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CHAPTER 1

Introduction

In recent years, nanophase materials have become of great interest. A nanophase

material is a material made up of very small grains. The size of these grains

is on the order of 100 nanometers or less and each grain contains fewer than

tens of thousands of atoms. Conventional materials, on the other hand, consist

of grains ranging from microns to millimeters and each contains several billion

atoms[Sie96]. The small size of the grains plus the distribution of the grain size is

what gives nanophase materials their unique properties, many of which are still

under investigation.

The application or use of nanophase materials is endless and is only depen-

dent on the imagination of the designer. For instance, nanophase metals are

many times stronger than their conventional counterparts are. This is because

the smallness of the grain size prevents the development of large numbers of dis-

locations. Dislocation glide is the method by which metals fail. Lacking large

numbers of dislocations, nanophase metals cannot easily support dislocation glide

and are hence much stronger[Sie96]. Nanophase metals, such as aluminum, could

be used in aerospace structures, increasing the strength to weight ratio signifi-

cantly and making the craft significantly lighter.

On the other hand, nanophase ceramics are much more ductile than their

conventional counterparts. They can be deformed up to 60 percent before break-

ing. This unique feature can again be attributed to the smallness of the grains.
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Nanometer size grains, it turns out, are much more likely to slide over one an-

other than larger size ones. This grain boundary sliding process is the funda-

mental way in which nanophase ceramics are deformed[Sie96, Kar87]. In the

past, the inherent difficulty in using ceramics has been their brittleness. Using

nanophase ceramics can open up many new opportunities and technological ad-

vances where the use of conventional ceramics has failed. For instance, ceramics

are sometimes the only materials which can be used on technologies requiring

high-temperatures. However, the brittleness of the ceramic may have impeded

or prevented the technology from being fully developed. The use of nanophase

ceramics can resurrect these technologies allowing them to come to fruition.

In addition to mechanical properties, the electrical, magnetic, chemical, and

optical properties of nanophase materials can be tailored to meet specific needs

as well. Controlling the grain size distribution is essential in tailoring these prop-

erties. For example, particles less than 50 nanometers in size are too small to

scatter visible light (i.e. wavelengths from 380 to 765 nanometers). A nanophase

material with grain sizes less than 50 nanometers would be transparent[Sie96]. In

fact, transparent nanophase ceramics have been made from materials for which

their conventional counterparts are opaque[Sie96]. By controlling the grain size

distribution, the wavelengths at which light is scattered can be tailored. Coat-

ings could be developed with tailorable optical properties providing an added

degree of freedom for technology development. Other areas of interest are Ar-

tificial Dielectrics[Pan96, TA95, AT95b, AT95a, Kon97], Microstrains[Kon97],

Magnets[Sub98, Fan98, Gaz98], Giant Magneto Resistors[Kai98, Kno98, Chi98,

Wan98], and Doped Nanoparticles[Car98b, Car98a].

Again, the key in using nanophase materials is the control of the grain size

and size distribution allowing the properties of the material to be tailored for

2



the specific need. Theoretical methods for accurately determining the properties

of nanophase materials based on their grain size distribution are needed to pre-

dict properties before the materials are produced. In addition, manufacturing

processes are needed in which the grain size distribution can be controlled and

which are scalable to volume production at low cost. Nanophase materials have

been manufactured on an experimental scale by a wide variety of processes in-

cluding; vapor condensation, wet chemistry, mechanical machining (e.g. milling,

grinding, etc.), and plasma beam processes[Sha, Wu87]. Of all these processes,

plasma processes hold the most promise for making a large variety of nanophase

materials on a wide industrial type scale while controlling the grain size distri-

bution to obtain the desired properties. The reason is that plasma processes

provide additional degrees of freedom not normally available by other processes

for controlling nanoparticle nucleation and deposition. Some of these are inde-

pendent control of the ion and neutral densities, the temperature of each species,

the kinetic energy of interaction between nano-clusters, nano-cluster deposition

energy, and the ability to produce and sustain a non-equilibrium state to obtain

the desired nucleation rates[Sha]. The flexibility of this process allows it to be

used for making bulk material, thin films, and coatings.

The primary focus of this dissertation is to develop the models to describe the

nucleation, formation, and cluster size distribution within an expanding plasma

or high temperature combustion nozzle. The objective is to find ways to control

the cluster size distribution, and to eliminate the characteristic tail occurring

at the high end of the size distribution function. This tail is characteristic of

all experimental results to date[Rao95, GC89]. The goal of this research is to

develop a detailed model of sufficient accuracy to emulate experimental results.

With this model, investigations of the effects of quench rate, pulsed feed mode,

and other parameters of interest on the cluster size distribution can be carried

3



out.

In chapter 2, we provide a brief overview of quantum mechanics. Quantum

mechanics is used to obtain the energetics (i.e. binding energy), geometry, ro-

tational constants and vibrational constants of small size clusters. Methods for

extrapolating the information to larger size clusters are developed. Rate con-

stants that describe the dynamics of nano-cluster formation are developed next.

Information obtained from quantum mechanics is used to calculate the rate con-

stants. In chapter 3, we develop the gas dynamic equations for one-dimensional

reacting flows. We also develop the equations for a well-stirred tank-type reactor

model. The master equations which describe the nucleation phenomenon, are

also developed. In addition, in order to handle the large number of equations

required to describe the nucleation phenomenon, two approximation techniques

are developed. In chapter 4, we present the results of the quantum mechanics

calculations, and the model is compared to experimental data. Finally, a design

case is presented where a reactor is sized to give a specific size distribution. In

chapter 5, we present the conclusions derived from this work.

4



CHAPTER 2

Energetics and Reaction Rates of Nanoclusters

2.1 Introduction

The first step of this research is to develop a model of nano-cluster formation

within an expanding high temperature gas nozzle, such as a plasma jet, detona-

tion gun or combustion nozzle. Such techniques are being developed for the rapid

manufacturing of nano-phase atomic clusters for many applications. This model

should be of sufficient detail to accurately emulate experimental results to date.

The details of this model are given below.

2.1.1 Current Approaches

The current approach for modeling the formation of nanoclusters is based on

classical nucleation theory. In this approach, isolated atoms or molecules combine

to form embryos. These embryos are unstable until a critical size is reached.

The critical size is determined by the vapor pressure and surface tension of the

material at the temperature and supersaturation of interest by use of Kelvin’s

equation[Atk82, SP98, Stu91].

lnS = 2γV/rRT (2.1)

where
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S is the supersaturation

γ is the surface tension

V is the molar volume

r is the radius of the cluster

R is the universal gas constant

T is absolute temperature

Once the critical radius is reached, atoms will condense on the surface and

the cluster size will increase. This approach, however, does not reveal the time

dependent nature of cluster formation or the cluster size distribution. These must

be determined by other methods.

The time dependent growth and size distribution of nanoclusters can easily

be modeled using reaction kinetics. Typically, clusters are assumed to grow and

shrink one atom at a time[LA78, SP98]. However, provisions can be added to

account for coalescence, sputtering, and fragmentation. The set of equations

used to model cluster growth one atom at a time is given as[LA78, SP98, Rao95,

RM89, GC89, Wei94]

∂C1

∂t
=

∞∑
j=2

2δ2,jkdiss (j → j − 1, 1)Cj −
∞∑
j=1

krec (1, j → j + 1)C1Cj +Q1

∂Ci

∂t
=
(
1/2

)δ2,i

krec (1, i− 1 → i)C1Ci−1 − krec (1, i → i+ 1)C1Ci (2.2)

+ kdiss (i+ 1 → 1, i)Ci+1 − kdiss (i → 1, i− 1)Ci

where
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Ci is the concentration of clusters of size i atoms

kdiss (i → i− 1, 1) is the rate constant for dissociation of clusters of

size i to size i− 1 and 1

krec (1, i → i+ 1) is the rate constant for recombination of clusters of

size i and 1 to size i+ 1

Q1 is the monomer source term

The rate constants are usually determined by the collision rate as deter-

mined by kinetic theory of gases, multiplied by a “sticking” or accommodation

coefficient[LA78, SP98, Rao95, RM89, GC89, Wei94]. The accommodation coef-

ficient is the probability that the incident atom attaches to the cluster after suf-

fering a collision with that cluster. An approach similar to this was used to model

silicon clustering in a plasma jet by a group at the University of Minnesota[Rao95,

RM89, GC89, Wei94]. They used a sticking coefficient of unity and a discrete-

sectional algorithm to handle the large size clusters[Rao95, RM89, GC89, Wei94].

In the discrete-sectional approach, individual rate equations are written for the

small-size clusters up to a specified size. The large-size clusters are grouped

into size sections which are typically spaced logarithmically apart by particle

volume[Rao95, RM89, GC89, Wei94]. The disadvantage of this modeling ap-

proach is the uncertainty and crude method of determining rate constants and

the necessity to truncate the set of equations at some predetermined finite size.

This size is usually picked for calculational convenience.
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2.1.2 Modeling Strategy

The strategy employed in this disertation is a somewhat different approach.

Here, quantum mechanics is used to determine cluster energetics for cluster

sizes up to 10 atoms. With this information, rate constants can be accurately

determined. Quantum-Rice-Ramsperger-Kassel (QRRK) theory[RH72, Sen92,

Wes71, DW87, Kas32, Kas28b, Kas28c, Kas28a] augmented by transition state

theory[Atk82, Sen92, Gla41] and collision rate theory[Atk82, SP98, Pre58] are

used to determine the rate constants for the clustering reactions. Not only will

rate constants be determined for monomer addition and evaporation, but also for

coalescence, sputtering, and fragmentation.

Once this information is in hand, the rate equations can be developed as

before. However, instead of truncating the equations at a predetermined size, the

equations can be separated into two groups according to size: the first containing

clusters with up to x* atoms, and the second containing clusters with more than

x* atoms[VG92]. The quantity x* is some small integer that may be suggested,

in some cases, by physical properties of the clusters (e.g., their stability). For the

first group, a set of discrete equations describes the concentration of individual

cluster sizes; the second group is characterized by an equation which represents

the distribution of cluster sizes greater than x* atoms as a continuum. This

set of equations can then be solved by the method of moments, a very powerful

technique[VG92]. The advantage to this approach is that the set of equations

describing the system is greatly reduced.
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2.2 Quantum Mechanics Overview

The determination of the total energy, ET , requires that Schrödinger’s equation

for the collection of atoms must be solved with all the associated nuclei and

electrons in three dimensions. For a molecule with N nuclei and n electrons, the

time-independent Schrödinger’s equation is given by[Atk82, Sen92, Low93, Par64]



− N∑

j=1

(
h̄2/

2Mj

)
∇2

j −
(
h̄2/

2m

)
n∑

i=1
∇2

i −
n∑

i=1

N∑
j=1

Zje
2

4πε0|Rj−ri|

+
n−1∑
i=1

n∑
j=i+1

e2

4πε0|ri−rj | +
N−1∑
i=1

N∑
j=i+1

ZiZje
2

4πε0|Ri−Rj |


Ψ = ETΨ (2.3)

where

h̄ = h/2π

h is Planck’s constant

e is the electronic charge

∇2
j is the Laplacian operator centered around j

Ri is the position vector for nuclei i

rj is the position vector for electron j

ε0 is the permittivity of vacuum

m is the mass of the electron

Mj is the mass of the jth nucleus

Ψ is the total wave function

In shorthand notation Schrödinger’s equation can be written as[Sen92]

HΨ = (TN + Te + VNe + Vee + VNN)Ψ = ETΨ (2.4)

where
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H is the Hamiltonian operator

T is the kinetic energy operator

V is the potential energy operator

and subscripts

N refers to nuclear components of T and V

e refers to electronic components of T and V

For the hydrogen atom, which has one nucleus (charge +e) and one electron

(charge -e), Equation (2.4) can be reduced into the following familiar form:

[
−
(
h̄2/

2µ

)
∇2 +

e2

4πε0r

]
Ψ (r, θ, φ) = ETΨ (r, θ, φ) (2.5)

where

∇2 is the Laplacian operator in spherical coordinates (r,θ,φ)

r is the distance between the nucleus and the electron

µ is the reduced mass, µ = mM
(m+M)

Exact solutions of Equation (2.5) are available in the references[Low93, Par64,

Atk82, Atk86, Dau83]. It should be noted that these exact solutions provide

valuable insights into the electronic structure of larger atoms, since they can be

viewed as being made from the hydrogen atom by suitably adding electrons and

protons. In particular, hydrogen-atom-like wave functions clearly illustrate the

angular dependency of electronic orbitals.
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Because the exact solution of Schrödinger’s equation for multi-electron, multi-

nucleus systems is impossible, efforts have been directed towards the determina-

tion of approximate solutions. Most modern approaches rely on the implementa-

tion of the Born-Oppenheimer (BO) approximation[Sen92, Low93, Par64], which

is based on the large difference in the masses of the electrons and the nuclei.

Under the BO approximation, the total wave function can be expressed as the

product of the electronic (ψ) and nuclear (η) wave functions, leading to the fol-

lowing electronic and nuclear Schrödinger’s equations[Sen92, Low93]:

(Te + VNe + Vee + VNN)ψ = Eeψ (2.6)

(TN + Ee) η = ETη (2.7)

where

Te is the electronic kinetic energy

VNe is the potential energy for the nuclear electronic interactions

Vee is the potential energy for the interactions between electrons

VNN is the potential energy for the interactions between nuclei

Ee is the electronic energy

ET is the total energy

Once the electronic Schrödinger equation is solved, the total energy of the mole-

cule can then be obtained from the solution of the nuclear equation (2.7).

For a fixed nuclear configuration, VNN would be constant; thus, the electronic

Schrödinger equation can be rewritten as the following[Sen92, Low93]:
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(Te + VNe + Vee)ψ = εeψ (2.8)

where

εe = (Ee − VNN) (2.9)

The nuclear configuration can then be changed to establish new potential fields

VNe and VNN , which in turn leads to a new set of wave functions, and thus to

a new electronic energy and a new total energy. By repeating this procedure

for a large number of nuclear configurations, the potential energy surface can be

generated.

Under the Born-Oppenheimer approximation, two major methods exist to

determine the electronic structure of molecules: The valence bond (VB) and

the molecular orbital (MO) methods[Sen92, Low93, Atk86]. In the valence bond

method, the chemical bond is assumed to be an electron pair at the onset. Thus,

bonds are viewed to be distinct atom-atom interactions, and upon dissociation

molecules always lead to neutral species. In contrast, in the MO method the

individual electrons are assumed to occupy an orbital that spreads the entire

nuclear framework, and upon dissociation, neutral and ionic species form with

equal probabilities. Consequently, the charge correlation, or the avoidance of one

electron by others based on electrostatic repulsion, is overestimated by the VB

method and is underestimated by the MO method[Sen92, Low93, Atk86]. The

MO method turned out to be easier to apply to complex systems, and with the

advent of computers it became a powerful computational tool.

In the MO approach, molecular orbitals are expressed as linear combinations

of atomic orbitals (LCAO); atomic orbitals (AO), in return, are determined from

12



the approximate numerical solution of the electronic Schrödinger’s equation for

each of the parent atoms in the molecule. This is the reason why hydrogen-atom-

like wave functions continue to be so important in quantum mechanics. Mathe-

matically, MO-LCAO means that the wave functions of the molecule containing

N atoms can be expressed as[Sen92, Low93, Atk86]

ψMO =
N∑
k=1

Ckφk (2.10)

where φk are the approximate atomic wave functions (i.e. wave functions cen-

tered around the kth atom), and Ck are the LCAO expansion coefficients. The

direct implementation of the MO-LCAO to systems consisting of many nuclei

and many electrons turned out to be difficult because of the three-dimensional

nature of orbitals, especially in evaluating the contributions of electronic repul-

sions to the total energy. These difficulties are partially removed by the use of

the self-consistent field (SCF) method[Sen92, Low93, Dau83].

In the SCF approach, each electron is assumed to move in an average field

due to nuclei and the remaining electrons. Consequently, electronic repulsions

are formally considered in the procedure. For example, consider a hypothetical

atom (nuclear charge Z) containing two electrons. The electrons occupy orbitals

φ1 and φ2, with corresponding electron densities of −eφ2
1 and −eφ2

2, respectively.

According to the SCF approach, the potential seen by electron 2 would be

V2 =
−Ze2

4πε0 |R − r2| +
e2

4πε0

∫
φ2

1 (r1)

(r1 − r2)
dτ1 (2.11)

where the second term represents the electronic repulsion integral in which dτ1 is

the volume element in the orbital φ1. To determine φ2, the following Schrödinger

equation must be solved:
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[
−
(
h̄/2m

)
∇2

2 + V2

]
φ2 = E2φ2 (2.12)

or, in shorthand notation, the following Hartree-Fock (H-F) equation:

HF
2 φ2 = E2φ2 (2.13)

However, as evident from these equations, φ1 must be known to determine φ2, and

vice versa; thus, an iterative calculation would be needed. For the general case

of N nuclei and n electrons, the resulting H-F expression for the wave function

φ1 will be

HF
i φi = Eiφ (2.14)

Since the exact solution of the Hartree-Fock equation for molecules also proved

to be impossible, numerical methods approximating the solution of the Schrodinger’s

equation at the HF limit have been developed. For example, in the Roothan-Hall

SCF method, each SCF orbital is expressed in terms of a linear combination of

fixed orbital or basis sets (φi). These orbitals are fixed in the sense that they

are not allowed to vary as the SCF calculation proceeds. From n basis functions,

new SCF orbitals are generated by[Sen92, Low93]

ψk =
n∑

i=1

Ck,iφi (2.15)

and for each k, a vector of Ck values are obtained. The Cks are then determined

from the solution of the matrix Hartree-Fock equations:

HFCk = EkSCk (2.16)
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where S represents the matrix of electron overlap integrals in which

Sij =
∫

φiφjdτ (2.17)

where dτ is the volume element. Because the calculation of HF also involves

the evaluation of a large number of one and two-electron integrals, the need

for computational resources increases with increasing number of electrons. As

an approximate guideline, computational requirements increase with the fourth

power of the number of electrons present in the system.

In minimal basis sets, each atom is represented by a single orbital of each

type. For example, oxygen is represented by 1s, 2s, 2px, 2py, and 2pz orbitals

only. In double zeta basis sets, twice the functions in the minimum basis sets are

used, and in triple zeta basis sets, three times the functions as in the minimum

basis sets are used[Sen92, Low93]. Extended basis sets generally refer to sets that

make use of functions that are more than the minimum basis set.

Among the earlier basis sets have been the Slater-type orbitals (STO). The

STO sets make use of functions of the type e−ar, where r is the distance from

the center of the nucleus, because of their initial use in the SCF calculations for

atoms. Most of the current SCF calculations make use of Gaussian-type orbitals

(GTO), in which basis sets are constructed using functions of the form e−br2 . Even

though the Gaussian functions have improper feature (i.e. they have the wrong

behavior at r = 0 and they decay too fast at large r), their form helps enormously

in the numerical integration of electron repulsion integrals[Sen92, Low93].

At present, two parallel approaches are being undertaken to determine the

PES or the ET : the ab initio and the semi-empirical quantum mechanical meth-

ods. Ab initio methods attempt to undertake the just-mentioned calculations

rigorously without relying on the use of any information other than the basis sets
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(φi ); to increase the resulting accuracy of the calculations, large basis set are

used. Ab initio methods suffer from the fact that they are computationally very

demanding[Sen92].

Semi-empirical methods, on the other hand, utilize minimum basis sets to

speed up computations, and the loss in rigor is compensated by the use of experi-

mental data to reproduce important chemical properties, such as the heats of for-

mation, molecular geometries, dipole moments, and ionization potentials[Ste89,

Sen92].

Most present-day semi-empirical methods are based on the idea of the ne-

glect of differential overlap (NDO) of inner electrons developed by Pople and

co-workers[PB70]. NDO-type approximations generally result in a decrease in

computational resources that are 1/100 to 1/1000 of the corresponding ab initio

methods.

Once the electronic Schrödinger equations are solved, the total energy of the

system of atoms (ET ) is obtained by summing all the electronic energies (Ek)

and the nuclear repulsions in the following manner[Sen92, Low93]:

ET =
n∑

k=1

εk +
N−1∑
i=1

N∑
j=i+1

ZiZje
2

4πε0 |Ri −Rj | (2.18)

Following the determination of the minimum energy (i.e. the optimal geo-

metrical configuration of the atoms), a force calculation can also be undertaken

to determine the normal modes of vibration of the molecule. The entropy and

specific heat of the molecule can then be calculated via the use of statistical

mechanics in a straightforward manner by considering contributions from trans-

lational, rotational, and vibrational degrees of freedom[Atk82, Par64, Row94].

A number of highly sophisticated public domain software packages are avail-
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able to undertake both ab initio and semi-empirical quantum mechanical cal-

culations. Among the most popular ab initio packages are GAUSSIAN[Fri01]

and GAMESS[Sch63]. Semi-empirical programs include the MNDO, AM1, and

MNDO-PM3, all of which are available in MOPAC[Ste87] and GAMESS. These

modern packages contain procedures to calculate optimized molecular geometries

and thermochemical data as well as spectroscopic information of molecules using

built-in basis sets.

2.3 Rate Constants

Cluster formation proceeds by recombination and dissociation reactions, where

the recombination reactions increase the cluster size and the dissociation reactions

decrease the cluster size. The method is general and can be applied to any

material. However, using silicon as a representative material, these reactions

may be represented as follows:

Sii + Sij ⇒ Sii+j (2.19)

for recombination, and

Sii+j ⇒ Sii + Sij (2.20)

for dissociation.

Ab initio calculations have shown that these types of reactions can be classified

as simple fission reactions[Atk82, Sen92]. Simple fission reactions are character-

ized by a potential energy surface (PES) along the reaction coordinate which has

a deep potential energy well for the combined cluster (e.g. Sii+j) which rises to a
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Figure 2.1: Potential Energy Surface for Silicon Dimer

potential energy plateau for the separated reactants (e.g. Sii and Sij) with very

slight, if any, activation energy barrier. Figure 2.1 illustrates the PES for this

type of reaction. The salient feature of this type of PES is the lack of a potential

energy hump between the reactants and products. The activation energy for this

type of reaction is commonly taken as zero for the forward (recombination) re-

action and the difference between the well depth and the plateau for the reverse

(dissociation) reaction.
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2.3.1 Dissociation Rate Constants

For the dissociation reaction to occur, the cluster must obtain sufficient energy to

surmount the energy well depth to the energy plateau. Past studies have shown

that dissociating species obtain this excess energy from collisions with surround-

ing particles[RH72, Sen92, HA79]. Once a cluster obtains sufficient energy to

dissociate, it may or may not dissociate depending on the distribution of the

energy within the cluster. The mechanism for dissociation is given as

Sii+j +M k1→ Si∗i+j +M

Si∗i+j +M k2→ Sii+j +M (2.21)

Si∗i+j
k3→ Sii + Sij

where M is a collision partner which energizes and deenergizes the cluster. Si∗i+j

is the energized cluster, and Sii and Sij are the cluster dissociation fragments.

This mechanism was first proposed by Lindemann[RH72, HA79], and several

modifications have been made to it since.

Two of the more recent theories in use today, which explain the reaction rate

quite accurately, are the Quantum-Rice-Ramsperger-Kassel (QRRK) theory[RH72,

Kas28c, HA79], and Marcus-Rice (RRKM) theory[RH72]. The RRKM theory

represents the physics better, but is difficult to implement and requires several

approximations. On the other hand, the QRRK theory does an adequate job of

representing the physics, although not as rigorous as the RRKM theory, and is

much easier to implement, and in practice, it is just as accurate as RRKM theory.

For these reasons, it has been the theory of choice in representing unimolecular

reaction rates and is used herein to predict the rates of cluster dissociation.
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From 2.21, the rate of change of the concentration of energized clusters, Si∗i+j, is

d[Si∗i+j]
/
dt = k1[Sii+j ][M ]− k2[Si

∗
i+j ][M ]− k3[Si

∗
i+j] (2.22)

Assuming steady state, and upon rearrangement of equation 2.22, the concentra-

tion of energized clusters Si∗i+j is found as

[Si∗i+j ] =
k1[Sii+j ][M ]

k2[M ] + k3
(2.23)

Now the rate of dissociation is given by

−d[Sii+j ]/dt = k3[Si
∗
i+j] (2.24)

Substituting 2.23 into 2.24 and rearrangement gives

−d[Sii+j]/dt =
k1k3

k2
[Sii+j]

1 + k3

k2[M ]

(2.25)

which is the well-known unimolecular rate equation first proposed by Lindemann[RH72,

HA79]. Two interesting features of this equation are brought out by taking the

limits as [M ] approaches zero and infinity, which represent the lower pressure

limit and the high pressure limit, respectively. These are

lim
[M ]→∞

(
−d[Sii+j ]/dt

)
=

k1k3

k2
[Sii+j ] = k∞[Sii+j] (2.26)

and

lim
[M ]→0

(
−d[Sii+j]/dt

)
= k1[Sii+j][M ] (2.27)
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where equation 2.26 is termed the high-pressure limit and equation 2.27 is called

the low pressure limit[RH72]. Pressure is indicative of the concentration of M .

Application of QRRK theory to cluster dissociation notes that the cluster

contains s = 3(i + j) − 6 normal modes of vibration or oscillators[Row94]. It is

also assumed that all the oscillators vibrate at the same frequency ν [RH72, Sen92,

Kas32, Kas28c]. This frequency is usually chosen as the geometric mean of all

the normal mode frequencies[Sen92]. Also, in order for the reaction to take place,

the cluster must obtain sufficient vibrational energy to surmount the potential

energy barrier. In addition all this energy must be in the critical oscillator: the

one where the bonds are broken[Kas32, Kas28c]. Since the vibrational energy is

quantized, then in order for the reaction to take place, the critical oscillator must

contain at least the critical number of quanta.

The number of quanta n in an oscillator with energy ε above the zero point

energy is[Kas32, Kas28c]

n = ε/hν (2.28)

The number of ways to arrange n quanta in s oscillators is[Kas32]

P =
(n+ s− 1)!

n!(s− 1)!
(2.29)

The critical number of quanta, mcrit, the critical oscillator must contain for re-

action to occur is

mcrit = ε0/hν (2.30)

where ε0 is the height of the potential energy barrier. Reaction can occur so long

as the number of quanta in the critical oscillator is equal to or greater than mcrit.
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The probability that the critical oscillator contains at least mcrit quanta is then

given by[Kas32]

Pmcrit
=

(n−mcrit + s− 1)!

(n−mcrit)!(s− 1)!
· n!(s− 1)!

(n+ s− 1)!
=

n!(n−mcrit + s− 1)!

(n−mcrit)!(n+ s− 1)!
(2.31)

and the rate of dissociation is proportional to the probability of having sufficient

number of quanta in the critical oscillator as follows[Kas32]

k3 = APmcrit
= A

n!(n−mcrit + s− 1)!

(n−mcrit)!(n+ s− 1)!
(2.32)

where A is a constant of proportionality. The concentration of energized clusters,

Si∗i+j with respect to de-energized clusters, Sii+j , can be determined using quan-

tum statistical mechanics and assuming that the ratio does not depart too much

from equilibrium. The partition function for a single cluster oscillator is[Row94]

qvib =
e−
1/2βhν

1− e−βhν
(2.33)

and for s oscillators oscillating with frequency ν, it is

qvib =
s∏

i=1

e−
1/2βhν

1− e−βhν
=


 e−

1/2βhν

1− e−βhν




s

(2.34)

The probability that a cluster contains n quanta in s oscillators is then given

by[Kas32]

Pn =
(n+ s− 1)!

n!(s− 1)!

s∏
i=1

e−(ni+
1/2)βhν

qvib
=

(n+ s− 1)!

n!(s− 1)!

(e−
1/2βhν)se−nβhν(1− e−βhν)s

(e−
1/2βhν)s

Pn =
(n+ s− 1)!

n!(s− 1)!
(e−βhν)n(1− e−βhν)s (2.35)
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where

s∑
i=1

ni = n (2.36)

which can be equated to the concentration ratio of energized cluster to de-

energized cluster and henceforth the ratio k1/k2 as follows from equations 2.21.

[Si∗i+j]

[Sii+j]
= k1/k2

=
(n+ s− 1)!

n!(s− 1)!
(e−βhν)n(1− e−βhν)s (2.37)

From equation 2.36 the rate constant at the high pressure limit is then

k1k3

k2
=

∞∑
n=mcrit

A
n!(n−mcrit + s− 1)!

(n−mcrit)!(n+ s− 1)!

(n + s− 1)!

n!(s− 1)!
(e−βhν)n(1− e−βhν)

k1k3

k2
=

∞∑
n=mcrit

A
(n−mcrit + s− 1)!

(n−mcrit)!(s− 1)!
(e−βhν)n(1− e−βhν)s (2.38)

Substituting p = n−mcrit into equation 2.38 and rearranging gives

k1k3

k2
= A(e−βhν)mcrit(1− e−βhν)s

∞∑
p=0

(p+ s− 1)!

(p)!(s− 1)!
(e−βhν)p (2.39)

Using the binomial expansion theorem, it can be shown that

(1− e−βhν)−s =
∞∑
p=0

(p+ s− 1)!

p!(s− 1)!
(e−βhν)p (2.40)

Therefore, using equation 2.40, equation 2.39 reduces to[Kas32, Kas28c]

k∞ = Ae−mβhν = Ae−
ε0/kT (2.41)

which is an Arrenhius type equation.
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The constant A can be evaluated with the help of Absolute Rate Theory,

commonly referred to as Transition State Theory or Activated Complex Theory.

This theory has been shown to be accurate in the high-pressure limit or when the

rate is independent of the rate of energization or de-energization. This theory

assumes that the reactants get together to form an Activated Complex which

then proceeds to transition to products as illustrated below[Gla41].

Sii+j ↔ Si‡i+j → Sii + Sij (2.42)

where Si‡i+j is the activated complex or transition state between reactants and

products. The activated complex is a position on the potential energy surface

(PES) which is a relative maxima along the reaction coordinate and a relative

minima in the other directions. This is referred to as a saddle point on the PES.

Because of the shape of the PES at the saddle point, the activated complex is

unstable. The rate of product formation is thus given as

d[Sii]

dt
= k‡[Si‡i+j ] (2.43)

where it has been shown[Atk82, Gla41, Joh66]

k‡ =
kT

h
(2.44)

where h is Planck’s constant.

The ratio of activated complex concentration to reactant concentration can be

determined by the ratio of their respective partition functions, as follows[Gla41,

Joh66]
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[Si‡i+j ]

[Sii+j ]
=

q‡transq
‡
rotq

‡
vib

qi+j
transq

i+j
rot q

i+j
vib

e−
ε0/kT (2.45)

where q‡x is the partition function of energy mode x for the activated complex,

and qi+j
x is the partition function of energy mode x for the reactant cluster. Using

2.44 and 2.45, equation 2.43 becomes

d[Sii]

dt
=

(
kT

h

)
q‡transq

‡
rotq

‡
vib

qi+j
transq

i+j
rot q

i+j
vib

e−
ε0/kT [Sii+j] (2.46)

Comparing equation 2.41 to 2.46 one can deduce that

A =

(
kT

h

)
q‡transq

‡
rotq

‡
vib

qi+j
transq

i+j
rot q

i+j
vib

(2.47)

To determine the rate of de-energization, k2 in equations 2.21, we make the

assumption that every collision with a collision partner M striking an energized

cluster Si∗i+j results in it being de-energized. This is known as the strong colli-

sion assumption[Kas32, Kas28b]. Because the energized cluster is in such a high

energy state, it is extremely likely that a single collision will de-energize it suf-

ficiently to prevent it from reacting. Based on this assumption and using the

kinetic theory of gases for the collision rate, the rate of de-energization can be

written as[Kas32, Kas28b, Pre58]

k2[Si
∗
i+j ][M ] = [Si∗i+j ][M ]σ

√√√√ 8kT

πmi+j
+

8kT

πmM
(2.48)

which gives a rate constant for de-energization of

k2 = σ

√
8kT/πµ (2.49)
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where σ is the collision cross-section and µ is the reduced mass of the two collision

species. Using the results from equations 2.25, 2.32, 2.41, 2.47, and 2.49, the rate

constant for dissociation of cluster Sii+j becomes

kdiss (i+ j → i, j) = Ae−
ε0/kT (1− e−βhν)s

∞∑
p=0

(p+s−1)!
p!(s−1)!

e−pβhν

1 +
A

(p+mcrit)!(p+s−1)!

p!(p+mcrit+s−1)!

σ

√
8kT/πµ[M ]

(2.50)

2.3.2 Recombination Rate Constants

Now let’s examine the recombination or clustering reaction. This reaction is also

classified as energy transfer limited[Sen92]. To illustrate, we will use the same

PES as the dissociation reaction, where the energy barrier between reactants and

products is very slight or non-existent. When the reactants combine, the new

cluster will posses excess internal energy. The excess internal energy is sufficient

to cause the newly formed cluster to dissociate. The excess energy must be

removed quickly in order for the cluster to survive. The mechanism for this

energy removal process is collisions with the bath gas M [Wes71, DW87, GT84].

The reaction mechanism can be summarized as follows[GT84].

Sii + Sij
k4→ Si∗i+j

Si∗i+j
k3→ Sii + Sij (2.51)

Si∗i+j +M k2→ Sii+j +M

The rate of cluster formation is given by

d[Si∗i+j]

dt
= k4[Sii][Sij ]− k3[Si

∗
i+j]− k2[Si

∗
i+j ][M ] (2.52)
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Assuming steady state and rearrangement gives

[Si∗i+j ] =
k4[Sii][Sij ]

k3 + k2[M ]
(2.53)

Inserting this into equation 2.52 gives

d[Sii+j ]

dt
=

k2k4[Sii][Sij][M ]

k3 + k2[M ]
(2.54)

Upon rearrangement this gives

d[Sii+j]

dt
=

k4[Sii][Sij ]

1 + k3/k2[M ]
(2.55)

which gives a rate constant of

krec =
k4

1 + k3/k2[M ]
(2.56)

This leads to the following high and low pressure limits.

lim
[M ]→∞

krec = k∞ = k4

lim
[M ]→0

krec = k0 =
k2k4[M ]

k3

Rate constants k2 and k3 have already been treated in the previous section.

The only new information we need is an expression for k4. At equilibrium, the

rate of cluster formation must equal the rate of cluster dissociation[GT84]. Then,

using equations 2.25 and 2.56, we have

k4

1 + k3/k2[M ]
[Sii] [Sij ] =

k1k3/k2

1 + k3/k2[M ]
[Sii+j] (2.57)
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Rearrangement gives

k4k2

k1k3
=

[Sii+j]

[Sii] [Sij ]
= Kequilibrium (2.58)

But, from statistical mechanics

Kequilibrium =
qi+j

qiqj
e−

ε0/kT (2.59)

Combining equations 2.58 and 2.59 gives

k4 =
k1k3

k2

qi+j

qiqj
e−

ε0/kT (2.60)

Inserting equations 2.32 and 2.35 into 2.60 gives upon rearrangement

k4 = A′ (n−mcrit + s− 1)!

(n−mcrit)!(s− 1)!
(e−βhν)(n−mcrit)(1− e−βhν)s (2.61)

where

A′ = A
qi+j

qiqj
=

(
kT

h

)
q‡i+j

qiqj
(2.62)

Combining terms, the rate of cluster formation is given by

krec (i, j → i+ j) = A′(1− e−βhν)s
∞∑
p=0

(p+s−1)!
p!(s−1)!

e−pβhν

1 +
A

(p+mcrit)!(p+s−1)!

p!(p+mcrit+s−1)!

σ

√
8kT/πµ[M ]

(2.63)
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2.3.3 Supporting Rate Constant Data

2.3.3.1 Frequency of Vibration

In order to use the model described to determine the rates of cluster agglomer-

ation, we must first determine the appropriate vibration frequency to use. For

clusters of up to 10 atoms in size, detailed ab initio calculations have been per-

formed and all the normal modes of vibration are known. In this case, many

researchers have used the geometric mean of all the normal modes with satisfac-

tory results[Sen92]. A slightly different approach is used herein. From statistical

mechanics, the heat capacity for an ideal gas is given as[Row94]

cv/k = 3/2 +
3/2 +

3i−6∑
j=1

(
hνj
kT

)2

 e−hνj/kT(

e−hνj/kT − 1
)2

 (2.64)

where i is the cluster size, the two 3/2 terms account for translation and rotation

and the summation term accounts for the 3i − 6 modes of vibration. Equating

the vibration contribution of equation 2.64 to an average vibration frequency ν̄

gives

(3i− 6)

(
hν̄

kT

)2

 e−

hν̄/kT(
e−hν̄/kT − 1

)2

 = 3i−6∑

j=1

(
hνj
kT

)2

 e−

hνj/kT(
e−hνj/kT − 1

)2

 (2.65)

which can be solved for the average vibration frequency ν̄. For cluster sizes

greater than ten, the normal modes of vibration are not known a priori. A closer

examination of equation 2.65 reveals that the term on the left hand side is of the

form of the Einstein model of a crystalline solid[Row94]. Using published data

for the heat capacity of the crystalline solid, the average vibrational frequency

can be deduced using the Einstein model. This frequency has been determined
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Figure 2.2: Silicon Crystalline Solid Average Vibrational Frequency from Heat

Capacity Data

to be 330 cm−1 and is compared to the heat capacity reported in Ref. [PC73]

(see Figure 2.2).

2.3.3.2 Moments of Inertia

In addition to the average vibrational frequency, the rotational partition function

is needed to determine several of the constants in the rate equation. For clusters

of up to size ten, the principal moments of inertia and thus the rotational parti-

tion function have been determined for the cluster. For larger size clusters, the
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principal moments of inertia must be estimated. Assuming the clusters are spher-

ical, the three principle moments of inertia are equivalent and can be determined

from standard formulas. The moment of inertia for a sphere is[Lin84]

I = 2/5mr2 (2.66)

where

m is mass

r is radius

Using the molecular weight, mw, and density of the solid, ρ, the moment of

inertia of a cluster of size j is

Ij = 2/5 (j ·mw)
5/3

(
3

4πρ

)2/3
(2.67)

To determine the moments of inertia for the transition states, the parallel axis

theorem is used[Lin84]. This gives

I‡i+j = Ii + Ij + µijrij (2.68)

where

µij is the reduced mass of the cluster pair, i and j

rij is the separation distance between the cluster pair i and j

In addition, detailed study of the silicon dimer reaction indicates that the

rotational energy barrier occurs at a separation distance of around 9 Å. This

distance was used when applying equation 2.68 to determine the moments of

inertia of the transition state.
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2.3.3.3 Rotational Symmetry

Rotational symmetry is also needed to determine the rotational partition func-

tions. Rotational symmetry is the number of distinct rotations that produce in-

distinguishable configurations. For instance, the water molecule has a rotational

symmetry of two because there are two distinct rotations, and the methane mole-

cule has a rotation symmetry of twelve. Figure 2.3 is a plot of silicon rotational

symmetry as a function of cluster size. From ab initio calculations, the rotational

symmetry is known for clusters up to size 10. It is also known that bulk silicon

crystal has a rotational symmetry number of 36. An interpolation equation is

needed to estimate rotational symmetry beyond size 10. An exponential func-

tion was proposed because it rapidly and asymptotically approaches the bulk

crystalline rotational symmetry number. This function is given as follows:

σ = σae
−λi + σb

(
1− e−λi

)
(2.69)

where, for silicon,

σ is the cluster rotational symmetry number

σa = 1.85

σb = 36

λ = 0.008

i is the number of atoms in the cluster

2.3.3.4 Degeneracy

For most reactions between small molecules, degeneracy is accounted for by the

rotational symmetry numbers. Take methane for example. The methane mole-
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Figure 2.3: Silicon cluster rotational symmetry as a function of its size. The

rotational symmetry of the Si solid crystal is 36. The quantum mechanics data

for small clusters are calculated by the GAMESS[Sch63] program, while the solid

triangles are for the fitted model.
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cule has 4 3-fold rotational axes giving it a rotational symmetry number of 12.

The methyl radical and the methane-methyl transition state only has one 3-fold

rotational axis, due to the stretching and breaking of one of the C-H bonds, giving

it a rotational symmetry number of 3. From equations 2.46 and 2.47, it can be

seen that the reactant rotational symmetry number is divided by the transition

state rotational symmetry number as follows:

σCH4

/
σ‡

which yields a quotient of four for the formation of the methyl radical from

methane. This corresponds to the four hydrogen atoms, any one of which can

participate in the reaction. Thus the four-fold degeneracy for this reaction is

accounted for by the rotational symmetry numbers.

Taking the reverse reaction, the recombination of a hydrogen atom with a

methyl radical yields the following:

σCH3

/
σ‡

where

σCH3 is the rotational symmetry number for the methyl radical

σ‡ is the rotational symmetry number for the transition state

where the rotational symmetry number is three for both species giving a quotient

of one, corresponding to the single path for this recombination reaction.

We now turn our attention back to clustering reactions. For small size clus-

ters, no modifications are necessary. The reaction degeneracy is properly taken

into account by the rotational symmetries. For large size clusters however, the
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Figure 2.4: Silicon Pseudo Rotational Symmetry

maximum rotational symmetry is 36 for crystalline silicon. This would imply that

the maximum number of sites available for monomer evaporation from a large

size cluster would be 36. But this seems unreasonable since all surface atoms

are essentially the same. Therefore, a correction is needed to account for the

expected increased degeneracy. This is done by incorporating equation 4.10 into

equation 2.69 yielding the following pseudo rotational symmetry numbers (see

Figure 2.4).
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2.3.3.5 Collision Cross-Section

Finally, the collision cross-section between the excited cluster Si∗i+j,and the bath

gas M , is needed to determine the de-energization rate constant k2. The hard

sphere model is used where the radius of the cluster is given by

ri+j =
3

√
3Ω

4π
(i+ j) (2.70)

where Ω is the atomic volume, and the radius of the bath gas M is obtained from

the literature[Row94].
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CHAPTER 3

Nano-cluster Nucleation Model

3.1 Introduction

In the previous section, we developed expressions for the rate constants, which

describe the individual reactions that occur during nucleation. In this section, we

will develop a set of coupled equations describing the overall nucleation process.

This set of equations is commonly referred to as the master equations. Fur-

ther, we will develop two different reactor models, which represent two bounding

conditions for non-equilibrium gas phase nano-cluster nucleation. These are the

one-dimensional kinetics model (ODK) which describes plug flow gas reactors,

and the well-stirred reactor model which describes an ideal tank reactor. In prac-

tice, most reactors can be sufficiently described by plug flow reactors, well-stirred

reactors, or combinations of both. For instance, a plug flow reactor can be mod-

eled as one to several well-stirred reactors in series. The greater the number of

well-stirred reactors, the better the approximation[HA79]. Additionally, due to

the large number of coupled differential equations involved for describing nucle-

ation of even modest-size nanoparticles (Dp on the order of 10 nm - a 10 nm

silicon particle contains 7 × 105 atoms), two approximation techniques will be

developed which greatly reduce the number of equations. These are the discrete

sectional method and the method of moments.
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3.2 Master Equations

In order to determine the nucleation behavior in a nozzle or well-stirred reac-

tor, the rate of change of cluster size due to recombination and dissociation is

needed. The equations describing this phenomenon are commonly referred to as

the master equations. Once the master equations have been developed, they can

be coupled to the fluid dynamic equations developed in a later section, section

3.3.

The time rate of change of the concentration of clusters of size i atoms due

to recombination and dissociation is

dCi/dt = 1/2

i−1∑
j=1

[Krec (j, i− j)CjCi−j − (1− δj,i−j)Kdiss (j, i− j)Ci]

+
∞∑
j=1

[(1 + δi,j)Kdiss (i, j)Ci+j −Krec (i, j)CiCj] + Si (3.1)

where
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Ci is the concentration of cluster size i

Si is the source term of cluster size i

Krec (j, i− j) is the rate constant for the formation of cluster size i

from smaller size clusters of size j and i− j

Kdiss (j, i− j) is the rate constant for the destruction of cluster size i

into smaller clusters of size j and i− j

Kdiss (i, j) is the rate constant for the formation of cluster size i

from the destruction of larger clusters of size i+ j

Krec (i, j) is the rate constant for the destruction of cluster size i

due to recombination with other clusters

The master equations, just developed, form an infinite set of equations which

cannot be solved easily. Several approximation methods have been developed

to solve such a set of equations. The simplest of these is to truncate the set

of equations at some arbitrary upper cluster size limit. This method has the

disadvantage of only allowing the study of very small clusters, on the order of 1

to 3 nanometers in size. In order to study the formation and nucleation of larger

size clusters, other methods must be employed. Two methods which have had

success in other studies will be developed later in this section. These are the

discrete sectional method and the method of moments, or moments method.

3.3 One-Dimensional-Kinetics (ODK)

In order to model clustering in flowing systems such as nozzles, the master equa-

tions must be coupled to the fluid dynamic equations. Using the control surface

shown in figure 3.1, the one-dimension-kinetics (ODK) equations are developed
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in the following subsections.

Figure 3.1: One-Dimensional-Kinetics (ODK) Control Surface

3.3.1 Equation of State

The equation of state for an ideal gas is

P =
ρ
T
W

(3.2)

where
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P is pressure

ρ is the gas density


 is the universal gas constant

T is temperature

W is molecular weight

Taking logarithms and differentiating gives

dP/P = dρ/ρ+
dT

T
− dW/W (3.3)

3.3.2 Speed of Sound

The speed of sound is given as

c2 =
γ
T
W

(3.4)

or

dc/c =
1/2

(
dγ/γ + dT/T − dW/W

)
(3.5)

where

c is the speed of sound

γ is the ratio of specific heats, Cp/Cv

41



3.3.3 Mach Number

The definition of the Mach number is

M2 = u2/
c2 =

u2W

γ
T (3.6)

or

dM2/
M2 = du2/

u2 + dW/W − dγ/γ − dT/T (3.7)

where

M is the Mach number

u is the gas velocity

3.3.4 Conservation of Mass

In one dimension, the conservation of mass is

∂

∂t
(ρA∆x) = ρuA|x − ρuA|x+∆x (3.8)

Dividing by ∆x and taking the limit as ∆x approaches zero gives

∂

∂t
(ρA) = − ∂

∂x
(ρuA) (3.9)

Finally, factoring and dividing both sides by ρuA gives

1

uρ

∂ρ

∂t
= −1

ρ

∂ρ

∂x
− 1

u

∂u

∂x
− 1

A

∂A

∂x
(3.10)
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3.3.5 Conservation of Species

In addition to conservation of total mass, each species must be conserved. The

conservation equation for each species is

∂

∂t
(yiρA∆x) = yiρuA|x − yiρuA|x+∆x + A∆xωi (3.11)

where

yi is the mass fraction of species i

ωi is the mass generation/consumption rate for species i

Dividing by A∆x and taking the limit as ∆x approaches zero gives

∂

∂t
(yiρ) = − 1

A

∂

∂x
(yiρuA) + ωi (3.12)

Differentiating and subtracting out the continuity equation (equation 3.10) gives

1

u

∂yi
∂t

= −∂yi
∂x

+ ωi/ρu (3.13)

Noting that ωi/Wi
= ω̃i, equation 3.12 becomes

1

u

∂yi

∂t
= −∂yi

∂x
+Wiω̃i/ρu (3.14)

where

ω̃i is the mole generation/consumption rate for species i
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3.3.6 Conservation of Momentum

In one dimension, the conservation of momentum equation is

∂

∂t
(ρA∆xu) = PA|x−PA|x+∆x+ρu2A

∣∣∣
x
−ρu2A

∣∣∣
x+∆x

−4fA
(
∆x/D

) ρu2

2
(3.15)

where f is the friction factor. Again, dividing by ∆x and taking the limit as ∆x

approaches zero gives

∂

∂t
(ρAu) = − ∂

∂x
(PA)− ∂

∂x

(
ρu2A

)
− 4fA

(
1/D

) ρu2

2
(3.16)

Factoring gives

u
∂

∂t
(ρA) + ρA

∂u

∂t
= − ∂

∂x
(PA)− u

∂

∂x
(ρuA)− ρuA

∂u

∂x
− 4fA

(
1/D

) ρu2

2
(3.17)

Subtracting out the equation of continuity (3.9) multiplied by the velocity, u gives

ρA
∂u

∂t
= − ∂

∂x
(PA)− ρuA

∂u

∂x
− 4fA

(
1/D

) ρu2

2
(3.18)

Rearranging equation 3.18 and noting that ρu2 = γPM2 gives

1

u2

∂u

∂t
= − 1

γM2

1

P

∂P

∂x
− 1

γM2

1

A

∂A

∂x
− 1

u

∂u

∂x
− 2f

(
1/D

)
(3.19)

3.3.7 Conservation of Energy

The conservation of energy equation can be stated as

∂

∂t

{
ρA∆x

(
h + u2/

2

)}
= ρuA

(
h + u2/

2

)∣∣∣∣
x
− ρuA

(
h+ u2/

2

)∣∣∣∣
x+∆x

(3.20)
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+ ρA∆x (δQ+ δWx + δHRxn)

where

h is enthalpy

δQ is heat added by external sources

δWx is work delivered to external sources

δHRxn is heat added due to chemical reaction

Taking the limit as ∆x approaches zero, subtracting out the continuity equation

and rearrangement gives

1

u

∂

∂t

(
h+ u2/

2

)
= − ∂

∂x

(
h+ u2/

2

)
+

1

u
(δQ+ δWx + δHRxn) (3.21)

noting that dh = CpdT , dividing through by CpT and rearrangement gives

1

u

1

T

∂T

∂t
+
1

u

γ − 1

2
M2 1

u2

∂u2

∂t
= − 1

T

∂T

∂x
−γ − 1

2
M2 1

u2

∂u2

∂x
+
1

u

(δQ+ δWx + δHRxn)

CpT
(3.22)

3.3.8 Enthalpy, Molecular Weight and Ratio of Specific Heats

In addition to the conservation equations, we need to know how the enthalpy,

molecular weight and specific heat ratio change as gas expands and the reactions

progress through the nozzle. These are:

dh/dt =
1/ρ
∑

WihidCi/dt (3.23)

1

W
dW/dt = −W

ρ

∑
dCi/dt (3.24)
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dγ

γ
=

dcp
cp

− dcv
cv

(3.25)

where

dcp/dt =
1

ρ

∑
Wicpi

dCi/dt

and

dcv/dt =
1

ρ

∑
Wicvi

dCi/dt

3.3.9 Influence Coefficients

At steady state conditions, equations 3.3, 3.5, 3.7, 3.10, 3.19, 3.22, 3.23, 3.24,

and 3.25 form a coupled set of differential equations that can be rearranged to

form a desired set of dependent and independent variables. If the temperature

is known as a function of T , such as for a constant quench rate, the following

equations, presented in table 3.1, result. This type of table is referred to as an

influence coefficient table[Sha53], because the dependent variables listed at the

head of each row are influenced by the independent variables at the head of each

column by an amount determined by the coefficients found at the column, row

junctures.

3.4 Well Stirred Reactor Theory

The material balance for a well stirred reactor is

ρV dyi/dt = yi|in uρA− yiuρA+Ri (3.26)

where
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Table 3.1: Influence Coefficient Matrix

1
T
dT/dt

1
CP T

(
dQ/dt+

dh/dt

)
4f u

D
1
W
dW/dt

1
γ
dγ/dt

1
M2

dM2
/dt −2(1+ γ−1

2
M2)

(γ−1)M2
2

(γ−1)M2 0 1 −1

1
c
dc/dt

1/2 0 0 −1/2
1/2

1
P
dP/dt

γ
γ−1

− γ
γ−1

−γM2

2
0 0

1
ρ
dρ/dt

1
γ−1

γ
γ−1

−γM2

2
−1 0

ρ is the density

V is the control volume

yi is the mass fraction of cluster size i

yi|in is the mass fraction of cluster size i in the inlet stream

u is velocity

A is cross-sectional area

and

Ri = VWi
dCi/dt

∣∣∣
nucleation

(3.27)

where

Ri is the mass rate of change of cluster size i due to nucleation

Wi is the molecular weight of cluster size i

dCi/dt

∣∣∣
nucleation

is the rate of change of concentration of cluster size i

due to nucleation

Equation 3.26 can be rearranged to give the rate of change of the concentration
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of cluster size i as follows:

VWi
dCi/dt = uAWi (Ci|in − Ci) + VWi

dCi/dt

∣∣∣
nucleation

dCi/dt =
uA

V
(Ci|in − Ci) + dCi/dt

∣∣∣
nucleation

(3.28)

For steady state conditions, and taking note that V
uA

is the characteristic time

constant, τ , upon rearrangement, equation 3.28 becomes

Ci = Ci|in + τ dCi/dt

∣∣∣
nucleation

(3.29)

which is the steady state solution for the concentration of cluster size i.

3.5 Discrete Sectional Method

The discrete sectional method tackles the problem of the large size domain by

dividing the domain up into sections. Each section consists of a large portion of

the size domain. All particles in a section take on the sectional average properties.

This greatly reduces the number of conservation equations. Typically, the size

domain is divided into several (10 - 30) equal logarithmic sections. Development

of the discrete sectional method is as follows.

Multiplying equation 3.1 by ik and summing over all i, gives[VG92, Dra72]

dNk/dt =
1

2

∞∑
i=1

∞∑
j=1

[Krec (i, j)CiCj − (1 + δi,j)Kd (i, j)Ci+j ]

×
[
(i+ j)k − ik − jk

]
+

∞∑
i=1

ikSi (3.30)

where the moments of the cluster size distribution are defined as
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Nk (t) =
∞∑
i=1

ikCi (t) (3.31)

For k = 1, equation 3.31 becomes

dN1/dt =
1

2

∞∑
i=1

∞∑
j=1

[Krec (i, j)CiCj − (1 + δi,j)Kd (i, j)Ci+j]× [(i+ j)− i− j]

+
∞∑
i=1

iSi (3.32)

which is a conservation equation for the number of monomers in the system. The

flux of monomers, Q, into section l due to recombination reactions is

1/2

kl∑
i=1

kl∑
j=1

θ (kl < i+ j ≤ kl+1) (i+ j)Krec (i, j)CiCj

1/2

kl∑
i=1

min(kl+1−i,kl)∑
j=kl+1−i

(i+ j)Krec (i, j)CiCj

Qm+n→l = 1/2

min{[kl+1−(kn+1)],km+1}∑
i=max[(kl+1−kn+1),(km+1)]

min(kn+1,kl+1−i)∑
j=max(kn+1,kl+1−i)

(i+ j)Krec (i, j)CiCj

(3.33)

The flux of monomers, Q, out of section l due to recombination reactions of

particles in section l with those in lower sections is

−
kl∑
i=1

kl+1∑
j=kl+1

θ (i+ j > kl+1) jKrec (i, j)CiCj

Qm+l→n = −
min{[kn+1−(kl+1)],km+1}∑

i=max[(kn+1−kl+1),(km+1)]

min(kl+1,kn+1−i)∑
j=max(kl+1,kn+1−i)

jKrec (i, j)CiCj (3.34)
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The flux of monomers, Q, into section l due to recombination of particles in

section l with particles in lower sections is

kl∑
i=1

kl+1∑
j=kl+1

θ (i+ j ≤ kl+1) iKrec (i, j)CiCj

Qm+l→l =
min{[kl+1−(kl+1)],km+1}∑

i=km+1

kl+1−i∑
j=kl+1

iKrec (i, j)CiCj (3.35)

The flux of monomers, Q, leaving section l due to recombination of particles in

section l is

−1/2

kl+1∑
i=kl+1

kl+1∑
j=kl+1

θ (i+ j > kl+1) (i+ j)Krec (i, j)CiCj

Ql+l→n = −1/2

min{[kn+1−(kl+1)],kl+1}∑
i=max[(kn+1−kl+1),(kl+1)]

min(kl+1,kn+1−i)∑
j=max(kl+1,kn+1−i)

(i+ j)Krec (i, j)CiCj

(3.36)

Finally, the flux of monomers, Q, leaving section l due to recombination of par-

ticles in section l with particles in higher sections is

−
kl+1∑

i=kl+1

kmax∑
j=kl+1+1

iKrec (i, j)CiCj

Ql+m→n = −
min{[kn+1−(km+1)],kl+1}∑

i=(kl+1)

min(km+1,kn+1−i)∑
j=max(km+1,kn+1−i)

iKrec (i, j)CiCj (3.37)

Collecting terms and defining Q̇l as

Q̇l = [(Qm+n→l +Qm+l→l)− (Qm+l→n +Ql+l→n +Ql+m→n)]
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The conservation of monomers as expressed by the discrete sectional method

becomes

dQl/dt = Q̇l +
kl∑

i=kl−1+1

iSi (3.38)

To express dQl/dt in terms of Ql, so as to obtain a closed set of equations

for Ql, it is necessary to introduce the fundamental approximation inherent in

the discrete sectional method. A convenient functional form of the size distrib-

ution within the sections must be introduced such that the integral quantity of

monomers within the section is equal to Ql[Gel80]. The simplest functional form

is to assume that iCi is constant within the section. Thus

Ql =
kl+1−1∑

kl

iCi (3.39)

Defining

ql = iCi

Equation 3.39 becomes

Ql = ql (kl+1 − kl) (3.40)

Rearrangement then gives

Ci =
Ql

i (kl+1 − kl)
(3.41)

Equation 3.41 can then be substituted into equations 3.33, 3.34, 3.35, 3.36, 3.37

yielding the conservation equation of Q in closed form.
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3.6 Moments Method

The next approximation method for solving the master equations for the size

distribution is the method of moments, or moments method. Starting with the

master equations, equation 3.1, and the definition of the moments of the size dis-

tribution, equations 3.30, and 3.31, we begin by dividing the cluster size domain

into two groups: those smaller than x∗, and those larger than x∗. The quantity

x∗ is some small integer, usually arbitrarily chosen, but may be suggested, in

some cases, by physical properties of the clusters (e.g. their stability). Those

clusters sizes smaller than x∗ are modeled discretely, and those larger than x∗

are modeled as a continuum. For the small size clusters, (i.e. < x∗) equation 3.1

becomes

dCi/dt = 1/2

i−1∑
j=1

[Krec (j, i− j)CjCi−j − (1 + δj,i−j)Kdiss (j, i− j)Ci]

+
x∗∑

j=i+1

(1 + δi,j−i)Kdiss (i, j − i)Cj −
x∗∑
j=1

Krec (i, j)CiCj (3.42)

+

∞∫
x∗

dxKdiss (i, x− i)Cx −
∞∫

x∗
dxKrec (i, x)CiCx + Si

And similarly, equation 3.30 becomes

dNk/dt = 1/2

x∗∑
i=1

x∗∑
j=1

[Krec (i, j)CiCj]×
[
(i+ j)k − ik − jk

]

− 1/2

x∗∑
j=2

j−1∑
i=1

[(1 + δi,j−i)Kdiss (i, j − i)Cj]×
[
jk − ik − (j − i)k

]

+
x∗∑
i=1

∞∫
x∗

dx [Krec (i, x)CiCx]×
[
(i+ x)k − ik − xk

]

−
x∗−1∑
i=1

∞∫
x∗

dx [Kdiss (i, x− i)Cx]×
[
xk − ik − (x− i)k

]
(3.43)
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+ 1/2

∞∫
x∗

∞∫
x∗

dxdy [Krec (x, y)CxCy]×
[
(x+ y)k − xk − yk

]

− 1/2

∞∫
x∗

dx

x∫
x∗

dy [Kdiss (x, x− y)Cx]×
[
xk − yk − (x− y)k

]

+
x∗∑
i=1

ikSi +

∞∫
x∗

dxxkS (x)

where Nk are the full moments of the size distribution. The moments of the large

size cluster distribution are defined as

Mk (t) =

∞∫
x∗

dxxkC (x, t) (3.44)

which are related to the full moments approximately by

Mk = Nk −
x∗∑
i=1

ikCi (3.45)

Inserting this into equation 3.43 gives upon rearrangement

dMk/dt = −
x∗∑
i=1

ikdCi/dt+
x∗∑
i=1

ikSi +

∞∫
x∗

dxxkSx

+ 1/2

x∗∑
i=1

x∗∑
j=1

[Krec (i, j)CiCj]×
[
(i+ j)k − ik − jk

]

− 1/2

x∗∑
j=2

j−1∑
i=1

[(1 + δi,j−i)Kdiss (i, j − i)Cj]×
[
jk − ik − (j − i)k

]

+
x∗∑
i=1

∞∫
x∗

dx [Krec (i, x)CiCx]×
[
(i+ x)k − ik − xk

]
(3.46)

−
x∗−1∑
i=1

∞∫
x∗

dx [Kdiss (i, x− i)Cx]×
[
xk − ik − (x− i)k

]

+ 1/2

∞∫
x∗

∞∫
x∗

dxdy [Krec (x, y)CxCy]×
[
(x+ y)k − xk − yk

]

53



− 1/2

∞∫
x∗

dx

x∫
x∗

dy [Kdiss (x, x− y)Cx]×
[
xk − yk − (x− y)k

]

In general, a function of the sort

G =
∫

dxg (x)C (x) (3.47)

can be expanded in terms of its moments. Expanding g(x) in a Taylor series

expansion gives

g (x) =
∞∑
n=0

1

n!
g(n)
x0

(x− x0)
n

=
∞∑
n=0

1

n!
g(n)
x0

n∑
ν=0


 n

ν


 (−x0)

n−ν xν (3.48)

Inserting equation 3.48 into equation 3.47 yields

G =
∞∑
n=0

1

n!
g(n)
x0

n∑
ν=0


 n

ν


 (−x0)

n−ν Mν (3.49)

Inserting equation 3.49 into equation 3.42 gives

dCi/dt = 1/2

i−1∑
j=1

[Krec (j, i− j)CjCi−j − (1 + δj,i−j)Kdiss (j, i− j)Ci]

+
x∗∑

j=i+1

(1 + δi,j−i)Kdiss (i, j − i)Cj −
x∗∑
j=1

Krec (i, j)CiCj (3.50)

+
∞∑
n=0

1

n!
K

(n)
diss (i, x̄)

n∑
ν=0


 n

ν


 (−x̄)n−ν

ν∑
l=0


 ν

l


 (−i)ν−l Ml

− Ci

∞∑
n=0

1

n!
K(n)

rec (i, x̄)
n∑

ν=0


 n

ν


 (−x̄)n−ν Mν + Si
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Also, it is noted that

(x+ y)k − xk − yk =
k−1∑
l=1


 k

l


 yk−lxl (3.51)

and

xk − yk − (x− y)k =
k−1∑
l=1

l∑
λ=0


 k

l




 l

λ


 (−1)l−λ yk−λxλ (3.52)

For k = 0, the (x+ y)k − xk − yk and the xk − yk − (x− y)k terms reduce to −1

and equation 3.46 becomes

dM0/dt = −
x∗∑
i=1

dCi/dt+
x∗∑
i=1

Si +

∞∫
x∗

dxSx

− 1/2

x∗∑
i=1

x∗∑
j=1

[Krec (i, j)CiCj ] + 1/2

x∗∑
j=2

j−1∑
i=1

[(1 + δi,j−i)Kdiss (i, j − i)Cj ]

−
x∗∑
i=1

Ci

∞∑
n=0

1

n!
K(n)

rec (i, x̄)
n∑

ν=0


 n

ν


 (−x̄)n−ν Mν

+
x∗−1∑
i=1

∞∑
n=0

1

n!
K

(n)
diss (i, x̄)

n∑
ν=0


 n

ν


 (−x̄)n−ν

ν∑
l=0


 ν

l


 (−i)ν−l Ml (3.53)

− 1/2

∞∑
m=0

∞∑
n=0

1

m!

1

n!
K(m,n)

rec (x̄, x̄)
m∑
µ=0

n∑
ν=0


 m

µ




 n

ν


 (−x̄)m+n−µ−ν MµMν

+ 1/2


 ∞∑
m=0

∞∑
n=0

1

m!

1

n!
K

(m,n)
diss (x̄, x̄)

m∑
µ=0

n∑
ν=0


 m

µ




 n

ν


 x̄m+n−µ−ν




×

 ν∑
l=0


 ν

l


 (−1)m+n−µ−l

ν − l + 1

[
Mµ+ν+1 − x ∗ν−l+1 Mµ+l

]
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For k = 1, the (x+ y)k − xk − yk and the xk − yk − (x− y)k terms reduce to 0

and equation 3.46 becomes

dM1/dt = −
x∗∑
i=1

idCi/dt+
x∗∑
i=1

iSi +

∞∫
x∗

dxxSx (3.54)

And for arbitrary k, equation 3.46 becomes

dMk/dt = −
x∗∑
i=1

ikdCi/dt+
x∗∑
i=1

Si +

∞∫
x∗

dxSx

+ 1/2

x∗∑
i=1

x∗∑
j=1

[Krec (i, j)CiCj]×
[
(i+ j)k − ik − jk

]

− 1/2

x∗∑
j=2

j−1∑
i=1

[(1 + δi,j−i)Kdiss (i, j − i)Cj]×
[
jk − ik − (j − i)k

]

+
x∗∑
i=1

Ci

k−1∑
l=1


 k

l


ik−l

∞∑
n=0

1

n!
K(0,n)

rec (i, x̄)
n∑

ν=0


 n

ν


 (−x̄)n−ν Mν+l

−

x∗−1∑

i=1

k−1∑
l=1


 k

l


 ik−l

l∑
λ=0


 l

λ


 (−i)l−λ

∞∑
n=0

1

n!
K

(0,n)
diss (i, x̄)




×

 n∑
ν=0


 n

ν


 (−x̄)n−ν

ν∑
µ=0


 ν

µ


 (−i)ν−µMλ+µ


 (3.55)

+


1/2

k−1∑
l=1


 k

l


 ∞∑

m=0

∞∑
n=0

1

m!

1

n!
K(m,n)

rec (x̄, x̄)




×

 m∑
µ=0

n∑
ν=0


 m

µ




 n

ν


 (−x̄)m+n−µ−ν Mµ+k−lMν+l




− 1/2


k−l∑
l=1

l∑
λ=0


 k

l




 l

λ


 ∞∑

m=0

∞∑
n=0

1

m!

1

m!
K

(m,n)
diss (x̄, x̄)




×

 m∑
µ=0

n∑
ν=0


 m

µ




 n

ν


 x̄m+n−µ−ν



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×

 ν∑
ε=0

(−1)l−λ+m+n−µ−ε


 ν

ε


 1

k + ν + 1− λ− ε




×
[(
Mk+µ+ν+1 − x ∗k+ν+1−λ−ε Mµ+ε+λ

)]

Equations 3.50 and 3.55 are two coupled sets of nonlinear ordinary differential

equations for the small-size cluster concentrations and the continuum moments.

If we take only the first two terms in the Taylor series expansion for Krec and

Kdiss into account (i.e. we truncate all terms with m, n > 2), then the system

is self-contained for any number of moments Mk, k = 0, 1, ..., N , with N > 1.

Because the recombination and the dissociation rates are supposed to be smooth

functions of size for the large-size clusters, this truncation is not considered to be

too severe.
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CHAPTER 4

Results and Comparison With Experiments

4.1 Cluster Energetics, Geometry, Vibrations, and Elec-

tron Densities

The energetics of silicon clusters of up to size 10 atoms and carbon clusters of

up to size 10 atoms have been calculated. The calculations were performed us-

ing the General Atomic and Molecular Electronic Structure System (GAMESS)

Quantum Mechanics software package[Sch63]. Calculations were performed us-

ing both ab initio and semi-empirical methods for silicon clusters, and the ab

initio method only for carbon clusters. The basis sets used were the TZV[MC80]

basis set for the ab initio calculations and the PM3[Ste89] basis set for the semi-

empirical calculations. In this manner, the cluster binding energy, configuration,

and normal modes of vibration were determined.

Figure 4.1 shows the cluster binding energy per atom for silicon clusters as

a function of cluster size for both the ab initio and semi-empirical models, and

Figure 4.2 is a similar curve for carbon clusters, but for ab initio calculations only.

The data points are the calculated binding energies, and the smooth curves are

the binding energies based on a modified capillary model. For silicon, the large

differences in binding energies between the ab initio model and the semi-empirical

model is due to the nature of the semi-empirical calculations, where the lack in

rigor is augmented with empirical constants.
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Figure 4.1: Binding energy per atom for Si as a function of the cluster size using

the ab initio and the semi-empirical quantum methods. A capillary model is

fitted to the data.
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Figure 4.2: Binding energy per atom for C clusters as a function of the cluster

size using the ab initio quantum method. A capillary model is fitted to the data.
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The capillarity model is given as[LA78, SP98, Bur73]

Ebinding = mφx
(
1− ax−1/3

)
(4.1)

where

Ebinding is the total cluster binding energy

m is the number of bonds per atom

φ is the energy per bond

x is the number of atoms in the cluster

a is a surface energy parameter

which was modified by combining it to a power law as follows:

Ebinding = mφ
(
1− x−α

)
x
(
1− ax−1/3

)
(4.2)

where

α is the power law coefficient

The crystalline structure for bulk silicon is the diamond structure[INS88]. Each

atom within the bulk of the structure has four nearest neighbors (i.e. each bulk

atom is bonded to four other atoms). Therefore, the number of bonds per atom,

m, is two for this structure. Similarly, the crystalline structure for bulk carbon is

the graphite structure. Each atom in this structure has three nearest neighbors.

Thus the number of bonds per atom, m, in the hexagonal closed pack is 1.5. The

energy per bond is related to the heat of sublimation at zero Kelvin by

φ =
∆Hsublimation

m
(4.3)

61



The surface energy parameter, a, was determined a priori from the bulk crys-

talline structure in the following manner: The cluster volume is given as

V = nΩ (4.4)

where

V is the cluster volume

n is the number of atoms in the cluster

Ω is the atomic volume

Assuming the cluster is spherical, the volume can also be given as

V = 4/3πr
3 (4.5)

where

r is the cluster radius

Equating the two volume equations, equations 4.4 and 4.5, the cluster radius can

be determined as

r =
(
3nΩ

4π

)1/3

(4.6)

The cluster surface area, S, can then be determined as

S = 4π
(
3nΩ

4π

)2/3

(4.7)

For the diamond structure, the atomic volume, Ω, is given as

Ω = (a0/2)
3 (4.8)
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where

a0 is the lattice constant (5.4305 Å for Silicon)

Assuming that the surface atoms cleave along the 1,1,1 plane, the surface density,

ρS, becomes

ρS =
1√
3

(
2/a0

)2
(4.9)

Multiplying equation 4.7 by equation 4.9 and using equation 4.8, the number of

surface atoms, nS, is

nS =
4π√
3

(
3

4π

)2/3

n
2/3 (4.10)

Assuming that the average bond deficiency per surface atom is unity, the surface

energy parameter, a, for silicon becomes

a =
π√
3

(
3

4π

)2/3

(4.11)

For carbon, the graphite structure was assumed. The atomic volume, Ω, for

this structure is

Ω =
√
3 (a0/2)

2 (c0/2) (4.12)

where

a0 is the hexagonal lattice constant (2.4612 Å for graphite)

c0 is the distance between basal planes (6.7079 Å for graphite)

Assuming the surface cleaves at the basal planes, the number of surface atoms,

nS, is
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nS = (4π)
1/3

√
3
(
c0/a0

)2/3
n

2/3 (4.13)

Assuming that each surface atom is deficient 3/7 of a bond, the carbon surface

energy parameter becomes

a = (4π)
1/3

√
3

7

(
c0/a0

)2/3
(4.14)

A heat of sublimation of 4.619 eV at 0 K[Wea81] was used to determine the

bond energies of silicon clusters, and likewise, a heat of sublimation of 7.373 eV

at 0 K[Wea81] was used to determine the bond energies of carbon clusters. For

silicon, the power law coefficient, α, was determined to be 0.225682 by a least

squares fit to the ab initio data. For carbon, and also for the silicon semi-empirical

data, the power law coefficient vanished. Note how the ab initio calculations differ

markedly from the semi-empirical calculations. The semi-empirical model pre-

dicts binding energies greater than those predicted by the ab initio method. This

is due to the nature of the semi-empirical calculations, where the lack in rigor is

augmented with empirical constants. It is plausible that these empirical constants

may be adjusted to give better agreement with the ab initio calculations.

Additionally, the morphology, normal modes of vibration, and electron density

were determined for clusters of up to size 10 silicon atoms and size 10 carbon

atoms. The geometry of the silicon dimer (i.e. 2 atom cluster) through the silicon

decamer (i.e. 10 atom cluster) are shown in appendix A, and the geometry of

the carbon dimer through decamer are shown in appendix B. Although the bond

distances differ somewhat, in general, the semi-empirical model predicts the same

cluster geometry as the ab initio model. The normal modes of vibration were also

determined for each of these clusters. These are shown in the tables in appendix

A for the silicon clusters and the tables in appendix B for the carbon clusters.
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Tables A-1 through A-9 contain predictions from both the semi-empirical model

and the ab initio model for the silicon clusters. Semi-empirical calculations were

not performed for the carbon clusters. As can be seen from these tables, the semi-

empirical model predicts higher frequencies for each mode when compared to the

ab initio model. As will be shown later, this is an important consideration when

computing thermochemistry or reaction rates. Finally, plots of cluster electron

density were developed using the Molden software package[SN00] for each of these

clusters and are shown in appendices A and B.

4.2 Nano-Cluster Nucleation

In order to study the nano-cluster nucleation phenomena, the rate constants

developed in section 2.3 were inserted into the master equations developed in

section 3.2. These were coupled to the one dimensional kinetics (ODK) nozzle

expansion equations (section 3.3) to study nucleation within a nozzle, and to

the well-stirred reactor model (section 3.4)to study nucleation in a turbulent

environment. Either the discrete sectional method (section 3.5) or the moments

method (section 3.6) was used to solve the system of equations.

4.2.1 Expanding Nozzle Model

The developed model for cluster nucleation in expanding nozzle flow will now

be tested by comparison with experimental data. An earlier experiment was

performed at the University of Minnesota in which they produced nanophase

silicon[Rao95]. The model was run against the conditions reported in reference

[Rao95] and compared to their data. The experiment consisted of using a plasma

arc to generate silicon monomers in hot argon at the nozzle entrance. The resul-
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tant mixture was then quenched by expanding it through a nozzle. Experimental

conditions are given in table 4.1. The discrete sectional method was used to solve

the coupled ODK / Master Equations for the nozzle. The moments method was

not used for this type of problem because it is ill-posed. This type of problem is

ill-posed because the initial conditions for the unknown continuum distribution

do not exist[Sto90]. The nozzle geometry is shown in figure 4.3, and the noz-

zle conditions are illustrated in figures 4.4 through 4.6. Temperature, pressure,

velocity, and saturation ratio versus nozzle length are illustrated. The particle

size evolution through the nozzle is illustrated in figure 4.7. This figure shows

that, although some particle size distribution is starting to develop, nucleation

and growth of larger size particles does not occur in the nozzle. This is supported

by earlier models of the same experiment[Rao95, Wei94]. As can be seen in fig-

ures 4.4 through 4.6, the quench rate is sufficient to produce a rapid increase

in saturation ratio (see figure 4.6), and the experimental evidence indicates that

nucleation is occurring[Rao95]. There must be some other mechanism that is

occurring to cause the nucleation. This will be discussed in the next section.

4.2.2 Well Stirred Reactor Model

The reason that nucleation does not occur in the nozzle is that the nucleation

rate is so much slower than the nozzle velocity. This situation is very similar to

combustion in a jet afterburner. If not for the flame holders, combustion would

not occur in the supersonic section of a jet. The reason is that the velocity of

the gas stream is greater than the flame speed of the combustion process. Hence,

the combustion reaction is snuffed-out, similar to blowing out a candle. In order

to promote combustion in high velocity streams, flame holders are inserted to

stabilize the combustion process. A flame holder consists of either inserting a
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Figure 4.3: Nozzle Temperature and Pressure Profile
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Figure 4.4: Nozzle Temperature and Pressure Profile
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Figure 4.5: Nozzle Velocity Profile
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Figure 4.6: Nozzle Saturation Ratio Profile
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Figure 4.7: Particle Size Evolution Within Nozzle - Discrete Sectional Method
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Table 4.1: Minnesota Experiment Conditions

Inlet Outlet

Diameter (mm) − 5

Length (mm) − 50

Pressure (torr) 871 405.6

Temperature (K) 2, 400 1, 800

NSi (cm
−3) 1014 6.2× 1013

SaturationRatio 0.024 15

Elapsed T ime (µs) − 95

V elocity (m/s) − 790.8

Mach No. − 1.0

bluff body in the flow stream or a sudden disruption of the flow stream such as a

step or sudden expansion, wall recess, or by secondary gas injection as illustrated

in figure 4.8. Flame holders promote strong recirculation zones which stabilize

the combustion process. Experiments have shown that combustion is complete

within the recirculation zones. The combustion products from the recirculation

zone mix with the main flow and ignite it[Gla87, Oat85].

Curan has done extensive research into coaxial dump combustors and has

developed a design methodology[Cur79]. More recently, Morrison has refined

the dump combustor design methodology[Mor97]. Both techniques are highly

empirical.

A similar process is occurring with the Minnesota experiment. After the gas

is expanded to its final temperature, pressure and supersaturation, it exits the

nozzle into a chamber. The interface between the nozzle and the chamber is a

large sudden expansion. This sudden expansion causes turbulent recirculation
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Figure 4.8: Flame/Nucleation Stabilization Schemes for Premixed Flows (After

Oates[Oat85])
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zones to occur. Complete nucleation occurs within the recirculation zones. The

complete nucleation products from the recirculation zones mix with the main

stream. The nucleation products from the recirculation zones act as nucleation

seeds in the main stream and promote nucleation there.

Unfortunately, the geometry of the chamber is not given, so a crude approx-

imation will need to be made. It will be assumed that the nucleation process

occuring at the nozzle/chamber interface can be modeled as a well stirred reactor.

The time constant will be determined a posteriori and checked for reasonableness.

The results of the model are shown in figure 4.9. The resultant time constant, τ ,

is 2.5 sec. The monomer concentration at the nozzle exit is 4.4×1013 cm−3 which

compares very well with the results of 6.2 × 1013 cm−3 from the nozzle expan-

sion model and Ref. [Rao95]. The geometry of the resultant dump condenser to

achieve this characteristic time constant was estimated using the method outlined

by Morrison[Mor97]. This geometry is shown in figure 4.10.

In order to test the validity of the model, the time constant, τ , was varied

from 2.0 sec to 2.5 sec. Results are shown in figure 4.11. As expected, the results

show the number density and dispersion increasing with increasing τ .

4.3 Design Applications

In this section, it will be shown how the model developed herein can be used

to design nanophase material reactors. Suppose it is desired to form nanophase

silicon particles of average particle diameter of 30 nm and with a very narrow size

distribution. The two variables in our control are the characteristic time constant,

τ , and the saturation ratio at the dump plane. In addition, in order to ensure

reasonable reactor geometries, we restrict the characteristic time constant, τ , to
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Figure 4.9: Comparison of Model to Experiment

Figure 4.10: Minnesota Experiment Estimated Dump Condenser Geometry
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Figure 4.11: Results of Varying τ on Final Distribution
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0.01 sec. Further, let us keep the nucleation temperature at 1, 800 K, the pressure

at 400 torr, use argon as the carrier gas, and the nozzle diameter at 5 mm. Using

the method developed by Morrison[Mor97] to design the dump nucleator, we get

the geometry illustrated in figure 4.12. The desired particle size distribution is

illustrated in figure 4.13. The Minnesota results are included for comparison.

Using the above stated conditions and the desired size distribution, the initial

conditions and the conditions at the dump plane can be determined from the

model developed herein. Results of the calculation are given in table 4.2.

Figure 4.12: Design Case Nanophase Si Reactor Design
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Figure 4.13: Design Case Distribution
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Table 4.2: Design Case Results

Dump

Inlet Upstream Downstream

Diameter (cm) − 0.5 5

Length (cm) − − 18.2

Pressure (torr) 1, 557 400 400

Temperature (K) 3, 100 1, 800 1, 800

NSi (cm
−3) 7.2× 1015 3.2× 1015 3.2× 1015

SaturationRatio 0.016 841.5 841.5

V elocity (m/s) − 1, 163 −
Mach No. − 1.472 −
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CHAPTER 5

Conclusions and Recommendations

The work performed in this thesis has demonstrated that

1) Quantum mechanics calculations are needed to accurately determine the

characteristics of small-size clusters (e.g. shapes, binding energies, vibrational

modes, etc.).

2) Small size cluster energetics can be tied to large size cluster energetics by

a modified capillary model.

3) The QRRK theory predicts the energy transfer limited recombination and

dissociation reactions of the small size clusters fairly well. For larger size clusters

where the recombination/dissociation reactions are not energy transfer limited,

the QRRK method reverts to absolute rate theory (also known as transition state

theory (TST)).

4) Rates predicted by QRRK and TST are much smaller than rates predicted

by collision rate theory.

5) Fissioning of large clusters with one fission fragment larger than 1 atom in

size is easily modeled with the methods developed herein. This cannot be easily

achieved with collision rate theory.

6) The rate equations coupled to the gas dynamics equations show that nu-

cleation of nano-clusters does not occur in the quenching nozzle experiment per-

formed at the University of Minnesota. The gas velocity in the nozzle is much
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greater than the nucleation rate, and most of the particles at the nozzle exit are

monomers or dimers.

7) Nucleation is occurring outside the nozzle where the gas exits the nozzle

into the vacuum chamber.

8) Nucleation is stabilized by the turbulent recirculation zones that are created

at the nozzle exit by the sudden expansion.

9) The model developed herein predicts the results of the University of Min-

nesota experiment very well, although the exact geometry of the experimental

apparatus and turbulent recirculation zone pattern are not known. Only the

nozzle geometry is reported.[Rao95]

10) The turbulent recirculation zone pattern and characteristic time constant

determined herein to match experimental results obtained in Ref. [Rao95] are

reasonable.

11) The model developed herein can be used to design nanophase material

reactors to yield a desired size distribution. The two parameters which control

the resultant size distribution are the characteristic time constant, τ , and the

saturation ratio in the reaction zone.

The research presented herein offers numerous opportunities for future work.

An experiment should be designed to verify the model. As stated earlier, details

of the experimental apparatus associated with the experimental data used to val-

idate the model are unknown. Only the nozzle geometry is described in detail.

Earlier researchers assumed that nucleation would occur in the nozzle prior to

it exiting into the vacuum vessel[Rao95]. Now that it has been shown that the

condensation holding mechanism - which is analogous to the flame holding mech-

anism in combustion - presented herein agrees very well with the experimental

data, an experiment should be designed to confirm this hypothesis.
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Another opportunity for future work would be to couple the rate equations

developed herein to a computational fluid dynamics (CFD) model. This would

enable a researcher to investigate the finer details of the condensation reactor

physics. It is envisioned, during reactor design, that the gross design will be

determined by the methods developed herein, but the design would be refined

using a CFD model with the rate expressions coupled to it.

Other opportunities for future work are to expand the model to include other

materials of interest. Silicon was chosen for this work because there was experi-

mental data available with which to compare this model. The model presented

herein can be applied to any number of materials, and is not limited to single

component materials, but can be expanded to include multi-component materials

such as SiC, Al2O3, TiO, metal alloys, etc.
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APPENDIX A

Silicon Data from Quantum Mechanics

Calculations

A.1 Silicon Dimer

The silicon dimer is shown in figure A.1. The normal modes of vibration for the

silicon dimer are given in table A.1. The electron density is shown in figure A.2.

Table A.1: Silicon Cluster Dimer Normal Modes of Vibration

PM3[Ste89] TZV[MC80]

Mode Frequency Intensity Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
(cm−1)

(
Debye2/Amu− Å2

)
1 723.01 0.00000 551.64 0.00000
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Figure A.1: Silicon Cluster Dimer
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Figure A.2: Silicon Dimer Electron Density
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A.2 Silicon Trimer

The silicon trimer is shown in figure A.3. The normal modes of vibration for the

silicon trimer are given in table A.2. The electron density is shown in figure A.4.

Figure A.3: Silicon Cluster Trimer
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Table A.2: Silicon Cluster Trimer Normal Modes of Vibration

PM3[Ste89] TZV[MC80]

Mode Frequency Intensity Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
(cm−1)

(
Debye2/Amu− Å2

)
1 139.9 0.02282 123.05 0.23229

2 449.18 0.05647 491.23 0.26916

3 501.06 0.10964 516.79 2.26295

Figure A.4: Silicon Trimer Electron Density
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A.3 Silicon Quadramer

The silicon quadramer is shown in figure A.5. The normal modes of vibration for

the silicon quadramer are given in table A.3. The electron density is shown in

figure A.6.

Figure A.5: Silicon Cluster Quadramer
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Table A.3: Silicon Cluster Quadramer Normal Modes of Vibration

PM3[Ste89] TZV[MC80]

Mode Frequency Intensity Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
(cm−1)

(
Debye2/Amu− Å2

)
1 123.64 0.08687 137.34 0.00476

2 182.38 0.51674 140.93 0.0037

3 313.26 0.00000 336.62 0.00000

4 391.72 0.00000 389.59 0.00000

5 475.68 0.13065 436.83 0.00000

6 519.99 0.00000 485.62 4.07875
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Figure A.6: Silicon Quadramer Electron Density
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A.4 Silicon Pentamer

The silicon pentamer is shown in figure A.7. The normal modes of vibration for

the silicon pentamer are given in table A.4. The electron density is shown in

figure A.8.

Figure A.7: Silicon Cluster Pentamer

91



Table A.4: Silicon Cluster Pentamer Normal Modes of Vibration

PM3[Ste89] TZV[MC80]

Mode Frequency Intensity Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
(cm−1)

(
Debye2/Amu− Å2

)
1 145.39 0.08189 159.52 0.01846

2 145.44 0.08156 159.52 0.01845

3 147.81 0.00000 244.57 0.00000

4 305.09 0.00000 252.38 0.00000

5 305.09 0.00000 252.4 0.00000

6 372.47 0.15935 252.4 0.205

7 408.73 0.00862 421.66 0.00000

8 408.81 0.00846 433.24 1.87644

9 493.4 0.00000 433.26 1.87583
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Figure A.8: Silicon Pentamer Electron Density
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A.5 Silicon Hexamer

The silicon hexamer is shown in figure A.9. The normal modes of vibration for

the silicon hexamer are given in table A.5. The electron density is shown in figure

A.10.

Figure A.9: Silicon Cluster Hexamer
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Table A.5: Silicon Cluster Hexamer Normal Modes of Vibration

PM3[Ste89] TZV[MC80]

Mode Frequency Intensity Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
(cm−1)

(
Debye2/Amu− Å2

)
1 63 0.2446 16.94 0.00733

2 63 0.2446 54.47 0.00045

3 163.43 0.00000 173.65 0.01131

4 251.72 0.00000 223.9 0.03794

5 275.37 0.00000 249.62 0.21453

6 357.47 0.00000 251.11 0.00000

7 374.89 0.148 312.17 0.03452

8 399.35 0.00000 346.92 0.00201

9 399.35 0.00000 351.65 0.0003

10 482.16 0.05053 413.42 0.02072

11 482.16 0.05053 452.97 1.27915

12 552.1 0.00000 461.41 1.3757
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Figure A.10: Silicon Hexamer Electron Density
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A.6 Silicon Heptamer

The silicon heptamer is shown in figure A.11. The normal modes of vibration

for the silicon heptamer are given in table A.6. The electron density is shown in

figure A.12.

Figure A.11: Silicon Cluster Heptamer
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Figure A.12: Silicon Heptamer Electron Density
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Table A.6: Silicon Cluster Heptamer Normal Modes of Vibration

PM3[Ste89] TZV[MC80]

Mode Frequency Intensity Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
(cm−1)

(
Debye2/Amu− Å2

)
1 188.52 0.00000 115.47 0.00000

2 188.52 0.00000 115.47 0.00000

3 263.2 0.28387 195.98 0.00149

4 263.2 0.28387 221.7 0.00000

5 287.35 0.00003 221.7 0.00000

6 306.22 0.00000 224.52 0.00032

7 306.22 0.00000 224.52 0.00032

8 338.02 0.00000 325.41 0.00000

9 387.64 0.00000 325.41 0.00000

10 387.65 0.00000 337.72 0.00000

11 411.42 0.00000 337.72 0.00000

12 411.42 0.00000 353.41 0.00000

13 517.98 0.12122 398.43 0.00000

14 517.98 0.12122 409.82 1.10352

15 560.78 0.00000 409.82 1.10352
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A.7 Silicon Octamer

The silicon octamer is shown in figure A.13. The normal modes of vibration for

the silicon octamer are given in table A.7. The electron density is shown in figure

A.14.

Figure A.13: Silicon Cluster Octamer
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Figure A.14: Silicon Octamer Electron Density
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Table A.7: Silicon Cluster Octamer Normal Modes of Vibration

PM3[Ste89] TZV[MC80]

Mode Frequency Intensity Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
(cm−1)

(
Debye2/Amu− Å2

)
1 81.44 0.05369 82.62 0.03147

2 90.75 0.31763 97.26 0.00225

3 174.5 0.42972 121.77 0.00033

4 211.36 0.12348 160.28 0.10092

5 223.55 0.00009 160.78 0.01742

6 249.59 0.01658 175.49 0.01896

7 265.03 0.03199 180.3 0.04206

8 302.91 0.39197 192.8 0.00363

9 303.55 0.15788 235.51 0.0423

10 308.16 0.01734 256.39 0.02787

11 377.23 0.12714 281.75 0.01623

12 380.88 0.06426 296.34 0.03787

13 390.53 0.02665 321.88 0.01015

14 399.2 0.01705 344.92 0.06402

15 431.11 0.24902 354.41 0.17971

16 477.41 0.34181 376.12 0.11813

17 487.99 0.28036 388.75 1.07102

18 533.1 0.13735 496.72 0.8298
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A.8 Silicon Nanomer

The silicon nanomer is shown in figure A.15. The normal modes of vibration

for the silicon nanomer are given in table A.8. The electron density is shown in

figure A.16.

Figure A.15: Silicon Cluster Nanomer
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Figure A.16: Silicon Nanomer Electron Density
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Table A.8: Silicon Cluster Nanomer Normal Modes of Vibration

PM3[Ste89] TZV[MC80]

Mode Frequency Intensity Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
(cm−1)

(
Debye2/Amu− Å2

)
1 152.32 0.00416 21.16 0.00035

2 178.23 0.00000 27.75 0.01633

3 203.18 0.07906 60.15 0.02307

4 217.47 0.00277 145.07 0.00000

5 223.55 0.16908 153.84 0.44342

6 263.49 0.00000 156.67 0.00617

7 263.79 0.25169 172.91 0.00245

8 263.79 0.7914 184.75 0.00000

9 276.5 0.00006 216.58 0.10542

10 286.41 0.0345 240.39 0.06879

11 307.68 0.76757 268.16 0.66134

12 318.21 0.00184 298.97 0.00000

13 363.42 0.80009 309.52 0.32655

14 401.33 0.00743 315.03 0.1204

15 401.63 0.00137 325.14 0.00013

16 411.07 0.04661 337.57 0.12972

17 434.38 0.00016 384.5 0.0105

18 450.34 0.87291 407.31 0.00009

19 486.07 0.35218 453.84 0.43244

20 498.46 0.00052 455.1 1.70171

21 532.32 0.94482 490.14 5.4624
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A.9 Silicon Decamer

The silicon decamer is shown in figure A.17. The normal modes of vibration for

the silicon decamer are given in table A.9. The electron density is shown in figure

A.18.

Figure A.17: Silicon Cluster Decamer
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Table A.9: Silicon Cluster Decamer Normal Modes of

Vibration

PM3[Ste89] TZV[MC80]

Mode Frequency Intensity Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
(cm−1)

(
Debye2/Amu− Å2

)
1 107.4 0.0506 97.67 0.01633

2 129.23 0.25013 115.43 0.06006

3 163.77 0.05906 122.51 0.0502

4 177.28 0.13912 138.76 0.03576

5 195 0.0544 156.12 0.01204

6 210.14 0.04283 182.55 0.00721

7 245.65 0.17557 187.72 0.0155

8 272.46 0.15356 203.19 0.05347

9 280.3 0.28278 208.69 0.08163

10 290.24 0.08212 220.64 0.01632

11 295.47 0.35968 233.96 0.00235

12 319.57 0.15844 236.53 0.00282

13 327.49 0.10226 243.44 0.00004

14 339.12 0.03904 250.65 0.02034

15 343.36 0.08822 287.54 0.08173

16 395.49 0.02072 311.39 0.2188

17 401.86 0.12305 332.5 0.01736

18 429.71 0.1444 369.29 0.03418

19 437.95 0.05694 386.16 0.00002

20 457.07 0.24305 399.99 0.37683
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Table A.9: (continued)

PM3[Ste89] TZV[MC80]

Mode Frequency Intensity Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
(cm−1)

(
Debye2/Amu− Å2

)
21 504.15 0.16464 409.26 0.5552

22 521.8 0.14993 467.95 0.38404

23 532.32 0.0147 482.17 0.6804

24 577.59 0.1588 523.81 0.89638

Figure A.18: Silicon Decamer Electron Density
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APPENDIX B

Carbon Data from Quantum Mechanics

Calculations

B.1 Carbon Dimer

The carbon dimer is shown in figure B.1. The normal modes of vibration for the

carbon dimer are given in table B.1. The electron density is shown in figure B.2.

Table B.1: Carbon Cluster Dimer Normal Modes of Vibration

TZV[MC80]

Mode Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
1 1201.64 0.00000
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Figure B.1: Carbon Cluster Dimer
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Figure B.2: Carbon Dimer Electron Density
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B.2 Carbon Trimer

The carbon trimer is shown in figure B.3. The normal modes of vibration for the

carbon trimer are given in table B.2. The electron density is shown in figure B.4.

Figure B.3: Carbon Cluster Trimer
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Table B.2: Carbon Cluster Trimer Normal Modes of Vibration

TZV[MC80]

Mode Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
1 331.67 0.00007

2 331.67 0.00007

3 1318.73 0.00000

4 2255.74 34.642

Figure B.4: Carbon Trimer Electron Density
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B.3 Carbon Quadramer

The carbon quadramer is shown in figure B.5. The normal modes of vibration

for the carbon quadramer are given in table B.3. The electron density is shown

in figure B.6.

Figure B.5: Carbon Cluster Quadramer
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Table B.3: Carbon Cluster Quadramer Normal Modes of Vibration

TZV[MC80]

Mode Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
1 371.8 0.0923

2 434.96 0.37893

3 548.22 1.0534

4 903.74 0.48928

5 1259.8 0.21754

6 1601.86 8.09854
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Figure B.6: Carbon Quadramer Electron Density
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B.4 Carbon Pentamer

The carbon pentamer is shown in figure B.7. The normal modes of vibration for

the carbon pentamer are given in table B.4. The electron density is shown in

figure B.8.

Figure B.7: Carbon Cluster Pentamer
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Table B.4: Carbon Cluster Pentamer Normal Modes of Vibration

TZV[MC80]

Mode Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
1 316.2 0.00000

2 316.2 0.00000

3 638.52 0.25748

4 638.52 0.25777

5 638.52 0.25775

6 953.02 0.00000

7 1714.61 46.81824

8 1714.61 46.82103

9 1714.61 46.81791
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Figure B.8: Carbon Pentamer Electron Density
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B.5 Carbon Hexamer

The carbon hexamer is shown in figure B.9. The normal modes of vibration for

the carbon hexamer are given in table B.5. The electron density is shown in

figure B.10.

Figure B.9: Carbon Cluster Hexamer
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Table B.5: Carbon Cluster Hexamer Normal Modes of Vibration

TZV[MC80]

Mode Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
1 108.51 0.01902

2 108.51 0.01902

3 315.64 0.0001

4 315.65 0.0001

5 553.22 0.42403

6 553.22 0.42399

7 651.81 0.00000

8 1272.61 720.64918

9 1378.68 0.00000

10 1378.68 0.00000

11 2264 0.00000

12 2561.57 0.00000

13 3283.95 1000
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Figure B.10: Carbon Hexamer Electron Density
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B.6 Carbon Heptamer

The carbon heptamer is shown in figure B.11. The normal modes of vibration

for the carbon heptamer are given in table B.6. The electron density is shown in

figure B.12.

Figure B.11: Carbon Cluster Heptamer
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Figure B.12: Carbon Heptamer Electron Density
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Table B.6: Carbon Cluster Heptamer Normal Modes of Vibration

TZV[MC80]

Mode Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
1 75.04 0.1149

2 75.04 0.1149

3 190.21 0.0001

4 190.21 0.0001

5 323.25 0.0004

6 323.25 0.0004

7 615.03 0.00000

8 671.92 0.00000

9 671.92 0.00000

10 817.72 2.43255

11 817.72 2.43255

12 1169.94 0.00009

13 1686.66 0.00000

14 2083.78 146.52838

15 2272.61 325.57962

16 2340.6 0.00000
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B.7 Carbon Octamer

The carbon octamer is shown in figure B.13. The normal modes of vibration for

the carbon octamer are given in table B.7. The electron density is shown in figure

B.14.

Figure B.13: Carbon Cluster Octamer
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Figure B.14: Carbon Octamer Electron Density
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Table B.7: Carbon Cluster Octamer Normal Modes of Vibration

TZV[MC80]

Mode Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
1 152.14 0.0001

2 330.07 0.0001

3 358.27 0.0001

4 388.25 0.21233

5 486.86 0.00000

6 556.15 0.00000

7 556.15 0.00000

8 632.78 4.70253

9 632.78 4.70253

10 708.75 0.00000

11 948.04 0.00000

12 1069.51 1.28299

13 1069.51 1.28299

14 1256.51 0.00000

15 1872.72 0.00000

16 1952.28 0.00000

17 1971.25 10.17834

18 1971.25 10.17834
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B.8 Carbon Nanomer

The carbon nanomer is shown in figure B.15. The normal modes of vibration

for the carbon nanomer are given in table B.8. The electron density is shown in

figure B.16.

Figure B.15: Carbon Cluster Nanomer
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Figure B.16: Carbon Nanomer Electron Density
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Table B.8: Carbon Cluster Nanomer Normal Modes of Vibration

TZV[MC80]

Mode Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
1 215.52 0.68963

2 297.44 0.57496

3 346.8 0.41291

4 367.28 0.0001

5 462.92 0.00000

6 499.66 0.10664

7 550.93 0.63322

8 575.36 0.27231

9 627.17 0.57504

10 725.28 0.00000

11 744.31 0.92364

12 795.08 0.10486

13 839.74 0.13702

14 908.23 0.0006

15 942.55 1.23397

16 1025.03 0.20265

17 1281.46 2.25687

18 1334.83 0.0121

19 1432.03 0.05207

20 1920.34 0.37537

21 2028.1 0.07507
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B.9 Carbon Decamer

The carbon decamer is shown in figure B.17. The normal modes of vibration

for the carbon decamer are given in table B.9. The electron density is shown in

figure B.18.

Figure B.17: Carbon Cluster Decamer
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Table B.9: Carbon Cluster Decamer Normal Modes of

Vibration

TZV[MC80]

Mode Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
1 210.44 0.00000

2 210.44 0.00000

3 267.51 0.00000

4 267.51 0.00000

5 332.01 0.00000

6 470.67 0.15963

7 544.67 0.00000

8 544.67 0.00000

9 571.48 0.00000

10 571.48 0.00000

11 655.08 0.00000

12 655.08 0.00000

13 709.69 3.43059

14 709.69 3.43059

15 719.08 0.00000

16 861.32 0.00000

17 1090.93 0.96320

18 1090.93 0.96320

19 1548.12 0.00000

20 1548.12 0.00000
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Table B.9: (continued)

TZV[MC80]

Mode Frequency Intensity

(cm−1)
(
Debye2/Amu− Å2

)
21 2003.46 0.00000

22 2003.46 0.00000

23 2047.47 11.53539

24 2047.47 11.53539

Figure B.18: Carbon Decamer Electron Density

134



References

[AT95a] M. Abdulkhadar and B. Thomas. “DC Conductivity and Dielectric
Properties of Nano-Particles of Red Mercuric Iodide.” Cyrstal Research
and Technology, 30:723–728, 1995.

[AT95b] M. Abdulkhadar and B. Thomas. “Study of Dielectric Properties
of Nano-Particles of Cadmium Sulphide.” Physica Status Solidi A,
150:755–762, 1995.

[Atk82] P. W. Atkins. Physical Chemistry. W. H. Freeman and Co., 2 edition,
1982.

[Atk86] P. W. Atkins. Molecular Quantum Mechanics. Oxford University Press,
1986.

[Bur73] J. J. Burton. “On The Validity of Homogeneous Nucleation Theory.”
Acta Metallurgica, 21:1225–1232, 1973.

[Car98a] D. L. Carroll et al. “Effects of Nanodomain Formation on the Elec-
tronic Structure of Doped Carbon Nanotubes.” Physical Review Let-
ters, 81:2332–2335, 1998.

[Car98b] D. L. Carroll et al. “Spatial Variations in the Electronic Structure of
Pure and b-Doped Nanotubes.” In EMRS 1997 Meeting, Symposium
A: Fullerenes and Carbon Based materials, volume 36, pp. 753–756.
Carbon, 1998.

[Chi98] H. Chiriac et al. “Giant Magneto-Impedance Effect in Nanocrys-
talline Glass-Covered Wires.” In 7th Joint Magnetism and Magnetic
Materials-Intermag Conference, volume 83, pp. 6584–6586. J. Applied
Physics, 1998.

[Cur79] E. T. Curan. An Investigation of Flame Stability in a Coaxial Dump
Combustor. PhD thesis, Air Force Institute of Technology, 1979.

[Dau83] R. Daudel et al. Quantum Chemistry. John Wiley & Sons Ltd., 1983.

[Dra72] R. L. Drake. In G. M. Hidy and J. R. Brock, editors, Topics in Current
Aerosol Research, volume 3, p. 201. Pergamon, Oxford, 1972.

[DW87] A. M. Dean and P. R. Westmoreland. “Bimolecular QRRK Analysis of
Methyl Radical Reactions.” Int. J. Chem. Kinetics, 19:207–228, 1987.

135



[Fan98] H. C. Fang et al. “Preparation and Magnetic Properties of (Zn-Sn) Sub-
stituted Barium Hexaferrite Nanoparticles for Magnetic Recording.” J.
Magnetism and Magnetic Materials, 187:129–135, 1998.

[Fri01] M. J. Frisch et al. Gaussian 98 (Revision A.1x). Gaussian, Inc., Pitts-
burgh, PA, 2001.

[Gaz98] F. Gazeau et al. “Magnetic Resonance of Ferrite Nanoparticles: Ev-
idence of Surface Effects.” J. Magnetism and Magnetic Materials,
186:175–187, 1998.

[GC89] S. L. Girshick and C. P. Chiu. “Homogeneous Nucleation of Particles
from the Vapor Phase in Thermal Plasma Synthesis.” Plasma Chem-
istry and Plasma Processing, 9(3):355–369, 1989.

[Gel80] F. Gelbard et al. “Sectional Representations for Simulating Aerosol
Dynamics.” J. of Colloid and Interface Science, 76(2):541–556, 1980.

[Gla41] S. Glasstone et al. The Theory of Rate Processes. McGraw-Hill Book
Co., 1941.

[Gla87] I. Glassman. Combustion. Academic Press, Inc., 2 edition, 1987.

[GT84] Jr. Gardiner, W. C. and J. Troe. “Rate Coefficients of Thermal dissoci-
ation, Isomerization, and Recombination Reactions.” In Jr. W. C. Gar-
diner, editor, Combustion Chemistry, pp. 173–196. Springer-Verlag,
1984.

[HA79] C. D. Holland and R. G. Anthony. Fundamentals of Chemical Reaction
Engineering. Prentice-Hall, 1979.

[INS88] INSPEC, Inst. Elec. Eng. Properties of Silicon, 1988.

[Joh66] H. S Johnston. Gas Phase Reaction Rate Theory. The Ronald Press
Co., 1966.

[Kai98] L. Kai et al. “Giant Positive Magnetoresistance in Arrays of Semi-
Metallic Bismuth Nanowires.” In 7th Joint Magnetism and Mag-
netic Materials-Intermag Conference, volume 34, pp. 1093–1095. IEEE
Transactions on Magnetics, 1998.

[Kar87] J. Karch et al. “Ceramics Ductile at Low Temperature.” Letters to
Nature, Nature, 330, 1987.

[Kas28a] L. S. Kassel. “The Distribution of Energy in Molecules.” In Proc. Nat.
Acad. Sci., volume 14, pp. 23–30, 1928.

136



[Kas28b] L. S. Kassel. “Studies in Homogeneous Gas Reactions I.” J. Phys.
Chem., 32:225–242, 1928.

[Kas28c] L. S. Kassel. “Studies in Homogeneous Gas Reactions II, Introduction
of Quantum Theory.” J. Phys. Chem., 32:1065–1079, 1928.

[Kas32] L. S. Kassel. The Kinetics of Homogeneous Gas Reactions. The Chem-
ical Catalog Company, Inc., 1932.

[Kno98] M. Knobel. “Giant Magnetoimpedance in Soft Magnetic Amorphous
and Nanocrystalline Materials.” In J. de Physique IV (Proceedings),
volume 8, pp. 213–220, 1998.

[Kon97] I. A. Konovalov et al. “High Sensitive Strain Microsensor Based on
Dielectric Matrix with Metal Nanoparticles.” In E. P. George et al.,
editors, Materials for Smart Systems II, Symposium, volume 36, pp.
261–265. Mater. Res. Soc., 1997.

[LA78] B. Lewis and J.C. Anderson. Nucleation and Growth of Thin Films.
Academic Press, 1978.

[Lin84] M. R. Lindeburg. Mechanical Engineering Review Manual. Professional
Publications, 7 edition, 1984.

[Low93] J. P. Lowe. Quantum Chemistry. Academic Press, 2 edition, 1993.

[MC80] A. D. McLean and G. S. Chandler. J. Chem. Phys., 72:5639–5648,
1980.

[Mor97] C. Morrison et al. “Fuel Sensitivity Studies Based On A Design Sys-
tem for High Speed Airbreathing Combustors.” XIII ISABE Conf.,
September 1997.

[Oat85] G. C. Oates. Aerothermodynamics of Aircraft Engine Components.
AIAA, Inc., 1985.

[Pan96] S. V. Pan’kova et al. “The Giant Dielectric Constant of Opal Contain-
ing Sodium Nitrate Nanoparticles.” J. Physics: Condensed Matter,
8:L203–6, 1996.

[Par64] D. A. Park. Introduction to the Quantum Theory. McGraw-Hill Book
Co., 1964.

[PB70] J. A. Pople and D. Beveridge. Approximate Molecular Orbital Theory.
McGraw-Hill Book Co., 1970.

137



[PC73] R. H. Perry and C. H. Chilton, editors. Chemical Engineers’ Handbook.
McGraw-Hill Book Co., 5 edition, 1973.

[Pre58] R. D. Present. Kinetic Theory of Gases. McGraw-Hill Book Co., 1958.

[Rao95] N. P. Rao et al. “Nanoparticle Formation Using a Plasma Expansion
Process.” Plasma Chemistry and Plasma Processing, 15(4):581–606,
1995.

[RH72] P. J. Robinson and K. A. Holbrook. Unimolecular Reactions. John
Wiley & Sons Ltd., 1972.

[RM89] N. P. Rao and P. H. McMurry. “Nucleation and Growth of Aerosol
in Chemically Reacting Systems. A Theoretical Study of the Near-
Collsion-Controlled Regime.” Aerosol Science and Technology, 11:120–
132, 1989.

[Row94] R. L. Rowley. Statistical Mechanics for Thermophysical Property Cal-
culations. Prentice-Hall, 1994.

[Sch63] M. W. Schmidt et al. “General Atomic and Molecular Electronic Struc-
ture System.” Journal of Computational Chemistry, 14:1347–1363,
1963.

[Sen92] S. M. Senkan. “Detailed Chemical Kinetic Modeling: Chemical Reac-
tion Engineering of The Future.” In Advances in Chemical Engineering,
volume 18, pp. 95–196. Academic Press, Inc., 1992.

[Sha] S. Sharafat et al. “A Plasma-Based Experiment for Nanocluster sys-
nthesis & Engineered Applications.”.

[Sha53] A. H. Shapiro. The Dynamics and Thermodynamics of Compressible
Fluid Flow. The Ronald Press Co., 1953.

[Sie96] R. W. Siegel. “Creating Nanophase Materials.” Scientific American,
pp. 74–79, December 1996.

[SN00] G. Schaftenaar and J. H. Noordik. “Molden: a pre- and post-processing
program for molecular and electronic structures.” J. Comput.-Aided
Mol. Design, 14:123–134, 2000.

[SP98] J. H. Seinfeld and S. N. Pandis. Atmospheric Chemistry and Physics;
From Air Pollution to Climate Change. John Wiley & Sons, Inc., 1998.

[Ste87] J. J. P. Stewart. “MOPAC: A General Molecular Orbital Package.”
QCPE, p. 455, 1987.

138



[Ste89] J. J. P. Stewart. J. Comp. Chem., 10:209, 1989.

[Sto90] C. A. Stone. A Kinetic Rate Model Simulationof the Initial Stages of
Thin Film Nucleation and Growth Under Low-Energy Particle Bom-
bardment. PhD thesis, University of California, Los Angeles, 1990.

[Stu91] G. D. Stucky. “Nanochemistry and Nanoclusters: The Beginning of
Matter.” Naval Research Reviews, 3:28–39, 1991.

[Sub98] L. Suber et al. “Size and Shape Effect on the Magnetic Properties of
Alpha-Fe2O3 Nanoparticles.” In Mechanically Alloyed, Metastable and
nanocrystalline Materials, International Symposium, volume 269–272,
pt. 2:, pp. 937–942. Materials Science Forum, 1998.

[TA95] B. Thomas and M. Abdulkhadar. “Dielectric Properties of Nano-
Particles of Zinc Sulphide.” J. Physics, 45:431–438, 1995.

[VG92] M. Vicanek and N. M. Ghoniem. “Two-Group Approach to the Kinetics
of Particle Cluster Aggregation.” Journal of Computational Physics,
101(1), July 1992.

[Wan98] W. Wang et al. “Nanoparticle Morphology in a Granular Cu-Co Al-
loy with Giant Magnetoresistance.” Applied Physics Letters, 72:1118–
1120, 1998.

[Wea81] R. C. Weast, editor. CRC Handbook of Chemistry and Physics. CRC
Press, 61 edition, 1981.

[Wei94] Q. Wei. “Modeling of Nanosize Silicon Particle Synthesis in a Plasma
Reactor.”. Master’s thesis, University of Minnesota, 1994.

[Wes71] P. R. Westmoreland et al. “Prediction of Rate Constants for Combus-
tion and Pyrolysis Reactions by Bimolecular QRRK.” AIChE Journal,
32(12), 1971.

[Wu87] J. J. Wu. “A Method for the Synthesis of Submicron Particles.” Lang-
muir, 3(2):266–271, 1987.

139


