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Abstract of the Dissertation

Dislocation-Based Crystal Plasticity Finite

Element Modelling of Polycrystalline Material

Deformation

by

Chunlei Liu

Doctor of Philosophy in Material Science and Engineering

University of California, Los Angeles, 2006

Professor Nasr M. Ghoniem, Chair

The objective of this research is to develop an understanding of the mechanical

behavior and dislocation microstructure evolution of copper single and polycrys-

tals, and to delineate the physical and mechanical origins of spatially-localized

plastic deformation. Traditional approaches to the study of plastic instabili-

ties have either been based on kinematic considerations, such as finite strain

effects and geometric softening, or physics-based concepts. In this study, we de-

velop a framework that combines both approaches. A rate-independent crystal

plasticity model was developed to incorporate micromechanics, crystallinity and

microstructure into a continuum description of finite strain plasticity. A compre-

hensive dislocation density model based on rate theory is employed to determine

the strain hardening behavior within each plastic slip system for the fcc crystal

structure. Finite strain effects and the kinematics of crystal plasticity are cou-

pled with the dislocation-density based model via the hardening matrix in crystal

plasticity.

ABAQUS/CAE is employed as a finite element method solver, and several

xv



user’s subroutines were developed to model fcc crystals with 2 and 12 slip sys-

tems. The developed material models are applied to study single and polycrystal

deformation behavior of copper. Interfaces between the ABAQUS user’s subrou-

tine Umat and the ABAQUS main code are developed to allow further extension

of the current method.

The results of the model are first compared to earlier simulations of localized

shear bands in a single copper crystal showing the association of the shear band

with defects, as illustrated by Asaro. Current simulations for bicrystlas indicate

that shear band localization initiates at the triple point junction between the two

crystals and the free surface. Simulations carried out for polycrystals clearly il-

lustrate the heterogeneous nature of plastic strain, and the corresponding spatial

heterogeneity of the mobile dislocation density. The origins of the spatial het-

erogenieties are essentially geometric, as a result of constraints on grain rotation

(finite strain effects), geometric softening due to plastic unloading of neighbor-

ing crystals. The physical origins of plastic instabilities manifest themselves in

the coupling between the dislocation densities and the localized kinematically-

induced softening.

xvi



CHAPTER 1

Introduction and Research Background

Currently, the largest sources of energy are still the combustion of coal, oil and

natural gas. As we know, all these energy sources are not re-usable, and they

will run out at some future point. An international collaboration project, ITER

(International Thermonuclear Experiment Research) has already been launched

to build a nuclear fusion experimental device to test the feasibility of fusion en-

ergy as a sustainable source for the future. However, the environmental and

operational conditions of structural materials in nuclear energy systems are un-

doubtedly the harshest among any technological applications. These materials

must operate reliably for extended periods of time without maintenance or repair.

They must withstand high particle and heat fluxes, as well as significant thermal

and mechanical forces.

To make sure that a nuclear reactor is safe, research structural analysis of

large modules are now routinely performed with the finite element method, as

shown in figure 1.1 b.

However, understanding the mechanical behavior of materials is essential to

computing elastic, plastic deformation, crack initiation and propagation, and any

mechanical and thermal load related failures. Recent research is focused on stud-

ies of structural materials and evolution of dislocation microstructure with crystal

plasticity method as shown in figure 1.1 (c) and dislocation dynamics in figure

1.1 (d). These methods have been developed to study and explain plastic behav-
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(a)

(b)

(c)

(d)

Figure 1.1: Research on nuclear energy system structure and material’s mechan-

ical behavior at different length scales. (a). Schematics of nuclear fusion reactor

(b). Finite element analysis of nuclear cooling structure (courtesy of professor S.

Sharafat). (c). Mechanical behavior study with the polycrystal plasticity method

coupled with dislocation density based model (current work). (d). Mechanical

behavior study with dislocation dynamics within a single crystal (after Z. Wang.

[76])
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ior, strain hardening and plastic deformation related dislocation microstructure

evolution. These models are applied to the understanding of plastic deformation

and failure at different length and time scales.

Crystal plasticity is a method developed to study material’s heterogeneous

plastic deformation based on modelling plastic slip on different slip systems within

the crystal. This method was first formulated by Taylor and Elam [68, 69], and

Taylor [72, 71]. Constitutive equations for elasto-plastic behavior of single crystal

materials were first formulated by Mandel [44] and Hill [32] based on modern

continuum mechanics, and later extended to finite strain formulation by Rice [57],

Hill and Rice [31], Asaro and Rice [6], and Asaro [8, 7]. The method of crystal

plasticity works well for solving problems of heterogeneous mechanical behavior,

and was extensively developed to study heterogeneous plastic deformation, lattice

rotation and texture evolution when metals are subjected to large deformation,

or to solve related practical problems met in manufacturing processes like metal

rolling and forming.

Keeping all advantages of crystal plasticity for studying heterogeneous plas-

ticity and also to make it possible to study dislocation microstructure evolution

at the same time. We developed a method to couple polycrystal plasticity with

dislocation density based model, which builds the correlation between strain hard-

ening effects in crystal plasticity and dislocation density evolution.

We built a model to study the mechanical behavior and dislocation microstruc-

ture evolution of unirradiated OFHC, (Oxygen-Free High Conductivity)-copper,

containing Ag, Si, Fe and Mg with concentrations of 10 ppm, 3 ppm, less than

1 ppm and less than 1 ppm, respectively (as shown in figure 1.2 [65]). Since the

amount of alloying elements is very small, material is assumed to be pure copper.

In our modelling, we performed the following:

3



Figure 1.2: Strain stress curve of OFHC-Copper from experiments. This figure

is adopted from Singh’s Report [65]

1. Single and polycrystal plasticity formulation and implementation using fi-

nite element method with developing users material subroutine UMAT in

ABAQUS.

2. Further development of the Ghoniem-Matthews-Amodels (GMA) [25] dis-

location density based material model to define the strain hardening in each

slip system.

3. Coupling the dislocation density based material model with crystal plastic-

ity within the finite element framework to study heterogeneous plasticity

behavior and dislocation microstructure evolution during plastic deforma-

tion in copper.
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In this dissertation, experimental observations are introduced in chapter 2. A

review of previous research on crystal plasticity and heterogeneous deformation is

given in chapter 3. Our modelling of crystal plasticity and the coupling method

are developed in chapter 4. the dislocation density based material model defining

the self-hardening for crystal plasticity is discussed in chapter 5. Results of simu-

lation of 3D model with 2 and 12 slip system are shown and discussed in chapter

6. Research achievements are summarized in chapter 7. Since our developed

model could be further extended to couple more comprehensive dislocation based

model or integrate damage models to study post-irradiation material follow-up

research is proposed in chapter 7.
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CHAPTER 2

Overview of Experimental Results

The localized nature of plastic deformation and the connection between plasticity

and slip on crystallographic orientations were documented as early as 1898 [23].

Figure 2.1 adapted from the work of Ewing and Rosenhain, shows that a material

subjected to simple shear deforms plastically and formes steps on the surface.

They gave the following detailed description: ”The diagram, fig. 15, is intended

to represent a section through the upper part of two contiguous surface grains,

having cleavage or gliding places as indicated by the dotted lines, AB being

a portion of the polished surface, C being the junction between the two grains.

When the metal is strained beyond its elastic limit, as say by a pull in the direction

of the arrows, yielding takes place by finite amounts of slips at a limited number of

places, in the manner shown at a, b, c, d, e. This exposed short portions of inclined

cleavage or gliding surface, and when viewed in the microscope.” They clearly

described that plastic slip is preferred along certain crystallographic directions.

They concluded that that grains were crystals with more or less homogeneous

crystallographic orientation. To some extents, this explains that plastic slip steps

are along similar crystallographic directions within same grain, and might be not

the same in the neighboring grains as shown in figure 2.2.

Later on, experimentalists observed more heterogeneous plastic deformation

within metals. As shown in figure 2.3, Elam [21] observed the formation of shear

bands which sustain much larger plastic strain than the surrounding area within a

6



Figure 2.1: Schematic diagram adopted from Ewing and Rosenhain (1900)[23]

Figure 2.2: Optical micrograph of deformed ploycrystalline lead adopted from

Ewing and Rosenhain [23]

7



single crystal of aluminum 2.8%wt copper alloy subjected to tensile stress. Large

lattice rotations of 10◦ − 20◦ within the shear band were observed.

Figure 2.3: Single crystal of aluminum 2.8%wt copper alloy deformation in ten-

sion. [21]

Morii and Nakayama [48] found that shear bands appeared in copper when

subjected to a shear stress. Figure 2.4 is an electron micrograph that shows the

formation of a shear band within a single crystal of copper and also the dislocation

sub-grain structure developing within the shear band.

Heterogeneous plastic behavior and related microstructure evolution have

been observed not only in single crystals, but also in polycrystals.

Diliamore et al. in 1979 observed the formation of shear bands in heavily

rolled polycrystalline aluminum-4.75%wt copper alloy. Figure 2.5 shows that

shear bands formed roughly along +45◦ and −45◦ due to the reorientation of

grains caused by the rolling process. This shows that shear bands can also be

formed within polycrystals. Surface roughness caused by large local plastic slips

was also observed.

8



Figure 2.4: A shear band formed during the plain strain rolling of a single crystal

of copper. [48]

Figure 2.5: An optical micrograph of shear bands developed in plane strain rolling

of a polycrystalline aluminum −4.75%wt copper alloy [20]

9



Since dislocation motion within the material is closely related to the ability

of the material to deform plastically, the dislocation microstructure evolution has

also been studied for many years. Singh et al. observed a heterogeneous distribu-

tion of dislocations when the material was subjected to large plastic deformation.

Figure 2.6 shows different dislocation microstructure were formed under different

level of plastic deformation.

These heterogeneous plastic deformation, large lattice rotation and dislocation

microstructure evolution observed in experiments cannot be explained by well-

developed isotropic plasticity theory. Many methods at different physical scales

have been developed to explain these phenomena and to model this heteroge-

neous mechanical behavior. Most of these theories work well at certain scales or

explain certain experimental observations to some extent. The details of some

representative models will be introduced in the next chapter and comparison of

these models will also be done.
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Figure 2.6: Dislocation microstructure in the unirradiated copper specimens ten-

sile tested at a strain rate of 1.3×10−7s−1 to a total strain of (a) 4%. Segregation

of dislocations (b)20%. Formation of dislocation cells. )[65]
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CHAPTER 3

Review of Computational Plasticity

In this chapter several methods of computational plasticity are reviewed. Macro-

scopic plasticity theory of isotropic/kinematic hardening is introduced since this

method builds the main computational framework. The formulation of crystal

plasticity is then reviewed. A brief introduction to modelling strain hardening

effects with the dislocation theory is also given at the last section of this chapter.

3.1 Isotropic/Kinematic Plasticity

3.1.1 Fundamental Theory of Plasticity

Numerical formulation of 3D general isotropic plasticity will be discussed in the

section since modelling isotropic plasticity for finite element method lays down

theoretical foundation for all other plasticity modelling. Later on, it will be found

that the main differences between isotropic plasticity and crystal plasticity are

flow rule and shape of yield surface.

The finite element method is the main method to obtain the numerical solu-

tion for a nonlinear boundary value problem by solving a discretized momentum

balance equation by iteration. Generally, There are three steps involved in a

finite element code:

• The discretized global momentum equations generate incremental displace-

12



ments, and incremental strains can be derived from these known displace-

ments. Normally, this strain is called the trial strain since most finite

element code today is strain-driven.

• New state variables [σ, εp,q] at step n + 1 can be obtained by solving

nonlinear equation of local constitutive equations based on known initial

values of variables, which are also the solution of step n.

• Then, the discretized global momentum equations are tested for the stress

computed from this step. If the global balance is satisfied, go to next step.

If the global balance is not satisfied, go back to the very beginning of step

n + 1, and test another set of trail displacements until the momentum

equations are balanced.

The nonlinearity of the computational system due to materials’ nonlinear

behavior is solved at the second step based on constitutive equations at the local

level. In the first and third step to trial values of displacements are applied and

the global momentum balance of the system is tested at the global level by the

displacement-driven finite element method.

To solve the local material nonlinear behavior, the classical redial return al-

gorithm was first put forward by Wilkins [79]. Krieg and Krieg[38] summarized

the formulation of the return mapping method to replace the classical method

based on elasto-plastic tangent modulus. Details of these numerical algorithms

will not be discussed (see reference [63] for details). Plasticity theory based on

J2 theory will be discussed here.
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3.1.1.1 Yield function

For isotropic materials, plastic deformation starts when the following function

Eq. 3.1 is satisfied. This function is called yield function:

F (σ,R) = 0 (3.1)

Where R is internal state variable.

For general isotropic/kinematic von Mises yield condition, the yield function

is defined as Eq. 3.3 and flow rule defined as Eq. 3.4, internal state hardening

variable q := (α, β). α is the equivalent plastic strain which defines the radius

of von Mises yield surface of isotropic hardening, and β defines the center of von

Mises yield surface in deviatoric stress space. γ is the plastic increment in current

step.

v = dev[σ]− β (3.2)

f(σ, q) = ‖v‖ −

√

2

3
K(α) (3.3)

ε̇p = γ
v

‖v‖
(3.4)

β̇ = γ
2

3
H(α)

v

‖v‖
(3.5)

α̇ = γ

√

2

3
(3.6)

Where, K(α) function is called isotropic hardening modulus and H(α) func-

tion is called kinematic hardening modulus. equivalent plastic strain is defined

as:

α =
∫ t

0

√

2

3
‖ε̇p(τ)‖dτ (3.7)
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Continuum elasto-plastic tangent modulus is defined by:

Cep = κ1⊗ 1 + 2µ[I−
1

3
1⊗ 1−

n⊗ n

1 + H+K
3µ

] (3.8)

Where, 1 is second order identity tensor and I is fourth order identity tensor,

n is flow rule.

3.1.1.2 Algorithm for solving yield function at local material point

To solve the nonlinear yield equation at the local level before testing the global

momentum equilibrium in the finite element code, the algorithm in incremental

style is summarized by the following steps

1. Apply trial strain and compute stress:

en+1 = εn+1 −
1

3
(tr[εn+1])1 (3.9)

strial
n+1 = 2µ(en+1 − ep

n) (3.10)

ηtrial
n+1 = strial

n+1 − βn (3.11)

2. Check yield function:

f trial
n+1 : = ‖ηtrial

n+1 ‖ −

√

2

3
K(αn) (3.12)

If f trial
n+1 ≤ 0 Then (3.13)

Set(·)n+1 = (·)trial
n+1 and Exit (3.14)

Endif (3.15)

3. Compute the flow rule and ∆γ by solving nonlinear yield function, and

update flow rule and equivalent plastic strain:
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Solving nonlinear yield function:

(a) Use the solution from the last step as the initial value:

∆γ(0) = 0 (3.16)

α0
n+1 = α0 (3.17)

(b) Solve nonlinear equation with Newton method:

i. Do Until:

|f(∆γk)| < TOL (3.18)

k ← k + 1 (3.19)

ii. Compute ∆γ(k+1):

f(∆γk) := −

√

2

3
K(α

(k)
n+1) + ‖ηtrial

n+a ‖ − {2µ∆γ(k)

+

√

2

3
[H(α

(k)
n+1)−H(αn)]} (3.20)

Df(∆γ(k) := −2µ{1 +
H

′

[α
(k)
n+a] + K ′[α

(k)
n+1]

3µ
} (3.21)

Solve:

∆γ(k+1) = ∆γ(k) −
f [∆γ(k)]

Df [∆γ(k)]
(3.22)

iii. Update equivalent plastic strain:

α
(k+1)
n+1 = αn +

√

2

3
∆γ(k+1) (3.23)

After the internal convergence is achieved, update flow rule and equivalent

plastic strain.

nn+1 :=
ηtrial

n+1

‖ηtrial
n+1 ‖

(3.24)

αn+1 := αn +

√

2

3
∆γ (3.25)
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4. Update plastic strain and correct elastic strain to obtain the correct stress:

βn+1 = βn +

√

2

3
[H(αn+1)−H(αn)]nn+1 (3.26)

ep
n+1 = ep

n + ∆γnn+1 (3.27)

σn+1 = κtr[εn+1]1 + strial
n+1 − 2µ∆γnn+1 (3.28)

5. Update consistent elastoplastic tangent moduli (The continuum elastoplas-

tic tangent moduli defined by Eq. 3.8 does not give a quadratic convergence

rate, but it is easier to compute.):

Cn+1 = κ1⊗ 1 + 2µθn+1[I−
1

3
1⊗ 1]− 2µθ̄n+1nn+1 ⊗ nn+1 (3.29)

θn+1 := 1−
2µ∆γ

‖ηtrial
n+1 ‖

(3.30)

¯θn+1 :=
1

1 + [K′+H′]n+1

3µ

− (1− θn+1) (3.31)

3.2 Crystal Plasticity

Isotropic plasticity modelling based on continuum theory combined with return

mapping algorithm provide robust numerical method to solve nonlinear boundary

value problems caused by material non-linearities with the finite element method,

and it also provides theoretical guidance for building other types of nonlinear

plastic models. However, isotropic plasticity is not able to model heterogeneous

plastic behavior observed in experiments. To solve this problem, the first model

was put forward by Schmid [60] as shown in figure 3.1. This figure shows the

deformation process of single crystal. Not only sliding between slip plane occurs,

also does lattice rotation if the traction boundary is not changed.
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Figure 3.1: Schematic diagrams for a crystal undergoing single slip in tension

The method to describe plastic deformation by crystallographic slip was for-

mulated by Taylor and Elam [68, 69], and Taylor [72, 71]. Constitutive equations

for elastoplastic behavior of single crystal material were first formulated by Man-

del [44] and Hill [32] based on the modern continuum mechanics, and extended to

the finite strain formulation by Rice [57], Hill and Rice [31], Asaro and Rice [6],

and Asaro [8, 7]. The modern finite strain crystal plasticity is built closely based

on deep understanding on crystal structure, mechanism of plastic slip, theory of

dislocation and finite strain kinematics and constitutive behavior. A brief intro-

duction to crystal structure and theory of dislocation will be given here since they

are indispensable component to building a crystal plasticity model, especially for

the model developed by us, which combines the traditional finite strain crystal

plasticity with the dislocation density based model.
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3.2.1 Crystal Structure

Most solid metals have crystalline structure, which means that atoms within ma-

terials are situated in a repeating array over long range. To describe crystalline

structure, atoms are imaged as solid hard balls sitting next to each other with

different patterns and the minimum repeating pattern is defined as an unit cell.

Crystalline structure with atoms located at each corner of the unit cell and cen-

ters of all surfaces is called a face-centered cubic crystalline structure fcc as shown

in fig 3.2. Copper, aluminum, and nickel has fcc crystalline structure. Similarly,

crystalline structure with atoms sitting on each corner and one positioning at

the center of the unit cell is call body-centered cubic crystalline structure bcc.

Iron has bcc crystalline structure. Some other metal, like zinc, magnesium, has

Hexagonal closed-packed crystalline structure hcp.

Mechanical properties of metals, especially the plastic deformation ability, de-

pend on their crystalline structures. Atoms glides on the certain plane along the

certain slip direction, along which gliding atoms meet the minimum resistance.

Each slip plane and a slip direction form a slip system . The different crystalline

structure has different number of slip systems. fcc crystalline structure has 12 slip

systems, which are the combination of slip plane family {111} and slip direction

family 〈110〉. For bcc crystalline structure, there are 48 slip systems. Generally,

gliding resistance in slip systems of fcc crystalline structure is much lower than

bcc structure if both materials are pure. This means that atoms within fcc crys-

talline structure are easier to slide than atoms within bcc crystalline structure, or

say materials with fcc crystalline structure is easier to undergo plastic deforma-

tion than material with bcc structure does, just like copper, aluminum, sustains

better plastic deformation capability than iron.

During early studies on mechanical properties of materials, a great discrep-
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Figure 3.2: Crystal structure of face center cubic . (a). A hard sphere unit cell,

each sphere stands for an atom. (b). A reduced-sized sphere unit cell. (c). A fcc

crystal structure contains many unit cells. This figure is adopted from [13]

ancy was found between theoretical strength of pure material and strength of real

material. During 1930s, this discrepancy was explained by the defects existing in

material, known as dislocations. It was not until 1950s, dislocations were directly

observed with electronic microscope. The theory of dislocations gives scientific

explanation to many mechanical phenomena and even makes quantitative esti-

mation of mechanical properties possible. A dislocation is a line defect inside

the material. dislocation can be separated as edge dislocation, screw dislocation

and mixed dislocation according to difference geometric configuration of defects.

Figure3.3 is a schematics of edge dislocation. The direction and magnitude of

lattice distortion associated with a dislocation is expressed in terms of a Burgers

vector, denoted by a b.

Today dislocations can be observed with help of electronic microscope, and
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Figure 3.3: Schematics of atomic structure of edge dislocation. [30]

the variations of density of dislocations can be as low as 103 mm−2 in carefully

solidified metal, and as high as 109 to 1010 mm−2 in heavily deformed metals.

Figure3.4 shows dislocations in observed in a titanium alloy. The motion of dislo-

cations produce plastic deformation. When the material is subjected to external

stress higher than certain level and yields, or say plastic deformation starts, dis-

locations glide on slip plane along certain slip direction, and this process is called

slip. The theory developed to compute plastic deformation within single crystal

is call single crystal plasticity theory. Since most metallic materials in use are

polycrystalline material as shown in figure 3.5, which means much more grain

with different crystalline orientation inside the materials, careful treatment of

interaction along grain boundary must be considered to appropriately extend

this theory into explanation of plastic behavior in polycrystalline material. Crys-

tal plasticity will be discussed in much more detail in next section and rest of

chapters.
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Figure 3.4: A TEM image of titanium alloy, where dislocations are dark lines.

51,450X. This figure is adopted from [13]

Figure 3.5: An optical microscopic image of the surface of a polished and etched

polycrystalline specimen of an iron-chromium alloy, where the grain boundaries

are dark lines. This figure is adopted from [13]
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3.2.2 Crystal Plasticity Modelling

Although kinematics and constitutive relations were well built for many years.

There are three main problems needed to be solved in modern rate-independent

theory of crystal plasticity, mainly on how to solve this system. The first is to

determine which slip system is active, and the second is to determine the in-

crements of plastic strain in each active slip system. Third, due to the typical

multiplicity of slip systems in crystals, the solutions of slip system which satisfys

the yield functions systems is not necessarily unique. When the constitutive the-

ory is applied to the numerical solution of boundary value problems, these three

features of the rate-independent plasticity theory generally result in numerical

problems [3].

The first numerical calculations for a two-dimensional boundary value prob-

lem for a rate-independent elastic-plastic single crystal was put forward by Peirce

et al. [52], whose geometry was idealized in terms of a planar double slip model.

Due to the lack of a robust solution strategy to determine the active slip systems

and the amount of slip on these systems, the element stiffness matrices become

singular for a particular choice of a slip system hardening rule resulting in nu-

merical instabilities. To overcome the limitations of the rate-independent crystal

plasticity, Asaro and Needleman [5] developed a rate-dependent crystal plasticity

model, which uniquely predicts constitutive response for arbitrary deformation

history. Asaro and Needleman (1985) proposed that the shearing rate γ̇α on a

slip system α is uniquely defined by:

γ̇α = γ̇0|
τα

gα
|

1

m sign(τα) (3.32)

In equation 3.32 , τα is the Schmid shear stress along slip direction, and sα > 0
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is deformation resistance in this slip system . The parameter γ̇0 is a reference

shearing rate. And the parameter m stands for the material rate dependence.

When m → 0, the model reproduces the rate-independent plasticity. Plastic

strain rate is uniquely determined by this equation, and is proportional to the

Schmid shear stress in that slip system. In crystal plasticity theories, the slip

system strain hardening gα evolves according to Eq. 3.33.

ġα =
∑

β

hαβ|γ̇β| (3.33)

where γ̇β is the plastic incremental rate and the hardening matrix hαβ defines

the rate of hardening effect on slip system α due to plastic increment on slip

system β; the diagonal terms define the self-hardening effect and off-diagonal

terms define latent-hardening effect of the slip systems. All terms in the hardening

matrix hαβ are deformation history-dependent. As mentioned by Anand et al [3],

the hardening moduli hαβ are the least well characterized part of the constitutive

equations for crystal elasto-plasticity.

In the rate-dependent formulation of Asaro and Needleman [5], all slip sys-

tems are always active and slip at a rate which depends on the resolved shear

stress and slip system deformation resistance. Not yield surface is defined. When

the resolved stress due to the external force is known, the plastic increment on

all slip systems are uniquely determined. In their model, no restriction on the

form of the hardening matrix hαβ is required. There has been considerable recent

progress made in the extension and application of the rate-dependent crystal

plasticity model of Asaro and Needleman [5] to solve the important boundary

value problems ( Bronkhorst et al [11].; Anand and Kalidindi [2]), however the

rate-dependent constitutive equations for low values of the rate-sensitivity pa-

rameter m are very stiff, and the calculations are very time consuming. More
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research is still needed to develop a robust calculation scheme to determine the

active slip systems, the corresponding plastic increments and the unique solutions

for rate-independent theory of crystal plasticity.

To avoid the problem mentioned in rate-dependent problem, Cuttiño and Or-

tiz [18], Anand et al. [2, 3], and Miehe et al. [47] have done great contributions

on formulating a numerical algorithm to solve rate-independent crystal plasticity.

Cuitiño and Ortiz [18] proposes an algorithmic setting for a multisurface-type

viscoplastic model with elastic domain. Here, the problem of redundant con-

straints does not occur, due to the viscoplastic regularization effect. Borja and

Wren [10] propose a so-called ultimate algorithm for the rate-independent theory

which follows the successive development of active slip within a typical discrete

time interval. Anand and Kothari [3] solve the system of redundant constraints

of rate-independent single-crystal plasticity by using a generalized inverse on the

basis of the singular-value decomposition of the Jacobian of the active yield crite-

rion functions. This approach meets the least-square-type optimality conditions

by minimizing the plastic dissipation due to the slip activities. Motivated by

this development, Schröder and Miehe [61] have proposed an alternative general

inverse where the reduced space is obtained by dropping columns of the local

Jacobian associated with zero diagonal elements within a standard factorization

procedure. In our modelling, the solution approach for true solutions of yield

functions proposed by Anand and Kothari [3] was employed.

During the last decade, these solution methods have been further developed

and extended to study crystallographic texture and lattice rotation within single

and poly crystal under uniaxial monotonic or cyclic loading by P. Dawson et al

[45, 73, 19, 74] and Y. Huang et al. [35] to study strain gradient plasticity. Since

the research of Asaro et al. [6, 8, 7, 5] provide the main framework of kinemat-
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ics and constitutive relations for finite strain crystal plasticity, their theoretical

formulations and simulation results is introduced briefly in next section.

3.2.3 Kinematics and Constitutive Relations Formulated by R. Asaro

et al. [8]

Figure 3.6: Kinematic of elasto-plastic deformation

Figure 3.6 shows the deformation process describe in kinematics formulation.

First, the crystal structure undergos pure plastic deformation, then rotation and

pure elastic stretching.

The total deformation gradient is split as Eq. 3.34 :

F = F e · FR · F p (3.34)
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Which can also be written as:

F = F ∗ · F p (3.35)

Where, F p is plastic slip material undergone through the undeformed single crys-

tal lattice, and F ∗ is deformation gradient caused by rotation and elastic stretch-

ing.

The deformation gradient caused by plastic deformation is specified in Eq.

3.36

F p = I + γs⊗ n (3.36)

Where, γ is the plastic increment within slip system.

Rotation of slip direction in current coordinate system caused by F ∗ is spec-

ified by Eq. 3.37:

s
′(α) = F ∗ · s(α) (3.37)

Normal direction of slip plane is also rotated by F ∗ as specified as by Eq. 3.38

m
′(α) = m(α) · F ∗−1 (3.38)

The velocity gradient in the current coordinate system is:

L = 5v = Ḟ ∗ · F ∗−1 + F ∗ · Ḟ p · F p−1 · F ∗−1 (3.39)

Where L can also be expressed as:

L = T + S (3.40)

Where, T is the symmetric rate of stretching tensor and S is the rate of spin

tensor.

T and S are also can be split into plastic slip (T p,Sp) and lattice deformation

(T ∗,S∗),
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T = T ∗ + T p S = S∗ + Sp (3.41)

In the current coordinate system,

T p + Sp =
n

∑

α=1

γαs
′(α) ⊗m

′(α) (3.42)

Then, the plastic parts of the rate of spin Rα and the rate of stretching Pα

are defined as:

Rα = SKEW(s
′(α) ⊗m

′(α)) (3.43)

Pα = SYM(s
′(α) ⊗m

′(α)) (3.44)

The elastic constitutive relation is specified by:

τ ∗ = C : T −
m

∑

α=1

(C : Pα + βα)γα (3.45)

Where, τ ∗ is the rate of change of Kirchhoff stress. C is fourth order elastic

moduli tensor, and βα is defined as:

βα = Rα · τ − τ ·Rα (3.46)

Experimental observations of shear band formation and simulation results

were published as shown in figure 3.7 in Asaro’s [8] and Peirce’s et al [52] pa-

pers. This is first numerical simulation results of formation of shear bands, which

agrees with experimental observation very well. There is an initial geometrical

imperfection of slight thickness inhomogeneity existing in the model to initiate

shear bands and pattern of shear band depends on the configuration of initial

imperfections [52].
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(a)

(b)

Figure 3.7: (a)Experimental observation of shear band reported formed while ma-

terial (aluminum 2.8%wt copper alloy ) was strain hardening [52]. (b) Shear band

formation simulated based Asaros crystal plasticity model with 2 slip systems.

[8, 52]

3.3 Modelling the Relationship between Theory of Dislo-

cation and Crystal Plasticity

Asaro’s Crystal plasticity provide a very powerful tool to study plastic behavior

of material. However, very little physics-based information was directly involved

in this model although the model built was closely related experimental measure-

ments [8], and this model is still a pure phenomenological material’s constitutive

behavior model. Now, As we know, understanding dislocations interaction is

essential to studying the physics based mechanism of strain hardening in plas-
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ticity. Introduction of dislocation as line defect in crystal was hypothesized by

Taylor [70], Orowan [51], and Polanyi [53] even before real dislocations were ob-

served in experiment, to explain the micromechanics of slip with modelling the

motion of dislocations embedded in a simple cubic crystal. In the last seventy

years, experimental and theoretical development have established the important

role of dislocation mechanisms in modelling the strength of materials. However,

the lack of powerful computational capability at early years still makes simulate

crystal plasticity based on discrete dislocation almost impossible. With the de-

velopment of bigger and faster computers, it’s possible now to bridge the gap

between crystal plasticity and dislocation dynamics. To understand modelling

strain hardening with the theory of dislocations, a simple model developed by

Taylor for explaining the yield strength based on simplified dislocation motion

behavior and a comprehensive model based on the modern theory of dislocation

dynamics simulation are discussed here.

3.3.1 Yield Strength Model of G. Taylor [70]

Taylor assumed that dislocations are generated at one surface of the crystal and

move a distance of x along the slip plane; the maximum value x may have is L,

which is either the dimension of the crystal or the distance to a boundary. The

average distance dislocations move is then L/2. The average spacing between

active slip plane is d/2, the spacing between dislocations is a, and the average

dislocation density ρ is 2/ad; the shear strain accumulated, γ, is 1
2
L2b/L = Lb/ad.

Since the passing stress is proportional to h−1 and h scales with ρ1/2 if the dis-

location distribution is regular, it follows from dimensional considerations alone

that the passing stress is proportional to ρ1/2 or actually to Gbρ1/2, and hence to

G(γb/L)1/2. Finally, if τi represents the shear stress required to move an isolated
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dislocation, then the stress-strain law derived above has the form:

τc = τi + κG(bγ/L)1/2 = τi + ηGbρ1/2 (3.47)

where κ and η are constants of materials’ mechanical properties.

Although distribution of dislocations in Taylor’s model is oversimplified, it

explains an important source of strain hardening, which is the elastic interaction

between dislocations.

3.3.2 Single Crystal Plasticity Model Based on Dislocation Dynamics

by Z. Wang and N. Ghoniem [77]

The earliest model based on explicitly computing moving dislocation were put

forward in the mid-1980s, in which two dimensional crystal containing multi-

ple dislocations whose behavior was modelled by a set of simplified equations

[1, 42]. These simulations provided conceptual framework for simulating strain

hardening by dislocation dynamics. However, they cannot directly explain the

important features as slip geometry, line tension effects, multiplication, dislo-

cation intersection, or cross-slip, all of them are essential for the formation of

dislocation patterns due to limitation of the model built in two dimension. From

early 1990s, the development of new computational model for dislocation dynam-

ics in three dimension make it possible to study correlation between dislocation

behavior and crystal plasticity by directly simulating the interaction of discrete

dislocation motion [39, 34, 62, 76].

In Wang and Ghoniem’s model, direct numerical simulation of dislocation

motion was employed to study the relationship between the microstructure and

macro-scale properties, and improve the understanding of mechanical behavior
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of materials. This model could help in designing new materials which are much

stronger than materials currently being used by industries within much shorter

leadtime by avoiding tedious experimental trial and error process. The DeMecha

dislocation dynamics code was applied to study the work-hardening of single

crystal copper and obtain the strain-stress curve. Results from their simulation

also showed dislocation microstructure of deformed copper.

3.3.2.1 Simulation Procedure in This Model

In this model, a uniaxial tensile stress is applied to simulate the deformation of

bulk material. strain is applied ar a constant strain rate in the direction of [100].

The total strain rate is given by:

˙ε11 = ˙εe
11 + ˙εp

11 (3.48)

Where ˙εe
11 is elastic strain rate and ˙εp

11 is plastic strain rate. This plastic

strain rate was obtained from the motion of dislocation, given by:

ε̇p = −
1

2V

N
∑

i=1

∮ l(i)

0
v(i)(p)[n(i)(p)⊗ b(i) + b(i) ⊗ n(i)(p)]dl (3.49)

Where N is number of total dislocation loops, l(i) is the length of dislocation

i, V is the volume of the simulated material, n is a unit vector defined as v × ξ,

v and ξ are the velocity vector and the tangent vector of the dislocation loop at

point p on dislocation lines, respectively.

Then, elastic strain rate can be defined as:

˙εe
11 =

˙σ11

E
(3.50)

Where E is Young’s modules and σ is stress.
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Strain-strain curve is derived as:

˙σ11 = E( ˙ε11 − ˙εp
11) (3.51)

Results from this simulation give the strain-stress curve of copper as shown

in figure 3.8, and an embryonic microstructure of cells was obtained, as shown in

figure 3.9.

Figure 3.8: (a). Simulated strain-stress curve, (b). Dislocation density vs. strain.

Both of these two figures are adopted from Dr. Z. Wang’s Ph.D. Dissertation

[77].

This model provides a physically-based fundamental approach to explain how

dislocation motion and density affect the mechanical behavior of materials, and

also to show the formation of dislocation microstructure by directly simulating

the motion and interaction between discrete dislocations. However, keeping track

of multiple dislocations and their complex interaction is a daunting task that

limits this method to small scale and make the simulation of polycrystal crystal

plasticity almost impossible with current computational capabilities.
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Figure 3.9: (a). Simulated microstructure at strain of 0.2%, (b). Sliced view of

microstructure. Both of these two figures are adopted from Dr. Z. Wang’s Ph.D.

Dissertation [77].

3.4 Comparison between Numerical Methods for Study-

ing Plasticity

By far, isotropic plasticity, pure crystal plasticity and single crystal plastic be-

havior studied with dislocation dynamics have already been discussed. These

methods work very well within certain length scale or solve specific problems.

To resolve heterogeneous plastic deformation and the distribution of dislocations

within single and polycrystals, we develop here a numerical method coupling crys-

tal plasticity with dislocation density based constitutive equations. A comparison

between the current plasticity models is given below.

• Isotropic plasticity (von Mises):

– Advantages:

34



1. Model works very well in large scale plastic deformation of ductile

materials.

2. Simple formulation, only one yield function needs to be solved at

each iteration

3. Computational task is low

– Disadvantages: Not able to explain any local anisotropic behavior

• Crystal plasticity:

– Advantages:

1. Able to explain anisotropic plastic behavior observed in experi-

ment.

2. The global kinematics and constitutive relations are based on con-

fined plastic slip on each slip system. The method clearly shows

the influence of crystal structure on plastic deformation.

– Disadvantages:

1. Lack of physics explanation underlying the continuum-based model

to define the hardening laws within and among slip systems.

2. The computational task is more intensive, with 12 yield functions

to be solved at each iteration and a complicated numerical ap-

proach is needed to obtain the solution.

• Dislocation dynamics:

– Advantages:

1. Very few assumptions are involved in directly computing the in-

teraction between discrete dislocations.
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2. Provides physics-based explanation for strain hardening and mi-

crostructure evolution.

– Disadvantages: Extremely computational intensive with a huge de-

mands for CPU time. This also is the main obstacle to expand the

method into large scale simulations of Polycrystal plasticity.

• Crystal plasticity coupled with dislocation density-based modelling:

– Advantages:

1. The method is able to simulate large scale dislocation microstruc-

ture evolution within polycrystals with self-hardening.

2. Directly describes the spatial distribution of dislocation density.

3. The method retains all the all advantages of crystal plasticity

– Disadvantages:

1. Does not allow for studies of the interaction between discrete dis-

locations.

2. The computational task is higher than the traditional crystal plas-

ticity because the dislocation density based subroutine is called at

every integration point.

As mentioned above, the biggest advantage of the present model, which cou-

ples crystal plasticity with dislocation density is that it keeps all advantages of

crystal plasticity, and at the same time integrates the concurrent dislocation mi-

crostructure evolution. The details of the present formulation will be discussed

in the next two chapters.
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CHAPTER 4

A New Method to Couple Crystal Plasticity

and Dislocation Microstructure Evolution

4.1 Introduction

We’ll develop a new method of coupling crystal plasticity with dislocation den-

sity based constitutive model to explain heterogeneous plastic deformation, large

lattice rotation within shear bands and the inhomogeneous distribution of dis-

locations when a sample is subjected to stress. In this method, the continuum

mechanical behavior of the material is specified by finite strain crystal plastic-

ity, while the self-hardening and dislocation microstructure evolution within each

slip system is defined by a local dislocation density model consistent with global

deformation. Since the dislocation model treats dislocations as defect density

and interaction among dislocation is considered, this method is computationally

more efficient and the simulation of the evolution of microstructure is feasible.

The interaction between each slip system is modelled on the basis of experimental

measurements. Single crystal mechanical behavior and dislocation microstructure

can be studied directly with this model. The model is also extended to simulate

plastic deformation in polycrystlas, and to compare to experiments.

In this chapter, the algorithm for single crystal plasticity , solution approach

and the method to couple single crystal plasticity will be discussed. Since the
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development of a dislocation density based model is a relatively independent

process and the different formulation and solution approach were used, the details

of the dislocation density based model will be discussed in chapter 5.

4.2 Objectives

These objectives of the present modeling are:

1. Single and Polycrystal plasticity formulation and implementation using fi-

nite element method with developing users material subroutine UMAT in

ABAQUS.

2. Further development of Ghoniem-Matthews-Amodels (GMA) [25] disloca-

tion density based material model to define the strain hardening in each

slip system.

3. Coupling crystal plasticity with dislocation density based material model

within the finite element framework to study heterogeneous plasticity be-

havior and dislocation microstructure evolution during plastic deformation

in materials.

These three objective will be fulfilled within this chapter and next chapter.

4.3 3D Crystal Plasticity Modelling with 2 and 12 Slip

Systems

The material simulated is pure copper and assumed to be elastically isotropic.

The material parameters are [80]:
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• Young’s modulus is : 130 Gpa

• Poisson’s ratio is : 0.32.

Since we are working on material modelling in this chapter rather than single

or polycrystal structure analysis, we are modelling the mechanical behavior and

microstructure evolution at a material point. 3D crystal plasticity with 2 or

12 slip systems means that at an arbitrary material point, all kinematics and

constitutive behavior are specified in 3 dimensions, material stiffness matrix is

a fourth order tensor, and stress and strain are second order tensor. To make

it clearer, figure 4.2 or figure 4.3 show that at a material point there are 2 slip

systems or 12 slip system in the modelling, rather than describe a single crystal

structure.

Convention of crystallographic orientation:

• For crystal plasticity model with 2 slip system: crystallographic orientation

refers to angle θ between the normal m : (110) of slip plane and the hori-

zontal axis as shown in figure 4.1. Lattice rotation refers to the net change

of this angle caused by rotation.

• For crystal plasticity model with 12 slip system, since this structure is an

fcc crystal structure. The initial crystallographic orientation is defined with

three angles, θ1, θ2, θ3 to track its evolution. These three angles are defined

as the rotation angle of [100], [010] and [001], respectively.

4.3.1 Modelling of Single Crystal Plasticity with 2 Slip Systems

2 slip planes and slip directions are defined as in figure 4.2. Since there are two

slip systems defined at a material point, two yields functions are needed for both
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Figure 4.1: The convention of crystallographic orientation θ used in this model

of these two slip systems to be activated at the same increment step.

m
s s

m

σ σ

Figure 4.2: Slip planes and slip directions in single crystal with two slip systems

Table 4.1: Slip directions sα and slip planes mα for the 2 slip system

α sα mα

1 [11̄0] (110)

2 [110] (11̄0)

4.3.2 Modelling Single Crystal Plasticity with 12 Slip Systems

4 slip planes and 3 slip directions on each slip plane are defined as in figure 4.3.

This combination gives 12 slip systems.

These two material models will be applied to study the deformation of single

and Polycrystalline copper. Detailed information of geometrical shape, boundary
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Figure 4.3: Slip planes and slip directions in 3D single crystal

Table 4.2: Slip directions sα and slip planes mα for 12 slip systems

α sα mα α sα mα α sα mα

1 [011̄] (111) 5 [101] (1̄11) 9 [1̄1̄0] (1̄11̄)

2 [1̄01] (111) 6 [1̄1̄0] (1̄11) 10 [011] (111̄)

3 [11̄0] (111) 7 [011] (1̄11̄) 11 [11̄0] (111̄)

4 [011̄] (1̄11) 8 [101̄] (1̄11̄) 12 [101] (111̄)
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conditions will be discussed in each specified case in chapter 6

4.4 Algorithm and Solution Approach for 3D Crystal Plas-

ticity Model

4.4.1 Algorithm

Since kinematics of single crystal plasticity deformation was built conceptually

based on finite strain crystal plasticity [8] as introduced in chapter 3, only the

algorithm of solving crystal plasticity with finite element method and solution

approach to solve for the yield function and obtain the true solution and updates

of state variables are discussed here.

Assume D ∈ R3 be the body of interest and u : D → R3 is a given displace-

ment field. The strain tensor is ε = 1
2
(FTF− I). Total strain is split into plastic

and elastic strain.

ε = εe + εp (4.1)

The elastic energy is:

E(εe) =
1

2
εe : Ce : εe (4.2)

and the stress is given by:

σ =
∂E(εe)

∂εe
= Ce : εe (4.3)

where Ce is a fourth-order tensor of elastic moduli as:

Ce = Ceijklei ⊗ ej ⊗ ek ⊗ el (4.4)

Assumption:

In single crystals, plastic deformation takes place on certain crystal planes and
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along certain directions. When a single crystal is subjected to an external stress,

the projection of the stress tensor along the specified slip direction on the specified

slip plane is called the Schmid stress. When the Schmid stress is higher than the

resistance on that slip system, plastic deformation will take place. If ∆σ is

external stress increment at step, the Schimd stress increment ∆τ on a specified

slip system is defined by Eq. 4.5:

∆τ = ∆σ : Pα (4.5)

where Pα is the symmetric space spanned by the slip direction sα and slip

plane normal mα. Both sα and mα are subjected to the coordinate transform

operations defined by Eq. 3.37 and 3.38 at the beginning of each incremental

step, respectively. Then Pα is updated by the operation defined by:

Pα =
1

2
(sα ⊗mα + mα ⊗ sα) (4.6)

An algorithm is applied to compute single crystal plasticity as follows:

1. Trial strain:

∆εn+1 = ∆εe
n+1 + ∆εp

n+1 (4.7)

2. Macro stress:

∆σn+1 = Ce : ∆εn+1 (4.8)

3. Schmid stress:

∆τα
n+1 = ∆σn+1 : Pα

n (4.9)

4. Yield function:

Φα
n+1 = (τα

n + ∆τα
n+1)− τα

0 − gα
n+1 (4.10)
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5. Flow rule:

∆εp
n+1 =

∑

α∈A

γα τα
n

|τα
n |

Pα
n (4.11)

where A mean the activated slip system.

6. Hardening law:

gα
n+1 = gα

n +
∑

β∈A

hαβ
n γβ (4.12)

Where, hαα
n is self-hardening rate for each slip system caused by interaction

of dislocations within the same slip system. It is derived directly from the

tangent stiffness calculated from the dislocation density based model. hαα
n

is the known value of of tangent at the end of step n.

hαα
n =

∆σα
n

∆εα
n

(4.13)

hαβ
n = hαα

n [q + (1− q)δαβ] α 6= β (4.14)

hαβ
n when α 6= β is latent hardening caused by interaction of dislocation

between different slip system. q = 1.4 is defined based on experimental

results [8].

7. Kuhn-Tucker and consistency condition:

γα ≥ 0 (4.15)

Φα
n+1 ≤ 0 (4.16)

γαΦα
n+1 = 0 (4.17)

Substitute above equations into equation 4.10 and then solve for the yield

function of each slip system:
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Φα
n+1 = Pα

n : Ce : (εe
n +∆εn+1)−gα

n− τα
0 −

∑

β∈A

(Pα
n : Ce : P β

n +hαβ
n )γβ = 0 (4.18)

To solve the yield functions of the total system, we solve the following lin-

earized equations simultaneously.

∑

β∈A

(Pα
n : Ce : P β

n + hαβ
n )γβ = Pα

n : Ce : (εe
n + ∆εn+1)− gα

n − τα
0 (4.19)

The left hand side is a 12 × 12 matrix for 3D crystal plasticity with 12 slip

systems or a 2×2 matrix for the same modelling but with 2 slip systems. Solve for

γβ under the constraints of Khun-Tucker conditions and consistency conditions.

4.4.2 Solution Approach

4.4.2.1 Forward Euler Method for the Plastic Increment

Many algorithms for solving isotropic plasticity as an internal iteration for strain-

driven finite element method were developed, such as the return mapping method

of Wilkins [79], and the cutting plane method of Simo and Ortiz [63]. Both

methods are implicit, and they obtain the elastic strain by iteration. Convergence

of these methods is unconditional. As we know, isotropic plasticity only has

one yield surface which is a sphere with the radius of the yield stress in the

deviatoric stress space. However, the yield surface of the single-crystal plasticity

is multi-surface. It’s extremely hard to adopt these methods to solve this multi-

nonlinear yield functions, as shown by Luenberger [43], Simo et al. [64], Cuitino

and Ortiz [18], Ortiz and Stainier [49] and Miehe [47]. The rate-independent

case is considered here and the algorithm for internal iteration to determine
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the activated slip system developed by Cuitino and Ortiz [18] and Miehe [47]is

conceptually followed.

The method we used here is a forward Euler integration method with very

small incremental steps to solve for plastic increments on each slip system. As-

suming all variables to be known at step n, we solve for the plastic increment on

each slip system at step n + 1.

The initial values are εp = 0, A = 0, gα = τ0 before yield occurs.

The applied ∆εn+1 is total trial strain in step n + 1 and is treated as a pure

elastic strain increment in this step. The trial stress and trial shear stress on

each slip system are computed as defined in Eq. 4.9. We then substitute these

stresses in the yield functions definde by Eq. 4.10. When all yield functions are

less than zero, this step is purely elastic, then we perform the global momentum

balance until it is satisfied. Another increment is then applied.

If any yield function 4.10 is violated, we solve the equation system 4.19 under

the constraints γα > 0, Φn+1 ≤ 0 and γαΦα
n+1 = 0, as described in the next

section.

4.4.2.2 Determination of Activated Slip Systems

If any γα < 0, the system with the minimum load is dropped from the active

working set, and the remaining equations are solved again until all γα > 0.

After obtaining the solution with all γα > 0, α ∈ A, The other condition

Φα ≤ 0, α ∈ A is also checked. If any yield function Φα > 0, α ∈ A, we remove

this function and the maximum loaded system which has not been previously

activated will be put into the yield equations and the system is solved.

Internal iterations are performed until all conditions are satisfied.
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4.4.2.3 Numerical Algorithm for Ill-Conditioned and Singular Local

Jacobian

To find the solution x ∈ Rn of Ax = b, where A ∈ Rn×n and b ∈ Rn are known,

this problem has a solution only if b ∈ R(A), and it is unique if and only if

N(A) = 0, wher N(A) is the determinant of the matrix.

However, due to the typical multiplicity of slip systems in a single crystal with

various crystal orientations and the complicated loading conditions, the matrix

A could be singular. For the linear equation system of multi-yield functions for

rate-independent crystal plasticity under the assumption that b ∈ R(A), there

should be a solution. Under this condition, Ax = b has a set of solution x, but it

is not unique. Here, a powerful singular value decomposition method is employed.

A singular value decomposition (SVD) of an n× n real matrix A is a factor-

ization of the the form [54].

A = U1DUT
2 (4.20)

where

UT
1 U1 = UT

2 U2 = I (4.21)

D = diag(d1, d2, ..., dn) where, d1 ≥ d2 ≥ ... ≥ dn ≥ 0 (4.22)

the columns of U1 are orthonormalized eigenvectors of AAT , and columns of

U2 are the orthonormalized eigenvectors of AT A. The diagonal elements of D

are the non-negative square roots of eigenvalues of AAT and AT A, and they are

named the singular values of A. The singular value decomposition is unique.

By doing singular value decomposition, the rank r of matrix A is the number

of non-zero singular values. If the rank(A) = r, dr+1 = dr+2 = ... = dn = 0.
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If A = U1DUT
2 is the singular value decomposition of A, the pseudoinverse of

A is defined by:

A+ := U2D
+UT

1 (4.23)

where D+ = diag(d+
1 , d+

2 , ..., d+
n ) (4.24)

d+
i =

1

di

for di > 0 (4.25)

= 0 for di = 0 (4.26)

We can see that, if A is square and non-singular, all the singular values are

non-zero. The pseudoinverse is the same as the inverse when A is the non-singular.

Assume that b ∈ R(A) is the given vector, and A in the equations system

Ax = b is singular. As we discussed, the solution to this system is not unique.

however, solution can be obtained by the following method is unique.

x+ = A+b (4.27)

This solution has the important characteristics among all the solutions x

which satisfy Ax = b.

‖x+‖ = (xT x)
1

2 = min (4.28)

This solution is chosen as the solution for the yield functions based on the

principle of minimum dissipation of plastic energy.
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4.4.3 Update of Elastic and Plastic Strain Variables

When all γα are obtained, the plastic strain increment in this step is:

∆εp
n+1 =

∑

α∈A

γα τα
n

|τα
n |

Pα
n (4.29)

The plastic strain, elastic strain, strain hardening and stress are updated as

defined by:

εp
n+1 = εp

n +
∑

α∈A

γα τα
n

|τα
n |

Pα
n (4.30)

εe
n+1 = εtrial

n+1 −
∑

α∈A

γα τα
n

|τα
n |

Pα
n (4.31)

gα
n+1 = gα

n +
∑

β∈A

hαβ
n γβ (4.32)

σn+1 = σn + Ce : (∆εn+1 −∆εp
n+1) (4.33)

4.4.4 Update of the Elasto-plastic Tangent Moduli

The stress is obtained by plugging equation 4.7 into 4.8 to get:

∆σ = Ce : ∆ε−
∑

α∈A

γα(Ce : Pα) (4.34)

The consistency equations give:

∂γα

∂∆ε
= Dαβ−1(P β : Ce) (4.35)

Where, Dαβ = Pα : Ce : P β + hαβ

Based on this result, the stress increment is:

∆σ = Cep : ∆ε (4.36)
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Then, elasto-plastic moduli is:

Cep = Ce −
∑

α∈A

∑

β∈A

Dαβ−1(Ce : Pα)⊗ (P β : Ce) (4.37)

In this problem, the elastic property of the crystal is assumed to be isotropic,

and the elasto-plastic moduli can be also expressed as:

Cep = κ1⊗ 1 + 2µ(I−
1

3
1⊗ 1)− 4µ2

∑

α∈A

∑

β∈A

Dαβ−1Pα ⊗ P β (4.38)

Where, 1 is second order identity tensor, and I is fourth order identity tensor.

After updating all values, global momentum conservation is tested. If it is

satisfied, the next incremental step is carried out. If not, another trial displace-

ment is applied and a new internal iteration is performed until global momentum

equilibrium is reached within a predefined tolerance.

4.5 Method to Couple Crystal Plasticity with Dislocation

Density Based Material Behavior

4.5.1 Introduction

The general idea of coupling crystal plasticity with a dislocation density based

model is to use finite strain crystal plasticity method to define the material’s

continuum mechanical behavior, and use a concurrent dislocation density based

model to define self-hardening effects on each slip system. The finite element

software ABAQUS is employed as a tool to build the geometric shape of grains

(single crystal or polycrystal) and to perform the FEM solution. ABAQUS pro-

vides a special interface, called user subroutine UMAT, which allows the user to

define the mechanical behavior of a material and to interface with any externally
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defined programs.

The user subroutine UMAT has the following main functions which can be

coded with Fortran or C++ [36]

1. It can be used to define the mechanical constitutive behavior of a material;

2. It can be used with any procedure that includes mechanical behavior;

3. It can use solution-dependent state variables;

4. It must update the stresses and solution-dependent state variables to their

values at the end of the increment for which it is called;

5. It must provide the material Jacobian matrix, ∂σ/∂ε, for the mechanical

constitutive model;

4.5.2 Coupling Method

The flow charts shown in figure 4.4 and figure 4.5 show that how UMAT interface

with the finite element code and how the dislocation-based material model is

coupled with crystal plasticity .

Figure 4.4 shows the general procedure for the finite element method. At

step n an displacement increment is applied and first the external iteration is

started. ABAQUS uses the stiffness tangent of the user defined material model at

every integration point to calculate the element stiffness Kel and global stiffness

matrix K. At the beginning of each global increment step, UMAT is called

for computing the material jacobian matrix D to obtain Kel and assemble K.

Elastic, plastic strain, stress and material jacobian are determined by solving for

the yield functions with internal iterations. When the yield functions are solved

and all aforementioned four unknown states are determined by UMAT, global
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Figure 4.4: Flow chart of finite element method to solve crystal plasticity mod-

elled with UMAT
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momentum balance is tested based on this solution. If the global momentum

equilibrium is reached, a next increment step will be applied. If the global force

equilibrium is not reached within the given tolerance, another trial iteration will

be given and UMAT will be called again to repeat the process as mentioned

before until the global momentum equilibrium is reached.

Figure 4.5 shows a flow-chart for coupling the dislocation-based constitutive

model with crystal plasticity. When it is determined that at least one slip system

is activated, the dislocation-based model is called. The resultant Schmid stress

on that slip system will be used as the applied stress in Eq. 5.8 to calculate the

effective stress on that slip system. This effective stress is plugged into Eq. 5.13

in the same dislocation model to calculate dislocation glide velocity. Then the

dislocation glide velocity derived from Eq. 5.13 is substituted into ODE 5.49 and

5.51, and six coupled ordinary differential equations are solved simultaneously

with the forward Euler method. The stress-strain relation computed from this

model is used in UMAT to define self-hardening and to compute the plastic

strain increment within each slip system by solving for the yield functions. Then

elastic, plastic strain and stress in step n + 1 are thus computed. At the same

time, microstructure evolution is computed from these six ODEs is fed back to

UMAT to record the information of microstructure at this integration point. A

global momentum balance is then tested. If this iteration converges, the program

leaves UMAT and applies another increment and do step n + 2. If not, another

trial strain is applied and the Schmid stress is calculated to determine if a slip

system is activated. If at least one slip system is activated, the dislocation-based

model is called and the aforementioned procedure is performed until convergence

is reached.
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Figure 4.5: Flow chart of UMAT coupling dislocation-based model with crystal

plasticity model
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CHAPTER 5

Dislocation Density Based Modelling of

Self-Hardening

In this chapter, a dislocation density based materials model developed by Ghoniem

et al. [25] will be further extended to define strain hardening within slip system

of single crystal. The strain hardening effect computed from this model will be

employed to specify the self-hardening effects directly and Latent hardening are

determined from self-hardening via a constant coefficient established experimen-

tally. These two hardening effects define the diagonal and off-diagonal terms

in the hardening matrix of crystal plasticity model, respectively. The disloca-

tion density based model makes it possible to accurately capture the physical

behaviors of strain hardening at the microscale. When it is coupled with crystal

plasticity, macroscale heterogeneous plasticity and microscale dislocation evolu-

tion can be simulated at the same time within the main frameworks of finite

element method.

The model by Prinz et al. [55] was formulated based on defining the rela-

tionship between the resistance τ and plastic slip. The plastic strain is solved

based on the solution of the resistance. The model by Lagneborg et al. [40], is

based on formulating the dislocation distribution frequency function Φ(l). The

evolutionary equations of dislocation density is computed by integration of the

frequency function. The research work by Nabarro [50] on the diffusion creep and
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the work by Gittus[29] on the dislocation creep have all contributed to progress

on the constitutive models of plastic deformation..

5.1 An extension of Ghoniem-Matthews-Amodeo’s (GMA)

Model

Ghoniem et al [25] summarized a number of models (Takeuchi et al[66], Langdon[41],

Challenger et al[15], Michel et al[46], and Cuddy[17]) on the investigations of sub-

grain and developed this model. In this model, six ordinary partial differential

equations are built to study evolution of mobile, static, boundary dislocation

and dislocation subgrain, as shown in figure5.1, and strain stress behavior of the

material is computed at the same time.

5.1.1 Model Assumptions

Here, assumptions made by Ghoniem’s model are listed before discussing the

details of the modelling.

• Dislocation pileups and debris caused by cold works are not observed.

• Dislocations form a polygonal network which is evolved at high temperature

and low stress. This microstructure is called subgrain.

• The Radius of the subgrains is inversely proportional to the applied stress.

• The dislocation density within the subgrains are lower than boundaries,

and increases proportionally to the square of the applied stress.

• In materials with lower stacking fault energy, subgrains may be formed only

at higher temperatures.
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Figure 5.1: An experimental observation done by Dr. Singh et al [65]. Dislocation

subgrain structure can be observed and boundary dislocations are very dense

within subgrain boundary. Mobile and static dislocations are inside subgrain as

pointed by arrows. However, whether the pointed dislocation is mobile or static

cannot be distinguished from this photo.

• The misorientation within subgrain boundaries is subjected to a long tran-

sient which saturated only after tens of percent strain, but this value is not

related to the applied stress and temperature.

Several dislocation processes proposed by Gittus[26] and Sandström[59, 58]

are also be summarized here.

• Multiplications of mobile dislocations within the subgrains.

• Annihilation of mobile dislocations caused by the interactions among them

within the subgrains.
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• Annihilation of dislocations at the subgrain boundaries.

• Absorption of dislocations by the subgrain boundaries.

• Emissions of dislocations from the subgrain boundaries.

• Nucleation of new subgrains from dislocations within cells.

• Growth of subgrains by coalescence to reduce subgrain boundary surface

energy.

5.1.2 Dislocation Multiplication and Immobilization

Orowan equation is adopted to define the relationship between strain rate and

dislocation density in Ghoniem’s model [25].

dεp/dt = bρmvg (5.1)

εp is the creep or plastic strain. ρm is the mobile dislocation density. vg is the

glide velocity, and b is the Burger’s vector. The glide process is assumed to be

easy, and climb of dislocation has no contribution to strain rate. To model the

self-hardening effect within slip system, only one slip system is considered.

To formulate a rate equation for mobile dislocation, the rate of dislocation

production and annihilation must be defined. The subgrains provides a source

and also acts as a barriers for mobile dislocations. The rate of the mobile dis-

location is generated within the subgrains is specified by the frequency of the

dislocation produciton multiplied by the number of dislocation produced. It is

defined in by Eq. 5.2.

˙ρm = ρ3/2
m vg (5.2)
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The frequency of production is ρ1/2
m vg, where ρ1/2

m is the reciprocal of the mean

free path of the mobile dislocations. The density of source in subgrains can be

defined as 1
2
h2Rsb, where h is the dislocation spacing within the subgrains, and Rsb

is the radius of subgrains. The dislocation spacing within the subgrain boundary

h, is defined by Eq. 5.3, where ρs and ρb are density of static and boundary

dislocations.

h = 1/(ρs + ρb)Rsb (5.3)

two rate equations for mobile and static dislocation populations are defined

by Eq. 5.4 and 5.5.

˙ρm = βρsRsbvg/h
2 − ρmvg/2Rsb (5.4)

ρ̇s = ρmvg/2Rsb (5.5)

where β is a density factor.

5.1.3 Internal Stress

In the GMA model[25], the internal stress is caused by any opposition to dislo-

cation motions, and this opposition can be caused by three sources. The first

possible source is dislocations or precipitates that oppose dislocation motions.

The internal stress that mobile dislocations must overcome to move is µb/2πλ,

where λ is the effective obstacle spacing, and µ is the shear modulus. under the

situation that both precipitate and dislocation obstacles are present, the effective

spacing λ between obstacle is defined as Eq. 5.6.

λ = 1/(1/λd + 1/λp) (5.6)
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Where, λd is the inter-dislocation spacing and defined by λd = 1/ρ1/2
m . λp

is the inter-precipitates spacing defined by λp = 1/(Nprp)
1/2, where Np is the

volume concentration of precipitates, and rp is the mean radius.

The second source of opposition are the dislocations that have not been neu-

tralized their long range stress fields since these dislocations have not moved into

their lowest energy configuration. The mobile dislocations could be accelerated

through this field or dragged by it depending on the sign of these un-neutralized

stress fields. The sub-boundary dislocations themselves do not contribute to

the internal stress out of a distance greater than the average dislocation distance

within the subgrains[24]. The main effect from static dislocation to internal stress

is defined as ξµbρ1/2
s . The long range internal stress σi is defined by Eq. 5.7.

σi = µb/2πλ + ζµbρ1/2
s (5.7)

The third source of contribution to internal stress is caused by the friction

resistance to glide from over-sized solutes. For the well-annealed materials with-

out hardening precipitates and heat treatment, this stress can be defined as the

initial flow stress, σ0. The total effective stress is defined by Eq. 5.8.

σe = σa − σi − σ0 (5.8)

where σa is the applied stress. When coupling this dislocation density based

model with crystal plasticity model, the applied stress in Eq. 5.8 is defined by

Schmid stress in this slip system. Long range stress and initial flow stress are

material internal properties, defined in this model. Later on, the effective stress

defined by Eq. 5.8 will be plugged in to Eq. 5.13 to calculate dislocation glide

velocity.
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5.1.4 Dislocation Velocity

In the GMA model[25], the dislocation velocity does not affect the steady state

creep strain rate significantly. However, the dependency of velocity on stress

affects relationship between stress and dislocation density and strain rate. As-

suming that dislocations do not form sinks for the solute, under low stresses, the

gliding velocity of dislocation is defined as in Eq. 5.9[67, 16]:

vg = DakTbσe/[c0(β
∗)ln(R/r)] (5.9)

where σe is the effective stress, c0 is the uniform volume concentration of the

solute, Da is the solute diffusion coefficient, R is the outer cutoff radius defined

as R = ρ−1/2
m , and r is the inner cutoff radius defined as r = β∗/kT . The value

of β∗ is defined by Eq. 5.10 [33].

β∗ = (µb/3π)[(1 + ν)/(1− ν)](vs − va) (5.10)

where ν is the Poisson’s ration, vs is the solute atomic volume, and va is the

volume of matrix atoms .

When solute atoms are trapped at the core of the dislocations, the velocity is

defined as Eq. 5.11 [33]:

vg ≈ 2bvdexp(−2Wa/kT )sinh(σeb
2la/kT ) (5.11)

where vd is the dislocation vibrational frequency, Wa is the activation free

energy for core diffusion of the solute, and la is the spacing of the solute atoms

in the core.
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The dislocation glide velocity can also be defined by another equation as Eq.

5.12

vg = a1exp(−Wg/kT )σeΩ/kT (5.12)

where a1 and Wg are parameters need to be fitted, and Ω is the atomic volume.

If the effect of cutting of the obstacles like coherent or semi-coherent precipi-

tates is considered, glide velocity is defined as Eq. 5.13

vg = vdλsinh(σeb
2λ/2kT )exp(−Ug/kT ) (5.13)

Ug is the activation energy for the process, which is approximately twice the

jog formation energy for the dislocation intersection. The effective stress σe is

defined by Eq. 5.8.

5.1.5 Climb and Recovery

Climb recovery is a process that, for both mobile and static dislocation, climbing

together of dislocation dipole over time. During climbing of dislocation through

the subgrain wall, the annihilation is not considered. The effective stress exerted

by dislocation dipoles on each other can be defined as Eq. 5.14, where s is the

separation distance between the dipoles.

σc = µb/2π(1− ν)s (5.14)

The vacancy concentration close to the dislocations cc
vd will be affected by

the energy field generated by dislocation. If the thermal equilibrium vacancy

concentration is cc
v, then cc

vd can be defined as Eq. 5.15.
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cc
vd = ccexp(±

σcΩ

kT
) ' cc(1±

σcΩ

kT
) (5.15)

To make it easier to consider the inclusion of irradiation effect. The net flow

of vacancies into dislocations is defined as Eq. 5.16

dqd

dt
= k2

idDici − k2
vdDvcv + k2

vdDvcvd (5.16)

k2
id, Di, and ci are the dislocation sink strength for interstitial, interstitial

diffusion coefficient, and the interstitial bulk concentration. k2
vd, Dv, and cv are

the corresponding terms for vacancies. Under irradiation, the interstitial and

vacancy concentration are defined as Eq. 5.17 and 5.18.

∂ci

∂t
= K + k2

i Dici− αcicv (5.17)

∂cv

∂t
= K + k2

vDvcv − αcicv (5.18)

where K is the rate of production of Frenkel pairs, k2
i and k2

v are the total effect

of the sink strength from all the potential sinks for interstitial and vacancies, Kve

is the sum of the vacancy emission rate for all the sinks, α is the rate constant

specifying the recombination of interstitial and vacancies. According to Rauh

and Bulllogh[56], the sink strength is defined as Eq. 5.19

k2
αN = −

πρN

ln[(1/2)eγ(kαLα)]
' −

2πρN

ln(kαLα)
(5.19)

where the subscript α refers to interstitial or vacancy, the subscript N refers

to network dislocations, and γ is Euler’s constant, ∼ 0.5772. Parameter Lα is a
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length that governs the range of interactions between dislocations and defects,

and is defined in Eq. 5.20.

Lα = (1 + ν)µb|4Vα|/3π(1− ν)kT (5.20)

∆Vα is the relaxation volume of the defect, and its typical value is −0.5Ω

for vacancy and 1.2Ω for interstitial. The difference of Lα between vacancies

and interstitial has been considered as the cause for irradiation induced swelling.

If the sink for vacancies is only from dislocation network, the sink strength for

mobile dislocation is defined as Eq. 5.21

k2
αN = −2πρN/ln(ρ

1/2
N Lα) (5.21)

The transfer of defects into jogs on the dislocation is governed by Eq. 5.22

ηα = cjb(aαcvαc)exp(−4Wα/kT ) (5.22)

where cj is the jog concentration, aαc and aα are the geometric factors of

jumps in core and lattice, vαc and vc are the attempt frequency for jumps in

core and lattice, and ∆Wα is the difference in activation energy for absorption to

dislocation and lattice migration. In this model, formulation have proposed by

Argon and Moffatt[4] is used to define transfer parameter as in Eq. 5.23

ηα = 103fαcjb(Γ/µb)2 (5.23)

where Γ is the stacking fault energy.

Taking transfer rate into account, Eq. 5.19 becomes Eq. 5.24
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k2
αd = 2πηαρN/[1− ηαln(ρ

1/2
N Lα)] (5.24)

Adopting treatment Hirth and Lothe [33] on the sink strength for dipoles, the

effective sink strength for each dislocation in the dipole is defined as Eq. 5.25:

k2
αd = 2πηαρN/[1− ηαln(k2

αLαs)] (5.25)

where s is the dipole separation distance.

Assuming no damage caused by radiation, flow rate of vacancy to dislocation

is defined as Eq. 5.26

dqd

dt
= k2

vdDsσcΩ/kT (5.26)

where the lattice self-diffusion coefficient Ds = Dvc
e
v.

The climb velocity is defined as Eq. 5.27

vc = (dqd/dt)/bρd (5.27)

Based on Eqs. 5.14, 5.25, 5.26, and 5.27, the separation rate of dipole can be

defined is Eq. 5.28

ds/dt = −2ηDsµΩ/(1− ν)skT [1− ηln(k2
αLαs)] (5.28)

Eq. 5.28 can be solved by integrated from the initial dipole separation s0 as

defined in Eq. 5.29

τ = −
(1− ν)kT

4DsµΩ
s2
0[ηvln(k2

vLvs)−
ηv

2
− 1] '

s0

4vc

(5.29)
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The thermal recovery rate of mobile dislocation is defined as in Eq. 5.30,

by assuming all dislocations are involved in the recovery process, and the initial

dipole separation is s0 = ρ−1/2
m .

˙ρm = −
2ρm

τ
= −8ρ3/2

m vcm (5.30)

The thermal recovery rate of static dislocation is defined as Eq. 5.31 , by

assuming that the initial dipole separation is s0 = h and k2
v = 1/h2.

ρ̇s = −
2ρs

τ
= −8ρs

vcs

h
(5.31)

A possibility of diffusion through the lattice replaced by dislocation core dif-

fusion is also considered in this model. The flux of vacancies along the dislocation

is defined in Eq. 5.32.

jp = 2ηvDpσeΩ/(b + ηvLp)kT (5.32)

where ηv is the transfer coefficient of vacancies from dislocation to jogs. Dp is

the coefficient for core diffusion, and Lp is the length for the diffusion along the

core. If jog spacing is much less than the path length for diffusion, Eq. 5.32 is

simplified to Eq.5.33

jp = 2DpσeΩ/LpkT (5.33)

The climb velocity is finally defined as Eq.5.34.

vc = 2πbDpσcΩ/L2
pkT (5.34)
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5.1.6 Dynamic Recovery

The dynamic recovery is also considered in this model. Without dynamic recov-

ery, material will go stronger and stronger caused by strain hardening without the

bound. Dynamic recovery explains the saturation of strain hardening [75] caused

by annihilation of mobile dislocations with opposite signs. When this annihila-

tion reach certain rate, the total density of mobile dislocation will stay almost

constant. This mechanism was first recognized by Johnson and Gilman[37], and

Webster[78]. It is defined as Eq. 5.35 to explain the saturation of strain harden-

ing.

˙ρm = −δ( ˙ρm + ρs)ε̇/b = −δρm(ρm + ρs)vg (5.35)

where δ is the critical distance between dislocations. Annihilation of disloca-

tion with opposite sign will occurs spontaneously when their distance is less than

this value [12][22].

5.1.7 Stability of Subgrains

Three processes control the size and nucleation of subgrain [25]. The subgrain

size can coarsen due to reduction of the effective subgrain boundary energy; new

subgrains can nucleate within the subgrains due to population of dislocations;

new subgrains can nucleate within the existing dislocations. As the generation

and growth of the general second new phase, growth of subgrains can be treated

as the product of a driving force and mobility.

The grain boundary energy per unit area, γsb for low-angle subgrain boundary

can be defined as Eq. 5.36:

67



γsb = −
µb2

4π(1− ν)
ρbRsbln(bRsbρb) '

µb2

3
ρbRsb (5.36)

The total energy of one subgrain E, is defined as 4πR2
sbγsb. The total driving

force acting on a boundary for a collapsing subgrain can be defined as 5.37

dE

dRsb

=
∂E

∂Rsb

+
∂E

∂ρb

dρb

dRsb

(5.37)

The pressure as a driving force for subgrain to grow is defined as Eq. 5.38.

Psb = (1/4πR2
sb)(dE/dRsb) = (4/3)µb2ρb (5.38)

The movement is assumed to be the combination of dislocations glide and

climb within the subgrains. The core mobility can be roughly defined as Eq 5.39.

M c
sb = 2πbDpΩ/h2kT (5.39)

For lattice diffusion, the mobility is defined as Eq. 5.40:

ML
sb = 2πηvDvΩ/h2kT (5.40)

If precipitates are considered in the model, for dislocation to move through

precipitates, the pressure of growth must satisfy Eq. 5.41[9, 59].

Psb ≥ 2πr2
pNpγsb (5.41)

If 5.41 is satisfied, then the subgrain growth rate can be approximately defined

as Eq. 5.42
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∂Rsb/∂t = Msb(Psb − 2πr2
pNpγsb) (5.42)

Mobility of precipitate motion by self-diffusion in the matrix is defined as Eq.

5.43

Msb = DsΩ/4πr4
pNpkT (5.43)

The driving force for nucleation can be assumed as the form µb(ρ1/2−Kc/2Rsb),

where ρ is the total density of the mobile and static dislocations. Kc is a constant

with a value around 10 [27, 28] derived from Holt analysis. The time to nucleate

the new subgrain configuration can be defined as Eq. 5.44

τ = (kT/µηvKcρ
1/2Ds)[ρ

1/2 − (Kc/2Rsb)]Ω (5.44)

To reach a new configuration, dislocations have to move a distance of about

Kcρ
1/2 . The change of cell radius is R− (Kc/2ρ

1/2). The rate equation 5.45 for

subgrain can be obtained by combining all these expression .

∂Rsb/∂t = −µηvKcRsb[(ρm + ρs)
1/2 − (Kc/2Rsb)]

2ΩDs/kT (5.45)

Eq. 5.45 can be used only when (ρm + ρs)
1/2 > Kc/2Rsb is satisfied.

5.1.8 Constitutive Behavior

As general plasticity method, total applied strain can be split into elastic and

plastic portion as defined in Eq. 5.46

εtot = εe + εp (5.46)
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According to Hooke’s Law, stress and strain relation can be defined as Eq. 5.47

σ = Eεe (5.47)

where E is the young’s modulus. Plug Eq. 5.46 into Eq. 5.47, and take derivative

to time to define Eq. 5.48. This equation is later used as one of six ODEs, Eq.

5.54, to extract the strain stress relation of material.

σ̇ = E(ε̇tot − ε̇p) (5.48)

5.1.9 Summary of Model Equations and Solution Approach

Six ordinary differential equations are setup as following.

Orowan Equation:

dεp/dt = bρmvg (5.49)

Mobile Dislocation Density:

∂ρm

∂t
= vg[ρ

3/2
m +

βRsb

h2
−

ρm

2Rsb

− 8ρ3/2
m (

vcm

vg

)− δρm(ρm + ρs)] (5.50)

Static Dislocation Density:

∂ρs

∂t
= vg[(

ρm

2Rsb

)− 8
ρs

h
(
vcs

vg

)− δρmρs] (5.51)

Boundary Dislocation Density:

dρb

dt
= 8(1− 2ζ)ρs

vc

h
− (

ρb

Rsb

)Msb(ps − 2πr2
pNpγsb) (5.52)

Subgrain Radius:

dRsb

dt
= Msb(ps − 2πr2

pNpγsb)− µηvKcRsb[(ρm + ρs)1/2 −
Kc

2Rsb

]
ΩDs

kT
(5.53)
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Table 5.1: Model output

Parameter Unit

Plastic Strain, εp cm/cm

Mobile Dislocation Density, ρm 1/cm2

Static Dislocation Density, ρs 1/cm2

Boundary Dislocation Density, ρb 1/cm2

Subgrain Radius, Rsb cm

A strain stress relation was added to derive the self-hardening effect caused

within this slip system. We use here a constant strain rate condition.

dσ

dt
= E(

dεtot

dt
− bρmvg) (5.54)

These ODEs are solved with the forward Euler method with a very small

step. The maximum applied step in this model was decided by running many

cases with different size of step until it converges. The whole model is coded as

a subroutine embedded in ABAQUS user’s subroutine Umat.

5.2 Parameter Calibration for Self-Hardening in Copper

To fit this model to define self-hardening effects in copper with crystal plasticity

model, some material’s parameters need to be calibrated.

Microstructure Evolution was computed at each integration point and recorded.

The units of microstructure are listed in table 5.1.
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5.2.1 Calibration of Model Parameters

Self-hardening behavior of each slip system has been calibrated to fit the me-

chanical properties of copper. Table 5.2 shows the influence of parameters in

the dislocation-based model on the mechanical behavior, while and 5.3 shows the

calibrated parameters for copper at 25 C.

Table 5.2: The calibrated parameters and the influence on mechanical behavior

of materials

Parameter Unit Affected Property

Initial Mobile Dislocation Density, ρm(0) 1/cm2 Yield Strength

Initial Static Dislocation Density, ρs(0) 1/cm2 Yield Strength

Initial Boundary Dislocation Density, ρb(0) 1/cm2 Yield Strength

Jog Concentration, Xjog - Yield Strength

Activation Volume, Q Ω Yield Strength

Critical Dislocation Spacing, δ cm Elasto-plastic tangent

Precipitate Radius, rp Å Yield Strength

Precipitate Concentration, Np cm3 Yield Strength

Dislocation Vibration Frequency, νd sec−1 Yield Strength
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Table 5.3: Values of calibrated parameters

Parameter Units Copper

Initial Mobile Dislocation Density, ρm(0) 1/cm2 1E10

Initial Static Dislocation Density, ρs(0) 1/cm2 1E9

Initial Boundary Dislocation Density, ρb(0) 1/cm2 1E9

Critical Dislocation Spacing, δ cm 4E-6

Precipitate radius, rp Å 40.5 (at 25 C)

Dislocation Vibration Frequency, νd sec−1 1E12

Table 5.4: Constants of copper in the model

Parameter Units Value of Copper

Glide energy, Eglide eV 1.87

Self energy, Eself eV 2.4

Diffusion coefficient, D0 cm2/s 0.2

Burger’s vector, b cm 2.58E-8

Atomic volume, Ω cm3 1.19E-23

Precipitate concentration, Np cm3 1.63E19 (at 25 C)

Jog fraction, Xjog - 0.0455

Activation volume, Q Ω 21.5 (at 25 C)
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CHAPTER 6

Results and Comparison with Experiments

We present here the results of computer simulations for plastic deformation of

pure copper. We first use the isotropic plasticity framework to study the distri-

bution of plastic strain in a standard polycrystalline copper tensile sample. This

will serve as reference for subsequent simulations of single and polycrystalline

copper, and to show the fundamental differences in the spatial distribution of

plastic strain when we compare isotropic plasticity to crystal plasticity results.

The mechanical deformation of copper polycrystals is finally presented to examine

grain size effects on the deformation characteristics..

6.1 Isotropic Plasticity

This model is built by coupling isotropic plasticity theory discussed in chapter 3

and dislocation density based model discussed in chapter 5. The hardening law

in isotropic plasticity is defined by the dislocation density based model.

Pure copper was used in this simulation. Young’s modulus is : 130 Gpa,

poisson’s ratio is : 0.32 [13]. A dog-bone like sample was constructed with the

pinned boundary conditions at the left-hand end and applied displacement at the

right-hand end. The applied strain was increased up to 15%.

The results of our computer simulations are shown in Figure 6.1, where the

distributions of the equivalent von Mises stress, plastic strain, mobile dislocation

74



(a)

(b)

(c)

(d)

Figure 6.1: Simulation results based isotropic elasticity and plasticity coupled

with dislocation density based model. (a) von Mises stress. (b). Plastic strain.

(c) Distribution of mobile dislocation. (d). Distribution of static dislocation.
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density and static dislocation density are shown. It is clear that the model repro-

duces the well-known necking instability observed in ductile metals. Nevertheless,

the isotropic plasticity model does not allow us to study the internal heteroge-

neous distribution of plastic strain, as we will see in the following simulations

with our crystal plasticity model.

These results show the great necessity to develop a method with an inherent

capability to resolve on different crystallographic orientations, and to associate

such anisotropic distribution with the underlying microstructure.

6.2 Simulation Results of 3D Crystal Plasticity Model

6.2.1 Simulation Results of a Single Crystal

A 3D single crystal model is constructed as shown in figure 6.2. The dimensions

of the sample are 100µm× 11µm× 2.5µm. An initial imperfection at the center

of the sample as a through-thickness square hole with size = 1µm is used to

initiate shear bands by concentrating the stress in its vicinity. The shear band

patterns depend on the configuration of the initial imperfection [52]. The initial

crystallographic orientation of the two slip planes is at θ = 45◦. Quadratic brick

elements with reduced integration are employed in this simulation.

Two displacement boundary conditions are applied to two ends.

• At the left end, we use: u1 = 0, u2 = 0, u3 = 0

• At the right end, we use: u1 = 8µm, u2 = 0, u3 = 0

As shown in figure 6.3, two stripes consisting of large deformed elements cross

and form double shear bands as observed in experiments [52]. Elements around
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[100]

[010]

[001]

Figure 6.2: 3D single crystal plasticity model with an initial imperfection at the

center of the sample

shear bands were not deformed, which means that once the shear bands are

initiated, they are highly confined to the favorable orientation and show highly

heterogeneous deformation behavior. Another observation, which can be seen

clearly is the formation of necking in the middle of the sample.

The distribution of plastic strain ε11 and ε22 are shown in figure 6.4. Ac-

cording to the applied displacement boundary conditions, the total strain is 8%.

Since the elastic strain is very small, the applied strain is almost all plastic.

However, the area outside the shear bands has plastic strain of less than 4%,

indicating that the majority of the plastic strain concentrates within two shear

bands. The lowest plastic strain ε11 is around 15%, and the highest plastic strain

appearing around the upper side of the imperfection reaches 75%. This hetero-

geneous plastic deformation agrees with experimental observation by Elam [21].

Many simulations with different initial imperfection configurations were also per-
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(a)

(b)

Figure 6.3: (a). Initial shape. (b). Deformed shape.

formed, such as with different positions of the initial imperfection in the sample.

It is shown that the shear band pattern depends on the configurations of initial

defects. The magnitude of plastic strain ε22 shows the same distribution since

the sum of these two plastic strains is zero as a result of volume conservation of

plastic deformation.

Figure 6.5 (a) shows the initial crystallographic orientation is 45◦ according

to the defined convention. (b) clearly shows that the net crystallographic misori-

entation within the shear bands is as high as 19.36◦ and that the lattice rotations

within two shear band have opposite directions. However, the lattice within the

two shear bands rotate to facilitate plastic slip and hence increase the Schmid
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(a)

(b)

Figure 6.4: (a). Spatial distribution of plastic strain ε11. (b). Spatial distribution

of plastic strain ε22

tensor. This explains the so called geometric softening. Rotation of the lattice

results in a higher Schmid stress, which, in turn, produces larger plastic slip.

Thus, and instability is initiated. Figure 6.5 (c) shows that final crystallographic

orientation within one shear band reaches 64.36◦, and the counterpart in the

conjugate shear band drops to 25.64◦.

The density distribution of the mobile and forest (static) dislocations in the

single crystal are shown in Figures 6.6 (a) and (b), respectively. Only the left half

of the sample is shown because of symmetry. It is interesting to note that while

79



(a)

(b)

(c)

Figure 6.5: (a). Initial crystallographic orientation is 45 degree. (b). Lattice

rotation. (c). Final crystallographic orientation
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the mobile dislocation density is the highest near the shear bands, this is not the

case for the forest dislocations, which tend to be depleted as a result of the high

generation rate of the mobile dislocation density. The dislocation densities are

shown in units of cm−2.

(a)

(b)

Figure 6.6: Density distribution of mobile dislocations (a), and forest (static)

dislocations (b). Densities are shown in cm−2.

Figure 6.7 shows the strain stress curves of single crystal copper with different

initial crystallographic orientations. Initially, the crystal is rotated to a specified

orientation, while the global applied stress is uniaxial (i.e. along the 1-direction).

The changes in the yield behavior is a result of variations of the Schmid stress, as

the global stress is projected on the slip plane. Further variations in the harden-

ing behavior is a result of the large deformation associated with crystal rotation

as it continues deforming. The highest stress achieved is obviously at θ = 45◦

because this would correspond to the highest Schmid stress. The plastic insta-

bility commences at a strain of about 4.2%, which corresponds to the beginning
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of necking and large lattice rotation.

θ = 45 degree

θ = 85 degree

θ = 60 degree

Figure 6.7: Stress-strain behavior of single crystal copper with different initial

crystallographic orientations of single crystal

6.2.2 Plastic Deformation of a Bi-crystal

Simulation conditions:

• Initial geometry is a parallelepiped : 80µm× 35µm× 1.0µm

• Initial crystallographic orientations:

– Left crystal: θ = 60◦

– Right crystal: θ = 25◦

• Boundary conditions:
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– Left side: u1 = 0, u2 = 0, u3 = 0

– Right side: u1 = 6.4 µm, u2 = 0, u3 = 0

• The grain boundary between the two crystals is assumed to be perfect, with

no possibility of glide or separation.

Figure 6.8 shows the distribution of lattice orientations for the bicrystal, with

(a) initial orientations; (b) final orientations, and (c) lattice misorientations. It

is shown that because of the initial favorable orientation of the right side crystal,

the Schmid stress is the highest on the slip planes, and a shear band is initiated at

the triple point junction between the two crystals and the free surface. The right

side crystal rotates significantly during deformation, inducing localized rotation

of the left-side crystal in the zone with the highest stress. Since grain boundary

sliding is prevented in the present simulation, the confinement effect of the let

crystal leads to geometric hardening, while the continued rotation of the right-side

crystal results in geometric softening and instability.

Figure 6.9 shows the spatial distribution of the plastic strain component ε11.

It is seen that local values of up to 38% are achieved in the bicrystal, with

an average strain of 27% within the shear band. In comparing the results of

the bi-crystal to the single crystal, we see that both geometric softening and

compatibility hardening are at play here, as opposed to geometric softening alone

in the single crystal. While crystal lattice rotation and finite strain effects result

in the initiation and continuation of the plastic instability of the shear band

for the left-side crystal, the requirement of bi-crystal compatibility at the grain

boundary hardens the bi-crystal. Another important observation here is that the

initiation point of the shear band is clearly at the triple point junction ( stress

concentration), and an initial defect is not required for initiation.
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(a)

(b)

(c)

Figure 6.8: Orientations of a copper bicrystal deformed at a total applied strain of

8%. (a) Initial orientations; (b) final orientations, and (c) lattice misorientations.
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Figure 6.9: Spatial distribution of the plastic strain component ε11.

In the crystal plasticity model, slip is associated with Schmid stress and the

yield surface is therefore complex in stress space. The simple isotropic distortion

energy theory of plasticity predicts that the yield surface is a sphere when repre-

sented in the appropriate stress space. Figure 6.10 shows the distribution of the

equivalent or Mises stress in the bicrystal. While the von Mises stress is certainly

higher in the shear band areas, it is not directly correlated with plastic strain, as

can be seen in the figure.

Figure 6.10: Magnitude of von Mises stress within bicrystal. Unit is Mpa

The spatial distribution of the mobile and forest (static) dislocation densities

are shown in Figures 6.11 (a) and 6.11 (b), respectively. It is shown here that

the mobile density is very well correlated with the accumulated plastic strain via
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Orowan’s equation. On the other hand, the shear band is depleted from forest

dislocations as a result of the generation of mobile dislocations from their forest

counter parts and the corresponding destruction by recovery processes.

(a)

(b)

Figure 6.11: Spatial distribution of: (a) the mobile dislocation density; and (b)

the forest (static) dislocation density. Densities are in units of cm−2.

6.2.3 Simulation Results of Polycrystal Model Based on Real Crystal

Structure

Our simulations begin with a geometric realization of the grain structure of

polycrystalline copper. We use the micrographs of copper alloy from works of

Cartensen [14], and digitize all grain boundaries. The results of this process are

shown in Figure 6.12 (a), which shows the original micrographs of copper alloy

[14], and Figure 6.12 (b), which displays the results of our digitization. We then
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perform a numerical simulation for the plastic deformation of the polycrystal,

with the following boundary conditions: (1). Sample geometry: 35 µm long, 15.5

µm wide, and 1 µm thick; (2). Average grain size = 55 µm; (3). Random initial

crystallographic orientations, as indicated by the color map of Figure 6.12 (b);

(4). Left boundary conditions: u1 = u2 = u3 = 0; and (5). Right boundary

conditions: u1 = 2.1µm, u2 = u3 = 0.

(a)

(b)

Figure 6.12: (a). Optical microscopic photo of polycrystal copper alloy, adopted

from the work of Cartensen [14] (b). Digital rendering of the polycrystalline

micrograph shown in (a).

Figure 6.13 (a) shows a contour plot for the rotation of crystallographic ori-

entations in the polycrystalline sample. Figure 6.13 shows the corresponding
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contours for the rotation angles, which range from 23◦ to −25◦. Large lattice ro-

tation appear at the surface causing protrusions and intrusions from the original

position.

(a)

(b)

Figure 6.13: (a). A contour plot for the final crystallographic orientations in

response to an applied strain of 6%. (b). A contour plot of net lattice rotations.

Figure 6.14 clearly shows the formation of several shear bands that cut across

grains, with plastic strain ε11 values as high as 45%, and an average value of

20%. Figure 6.14 agree with the experimental results of figure 2.5 which is the

formation of shear bands in heavily rolled polycrystalline aluminum observed by

Diliamore et al. in 1979 [20]. The experimental results show that multi shear

bands are formed along preferred orientation, approximately ±45◦. simulation
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results in figure 6.14 and figure 6.15 show the formation of multi shear bands in

the range of ±30◦ − 45◦

Figure 6.14: (a) A contour plot for the distribution of the plastic strain, ε11, in

the polycrystalline sample.

To illustrate the statistical nature of shear band formation, we performed

additional simulations with the same conditions mentioned above, but for seven

different initial random distributions of grain orientations. We show here the

results of simulations for three of these cases. Figure 6.15 displays a contour

plot of the spatial distribution of the plastic strain component, ε11, within each

grain of the polycrystalline sample. Each case represents the distribution of

plastic strain for a different initial random distribution of grain orientations.

Surface roughness and large lattice rotations are in qualitative agreement with

experimental observations by Diliamore et al. in 1979 [20].

The distribution of the mobile dislocation density is shown in Figure 6.16 as

a contour plot. The dislocation distribution is quite heterogeneous, and varies

by more than an order of magnitude in neighboring areas, reaching densities as

high as 4× 109 cm−2

Experimental observations indicate that the grain size has an important effect
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(a)

(b)

(c)

Figure 6.15: Contour plots for the plastic strain ε11 distribution within each grain.

The cases (a), (b), and (c) correspond to different initial random distribution of

crystal orientations.
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Figure 6.16: Density distribution of mobile dislocations

on the strength metals [13]. The hardening effect of smaller grain size can be

attributed to two sources: (1) the Hall-Petch effect, which is a result of confining

dislocations in pileup configurations within each grain, and (2) the resistance

of grain boundaries to lattice rotations of adjacent grains. In the following, we

study the effects of a smaller grain size on the hardening of polycrystalline copper.

Although we do not explicitly include the Hall-Petch effect into our model, the

results indicate that significant hardening will also result from the confinement

of lattice rotations of adjacent grains.

The results of our computer simulations for the stress-strain behavior of poly-

crystalline copper of different initial orientations and two different average grain

size are shown in Figure 6.18. Our results are compared to the experimental data

of Singh, (reference [65]), with samples of an average grain size of 55 microns.

The initial yield point is clearly elevated by reducing the grain size, and the hard-

ening rate is significantly increased form 1.3 GPa (about µ/40) to 10 GPa (about

µ/5). Results of computer simulations for smaller grain size (35 micron) show

a significant increase in the yield strength and hardening rates, in qualitative

agreement with experiments [14]. The hardening rate for the smaller grain size
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(a)

(b)

Figure 6.17: (a) Geometric model of polycrsytalline copper alloy, with an average

grain size of 35 microns (based on micrographic photo adopted from Carstensen

[14]; (b) a contour plot for the distribution of lattice rotations.
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specimen is higher than observed experimentally as a result of the lack of grain

boundary sliding in our model.

Figure 6.18: Stress-strain curves for polycrystalline copper with an average grain

size of 55 microns ( solid curves), and 35 microns ( dotted curve). Also, we show

here the experimental data of Singh. (see reference [65]).
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6.3 The Influence of Multiple Slip Systems on Plastic De-

formation of Single Crystals

In this section, we present the results of FEM simulations for the plastic defor-

mation of a single fcc crystal. In the present case, we have 24 slip systems (12

in each direction), and the crystal is initially oriented as shown in Figure 6.19,

where the sides of the cube are aligned along the crystallographic cube directions.

The single crystal cube is subjected to the following boundary conditions: (

the left side has u1 = u2 = u3 = 0, while the right end is u1 = 5µm, u2 = u3 =

0). Quadratic brick elements are used throughout with reduced integration, and

the cube side length is taken as 100 µm.

[001] [100]

[010]

Figure 6.19: A single element model with 12 slip system at initial state

Figure 6.20 illustrates the deformed shape of the single crystal, while the

corresponding stress-strain curve is shown in Figure 6.21. The significant increase

in the hardening rate in the model with 12 slip systems, as opposed to the model
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with 2 slip systems shown in Figure 6.18, is a result of increased latent hardening

of the full slip systems of the fcc crystal.

[001] [100]

[010]

Figure 6.20: Deformed element under tensile stress

According to the initial crystallographic orientation and applied boundary

conditions, there exists eight equivalent slip systems in this single crystal, and

thus they will accumulate the same amount of plastic strain, as shown in Figure

6.22. When the applied stress reaches around 50 Mpa, plastic yield is initiated

and plastic slip occurs on activated slip systems.

Table 6.1 shows the activated slip systems, the corresponding slip direction

and plane normal, as well as the Schmid stress on each system for an applied

stress of 50 MPa.

95



Figure 6.21: The simulated strain stress curve of single copper crystal

Table 6.1: Activated slip systems and the Schmid stress on them

α sα mα Schmid stress (Mpa)

3 [11̄0] (111) 20.41

6 [1̄1̄0] (1̄11) 20.41

9 [1̄1̄0] (1̄11̄) 20.41

11 [11̄0] (111̄) 20.41

12 [101] (111̄) 20.41

14 [101̄] (111) 20.41

17 [1̄01̄] (1̄11) 20.41

20 [1̄01] (1̄11) 20.41

96



Stress   σ11  (Mpa)

Figure 6.22: Accumulated plastic increment within each slip system
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CHAPTER 7

Conclusions and Suggestions for Future

Research

The research presented in this thesis has focused on an effort to incorporate a

physical model of plastic deformation into the framework of crystal plasticity

and to demonstrate the origins of strain localization.The thesis is devoted to the

study of mechanical instabilities, which give rise to microstructure pattern for-

mation and eventual failure of stressed solids, because of the strong link between

mechanical instabilities and failure.

Strain localization and dislocation microstructure formation are characteris-

tic features of the plastic deformation of metals and alloys. Although dislocation

distributions are rather uniform at the onset of plastic deformation, they usually

become unstable when deformation proceeds and undergo successive transitions

towards various types of microstructures such as cells, deformation bands, persis-

tent slip bands, labyrinth structures, etc. However, and despite the development

of a wide range of theoretical investigations and modeling approaches, many in-

triguing and open questions still exist.

During the past few decades, two distinct approaches have emerged in an

attempt to provide a satisfactory description of plastic instabilities, and in par-

ticular, shear band formation. The first approach is based on the idea that the

instabilities are geometric in origin, in much the same way as that of Euler buck-
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ling of a slender beam, where changes in geometry are necessary at some critical

stress level. This idea is explored through the solution of field equations, within

what is known as crystal plasticity framework, and the condition for the onset of

the instability is obtained as a bifurcation in the solution at some critical condi-

tions of stress, geometry or material parameters. This approach is devoid of any

physical content, and does not provide any insight into the physical nature of

plastic instabilities. On the other hand, several approaches utilize a description

of plastic deformation on the basis of rate equations that describe the evolution of

the dislocation microstructure. The second approach has been pursued without

consideration of the geometric aspects of deformation, as embodied in the first

approach. In this thesis, we combine, for the first time, the physical aspects of

plastic deformation, as represented by dislocation evolution equations, with the

mechanical description of crystal plasticity.

The present research has provided a methodology for including physical dis-

location mechanisms of plastic deformation into the framework of finite element

crystal plasticity. As such, we have shown that this framework is successful in

predicting the formation of localized shear bands in single crystals, and that such

shear bands are initiated from small imperfections in the crystal. On the other

hand, differences in crystal orientations and the geometric restrictions on grain

boundary sliding have been shown to initiate shear bands in bi-crystals and in

polycrystals. The spatial distribution of local plastic shear strain has been shown

to be quite heterogeneous within grains, even though the applied strain is ini-

tially uniform in the crystal. We have also studied some of the aspects of 3D

single crystal deformation model with 12 slip systems, and have shown the main

characteristics related to activation of shear on various slip systems. Future work

may be able to shed more light on the physical origins of plastic instabilities in

3D crystals with more advanced dislocation models.
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