)

]
. (14.1)

This is obviously independent of coverage. We can use a direct solution of
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the strain field by infinite straight dislocations. However in the general case, the

direct solution of the strain field is difficult, and it might require us to pursue

the solution in a transformed Fourier space, and then transform it back to real

space. Thus, a convenient way is to incorporate Equation 14.1 into the kinetic

equation and solve for the displacement field in the transformed space. The

Green’s function method is a formal approach for an arbitrary elastic case, such

as inclusions, dislocations and void lattices.

Formally, the displacement field induced by stress-free strain (eigenstrain) ε∗ij

can be expressed as an integral [54]:

uα(r) = −
∫

V

d3r′ Cjlmnε
∗
mn(r′)Gαj,l(r − r′). (14.2)

Note that in the above equation, the letter index represents the 3-D volume index

on x, y and z. Since buried inclusions lie beneath the surface, then

ε∗mn(r) = ε∗mn(rq, z) (14.3)

Gij,l(r − r′) = Gij,l(rq − r′
q
; z, z′), (14.4)

where the rq denotes a position vector along the surface (x and y direction).

As mentioned before, the Green’s Function in Fourier space can be obtained

explicitly for the crystal with isotropic, cubic or hexagonal symmetries [40, 58].

General anisotropic cases can be investigated by the generalized Stroh foralism

[76, 56].

For the stress-free strain ε∗mn(r), we assume that it is uniform and dilatational,

which means:

ε∗mn(rq, z) = ε∗ϑ(rq, z)δmn, (14.5)
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where δij is Kronecker delta tensor and ϑ(r) is the shape function of the inclusion

defined as [30]:

ϑ(r) =





1 if r is inside the inclusion

0 otherwise.
(14.6)

In the elastic inclusion case, where the elastic constants Cijmn are assumed

to be same as in the substrate, we have ε∗ = ∆a/a, where a is the lattice con-

stant and ∆a is the difference between the substrate and the inclusion. It is also

noted that in a numerical sense, the above formulation also deals with a peri-

odic boundary condition, which fit the requirement of the periodic void lattice

structure.

Suppose that the material, except the inclusions, is homogenous. Due to

the convolutional form in the above integration, the surface chemical potential

in 2-D Fourier space (q = (qx, qy)) can be simplified especially along x and y

directions. For an isotropic material, substituting Equation (14.5) and (14.6)

into Equation (14.2), we have

uα(r) = −(c11 + 2c12)ε
∗

∫

V

d3r′ ϑ(rq; z
′)
[
Gαβ,β(rq − r′

q
; 0, z′) + Gαz,z(rq − r′

q
; 0, z)

]
,

(14.7)

where no summation is applied on the underlined index. Making the Fourier

transform along x and y and taking the divergence of the above equation and

then substituting into Equation (7.6), we obtain the chemical potential in a hybrid

(q, z) space as:

µs
1(q) = qα(c11 + 2c12)ε

∗σ

∫
dz′ ϑ(q, z′)

[
qβGαβ(q; 0, z′) + iGαz,z(q; 0, z′)

]
, (14.8)
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where i =
√
−1 .

We can also develop the chemical potential for crystals with cubic symmetry.

It is easy to show that the equation for cubic crystals is exactly the same as

Equation (14.8), except that we have to use the Green’s function for half-space

material with cubic symmetry.

It is noted that by using Equation (14.8) we reduce the computation of the

chemical potential µs0(q) in the Fourier spacean inclusion with an arbitrary

shape to an integral in one dimension. Thus, it has a significant efficiency in

the Fouier-Garlerkin approach in the kinetic model. In the future steps, the

coverage-independent term calculated by Equation (14.8) can be substituted in

the governing equation (10.7) and the same numerical calculation can be taken

as described in Section 10.

14.2 An External Electromagnetic Field

In the case of interfacial dislocations and the inclusion/void lattice situation, the

external field interferes with the self-organization of adatoms via the substrate

elastic deformation. Additionaly the long-range interactions between adatoms

are also mediated by the substrate. The mechanisms of forming self-organized

nanostrcutures by a laser field are more complicated than the previous substrate-

mediated elastic field, since the electronic properties of atoms have to be taken

into account. A well-known explanation is based on the evaluation of the inter-

action between the external laser field and adatoms. This interaction is induced

by two types of forces: a spontaneous force and a dipole force. The spontaneous

force comes from the repeated adsorption and re-radiation of one photon by an

atom. It plays the major role, especially during cooling (collimation) of atoms

by the laser field. The dipole force arises when the atom has an oscillating dipole
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driven by the laser field. The corresponding force is proportional to the intensity

gradient in a variable electromagnetic field. This concept was first proposed by

Ashkin [3]. If the laser beam is tightly focused, a neutral atom of polarizability

α can be “trapped” at the focus of a laser beam, which is called a laser tweezer.

The potential associated with the dipole force can be written simply as [45]

U(r) =
~∆

2
ln

(
1 +

I(r)

I0

Γ2

Γ2 + 4∆2

)
, (14.9)

where ~ is Planck’s constant divided by 2π, ∆ is the de-tuning of the laser from

atomic resonance frequency, I is the laser intensity, I0 is the atomic saturation

intensity, and Γ is the natural atomic resonance line width. The dipole force (F)

experienced by the atom is given by

F(r) = −∇U(r). (14.10)

Thus by calculating the trajectories of deposited atoms falling over about 0.3 mm,

a distribution of atoms can be obtained consistent with experimental results.

Although the established field-atom-interaction mechanism works very well in

analyzing the dot formation of Chromium atoms and some other types of atoms

(especially group III atoms: Al, Ge and In [60]), there is an interesting experi-

mental result on helium atoms performed by Petra et al. [57]. In Figure 14.12 a

comparison is made between simulated and experimental results.

Although the intensity profiles for linearized and circular polarized light are

not significantly different†, it is clear that the experiments on helium atoms with

†If the two standing waves are superimposed in the x and y directions, the intensity profile

is proportional to
[
sin(x)+sin(y)

]2
in the case of linear polarized lights, and sin2(x)+sin2(y)+[

sin(x) + sin(y)
]2

in the circular polarization case.
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Figure 14.12: Comparison of calculated results by the trajectory method, experi-

mental results for a linearized light field (upper row) and circular light field (lower

row). (A) Calculation of the laser potential profile. (B) the calculated atomic

distributions and (C) the experimental results [57].

69



circular polarization are not in agreement with the trajectory model. Further-

more, the structures with distinct strip patterns in circular fields seem to indicate

some links to our mesoscopic models.

In fact, the trajectory model simplifies the problem by two important as-

sumptions in the simulation. First, there is neither short-range nor long-range

interaction between deposited atoms. The other assumption is that atoms after

deposition on the substrate will not diffuse. These two assumptions are valid in

the experiments of McClelland [46], where chromium is a self-passivating metallic

material, and after deposition Cr atoms are soon passivated by the surface so that

they have a very low surface mobility, even at a high temperature of 1500 ◦C. Thus

the trapping effect of laser on Cr atoms dominates the atomic distribution on the

substrate during the deposition process. On the other hand, helium atoms are

not passivated on the surface and they have a large surface diffusion coefficient so

that our model, which includes both field-atoms and atom-atom interactions and

the diffusion activity provides a possible way to reveal the mechanisms in Petra’s

experiment. Especially nowadays many new technologies have been developed to

fabricate nanosized structures by depositing charged atoms or macro-particles on

the liquid or on “smooth” inert surfaces. Our model is expected to have a wider

application in the future.

Following a the similar treatment to that of Chapter III, it is easy to see that

in considering two-body interactions only (i.e. no cluster effect), the nearest-

neighbor interaction term remains the same as before and the free energy of the

field-atom interaction is proportional to the coverage. The chemical potential µs0

is given by

µs0(r) = U(r)a2, (14.11)
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where U(r) is the potential energy according to Equation 14.9 and a is the lattice

constant.

However, the long-range interaction term should have a different consideration

since the kernel in the global integration is related to the intensity of the laser

field and is thus non-uniform. The potential energy by long-range interactions

can be written as:

FLR =
1

2

∑

i,j

Wijcicj →
1

2

∫∫
WLR(r, r′)c(r)c(r′) dr dr′ (14.12)

where the bold typeface denotes a vector. WLR is generally a function of the

vectors r and r′ and the unit is energy per atom. In most cases, the function

is proportional to the field intensity (I) at r and r′, and the type of long-range

interaction (Φ). It can be written as a form with separate variables:

WLR(r, r′) = KdI(r)Φ(r − r′)I(r′). (14.13)

Making use of Fourier representations:

I(r)c(r) =

∫
d3q

(2π)3
{I · c}q eiq·r

Φ(r − r′) =

∫
d3q

(2π)3
Φq eiq·(r−r′),

(14.14)

and with the application of the relation:

∫
ei(q+q′)·r dr = (2π)3δ(q + q′), (14.15)

in Equation (14.12), we obtain:
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FLR =
Kd

2

∫
d3q

(2π)3
Φq

∣∣∣{I · c}q

∣∣∣
2

. (14.16)

The variational derivative of Equation (14.12) yields:

{
δFLR

δc

}

r

= Kd

∫
d3q

(2π)3
I(r)e−iq·r Φq {I · c}q

= Kd

∫
d3q

(2π)3
I(r)e−iq·r Φq

∫
d3r′I(r′)c(r′)e−iq·r′ . (14.17)

In the Fourier space, we have:

{
δFLR

δc

}

q

=

∫
d3r

{
δFLR

δc

}

r

e−iq·r

= Kd

∫
d3q′

(2π)3

[∫
d3rI(r)e−i(q+q′)·r

]
Φq′{I · c}q′ (14.18)

Thus, the Fourier component of the variational derivative of the long-range

potential energy is generally coupled with the full spectra in the wave vector

space, which offers great difficulties in both analytic and numerical methods.

However, we can easily find that if I(r) is taken out of the integral in the first

bracket, with Equation (14.15), Equation (14.18) can be greatly simplified. An

obvious example is I(r) = const., which corresponds to all cases where long-range

interactions are not induced by the external fields but by their own properties,

such as Coulomb interactions between equal-charged particles and dipolar inter-

actions in magnetic spin systems. Besides the constancy of I(r), there is another

situation which can simplify the problem. Let us denote the characteristic length

of the external fields as l, the effective length of long-range interactions as rl and

the wavelength of the pattern (related to c) as λ. If l > λ À rl, this means that

over the length scale of rl, long-range interactions have a significant change, while
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the field can be approximately considered to be locally constant. Thus, we can

rewrite the long-range potential energy in real space as:

FLR ≈ Kd

2

∫∫
dr dr′ Φ(r − r′)I(r′)2c(r)c(r′). (14.19)

The variational derivatives in real and Fourier space become:

{
δFLR

δc

}

r

=
Kd

2

∫
drΦ(r − r′)I(r′)2c(r′) +

Kd

2
I(r)2

∫
drΦ(r − r′)c(r′)

≈ Kd

∫
drΦ(r − r′)I(r′)2c(r′) (14.20)

{
δFLR

δc

}

q

= KdΦq{I2c}q. (14.21)

Here we just give an intuitive picture about length scales. From Walgraef’s

work [79], where only nearest neighbor interactions are considered, the effective

interaction length is of the order of the lattice constant (a), and the characteristic

wavelength of the patterns is of the order of 100a (λnn). Practically, the cutoff

distance of long-range interactions between particles is of the order of 10a (rl).

Let’s assume the scales are linear, the patterns generated by long-range interac-

tions will be possibly on the order of 1000a (λl). If the wavelength of the external

field is in the micro scale, it meets the condition

l > λl À rl > a.

The term of {I2c}q in Equation (14.21) exhibits the advantages of the model.

If long-range interactions are comparable to or greater than nearest neighbor

interactions, the wavelength of the patterns of the system will appear with a

large scale, which represents realistic results corresponding to the experiments.

The remaining task is to consider both external field term (Equation 14.11)

and the long-range interaction term (Equation 14.21 with a proper interaction
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potential φ‡) in Fourier space into the kinetic equation (10.7). The similar nu-

merical calculation can be taken as described in Section 10.

‡If the deposited atoms are neutral, φ(r − r
′)) has a dipole form [51]. If the atoms are

charged, φ is a Coulomb type interaction and ∼ r−1, then in Fourier space, φq has a form of
q−2.
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CHAPTER VI

Atomistic Modelling of the

Early Clustering Stages

15 Single Atom Diffusion

In the previous chapters, a phase field model has shown that the spontaneous

ordering of atomic clusters can be changed by a fairly weak external elastic field.

As pointed out in Section 4.2, this approach is a continuum description. However,

at very low coverage, the validity of the continuum description becomes question-

able. Moreover, inclusion of entropy contributions becomes less accurate for very

small coverage because of its logarithmic divergence. Clustering of surface atoms

during the early stages of deposition is more appropriately described as a nucle-

ation process at the atomic level. For these reasons, we devote this chapter to

modelling the early stage of surface cluster nucleation. The atomistic model that

will be described here combines empirical interatomic potential determination of

energetics with the Kinetic Monte Carlo (KMC) approach.

It is known that during physical adsorption, an adatom deposited on the

substrate performs thermally activated hopping between possible lattice sites.

The hopping activity is statistically determined by the energy barrier. In a system

with identical but distinguishable particles, Maxwell-Boltzmann statistics govern

the process, which means that the probability per unit time for a possible adatom
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jump, i, to take place is given by

pi = ν0 exp
(
− Ei

kBT

)
, (15.1)

where ν0 is a constant, and for the current problem it can simply be taken as the

Debye frequency 1013 s−1. kB is the Boltzmann constant and T is the absolute

temperature. Ei denotes the total energy barrier, which depends on the surface

properties, stress fields and neighboring adatoms, that is

Ei = ∆ES
i + Em

i + ∆EA
i , (15.2)

in which ∆ES
i is the difference of binding energies of two lattice sites. Em

i is the

migration energy barrier and ∆EA
i is the activation energy change by the stress

field.

The material system considered in the current study is the SiGe semiconduc-

tor. It is known that there is always a reconstruction structure on the Si(001)

surface, which involves the formation of Si dimers [50]. The bond length is ap-

proximately 2.31 Å [39]. Normally the dimers might appear buckled which means

one of the two dimer atoms should be upper and the other is lower [77]. Since the

buckling is very small (the angle of the tilted bond is about 15◦), it is reasonable

to ignore this detailed structure. Figure 15.1 illustrates a top view of the recon-

structed Si(001) surface. Here, an atomic surface model is adopted similar to

the reference [69]. The possible diffusion pathways of adatoms on the surface are

indicated by the dash lines. There are P1(MFHCHFM) and P2(MBQBM)

and P3(MAPDQBM). In the absence of a external field, the potential energies

along the corresponding diffusion pathways at the M site are based on the results

of first principles calculations [69].
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Figure 15.1: Schematic top view of the Si (001)-2×1 reconstructed surface (left)

and first principles calculations of the potential energies (refereed to the adsorp-

tion energy) at the M site along two diffusion pathways (right) [69].

Due to changes in lattice distances by the elastic strain, the potential energy

of surface atoms is changed, and adsorbed atoms would have a different diffusion

energy barrier. It is indeed shown by many investigations that there is an effect

of the elastic strain field on atomic diffusion. For example, Schroeder used a

classical Lennard-Jones (LJ) pair potential model to calculate the energy profiles

of the FCC, BCC and Simple Cubic (SC) crystalline surfaces and found that the

strain field changes the saddle point energy much more than the binding energies

[62]. He also found that tensile strain increases the barrier and compressive

strain decreases the barrier. The magnitude of these changes is about 0.15 eV

per 1% strain. A more complicated case is considered by Hoshino [26] via ab inito

calculations for the migration of Si adatoms on a strained Si(111) surface. The

inhomogeneity of the Si surface induced by the adatom makes the two different

activation energies (negative of the energy barrier) change, with a maximum of

0.05 eV per 1% strain. Based on first principles calculations, Shu summarized the

change in the surface diffusion barrier by a strain fields as a linear relation [69]:
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Pathways P1 P2 P3

E0
i (eV) 0.65 0.66 1.19

A∆σxx (eV) 0.94 2.43 3.32

A∆σyy (eV) -6.23 -0.15 -6.60

Table 15.1: The strain-free diffusion barriers and the activation strain tensor

along the three diffusion pathways on a Si(001) surface by first principles calcu-

lation [69].

Ei = E0
i + A

[
(σsad

xx − σmin
xx )εmin

xx + (σsad
yy − σmin

yy )εmin
yy

]

= E0
i + A∆σε

ext, (15.3)

where A is the surface area. σ denotes the intrinsic surface-stress tensor as before.

But here, σ is the true value induced by ad-particles at the saddle and minimum

points denoted by the superscripts respectively. The numerical value of A∆σ

is given in Table 15.1. It can be noticed that a compressive (or tensile) strain

may either increase or decrease the diffusion barrier as seen by negative signs of

A∆σyy.

Unfortunately, although Shu claimed in his paper that the effect of strain on

diffusion (about 0.1 eV per 2% strain) is quantitatively significant, in practice

the applied external field which exhibits a significant effect on self-organization

is much less than 0.1% strain. For example, the strain field of buried interfacial

dislocations can be estimated as νb/h, where ν is Poission’s ratio, b is Burger’s

vector and h is the thickness of the substrate layer on the surface. In the experi-

ments on Ge self-assembled quantum dots on partially relaxed SiGe buffer layers

[32, 34], the thickness is about 80nm and the length of the Burger’s vector is

about 0.2nm. Thus, the strain magnitude is only on the order of 0.1%. Thus, the
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diffusion energy barrier changes only by 0.01 eV or less. This value is obviously

much smaller than the strain-free diffusion barriers. These quantitative aspects

will now be quantified by Kinetic Monte Carlo (KMC) simulations.

KMC methods are based on the assumption of ergodicity, which asserts that

all possible states in a stochastic system will be experienced by a nonzero positive

probability without the dependence of any initial conditions. This assumption

allows us to sample out the time domain from a statistical distribution of the sys-

tem. Specifically for a discrete lattice structure, the KMC procedure practically

means a full list of all possible events (atomic hopping) of the whole systems (all

adatoms). Each event is denoted by a random number from 0 to 1, and that is

equaled to the corresponding probability per unit time. The selection of a event

(e.g. one adatom makes a jump) is controlled by a random number in the range

(0, 1). The reciprocal of the atomic jump probability per unit time is a residence

time for an atom that moves by that specific type of jump. Since jump prob-

abilities of all different types of jumps are independent, the overall probability

per unit time for the system to change its state by any type of jump step is just

the sum of all possible specific jump probabilities. Therefore, the residence time

for the system in a specific configuration is the reciprocal of this overall jump

probability. Whenever a jump is to be made, the specific one is determined by a

random choice based on the relative probabilities of all potential jumps. Hence,

the time increment step for one jump is:

∆tjump = − ln (η)

(
N∑

i=1

pi

)−1

, (15.4)

where, η is a random number uniformly distributed in the range (0, 1), N is the

total number of deposited adatoms.

Thus, from Equations (15.1) and (15.4), the time (∆tjump) that a jump to be

79



biased by the energy barrier’s change of the 0.01 eV from the external field can

be estimated as

∆tjump

tjump

∼ e−∆E/kBT

e−E/kBT
∼ 1010, (15.5)

which is unrealistically long. Therefore the effect of the external strain field on

single adatoms will not influence the organization of the atomic clusters during

the early clustering stages.

16 Island Diffusion

A possible reason that single atom diffusion is not able to explain quantum dot

self-assembly that is observed experimentally is that the model for single atoms

does not account for interactions between atoms, including both two-body and

many-body ones. Physically, when adatoms jump close enough to one another,

they will form clusters. As the size of a cluster becomes large enough, a new

surface (actually a new phase) is formed. Thus the effects of external elastic fields

on clusters will be much larger than its effects linearly summed on the individual

atoms. This mechanism is consistent with the continuum treatment mentioned

in previous chapters. However the explicit form of the nonlinear dependence has

to be determined by an atomistic approach.

There are several mechanisms for explaining the diffusion of an atom cluster,

including the random motion of periphery atoms, vacancy migration across the

cluster, evaporation and condensation of atoms in the island and dislocation

motion in the island, all of which can induce the shift of the mass center of

an island [44]. In our case, since small-size quantum dots are defect-free, we

will focus on the motion around the periphery and the evaporation/condensation
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processes. During the simulation of island diffusion, a simplification is made in

which the reconstructed dimer structure of the surface is ignored and only the

regular crystal structure is considered. The validity of this assumption is due

to the existence of surface steps. It is known that the orientations of different

surface steps are totally randomly distributed, and that the normal size of each

step is much smaller than the average diffusion length of atom clusters. Thus

the random distribution of surface steps dominates any local diffusion anisotropy

due to the dimer surface reconstruction. The thermodynamic investigations of

Metiu [48] indicate that the equilibrium shape of an island is roughly square. We

assume here that the island will re-arrange all its atoms automatically by a spiral

way. The basic idea to solve the island diffusion problem here is to deal with

the whole atom cluster as one entity. For simplicity, every motion of an island is

assumed to be a jump of the island’s mass center from one regular lattice site to

a nearest neighbor. Hence, this motion should be looked at a final result of many

periphery atoms’ edge diffusion.

To consider the bias effect of an applied strain field on cluster diffusion, a

simple idea similar to that proposed by Mattson et al. [42] is adopted. We

consider the island to be fixed on surface and calculate the binding energy as a

function of island size. Here, we will use the Modified Embedded Atom Method

(MEAM) for Si surface is. In this approach, a semi-empirical formula for the

total energy is expressed as:

E =
∑

i

∑

j 6=i

1

2
φ (rij) +

∑

i

F (ρi), (16.1)

where ρi is the electron density at the position of atom i, and is a function of

the positions of all atoms in the system. φ is the pair potential and F is the

embedding energy function, both of which are given by Baskes [7] as:
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F (ρi) = AEEc

(
ρi

ρX (re)

)
ln

(
ρi

ρX (re)

)
(16.2)

φ (Ri) = −2
Ec

Z

[[
1 + η + 0.05η3

]
e−η + AE

(
ρX (Ri)

ρX (re)

)
ln

(
ρX (Ri)

ρX (re)

)]
,

(16.3)

where AE, Ec and ρX(re) are material constants, Ri =
(
1̃ + ε̃i

)
ri − rSP

ad ,

ρi =
2ρ

(0)
i

1 + exp

[
−

3∑
l=1

t(l)
(
ρ

(l)
i

/
ρ

(0)
i

)2
] (16.4)

(
ρ

(l)
i

)2

=
∑

j 6=i

∑

k 6=i

f (l) (rij) f (l) (rik) L(l) (cos θjik) (16.5)

f (l) (rij) = fee
−β(l)(rij/re−1). (16.6)

L(l), l = 0 ∼ 3 are the unnormalized Legendre polynomials.

η = α

(
R

re

− 1

)
, α =

√
9ΩeB

Ec

, (16.7)

with Ωe the equilibrium atomic volume and B the bulk modulus.

The parameters for the MEAM of Si [6] and Ge [7] are listed in Table 16.2

and the geometric factors in MEAM are listed in Table 16.3 [27]:

The excess island binding energy is shown in Figure 16.2. The result shows

that a semiconductor island has a remarkably different behavior from a metal

island. We fit the results for the island binding energy with a 3rd order polynomial

function,

E
(i)
bc (N, ε) ≈

(
0.0174N3 − 0.675N2 + 29.55N − 72.56

)
· [εx (x, y) + εz (x, y)] ,

(16.8)
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Si Ge Si Ge

t(1) 2.05 4.02 β(0) 4.4 4.55

t(2) 4.47 5.23 β(1) 5.5 5.5

t(3) -1.8 -1.6 β(2) 5.5 5.5

fe 0.1705 0.1705 β(3) 5.5 5.5

re(Å) 2.350 2.450 Ec(eV) 4.63 3.85

AE 1.00 1.00 α 4.893 4.98

Table 16.2: Parameters in MEAM of Si and Ge

S(0) S(1) S(2) S(3) Z0 Cmax Cmin

1 0 0 32/9 4 2.8 2.0

Table 16.3: Geometric factors in MEAM
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Figure 16.2: Binding energy change of an island as a function of size
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where E
(i)
bc is the change of binding energy of an island with size N. The superscript

(i) means that the center of mass of the island is at the lattice site i with the

position of (x, y). Following by the same method of single atom diffusion, the

activation energy barrier of an island on a strained surface can be written as:

E(i)
a = E

(i)
a0 (N) + E

(i)
bc (N, ε (x, y)) − E

(i)
bc (N, ε (x, y)) , (16.9)

where E
(i)
a0 is the activation energy of the island without a strain field. The

dependence of the activation energy on the island size and temperature has been

determined by Mills et al. [49]. It can be found that the activation energy changes

very small for different island sizes (from N = 250 to 2000). Thus, we assume

here that the semiconductor surface has a constant value: E
(i)
a0 ≈ 0.79 eV.

The “random cluster scaling theory” (RCST) gives the island diffusion coef-

ficient as [68]:

D(i) ∼ N−3/2e
−E

(i)
a

/
kBT

, (16.10)

where D(i) is the diffusion coefficient of island diffusion. If we assume that islands

perform uncorrelated random walk, then

D(i) ∝ 〈νh〉
〈
δd2

c.m.

〉
, (16.11)

where 〈νh〉 is the jump rate for island diffusion; 〈δd2
c.m.〉 is the mean-square dis-

placement of the island mass center per jump event. Since in our accelerated

model, every jump distance is assumed to be fixed no matter what size the island

is, this means:

〈
δd2

c.m.

〉
= const. (16.12)

84



Obviously, we have:

〈νh〉 = ν0N
−3/2e

−E
(i)
a

/
kBT

. (16.13)

We choose the rate constant as: ν0 = 1013 s−1. The evaporation process in an

island can be simulated by the chemical kinetics analysis, as discussed in details

by Shao et al. [63], Mattsson et al. [43]. Based on the fact that the evaporation

is a first-order rate process, we adopt the following relation:

p (t) dt = kedt exp [−ket] . (16.14)

Here p(t)dt is the probability that an island with size N will emit one atom

between t and t + dt by setting the time of the last emission action to zero. ke

is the evaporation rate constant and is dependent on size N and temperature T ,

and is of the form [63, 43]:

ke = A exp [−Ee/kBT ] N1/2 exp
[
B

/
N1/2

]
, (16.15)

where A, B and Ee are constants. For T < 650 K, A = 0.063, B = 4.07; for

650 K< T < 950 K, A = 0.051, B = 4.87; and for T > 950 K, A = 0.086,

B = 4.55 [63].

17 KMC Simulation Results

Our simulation follows the standard kinetic Monte Carlo method and is performed

on a 350 × 350 nm2 surface area. Two infinitely long straight dislocation lines

are assumed to be buried 80nm underneath the surface at x = 250 nm and z =

250 nm, respectively. Figure 17.3 shows the evolution diffusion process for 500
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atoms on the top of the surface at a temperature of 650◦C. The background

contours represent the strain field imposed by the interfacial dislocation network.

The white dots denote atoms. The clusters of adatoms which contain more than

6 atoms are shown by block arrows pointing to the nearest spot.
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Figure 17.3: KMC simulation for 500 Ge atoms on (001) Si surface at 650◦C. The

small white dots denote single atoms. The larger (scale to island sizes) white dots

denote the atomic clusters.

It is clear that by introducing island diffusion, Ge atom clusters tend to mi-
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grate toward the maximum compression area on the Si surface, even though the

external strain field variation is very small. Because of thermal emission, a pop-

ulation of single atoms coexists with islands, as can be seen in Figure 17.3.

Figure 17.4 compares the average mean square displacement for the atom-

diffusion-only model and atom/cluster-diffusion model. The atom/cluster cou-

pled diffusion model shows a larger diffusion length and much lower island density,

which indicate that self-organization of islands is taking place during the diffu-

sion. This can also explain why quantum dots nucleate at locations which have

a larger distance than the average diffusion length of single atoms [32, 34].
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Figure 17.4: A comparison of the average mean square displacement (left) and

the island density (right) under dislocation strain field for the atom-diffusion-only

model and the atom/cluster-diffusion model

From the present simulations, we conclude that island diffusion plays a sig-

nificant role in the self-organization of surface atomic clusters during the early

stages of evolution. The results also indicate that in semiconductor systems, self-

organization effect tends to be stronger than in metallic systems. Figure 17.5

confirms this conclusion.

The influence of temperature on atom and island diffusion is shown in Fig-
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Figure 17.5: Comparison of the average mean square displacement of

atom/cluster-diffusion model for semiconductors and metal systems.

ures 17.7, 17.8 and 17.9. In Figure 17.6, we define a total vector distance as

Rtot =

∣∣∣∣
n∑

i=1

Ri

∣∣∣∣
/

n,

where Ri denotes the position vector of the ith atom and n is the total number

of atoms on the surface square†. If the maximum compressive position is defined

as R0, which is the expected equilibrium spot, Figure 17.7 shows the ratio of

the total vector distance to the equilibrium spot as a function of time at three

different substrate temperatures. It is concluded that equilibrium takes place

very quickly at higher temperatures. The figure also reveals that atom emission

from islands provides only a fluctuation effect, and has no remarkable influence

on the diffusion process. Thus, ignoring the evaporation effect is a reasonable

approximation similar to the conclusions of Bogicevic et al. [9].

†Note that the square has periodic boundary conditions and the total number of atoms in
it is conserved.
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Figure 17.8: A comparison of the average mean square displacement for all atoms

as a function of time at three different temperatures
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Figure 17.9: The comparison of Ge island density at three different temperatures
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CHAPTER VII

Conclusions

There are in summary three main parts which constitute the present thesis. The

first part is a review (Chapter II), in which we present a self-consistent survey

of various experimental observations on intrinsic and directed self-organization

of surface atomic clusters (Section 3). We also explore the role of external fields

through existing experimental evidence. We then summarize the theoretical mod-

els on surface clustering and self-organizations during thin film growth (Section

4) and the interpretation of the “multi-scale” modelling concept. Based on this

extensive review, a continuum description of a phase field model for the coverage,

c, is selected for further development in the model of which the second part of

the current thesis.

The second part (Chapters II to V) is concerned with continuum modelling

and is the major bulk of the thesis, in which we set up a phase field model to de-

scribe monolayer cluster evolution on the surface. We include in this model with

the effects of interactions mediated by the substrate, expressing these interactions

via the gradient of the intrinsic surface stresses. The direct interaction between

clusters and applied non-uniform strain fields is included in the model without the

dependence on coverage, while the cluster-cluster interaction term is a variable

part which is a function of c. It exhibits global effects because of the long-range

nature of elastic interactions. In the case of interfacial dislocations, we mainly

focus on applying our model to a surface of SiGe material system with interfacial
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dislocation networks buried at 80 nm depth. From the numerical simulations, our

model shows qualitative and quantitative agreement with experimental results.

It is found that the spatial and size distribution of adatom clusters is a result of

the interplay between self-organization and forced-organization effects provided

by external fields, even for a strain field as weak as 0.01%. In the specific case

of buried dislocations, for an average coverage greater than 0.15, monolayer clus-

ters tend to agglomerate at the compressive side of dislocations. For an even

lower coverage not below the critical coverage, such as 0.01, we could obtain dots

distributed uniformly along the dislocation lines. The presence of cluster-cluster

interactions in the model provides an extra force between clusters so that clus-

ters have smaller sizes and denser distributions. This force also destabilizes the

self-organized system. We also present two possible applications of our model

on the two different types of external fields, i.e. inclusion strain fields and elec-

tromagnetic fields. The theoretical work related with these specific models are

developed in this thesis and future numerical work is planned.

The third part (Chapter VI) is the atomistic modelling in which we discussed

that the island diffusion plays a dominant role in forming the atomic cluster

nucleus at the very early stage of evolution under an extremely weak inhomoge-

neous stain field. In this part of the research, we developed a Kinetic Monte Carlo

methods on the basis of ab initio and empirical potentials and we use pathways

on reconstructed Si surfaces and equivalent island diffusion kinetics.

Finally, it should be emphasized again that both our phase field model and

KMC simulations are based on a monolayer structure of clusters. For the interfa-

cial dislocation case in the SiGe system in comparison with experimental results

[34], our model should be understood as for the cluster evolution after the wet-

ting layer is formed. Since we only investigate the early stages of nucleation with
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very low coverage, we reasonably ignored the effects of the mass redistribution

between the wetting layer and quantum dots. In order to develop the 3-D island

formation model, a multi-layer deposition process must be added in the present

model. However, the current model has already provided the essence of the prob-

lem, which shows the various means of fabricating self-organized quantum dots

by controlling parameters such as average coverage, temperature, strain fields

and proper electromagnetic wave modes and amplitudes.

In the following, we list again the main achievements of the present research:

• We developed a phase field model with a continuum variable, coverage c,

to describe the monolayer cluster formation on the surface. Especially we

include the effects of field-adatom interactions and cluster-cluster interac-

tions.

• We developed a numerical method to calculate the governing equations in

the phase field model. The method is based on the Fourier-Galerkin spectral

approach.

• We made the simulations on the external field generated by interfacial dis-

location networks and a qualitative and quantitative agreement is obtained

by comparisons with the experimental observations.

• We made a KMC simulation by empirical interatomic potential determina-

tion of energetics and island diffusion kinetics. The atomistic result reveals

that island diffusion plays a dominant role in the early stage of nucleation.
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APPENDIX A

Nearest-Neighbor Interactions by

Variational Mean-Field Theory

The general technique for developing mean-field theories based on a variational

principal is reviewed and applied to the Potts model for charged systems by

Chaikin [13]. Here the derivation follows the idea presented by Walgraef [79].

To determine F (a), we begin with writing the Hamiltonian of a discrete lattice

system of adparticles on a substrate between which two-body interactions exist.

H
(a) =

1

2

∑

ij

ε
(a)
ij sisj, (A.1)

where si is the occupation number at site i which takes values of 0 or 1. The

two-body interaction energies, ε
(a)
ij , are negative for attractive interactions. Due

to the difficulty in having a precise evaluation of the partition function for this

Hamiltonian, we first approximate it by the mean-field Hamiltonian

H0 = kBT
∑

i

λisi, (A.2)

where kBTλi denotes the mean interaction energy between an adatom at site i.

The corresponding mean field partition function is
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Z0 =
∏

i

∑

si=0,1

exp(−λisi) =
∏

i

1

1 − ci

, (A.3)

where ci = 1/(1 + exp λi) = 〈si〉0, which is the equilibrium average of the mean

field occupancy number at site i. This is a continuous variable varying between

0 and 1, which is just the coverage of adsorbed particles. The mean-field free

energy is

F0 = kBT
∑

i

ln(1 − ci). (A.4)

By the variational mean-field theory, the exact free energy can be approxi-

mated as

F
(a) ≈ F0 + 〈H (a) − H0〉0. (A.5)

Using Equations (A.1) and (A.2) we have

〈H (a) − H0〉0 =
1

2

∑

ij

ε
(a)
ij cicj − kBT

∑

i

λici. (A.6)

Equation (A.5) becomes

F
(a) = kBT

∑

i

[
(1 − ci) ln(1 − ci) + ci ln ci

]
+

1

2

∑

ij

ε
(a)
ij cicj. (A.7)

It is obvious that we obtained the same expression for the N-N free energy as

in Equation 6.7
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APPENDIX B

Green’s Function for Half-Space

The nonzero coefficients of Gmn described in Section 8 are listed below [40]:

G11(q|zz′) = − 1

4 q c2
t c

2
l

{
exp(−q|z − z′|)

[
(c2

l + c2
t ) − (c2

l − c2
t ) q|z − z′|

]}

− exp
[
−q(z + z′)

]

4 q c2
t c

2
l

{
c4
l + c4

t

c2
l − c2

t

− (c2
l + c2

t ) q(z + z′)

+ 2(c2
l − c2

t ) q2zz′

}
(B.1)

G13(q|zz′) = − i

4 q

c2
l − c2

t

c2
t c

2
l

exp(−q|z − z′|) q|z − z′|

− i

4 q
exp

[
−q(z + z′)

]
{

2

c2
l − c2

t

− (c2
l + c2

t )

c2
t c

2
l

q(z − z′)

− 2(c2
l − c2

t )

c2
t c

2
l

q2zz′

}
(B.2)

G31(q|zz′) = − i

4 q

c2
l − c2

t

c2
t c

2
l

exp(−q|z − z′|) q|z − z′|

+
i

4 q
exp

[
−q(z + z′)

]
{

2

c2
l − c2

t

+
(c2

l + c2
t )

c2
t c

2
l

q(z − z′)

− 2(c2
l − c2

t )

c2
t c

2
l

q2zz′

}
(B.3)
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G33(q|zz′) = − 1

4 q c2
t c

2
l

{
exp(−q|z − z′|)

[
(c2

l + c2
t ) + (c2

l − c2
t ) q|z − z′|

]}

− exp
[
−q(z + z′)

]

4 q c2
t c

2
l

{
c4
l + c4

t

c2
l − c2

t

+ (c2
l + c2

t ) q(z + z′)

+ 2(c2
l − c2

t ) q2zz′

}
(B.4)

G22(q|zz′) = − 1

2 q c2
t

exp
(
−q|z − z′|

)
− 1

2 q c2
t

exp
(
−q|z + z′|

)
. (B.5)

For references, the Green’s function in physical space for the semi-infinite

isotropic medium given by Mindlin [54] are listed below

Gαβ(x,x′) = Gβα(x,x′)

=
1

16πµ(1 − ν)

[
3 − 4ν

R1

δαβ +
1

R2

δαβ +
(xα − x′

α)(xβ − x′
β)

R3
1

+
(3 − 4ν)(xα − x′

α)(xβ − x′
β)

R3
2

+
2x3x

′
3

R3
2

{
δαβ −

3(xα − x′
α)(xβ − x′

β)

R2
2

}

+
4(1 − ν)(1 − 2ν)

R2 + x3 + x′
3

{
δαβ −

(xα − x′
α)(xβ − x′

β)

R2(R2(R2 + x3 + x′
3))

}]
(B.6)

G3β(x,x′) =
(xβ − x′

β)

16πµ(1 − ν)

[
(x3 − x′

3)

R3
1

+
(3 − 4ν)(x3 − x′

3)

R3
2

− 6x3x
′
3(x3 + x′

3)

R5
2

+
4(1 − ν)(1 − 2ν)

R2(R2 + x3 + x′
3)

]
(B.7)

Gα3(x,x′) =
(xα − x′

α)

16πµ(1 − ν)

[
(x3 − x′

3)

R3
1

+
(3 − 4ν)(x3 − x′

3)

R3
2

+
6x3x

′
3(x3 + x′

3)

R5
2

− 4(1 − ν)(1 − 2ν)

R2(R2 + x3 + x′
3)

]
(B.8)
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G33(x,x′) =
1

16πµ(1 − ν)

[
3 − 4ν

R1

+
8(1 − ν)2 − (3 − 4ν)

R2

+
(x3 − x′

3)
2

R3
1

+
(3 − 4ν)(x3 + x′

3)
2 − 2x3x

′
3

R3
2

+
6x3x

′
3(x3 + x′

3)
2

R5
2

]
, (B.9)

where α, β = 1, 2, µ is the shear modulus and ν is Poisson’s ratio.

R2
1 = (x1 − x′

1)
2 + (x2 − x′

2)
2 + (x3 − x′

3)
2

R2
2 = (x1 − x′

1)
2 + (x2 − x′

2)
2 + (x3 + x′

3)
2.

(B.10)
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APPENDIX C

Elastic Dislocation Fields

of Multi-Layer Structures

The formal approach to solve the elastic field of interfacial dislocations (or frac-

tures) of multi-layer structures is to formulate the displacement by the Fourier

transform method. Specifically for the 2-D problem (x is along the surface and

y is along the depth of the structure), the transform can be taken along the x

direction:

U (i) (x, y) =
1√
2π

+∞∫

−∞

Ψ(i) (α, y) e−iαxdα, (C.1)

where i denotes ith layer (i = 1, ...n) and the dislocation lies at the interface

between layers (i) and (i + 1).

U (i) is the displacement vector of the ith layer and:

U (i) =
(
u(i) (x, y) , v(i) (x, y)

)T
. (C.2)

Ψ(ı) is the complex transformed displacement vector of the ith layer in Fourier

space and:

Ψ(i) =
(
φ(i) (α, y) , ψ(i) (α, y)

)T
. (C.3)
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The displacement and transformed displacement can be decomposed to sym-

metric and anti-symmetric parts as shown in Figure C.1.

1

2

o
x

y

dxdx

(symmetric)(anti-symmetric)

bx

byb

Surface

Figure C.1: Bonded layer structure with a single interfacial dislocation

U (i) = U (i)
s + U (i)

a , Ψ(i) = Ψ(i)
s + Ψ(i)

a . (C.4)

Consider the solution for the symmetric case,

u(i)
s (x, y) =

2

π

∫ ∞

0

φ(i)
s (α, y) sin αxdα

v(i)
s (x, y) =

2

π

∫ ∞

0

ψ(i)
s (α, y) cos αxdα.

(C.5)

Using the Navier’s equations for an isotropic, homogeneous medium, i.e.

(
λ(i) + µ(i)

)
∇

(
∇ · U (i)

s

)
+ µ(i)∇2U (i)

s = 0. (C.6)

The displacement vector can be obtained with unknown Asj, which are the

functions of α:

100



u(i)
s (x, y) =

2

π

+∞∫

0

[(
A

(i)
s1 + A

(i)
s2 y

)
e−αy +

(
A

(i)
s3 + A

(i)
s4 y

)
eαy

]
sin αxdα

v(i)
s (x, y) =

2

π

+∞∫

−∞

{[
A

(i)
s1 +

(
κ(i)

α
+ y

)
A

(i)
s2

]
e−αy (C.7)

+

[
−A

(i)
s3 +

(
κ(i)

α
− y

)
A

(i)
s4

]
eαy

}
cos αxdα,

where κ(i) = 3 − 4ν(i) for plane strain and
(
3 − ν(i)

)/(
1 + ν(i)

)
for plane stress.

and A
(i)
sj are functions of α, which will be determined from the boundary and the

continuity conditions.

In a two-layered system, the functions A
(i)
sj and A

(i)
aj can be obtained as follows:

In the symmetric case:

αA
(1)
s1 + αA

(1)
s3 − αA

(2)
s3 = bx cos αt

−αA
(1)
s1 − κ(1) + αA

(1)
s3 − κ(1)A

(1)
s4 − αA

(2)
s3 + κ(2)A

(2)
s4 = 0

−αµ(1)A
(1)
s1 − 2µ(1)

(
1 − ν(1)

)
A

(1)
s2 − αµ(1)A

(1)
s3

+2µ(1)
(
1 − ν(1)

)
A

(1)
s4 + αµ(2)A

(2)
s3 − 2µ(2)

(
1 − ν(2)

)
A

(2)
s4 = 0

−αµ(1)A
(1)
s1 − µ(1)

(
1 − 2ν(1)

)
A

(1)
s2 + αµ(1)A

(1)
s3

−µ(1)
(
1 − 2ν(1)

)
A

(1)
s4 − αµ(2)A

(2)
s3 + µ(2)

(
1 − 2ν(2)

)
A

(2)
s4 = 0 (C.8)

−αe2αhA
(1)
s1 −

[
αh + 2

(
1 − ν(1)

)]
e−2αhA

(1)
s2

−αA
(1)
s3 −

[
αh − 2

(
1 − ν(1)

)]
A

(1)
s4 = 0

−αe2αhA
(1)
s1 −

[
αh +

(
1 − 2ν(1)

)]
e−2αhA

(1)
s2

+αA
(1)
s3 +

[
αh −

(
1 − 2ν(1)

)]
A

(1)
s4 = 0.

Using 2-D stress-strain relations, the stresses can be evaluated as follows:
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σ(i)
sxx =

4µ(i)

π

∫ ∞

0

{[
α

(
A

(i)
s1 + A

(i)
s2 y

)
− 2ν(i)A

(i)
s2

]
e−αy

+
[
α

(
A

(i)
s3 + A

(i)
s4 y

)
+ 2ν(i)A

(i)
s4

]
eαy

}
cos αxdα

σ(i)
syy =

4µ(i)

π

∫ ∞

0

{
−

[
α

(
A

(i)
s1 + A

(i)
s2 y

)
+ 2

(
1 − ν(i)

)
A

(i)
s2

]
e−αy (C.9)

+
[
−α

(
A

(i)
s3 + A

(i)
s4 y

)
+ 2

(
1 − ν(i)

)
A

(i)
s4

]
eαy

}
cos αxdα

σ(i)
sxy =

4µ(i)

π

∫ ∞

0

{
−

[
α

(
A

(i)
s1 + A

(i)
s2 y

)
+

(
1 − 2ν(i)

)
A

(i)
s2

]
e−αy

+
[
α

(
A

(i)
s3 + A

(i)
s4 y

)
−

(
1 − 2ν(i)

)
A

(i)
s4

]
eαy

}
sin αxdα.

A similar procedure is followed for the anti-symmetric case with slight modi-

fications (Equations from C.10 to C.13).

For the anti-symmetric case:

u(i)
a (x, y) =

2

π

∫ ∞

0

φ(i)
a (α, y) cos αxdα

v(i)
a (x, y) =

2

π

∫ ∞

0

ψ(i)
a (α, y) sin αxdα.

(C.10)

By the same procedure as in the symmetric case, we have the following equa-

tions for solving A
(i)
aj :
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αA
(1)
a1 + αA

(1)
a3 − αA

(2)
a3 = 0

−αA
(1)
a1 − κ(1) + αA

(1)
a3 − κ(1)A

(1)
a4 − αA

(2)
a3 + κ(2)A

(2)
a4 = by sin αt

−αµ(1)A
(1)
a1 − 2µ(1)

(
1 − ν(1)

)
A

(1)
a2 − αµ(1)A

(1)
a3

+2µ(1)
(
1 − ν(1)

)
A

(1)
a4 + αµ(2)A

(2)
a3 − 2µ(2)

(
1 − ν(2)

)
A

(2)
a4 = 0

−αµ(1)A
(1)
a1 − µ(1)

(
1 − 2ν(1)

)
A

(1)
a2 + αµ(1)A

(1)
a3

−µ(1)
(
1 − 2ν(1)

)
A

(1)
a4 − αµ(2)A

(2)
a3 + µ(2)

(
1 − 2ν(2)

)
A

(2)
a4 = 0 (C.11)

−αe2αhA
(1)
a1 −

[
αh + 2

(
1 − ν(1)

)]
e−2αhA

(1)
a2

−αA
(1)
a3 −

[
αh − 2

(
1 − ν(1)

)]
A

(1)
a4 = 0

−αe2αhA
(1)
a1 −

[
αh +

(
1 − 2ν(1)

)]
e−2αhA

(1)
a2

+αA
(1)
a3 +

[
αh −

(
1 − 2ν(1)

)]
A

(1)
a4 = 0.

The displacement and stress solutions are then given by:

u(i)
a (x, y) =

2

π

+∞∫

0

[(
A

(i)
a1 + A

(i)
a2y

)
e−αy +

(
A

(i)
a3 + A

(i)
a4y

)
eαy

]
cos αxdα

v(i)
a (x, y) =

1

π

+∞∫

−∞

{[
A

(i)
1 +

(
κ(i)

α
+ y

)
A

(i)
2

]
e−αy (C.12)

+

[
−A

(i)
3 +

(
κ(i)

α
− y

)
A

(i)
4

]
eαy

}
cos αxdα,
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σ(i)
axx =

4µ(i)

π

∫ ∞

0

{[
−α

(
A

(i)
a1 + A

(i)
a2y

)
+ 2ν(i)A

(i)
a2

]
e−αy

−
[
α

(
A

(i)
a3 + A

(i)
a4y

)
+ 2ν(i)A

(i)
a4

]
eαy

}
sin αxdα

σ(i)
ayy =

4µ(i)

π

∫ ∞

0

{[
α

(
A

(i)
a1 + A

(i)
a2y

)
+ 2

(
1 − ν(i)

)
A

(i)
a2

]
e−αy (C.13)

+
[
α

(
A

(i)
a3 + A

(i)
a4y

)
− 2

(
1 − ν(i)

)
A

(i)
a4

]
eαy

}
sin αxdα

σ(i)
axy =

4µ(i)

π

∫ ∞

0

{
−

[
α

(
A

(i)
a1 + A

(i)
a2y

)
+

(
1 − 2ν(i)

)
A

(i)
a2

]
e−αy

+
[
α

(
A

(i)
a3 + A

(i)
a4y

)
−

(
1 − 2ν(i)

)
A

(i)
a4

]
eαy

}
cos αxdα.

The medium is assumed to be traction-free at the top surface such that:

σ(n)
syy = σ(n)

ayy = 0

σ(n)
sxy = σ(n)

axy = 0.
(C.14)

While at the interfaces, continuity is required in adjacent layers, such that:

u(i+1)
s − u(i)

s = u(i+1)
a − u(i)

a = 0

v(i+1)
s − v(i)

s = v(i+1)
a − v(i)

a = 0 (C.15)

σ(i+1)
syy − σ(i)

syy = σ(i+1)
ayy − σ(i)

ayy = 0

σ(i+1)
sxy − σ(i)

sxy = σ(i+1)
asxy − σ(i)

axy = 0.

For an interface with a dislocation at x = dx, we have:
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∂

∂x

(
u(1)

s − u(2)
s

)
= be

xδ (x − dx)

∂

∂x

(
u(1)

a − u(2)
a

)
= 0 (C.16)

∂

∂x

(
v(1)

s − v(2)
s

)
= 0

∂

∂x

(
v(1)

a − v(2)
a

)
, = be

yδ (x − dx)

where δ(x − dx) is the Dirac Delta function.

By numerical methods, the solutions for displacement and stress expressions

can be obtained by substituting Equations (C.9, C.7) into Equations (C.14, C.15,

C.16). The final displacement and stress fields are the sum of the symmetric and

anti-symmetric parts.

The material constants used in the present calculation are selected as shown

in Table C.1:

Shear Poisson Lattice Burger’s

Material Modulus Ratio Constant Vector

Si 79.9 GPa 0.266 5.43095 Å 3.84026 Å

Ge 67.0 GPa 0.280 5.64613 Å 3.99241 Å

Si0.85Ge0.15 77.965 GPa 0.268 5.46322 Å 3.86308 Å

Table C.1: Elastic and lattice constants for Si, Ge, and Si0.85Ge0.15
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