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ABSTRACT OF THE DISSERTATION

Simulation of Charge Generation
and Transport in Semiconductors

Under Energetic Particle Bombardment

by

Rodger Carl Martin
Doctor of Philosophy in Engineering
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Professor Nasr M. Ghoniem, Chair

The passage of energetic ions through semiconductor devices generates
excess charge which can produce logic upset, memory change, and
device damage, This "single event upset" (SEU) phenomenon is
increasingly important for satellite communications. Experimental
and numerical simulation of SEUs is difficult' because of the
subnanosecond times and large charge densities within the ion track.:

The objective of this work is twofold: (1) the determination of
the track structure and electron-hole pair generation profiles
following the passage of an energetic ion; (2) the development and
application of a new numerical method for transient charge transport

in semiconductor devices.
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A secondary electron generation and transport model, based on
the Monte Carlo method, is developed and coupled to an ion transport
code to simulate ion track formation in silicon. The results provide
more realistic charge density profiles than those used in prévious
SEU simulations. Charge profiles obtained for cosmic ion tracks are
found to differ significantly from those of cyclotron ions used in
cosmic-effect simulations,

A new numerical method is developed for the study of transient
charge transport. The numerical method combines an axisymmetric
quadratic finite-element formulation for the solution of the
potential with particle simulation methods for electron and hole
transport. Carrier transport, recombination, and thermal generation
of both majority and minority carriers are included. To assess the
method, transient one-dimensional solutions for silicon diodes are
compared to a fully iterative finite-element method. Simulations of
charge collection from ion tracks in three-dimensional axisymmetric
devices are presented and compared to previous work.

The results of this work for transient current pulses following
charged ion passage are in agreement with recent experimental data.
lon track densities larger than previously reported are simulated,
which permits study of more realistic track profiles and evaluation
of recombination effects. The numerical simulation results are used
in developing simple analytical equations for ecircuit design to
represent the current pulse and integrated charge collection from the
ion track. The effects of processing and device variables on the SEU
response can be addressed with the present method.
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Chapter 1

INTRODUCTION

Interest in the effects of radiation on semiconductors has:_grown
significantly for space and defense applications (e.g., satellite
communications), integrated circuit (IC) processing using ion beams
and ion implantation, packaging of semiconductor devices, and fission
and fusion radiation effects on diagnostics and circuitry.
Radicactive impurities (thorium and uranium) in silicon and IC
packaging materials first raised concerns about radiation effects on
semiconductors. The spontaneous decay of these nuclei generated
errors in device performance, but this problem was mitigated by
careful purification of the semiconductor material.

A mnew and more serious concern arose with observation of
anomalies in spacecraft performance over the last decade, with the
unexpected triggering of electronic components and the sudden
generation of erroneous data. Radiation passing through the ICs
causés these errors by generating transient charge which is collected
at p-n junetions. Information is stored in binary form within
ciréuits, so the energy deposited by radiation can generate enough
spurious charge to alter the binary information state from 0 to 1 or
vice versa, producing logic upset and memory change. This phenomenon
is called a single event upset (SEU). SEUs take two forms: soft
errors represent erroneous data which does not affect the device's
continuing operation, and hard errors cause a circuit element.to
"latch-up” in a fixed logic state, inhibiting the device's continued
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operation. Hard errors can destroy a device if significant current
surges are generated,

The ability of a charged particle to generate SEUs is deﬁendent
on its linear energy transfer (LET) within the semiconductor
material. LET is defined as the amount of energf deposited by a
particle per unit distance travelled within the material. The
transient charge generated is proportional to the particle’s LET.
Heavy ionms such as iron have the largest LET and raise the greatest
concern in space. The amount of charge required to generate an SEU
is defined as the critical charge (Q.), and is a function of the
device geometry and the size of the depletion zone at a p-n Junction.
The depletion zone is the high-field region which rapidly removes
excess charge within its domain, generating a current pulse at the
contact. The “funneling" phenomenon increases SEU concerns by
increasing the volume of the sensitive region for field-induced
transient charge collection: the dense charge track pulls the
electric field lines down into the bulk of the device, inereasing the
magnitude of the prompt collected charge.

Microelectronic components aboard spacecraft are exposed to
significant radiation fields which vary with the spacecraft's
location in space. The earth’s magnetic field acts to shield the
spacecraft in near-earth orbit from high-energy cosmic ions, so
exposure to protons and electrons trapped within the Van Allen belt
predominates. In very high altitude orbits and deep space, cosmic
ray exposure is dominant. Cosmic protons have too low an LET to
generate soft errors directly, but they can generate soft errors by

2




inducing muclear reactions when captured by heavier nuclei within the
semiconductor material, The cross sections for such nuclear
reactions are small enough that heavy cosmic ions remain the greafest
concern, although the substantial alpha particle flux in space can
raise problems for SEU-sensitive devices.

Cosmic ions can have very high energies, with GeV energies
common and energies well beyond the TeV range observable. Earth-
based simulation of such energies is impossible, but cyclotrons can
accelerate heavy ions such as argon and krypton up to 300 MeV, until
the LET of these ions is comparable to the LET of cosmic ions. ICs
~are bombarded with these cyelotron ions, and the number and frequency
of upsets is recorded to approximate the cross section for device
upset. A critical evaluation of the differences between cyclotron
and cosmic ion tracks has not been made, so the assumption of
comparable electronic effects for comparable LET must be taken for
granted, This assumption is valid in terms of the magnitude of
energy deposition over a few microns, but the comparability of the
axial and radial energy deposition profiles with respect to the ion
path is less certain, and is evaluated in more detail in this study.

An important development which impacts the significance of ion-
induced upsets is the profound reduction in semiconductor device
geometries in recent years, as typified by to&ay's Very Large Scale
Integration (VLSI) circuitry and its extension to the Very High Speed
Integrated Circuits (VHSIC) of tomorrow. Size reductions increase
circuit speed, memory, and capabilities, and greatly enhance
satellite performance, but with device feature sizes now comparable
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to the width of heavy ion tracks, memory circuits and microprocessors

have become more susceptible to ion-induced upset. Another driving

force for microminiaturization is the defense establishment’s needs .

for computerization of weapons systems. Modern warplanes are fiying
computers with information-processing capabilities limited only by
the bulk of electronics feasible for inclusion in a lightweight
aerospace system.

As microminiaturization advances, understanding of the scaling
laws for SEU rates as a function of device size is needed. As
devices become smaller, Q, also becomes smaller. A tradeoff exists
between the reduced area (i.e., reduced cross section for ion
interaction) and the smaller Qc.- As devices are packed closer and
closer, the ability of a single ion to upset multiple elements raises
serious concerns for state-of-the-art ICs in space,

SEU problems can be mitigated by either applying error detection
and correction (EDAC) software methodologies, by improving the design
and resistance to radiation of the device element, or by a
combination of the two. To develop radiation-resistant devices, we
need to understand the fundamental processes involved in ion-induced
charge collection. Development of experimental programs and simple
analytical models are helpful, but the complexity and ultrafast time-
dependence of the phenomena involved require detailed numerical
simulations of specific devices for quantitative evaluations.

This study considers two aspects of the SEU problem: simulation
of charge track formation along an ions’'s path in silicon, and
simulation of the collection of this transient charge at the p-n
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junction by developing a novel numerical technique. In Chapter 2 the

space radiation enviromment and SEU phenomenon is described in more

detail, as well as approaches used to overcome SEU problems. Chapter

3 discusses previous efforts in SEU modeling and experimentation, and
discusses modeling of both the ion charge track profiles and charge
collection from ion tracks. The initial charge track size and
density profile are important for SEU numerical simulations, but most
previous efforts assume simplified initial charge track profiles of
uniform densities over a fixed radius, without the peak densities
expected for heavy ion tracks. Effects of more detailed and
realistic track structures on subsequent charge collection has not
been analyzed. To avoid these simplified assumptions we have
implemented a more realistic Monte Carlo-based analysis of secondary
electron generation and transport and track formation within an ion
transport code. The methodology and results will be discussed in
Chapter 4.

Chapter 5 discusses our approach to the numerical simulation of
transient device behavior, based on a hybrid finite element/particle
simulation method. The particle simulation (PS) techniques are
similar to those used in plasma simulations. To solve Poisson's
equation we use an axisymmetric finite element (FE) formulation with
quadratic interpolation of potential.

Chapter 6 assesses the accuracy, strengths, and limitations of
our method compared to analytical device equations and more
traditional FE device simulation codes. Chapter 7 shows results of
our simulations of SEU effects and comparisons with previous SEU
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simulations, presents our capabilities for simulating high-density
lon tracks and more realistic track structures than have previously
been attempted, and discusses the strengths of our method for
detailed charge collection and current pulse evaluations. We present
the conclusions we have drawn from our study in Chapter 8.

In summary, this work attempts to provide an accurate
description of the physics involved in SEU phenomena by developing a
numerical method that holds potential for simulation of fas%
transients and non-equilibrium carrier transport in devices as well

as future studies of other radiation-induced phenomena.




Chapter 2

SPACE RADTATION EFFECTS ON MICROELECTRONIC SYSTEMS
2.1 The Space Radiation Environment

Semiconductor devices are potentially exposed to a variety of

radiation sources, e.g., the cosmic environment, nuclear reactors,
nuclear explosions, and IC processing. This study emphasizes the
cosmic environmment and damage by heavy ions. An Introduction to

radiation effects on semiconductor devices can be obtained from a
number of sources, e.g., {2.1-2.5].

The radiation environment in space consists of three components:
(1) photons such as x-rays and vy-rays, (2) charged particles such as
electrons, protons, alpha particles (i.e., helium nuclei), and heavy
ions, and (3) neutrons. Displacement damage and ionization effects
constitute the primary radiation effects on semiconductors in space.
Displacement damage is caused by neutron and heavy ion collisions,
which generate induced defect states, increase the number of
scattering centers, generate more energy levels in the band gap, and
degrade carrier lifetimes and transistor gain. TIonization effects
consist of total dose effects or transient ionization effects: the
gradual buildup of excess charge generates total dose effects such as
voltage offsets, leakage currents, and mobility degradation in
transistors, while photocurrents and charged-particle-induced

currents are examples of transient ionization effects.




We are concerned with the transient effects induced by rapid
ionization within the bulk of the semiconductor and the resulting
electron-hole (e-h) pair generation, such as ocecurs with ion passage.
Charged particles slow down in matter either by‘ nuclear collisiﬁ_ons or
by donization of the material. Nuclear collisions are less
significant for the slowing down of high-energy ions. Silicon
requires 3.6 eV to form one e-h pair during ion slowing down, more
than three times the energy required for equilibrium e-h pair
generation. Individual ions generate single event upsets (SEUs) when
the excess charge deposited in the device reverses the logic state of
the p-n junction and gives erroneous data or induces current latchup.

In typical metal-oxide-semiconductor (MOS) devices, LETs of a
few MeV/um are required to cause an upset [2.6], i.e., particles with
atomic number > 2 and energies in the MeV range or above. The
natural environment only generates a significant flux of such
particles in exoatmospheric cosmic rays. For satellites in near-
earth orbit, the largest flux of relativistic ioms is that of
protons, which only raises SEU concerns if nuclear collisions
generate displacements or nuclear transformations. The alpha
particle flux is about an order of magnitude less than the proton
flux, and the flux of all heavier ions is another order of magnitude
less. The relative fluxes decrease rapidly for ions heavier than
iron. The cosmic ion spectrum is isotropic, with energies typically
in the MeV range and above, with a very small flux of particles with
TeV energies and above. Figure 2.1 shows the relative cosmic
differential fluxes for 5 ions as a function of energy [2.7]. Solar
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Figure 2.1: Differential cosmic ray flux for protons, helium,
carbon, oxygen, and iron nuclei for solar minimum {2.7].

flare activity increﬁses SEU dangers by significantly increasing the
heavy ion flux [2.8].

The orientation of a satellite or high-flying aircraft relative
to the earth's magnetic field has a major impéct on radi#tion
exposure. Thé earth’s magnetic field deflects charged particles such
as cosmic rays, and objects in low earth orbit tend to. be protected
from the cosmic flux. This protection is greatest at the equator,
lowest at the poles, and decreases with altitude. In near-earth
orbit the spacecraft is primarily exposed to protons and electrons
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trapped within the Van Allen belt. In deeper space (10,000 km or
more), the earth has no effect and the predominant exposure is due to
cosmic rays.

Cosmic rays originate from two sources, the continuous .solar
wind with ion energies predominantly below 1 MeV, and solar flares
which emit higher-energy ions. Extraterrestrial cosmie rays interact
with the atmosphere and generate secondary cosmic particles which
reach the earth; although the flux is much reduced at the earth's
surface, interactions with semiconductor components are observable,
€.g8., In supercomputer memories.

The structure of the surrounding spacecraft does not alleviate
SEU concerns by reducing the cosmic flux. Nuclear and charged-
particle interactions with the surrounding material can actually
increase the total radiation flux by creating additional secondary
particles. Lower-energy particles often have a larger cross section
for interaction, depositing more energy and causing more damage than
their higher-energy precursors. Shielding is also not a practical
solution for SEU problems {2.9}. Only thick shielding is effective
against large iom energies, but weight limitations and ptesent-day
costs of about $8000 per kilogram to put hardware into orbit make

such shielding impractical.
2.2 The Single Event Upset Phenomenon
Cosmic-ion-induced random bit errors in satellite memories were

first postulated in 1962 (2.10}. Evidence of this phenomenon was
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presented in 1975 in the form of an anomalous triggering of a bipolar
flip-flop in a communications gatellite [2.11]. 1In 1978 cosmic-ray-
induced anomalies observed in n-channel metal-oxide semiconduétor‘
(NMOS) dynamic random access memories (RAMs) in a satellite system
were evaluated [2.9]. Between 1970 and 1982 over 40 upsets have been
reported in satellite operations [2.12]. By 1979 soft errors due to
alpha particles emitted by natural radioactive decay of silicon and
packaging impurities had been reported, along with pPhenomenclogical
modeling of these errors [2.13,2.14]. The potential for cosmic-ray-
induced upsets is now a very real concern for satellite operationé;
e.g. the Tracking Data Relay Satellite Systems (TDRSS) satellite
experiences upsets every 1.5 days and the Galileo project required a
crash program to harden its circuitry against cosmic effects [2.12].
About 1% of the TDRSS upsets were reported to involve more than one
bit [2.15].

An energetic ion can traverse a typical semiconductor device
active region in a fraction of a picosecond. The most important
factor in a charged particle’s ability to generate SEUs is its linear
energy transfer (LET) in the semiconductor material, i.e., the amount
of energy deposited per unit distance travelled, with the transient
charge generated proportional to the LET. The resultant transient
current consists of two components: a prompt component from e-h pairs
formed within the depletion zone of the p-n junction, and a delayed
component due to carriers generated within a diffusion length of the
junction. The magnitude of the prompt component can be enhanced by
field ;funneling," i.e. the dense e-h plasma along the ion track
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forces the junction field lines down into the device substrate.
Funneling effectively increases the volume of the sensitive region
for field-induced transient charge collection and increases the
transient current pulse, as well as altering device operéting
characteristics. For soft errors, device operation can return to
normal after the excess charge is collected at the contacts or
recombines. Memory devices are particularly susceptible to transient
charge effects, as their operation is based on the storage of charge
at each bit, and collection and storage of spurious charge takes the
form of erroneous data. SEUs do not permanently damage the device
unless current latchup damages or burns out the circuit before it can
be turned off. SEUs are more difficult to detect and correct in
microprocessors than in memory circuits.

The amount of charge required to generate an SEU is defined as
the critical charge (Q.), and is a function of the device geometry
and the size of the depletion zone at a P-nt junction. The depletion
zone defines the high-field region within the device which rapidly
removes excess charge within its domain, generating a burst of
current at the contact. As devices become smaller and the sensitive
regions become smaller, the magnitude of Q¢ required for upset
becomes smaller. For present device geometries on the order of a few
microns, Q. is typically on the order of a picocoulomb or less. A
heavy ion can easily generate a picocoulomb or more of transient
charge in passing through several microns of silicon, Figure 2.2
shows an estimate of the upset rate as a function of critical charge
for different components of the cosmiec spectrum [2.8]; only heavier
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[2.8]. Altitude of 75,000 feet is assumed.

ions can upset those junctions more resistant to upset. IC.feature
sizes range from 3 to 10 um for standard VLST devices, and the new
VHSIC devices aim for micron and submicron feature sizes. The larger
10 pm bulk circuits are only upset by heavy cosmic ions, while the 3

pm circuits can be upset by lighter ions {2.16].
2.3 Technological Features and Radiation Hardening

The sensitivity of an electromic device to SEUs is given by its
cross section and threshold for upset. The cross section represents
the fraction of upsets generated by a flux of ions over time,
although parameters such as the angle of the beam with respect to the

13




device and the LET of the ions must also be considered. The

threshold for upset is the lower limit for ion LET at which the

number of wupsets becomes significant. These SEU parameters are’

measured by placing a device within a cyclotron or other source of
ions and measuring the number and rate of upsets as a function of
energy and type of ion, Memory circuits are relatively easy to test,
with the data periodically checked for accuracy. Microprocessors and
other complex devices require specialized software for checking
errors, as a soft error in different components may manifest itself
in a variety of ways and may not be immediately apparent in device
operation.

Two generic approaches are used to mitigate SEU problems. The
first is a fault-tolerant logic design and the second is hardware-
related such as device or circuit design. Fault-tolerant logic
design such as the use of error detection and correction (EDAC)
techniques increases the nonproductive circuit overhead, so the
overall system performance is degraded as upset rates increase unless
hardware-related corrective measures are also employed,

The use of EDAC techniques mitigates problems arising from an
SEU in a single memory bit [2.17]. Within a 16-bit word, 6 extra
bits are required for single-bit EDAC [2.18]. Continuing device
microminiaturization reduces Jjunetion separations and increases the
probability of multiple-bit upset (MBU) by single ions. Double-bit
upset rates in satellite memory cells as high as several percent of
total upsets have been reported [2.20]. High MBU rates pose a major
problem for SEU mitigation. A double-bit error in one word requires
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gseveral additional bits for EDAC. A simpler solution is the use of

redundant memory cells. Neither seolution is practical, so the

present solution is limited to single-bit error correction/double-bit -
error detection (SEC/DED). Double-bit errors can be mitigated by

spatially dispersing those memory cells representing a single word,

but layout efficiencies and high-speed operation are penalized. With

satellites costing $100 million or more, MBU mitigation incurs héavy

penalties,

Several approaches have been suggested for physically hardening
devices and circuits [2,16], such as reducing minority carrier
lifetimes, adding a barrier insulating layer below the junction to
reduce funneling, increasing the doping density to reduce the impact
of SEUs, and inserting protective circuitry within the feedback paths
of memory and logic cells.

All microelectronic circuitry is sensitive to radiation-induced
errors to some degree. CMOS (complementary metal-oxide
semiconductor) devices which employ silicon-on-sapphire (S0S)
technologies reduce the significance of charge funneling and
sensitivity to upset by isolating the depletion regions from the bulk
of the device by use of an aluminum oxide substrate, However, for
very small devices these buried layer designs are not simple to
fabricate. The CMOS/S0S technologies tend to be less sensitive to
upset than bulk CMOS devices, which exhibit the greatest potential
for latchup [2.12].

With transient charge collection often faster than a nanosecond,
carrier lifetime reduction in silicon is typically limited to longer
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time frames and thus cannot be a successful hardening technique by
itself, Increasing doping density canm significantly improve
resistance to upset by reducing carrier lifetimes and by reducing the -
relative magnitude of transient charge densities and the resulting
funnel effect, but other electrical parameters are affected such as
increased electric field across the smaller depletion =zone. Seft
errors can be mitigated by circuit engineering, e.g., increasing a
cell's critical charge using resistive decoupling. CMOS memory cells
can be hardened by insertion of a delay mechanism such as a resistor
within the feedback path; with the element speed reduced below the
nanosecond time frame for SEUs, the memory cell camnot flip states
until the SEU pulse is dissipated, Such hardening penalizes the
performance of circuits with subnanosecond device speeds.

As microminiaturization advances, understanding of the scaling
laws for SEU rates as a function of device dimensions is needed.
Although the reduced device area reduces the cross section for
interaction with radiation, the device Qe for upset is also reduced,
Figure 2.3 shows Q;:: as a function of feature size for different
device technologies [2.12]. Major problems will result if Q. ever
becomes small enough that the abundant cosmic protons can cause
upsets. The closer proximity of device components will increasingly
make neighboring components susceptible to upset by single iong, and
some sensitive memory components have demonstrated remarkably large
cross sections under cyclotron test conditions because of MBUs
[2.20]. These concerns need to be evaluated in detall as state-of-
the-art ICs are placed into space now and in the future.
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Chapter 3

REVIEW OF THEORETICAL AND EXPERIMENTAL STUDIES OF SINGLE EVENT UPSETS

3.1 Modeling of the Charge Track

The initial width and density profile of the ion track is an
important initial condition for SEU calculations. Initial
assumptions of ion track parameters will impact the final simulation
results. An early discussion (1978) by Bradford [3.1] of the impact
of ion tracks on VLSI radiation testing discussed phenomenologically
the track profiles. With maximum secondary electron energies about
10 keV having a range of 1.4 pm in silicon, Bradford postulated non-
trivial energy deposition as far as 1 um from the ion path in
silicon. He reported on previous results indiéating ar-? dependence
on energy deposition as a function of radius, r, from the ion's path,
and concluded an ion track would consist of a central core about 20 A
in radius with very large charge densities, and the densities
decreasing as "2 out to about 1 um.

An analytical evaluation of transient charge collection by
Messenger in 1982 [3.2] assumed a Gaussian-shaped track profile with
an initial peak density exceeding 1018 cp3 ang decreasing radially
with a dependence of exp(-rz), an initial track radius of less than
0.1 pm, and a track formation time on the order of picoseconds,
Subsequent efforts in modeling transient SEU charge collection from
alpha-like tracks usually assumed an initial eylindrical track of 0.1
pm radius and constént excess carrier density [3.3,3.4].
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Grubin, Kreskovsky, and Weinberg {3.5] did 2-D parametric
studies of charge collection for track densities, Ny, of 1017 to 3019
3

cm”

generation rate G, given by:

Na 7
Gg = — exp(-t/ry) . (3.1
T
4
with the time constant r, assumed to be 3 ps. This expression

generates 95% of the track carriers in 9 ps. Other discussions of
alpha track formation suggest the track e-h plasma thermalizes on the
order of picoseconds in a cylindrical track with radius about 0.1 pm
and density of 1018 to 1019 cn-3 [3.6].

More recent SEU simulations by Zoutendyk et al. [3.7] mention
core densities within the ion track in excess of 1018 op-3 and
apparently use a track of 0.5 am radius for 40 MeV bromine, but no
radial density profiles are mentioned so uniform track densities on
the order of 1018 cp-3 are probably used. For heavy ions with large
LET, initial e-h pair densities within the track should be in the
range of 1020 cp-3 [3.8].

7 Evidence for larger track sizes is given by cosmic ray passage
through photographic emulsions, resulting in track diameters on the
order of microns [3.9]. Although the physics of track formation in
emulsions is different from that in semiconductors, such evidence
raises questions about the track diameters usually postulated for SEU
simulations.

2-D simulations must assume that all physical quantities are
constant in the unmodeled dimension (i.e., the device width), so the
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charge track must be approximated as a 2-D slab. The resulting
noncylindrical track shape requires normalization of the track
density to maintain the same total transient charge in 2-D vs. 3-D
simulations, impacting the rate of carrier recombiﬁation and the:rate

of radial spreading of the track with time.
3.2 Charge Transport Modeling
3.2.1 Analytical Models

By 1978 phenomenclogical models for cosmic-ray-induced errors in
MOS memory cells had been postulated [3.10], which considered each
node’s critical charge for upset and a sensitive volume for charge
collection from both the depletion region and a region within one
diffusion length of the junction. The error rate was based on the
relationship between an ion's LET, the critical charge, the sensitive
volume, and the ion’s average path length through the sensitive
volume,

After the concern of the funnel effect was raised in 1981, Hu
emphasized an axial charge separation mechanism along the track to
phenomenologically evaluate the furmeling depth as extending beyond
the depletion =zone by a factor of (1 + ,un/,up) [3.3]. Although his
-results were comparable to a previous numerical simulation, they
showed maximum current at time equals zero and thus did not provide

details of the initial current pulse.
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The next phenomenological model was developed by McLean and
Oldham [3.6}; by emphasizing a radial charge separation mechanism,
they approximated the total collected charge as a function of appliéd
voltage, initial plasma line density Ny (e-h pairs per em track
length), carrier mobility, and approximate effective funnel length
and charge collection time. They concluded that collected charge has
a dependency on Np to the 4/3 power. Their calcuiated results agreed
qualitatively with experimental results but quantitative agreement
was not always good. This model was extended to better handle high
density tracks by including an additional term with a stronger
dependency on ambipolar diffusion; this adjustment gave better
agreement with experiment for ions heavier than helium, but had
trouble accurately evaluating charge collection for ions heavier than
oxygen [3.8].

Extensions of these models have been attempted, e.g. by Gilbert
who introduced an additional plasma screening consideration [3.11],
and Oldham et al. who introduced a term for the average field along
the track [3.12], but these phenomenological models are limited by
their approximations in quantitative evaluations of charge
collection, and are weak in providing information on the time-
dependence of the current pulse.

In 1982 Messenger presented a detailed analytical evaluation of
temporal and spatial track evolution [3.2]; he assumed an initial

Gaussian track profile as hypothesized by Jaffe {3.13}:
Ny = (Ng/wr%) exp(-rz/r%) , (3.2)
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with N, the volumetric e-h pair profile along the ion path, r¢ the
assumed track radius at t = 0, and Ny the line density typically 107
to 1011 e-n pairs/cm. He notes the initial N, will exceed 1018 ém'3,
but assumes an initial track radius of less than 0.1 pm. - By
comparing drift and diffusive components, Messenger concluded that
field motion typically starts after the ion track has expanded from
an initial radius of 0.1 um to about 1 pm after 500 ps, with field
effects not dominant until ambipolar diffusion reduces N, teo wvalues
comparable to the doping concentrationm, Ndop-

Messenger also postulated an analytical solution for the time-

dependence of the transient current pulse (It) amplitude in the form:
Ie(t) = I; [exp(-at) - exp(-ft)] (3.3)

in which he defines I, to approximate the maximum current, a"l to
represent the collection time constant of the junction, and ﬂ'l to
represent the time constant for generation of the ion track. He

derived the junction time constant to be:

a1 - e/qﬂNdop , (3.4)

with ¢ the material permittivity, q the electromnic charge, E an
average high-field-adjusted carrier mobility, and Ngop the doping
concentration of the silicon substrate. The value for 8 is assumed
to be >1011 §-1,

Phenomenological models are still frequently used and updated

(see e.g., [3.14]), but for detailed calculations computer simulation
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has been increasingly employed in recent years to avoid the

approximations which limit these models.
3.2.2 Computational Models

SEU effects on a 2-D diode structure were first computationally
evaluated by Hsieh, Murley, and O'Brien in 1981 [3.15]. They
reported from both experiment and finite element modeling that the
field-funneling effect can occur with alpha-particle hits on a
junction, collapsing the junction field into the device substrate,
increasing the prompt component of the transient current, and
increasing concerns about single ion hits on junctions. The field
was restored to equilibrium after about 1 ns in their simulations.

More detailed charge collection calculations from alpha
particles were again performed by Hsieh et al. iﬁ 1983, again using
FE methods [3.4]. They compared 2-D and axisymmetric 3-D results for
a junction hit, and concluded the duration of funneling is shorter
and less charge is collected in 3-D because of increased outward
diffusion relative to 2-D simulations. Their transient currents
peaked at about 300 pA after a few tens of picoseconds. They also
simulated the near miss of the junction by an ion and saw delayed and
reduced funneling. These simulations used a track radius of 0.1 pm,

In 1986 and 1987 Kreskovsky and Grubin addressed the relative
accuracy of é-D and 3-D simulations in silicon [3.16]; they
normalized N, to simulate a 2-D slab. 3-D field restoration to
equilibrium was much faster than in 2-D, and 3-D charge collection
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was about four times faster although total collected charge was
comparable. The 2-D current pulse was maximum at time equals zero,
while the maximum 3-D pulse occurred at about 20 pe. For similar
simulations in GaAs they found poorer quantitative agreement, which
they explained on non-linear transport behavior [3.17]. They
reported their 3-D analysis required 3.4 CPU hours on a GCRAY-1
computer for 17,500 grid points over 350 time steps, using linearized
block implicit methods applied to a finite difference formulation
[3.18].

J. A. Zoutendyk et al. have more recently been using an
axisymmetric version of the PISCES II device simulation code for SEU
simulations of ion hits on IC memory circuits such as static and
dynamic random access memories (SRAMs and DRAMs), to assist in the
interpretation of cyclotron SEU cross section results [3.7,3.19],
They are simulating the effects of heavy ions such as 40 MeV bromine
and 100 MeV oxygen, and have obtained current pulse curves and looked
at the effects of lateral charge transport on multiple-bit errors in
memory circuits. Although their initial ion tracks are wider than
those used in previous simulations, up to 0.5 um in radius but of
apparently uniform densities, their results are device specific.
They have apparently not pursued analyses with more detailed ion
track profiles or pursued an in-depth comparative study of the
effects of various heavy ions of different initial energies and track

density profiles.
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3.3 Limitations of Previous Models

Although they serve as a good starting point, phenomenological:
models are not very accurate for initial current transients. Too
many variables are inherent in the SEU process and the field
distortion for such models to be quantitatively accurate, and the
time dependence of the SEU current pulse becomes very difficult to
postulate. These models have not taken carrier recombination inte
account at high densities, and their agreement with experiment
becomes poorer with heavier ions.

Use of simplified track profiles for SEU simulations can only
provide parametric results. Assumptions about the initial track may
underestimate its actual size because they do not take into account
the effect of energetic secondary electrons, as mentioned by Bradford
{3.1]. Quantification of the transient current pulse depends on the
assumptions used for initial ion track profiles. Peak charge
density, effective track width, and spatial density profile may
significantly affect the final results. As an example, N, on the
order of 1020 cm 3 can be expected {3.8). In such a plasma-like
state, carrier mobilities are reduced to their ambipolar values, and
Auger recombination becomes very significant in reducing peak carrier
densities. Use of tracks witﬁ 1018 cp-3 density may miss such
details. Only Zoutendyk et al. simulated high-LET, heavy-ion tracks,
but their track densities remained well under 1019 cm-3 [3.7]. Only
Grubin et al. [3.5] report one simulation with track densities of
1019 cm™3, but their detailed calculations use densities of 1018 cp-3
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to simplify the simulation. The high rate of MBUs observed in space
raises questions as to the size and profile of the charge tracks used
in these simulations.

A limitation of the 2-D simulations is the inherent assumption
that all physical quantities are constant in the third dimension, so
the charge track is approximated as a 2-D slab. The resulting
noncylindrical track shape alters the charge track density and
reduces the magnitude of the high-density Auger recombination in 2-D -
vs. 3-D modeling. For example, Fu et al. increased the Auger
coefficients by a factor of 100 for more realistic recombination
rates in 2-D modeling [3.20].

Even with N, normalized to approximate 3-D effects, a
significant difference between 2-D and 3-D results is apparent
[3.16}, with poor representation of the initial current pulse
(maximum at time equal zero) and a time frame several times longer
for 2-D charge collection. These differences are explained by the
greater lateral spreading of the track in axisymmetric geometry
compared with the 2-D spreading confined to planar geometry, plus the
geometrical effects of the different relative sizes of the contacts
in the 2-D and 3-D simulations with respect to the ion track cross
section.

Messenger’s analytical model of field motion after 500 ps 1is too
long a2 time frame compared with experiment, and simulations
frequently indicate peak currents occur at tens of plcoseconds,
shorter than experiment indicates. No numerical simulations have yet
accurately reproduced the experiments discussed below.
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3.4 Experimental Efforts

Experimental SEU simulations fall under two categories: the
conventional cyclotron simulations to determine device cross section
and threshold for SEU, and detailed studies of the time-dependence of
the charge collection process after an ion hit. Much effort has gone
into cyclotron simulations to evaluate susceptibility to upset for a
variety of devices [3.21]. Generation of relativistic cosmic-like
ions such as iron is only feasible in the Lawrence Berkeley
Laboratory Bevalac, which can generate ions with energies approaching
1 GeV/nucleon. Although a few simulations have been performed with
the Bevalac [3.22]), they are expensive so damage simulation is
typically obtained using cyclotrons which can generate iomns with
energies up to a few MeV/nucleon, to a maximum of about 300 MeV. For
iron, such energies will not provide the LET of interest for cosmic
SEU effects, so ions such as argon and krypton are accelerated until
their LET characteristics are similar to cosmic iron. The 88 inch
cyclotron at the University of California at Berkeley is often used
for such simulations, although its use is also not inexpensive.
Inexpensive heavy-ion simulations can be performed with fission decay
products of californium-252, but a spectrum of ions is obtained which
gives less specific SEU information. Van de Graaff machines and
smaller cyclotrons can be employed for light ion and proton SEU
simulations.

One weakness of cyclotron simulations using non-cosmic ions is
the assumption that comparable electronic effects for ioms with
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comparable LETs should be expected. This assumption is wvalid in
terms of the magnitude of energy deposition within the first few
microns of device penetration, but the comparability of the axial and
radial energy deposition profiles is less certain. Any differences
between these tracks may make accurate quantitative evaluations
difficult and impact the reliability of such testing. A critieal
evaluation of the differences has not been made.

Detailed experimental studies of SEU current transients after an
ion hit have been underway at Los Alamos National Laboratory. Early
SEU simulations over a nanosecond time scale provided information on
total collected charge as a function of applied device voltage, but
Wagner et al. have done experiments with an ultrafast 70 GHz sampling
oscilloscope which uses superconducting Josephson junction technology
and a superconducting delay line, reducing the rise time to 6 ps
[3.23]. Vagner et al. have observed the transient current pulses in
silicon and GaAs diodes for ions ranging from 5 MeV alpha to 100 MeV
iron. The measured times to peak current typically range from 100 to
200 ps, longer than that postulated by most numerical simulations
with suggest peaks occurring after a few tens of picoseconds. Wagner
et al. have attempted to adapt Messenger’s model [3.2] to their
transient data with some success, but simplifying assumptions are
required and the leading edge of the pulse cannot be simulated
[3.23]. Other computational attempts at reproducing these

experimental results have not been reported.
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3.5 Effects of Exterpmal Circuit

After a device is struck by an ion, a transient current pulse is
generated which can also affect other devices within the circuit,
altering their operating voltages and characteristics. To simulate
these circuit effects a general circuit simulation code such as SPICE
or PISCES must be employed. For the initial SEU effect, either an
assumed current pulse is input into one component of the circuit, or
the output from an actual SEU device simulator is used as input into,
e.g., the SPICE code.

The circuit effects of SEUs is beyond the scope of this study.
As examples of circuit modeling of SEU effects, Song et al. used
results from our study of several ion track profiles as input into
the PISCES code, to simulate MBU effects on NMOS SRAMs as a function
of iom LET [3.24]. Zoutendyk, Secrest, and Berndt used an
axisymmetric version of PISCES to simulate transistor response to an
oxygen iomn hit, for subsequent coupling to the SPICE circuit
simulator to evaluate SEU effects on a silicon bipolar test device

[3.19].
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Chapter 4

ION TRACK FORMATION MODEL

4.1 TIntroduction

Simulation of the ion-induced transient current pulse depends on
assumptions used for initial ion track profiles such as peak charge
density, effective track width, and spatial density profile. Most
previous efforts assume simplified initial charge track profiles of
uniform 1018 cp-3 densities over a fixed radius. Such assumptions
miss details such as the significance of Auger recombination as a
charge removal mechanism for realistic peak densities of 1020 cm‘3,
and may underestimate the actual track size because the effect of
energetic secondary electrons created in the wake of ion passage are
not considered.

In cyclotron simulations of device upset, use of non-cosmic ions
to éimulate cosmic ions with comparable LETs assumes that comparable
electronic effects -should be expected. Unfortunately, the
comparability of the axial and radial energy deposition pfﬁfiles and
the resulting track structure is less certain,. If significant
differences exist, the accuraéy of such testing may be compromised.

To evaluate the impact of these assumptions on SEU computer and
cyclotron simulation results, and to avoid these assumptions in our
simulations, we have implemented a more realistic Monte Carlo-based
analysis of secondary electron (SE) generation and transport and
track formation within an ion transport code. The SEs are generated
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using the binary collision approximation and transported with an
electron slowing-down subroutine following the method of Fitting and
Reinhardt [4.1]. Electron transport involves both elastic and
inelastic scattering, and includes core electron ionization and
dielectric energy loss mechanisms. These SEs, with keV energies, can
travel far from the ion track and significantly increase the track
size. As a result of this effort, the ion transport code TRIPOS
[4.2,4.3] was extended to a new version, TRIPOS-E [4.4,4.5}, which
can solve the coupled ion-electron transport problem to analyze

charpe generation and track size in SEUs.

4.2 Mechanisms of Iom Track Formation

4.2.1 Electronic Energy Loss

The slowing down of ions within the target material consists of
two components: interaction with the target electrons and interaction

with the nuclei. Electronic stopping is the dominant mechanism. At

2/3
1

light) the electronic stopping power can be represented by the Bethe-

high ion veiocities v > vy2 (where v, = ¢/137 with ¢ the speed of

Bloch formula:

2 4
AE Wlezq N Tmax eV '
[Sa(E)] = —=_""_ log — . (4.0
BB Ax E Toin A

Z1 and 22 are the atomic numbers of the incident and target atoms
respectively, q is the electronic charge, N is the target atom
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density, E is the incident ion energy, Tpjp corresponds to the mean
ionization energy of the target atoms, and Tmax represents the

maximum kinetic energy transferable to a target particle:

4m.m
172
Tpgax = ————~ _E . (4.2)

2
(m1 + m2)
The electronic energy loss is then given by:
AE = 8, » Ax (4.3)

along any path length Ax between successive scatterings of the

ineident ion. At low velocities v << VOZ§/3, the electonic stopping

power is represented by the Lindhard-Scharff formula:

7/6

L2z z, 8,

Se(®] =53 253372 175 (4.4)
sz + 22/l

and .in the intermediate regime by the Biersack interpolation scheme:
-1 _ -1 -1
(Sg) (Se)LS + (Se)BB . (4.5)

In the Bethe-Bloch regime, the cross section for electronic

energy transfer is represented by the Rutherford cross section:

b|2 dT
do = 7|—| Tpax — | (4.6)
2 72

where b is the impact parameter and T represents the kinetic energy

transferred to the target particle.
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The Bethe-Bloch theory, which considers energy loss to be a
continuous process through interaction with the electron cloud of the
medium, accurately accounts for the transport of electrons with
kinetic energies above 10 keV. However, as energies decrease ffom 10
keV, agreement between the Bethe-Bloch analysis and experimental
results becomes poorer {4.6]. For this reason, we need to model low-
energy electron transport by individual interaction mechanisms rather
than a continuous energy-loss process.

Electron transport interaction mechanisms are divided into
elastic and inelastic collisions. Elastic collisions, or Rutherford
scattering, involve scattering of the electron by the atomic nuclei
with no kinetic energy lost by the eiectron. Inelastic interactions
involve energy loss by the electron, and consist of either ionization
of core electrons or dielectric interaction with the valence
electrons. The dielectric energy loss can be further divided into
individual or collective electron-electron interactions (i.e.,
generation of either e-h pairs or plasmons). This is schematically

shown in Figure 4.1..
4.2.2 Elastic Scattering

Two standard approaches are applied to the elastic scattering of
electrons: Rutherford scattering and the partial waves method (PWM) .
For electrons with energies of 10 keV and above, the sgreened
Rutherford interaction potential can be used for Coulombic scattering
[4.17. This poténtial incorporates a screening parameter which
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Figure 4.1: Flowchart of electron slowing-down interactions.
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reflects the screening of the nuclear charge by the surrounding bound

electrons as a function of distance from the nucleus. The screened

Rutherford potential is given by reference [4.1]:

Ze 1 r
V(r) = - — exp|- — . (4.7
dmeg T Tg

with Z the atomic mumber of the target nucleus. The screening radius
rg is proportional to z-1/3. The angular distribution for elastic

scattering is given by reference [4.1]:

doep 72e4 1 1

. (4.8)
dn (4ﬂ60)2 4E2 (L - cos a + ZaS)2
where E is the incident energy and o« the polar scattering angle of
the scattered electron. The screening parameter ag is given by
reference [4.1):
2 1

. | (4.9)

dg =
8moE r%

Integration of equation (12) gives the total scattering cross
section:

anzled 1 1
gag(E) = . (4.10)
(4meg)? 4E2 2a.(1 + ag)

The mean-free path for Rutherford scattering is simply given by:

dep = [Noggl 1l | (4.11)
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with N the atomic density.. Different expressions for the screening
parameter ag are available (e.g. Nigam et al. {4.7] and Wentzel
{4#.8]). Although calculations are straightforward, these equations
give increasing error at low electron energies of a few keV orrless;
Akkerman and Chernov [4.6] compare these results with those of the
PUM.

The PWM employs a quantum mechanical approximation for elastic
scattering [4.9,4.10]. The concept of wave-particle duality allows
the incident particles to be considered as waves. The incident
particle flux is then considered as a superposition of plane waves,
and the scattering center is considered to be the source of a weak
spherical reflected wave. Superposition of the incident plane waves
and outgoing spherical waves represents the effect of scattering.
The perturbation becomes smaller with distance from the scattering
center, and the superimposed waves asymptotically approach a plane
wave. The magnitude of initial propagation constant k is the same,
but the wave has a different direction and a different phase shift §p
after scattering. For elastic scattering of electrons by aluminum,
Ganachaud and Cailler {4.11] used a muffin-tin potential evaluated by
Smréka [4.12] to obtain the principal phase shifts. Akkerman and
Gibrekhterman [4.13] employed a PWM analysis for scattering by AZ,
Au, Ge, 58i, and Be using an independent-particle-model potential
obtained by Green et al. [4.14]. Ichimura, Aratama, and Shimizu
[4.15] used the Thomas-Fermi-Dirac potential in a PWM analysis of

scattering by Af, Cu, Ag, and Au.
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Fitting and Reinhardt [4.1] also performed PWM analyses for Au,
8i, 85i09, and PMMA, but then compared the results to those of

Rutherford scattering using the screening parameter

T(E) =~ 0.9 + exp(-E/E,) |, (4.12)

which is related to the screening radius rg of equations (4.7) and

(4.9) by:

T

4p 0.885 4.13
Ty = 21/3 _— ' ( . )

where ap is the Bohr radius. By choosing appropriate values of Er,
they obtained good agreement between the two metheods of calculation,
We employed the formulas of Fitting et al. for elastie scattering

cross sections in this analysis to reduce computational effort.
4.2.3 Core Electron Ionization

Ionization of core electrons within a material can be a
significant energy loss mechanism for an energetic electron. A semi-
classical approach for core ionization cross sections is given by

Gryzinski [4.16]:

.2
Ej £

4
e N3 -
oy = — 31 [‘E

1 1.3 2 1 0.5
L+ 1 - — | n[2.7 + (¢ - DU-2D, (4.14)
£+ 1 3 2¢

where £ = E/Ej with E; the binding energy for each j-shell and nj the

humber of electrons in the jth shell. The total ionization cross
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section is obtained by summing over all j-shells. This expression
for core ionization cross section was used by Akkerman et al. [4.13],
Ichimura and Shimizu [4.17], and others. Fitting et al. [4.1] note
that the core ionization stopping power can be represented in a-form

similar to the Bethe-Bloch equation:

dE 1 E
- = A __ InlB \ (4.15)

The effective mean-free path for core ionization is then given by:

AE,.
Ae = - : (4.16)
dE/ds

Fitting et al. note that the constants B and P in equation
(4.15) approximately equal 1. By ignoring any kinetic energy
transfer to the ionized core electrons, AE, of equation (4.16) is
then approximately equal to the mean core-ionizafion enexgy, Ip.
Equation (4.16) then takes the form:

Ic E
g =& —— (4.17)
A In(E/Ic)
For silicon, Fitting et al. give values of 100 eV for I and 300
evz/ﬁ for the constant A. The mean-free path for core iomization can
then be directly calculated as a function of incident electron.
energy. The polar scattering angle can be approximated by a free

collision momentum transfer:
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sin? o = Ic/E . (4.18)

4.2.4 Dielectric Energy Losses

An energetic electron can transfer energy to valence-band
electrons by either plasmon production or creation of e-h pairs.
Some previous modeling of electron transport uses detailed analytical
expressions for dielectric energy losses by Eoth mechanisms. For
example, Akkerman et al. [4.13] uses expressions given by Ferrell
[4.18]) and Ritchie [4.19]. Rather than performing calculations as
detailed as those above, Fitting et al. use a simple scheme based on
the previously defined core ionization mean-free path and an

empirical expression for inelastic mean-free path:
Aip = 0.25 E0-6 4+ 1 | (4.19)

applicable for electron energies between 70 eV and 10 keV. With An

and Mg previously calculated, the equality:

1 1 1
) (4.20)

allows the mean-free path for dielectric interaction, Ap, to be

obtained directly.
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4.2.5 Higher-Energy Electron Transport

Transport of secondary electroms with energies above 10 kéV can
be accurately represented by a Bethe-Bloch formulation similar to
equation (4.1). A continuous energy-loss mechanism to the bulk
electrons between elastic scatterings is assumed. The elastic
scattefing cross section is again given by equation (4.10), but now
the screening parameter 7 of equation (4.12) is set equal to 1. A
typical Bethe-Bloch energy-loss equation for electrons is that used

by Shimizu et al. [4.20]:

dE , M2 1.166E
— = 2me™ _ fn ______ (4.21)
dx E J

where the mean ionization potential J can be given by [4.21]:

0.1z 75.5 z
J=Z|14 - e VM 4 - : (4.22)
7%/7-5 100 + z

Other formulas for J exist but give similar results (e.g. [4.13)).

4.3 Modeling Methodology

TRIPOS was developed by Chou and Ghoniem to study ion transport
in solids using the Monte Carlo (MC) technique for the solution of
the transport equation [4.2,4.3]. The MC technique uses random
determination of the interaction parameters as defined by the
governing equations. A sufficiently large collection of simulated
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particles should give a statistically wvalid average which is
representative of actual behavior. TRIPOS is distinguished from
other ion transport codes by its use of the power-law approximation
to the Thomas-Fermi potential in the region between high ion energy
(pure Coulombic interaction) and low ion energy (represented by a
Born-Mayer interaction potential), by its use of a number of variance
reduction techniques, and its extension to applications such as
surface sputtering.

Details of the calcu;atior1 of individual scattering
probabilities and scattering angles are given in more detail by
Martin and Ghoniem in references [4.4] and [4.22]. The Monte Carlo
approach is used for both generation and transport of these high-
energy secondary electrons. The basic MC scheme is as follows. One
random number is chosen to represent the energy transfer to the SE
according te equation (4.6), wﬁile another gives the position of SE
generation along the ion path. The path length of the SE between

subsequent collisions is given by [4.13]:
A== deor In(é) = - M;H 1 e (4.23)

with Ai and Atdt - the individual and total mean-free paths,
respectively, and £ a random number between 0 and 1. The choice of
interaction i is determined by their relative probabilities, using
another random number. Most energy loss and scattering angle
determinations also employ random numbers.

The rate of energy loss by energetic ions to electroms is given

by the Bethe-Bloch equation [equation (4.1)]. The energy transfer
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mechanism from an ion to electrons is represented by the Rutherford
cross section of equation (4.6), with the probability of energy
transfer inversely proportional to the square of the amou.:mt of
kinetic energy transferred to the secondary electrons. Figure 4.2
shows that most SEs receive lower kinetic energies with a small but
significant fraction receiving energies of a few keV. To evaluate
the distances traveled by the high energy fraction, an arbitrary
cutoff energy T, is used to separate the secondary electrons into two
groups: those receiving kinetic energies of magnitude greater than Te
and those with energies less than Te. T, is typically chosen to be

0.5 to 1.0 keV. Energy transfers greater than T, are viewed ag
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Figure 4.2: Relative cross section for energy transfer.
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discrete energy transfers to electrons. These SEs can dissipate
their energy far from the ion path. Energy transfers less than T,
are considered to represent continuous energy transfer, localized to
e-h pairs close to the ion path.

The Bethe-Bloch theory accurately accounts for the transport of
electrons with kinetic energies above 10 keV. TRIPOS-E contains a
subroutine for those few SEs with energies above 10 keV, similar to
the Bethe-Bloch formulation for ions of equation (4.1); a continuous
energy-loss mechanism to the bulk electrons between elastic
scatterings 1is assumed. At lower energies,  better results are
obtained using - individual interaction mechanisms rather than a
continuous energy-loss process. In the keV regime of SEs, four
mechanisms must be considered: elastic Rutherford scattering and the
inelastic interactions of core electron ionization, plasmon
generation, and e-h pair generation. These slowing-down mechanisms
are shown in the flowchart of Figure 4.1,

An additional routine is included for secondary electrons with
energies above 10 keV, similar to A continuous energy-loss mechanism
to the bulk electrons between elastic scatterings is assumed.

Use of T, allows the Bethe-Bloch equation [equation (4.1)] to be

modified as follows:

Thax { Thax Teut
Se = G ].Og = C 108 . ]
Thmin | Teut Thin
(4.24)
or
Tmax Tcut
5. = C log + C log .
Teut | Tmin
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where C is the collection of constants in equation (4.1). TRIPOS
calculates S; for the ion from one scattering event to the next.
This equation gives the relative contributions of each energy regime
to the electronic stopping of the ion.

The probability distribution function (pdf) for kinetic energy
transfer to electrons is given by equation (4.6) and Figure 4.2.
Integration between Ty,, and T, gives the cumulative distribution
function (cdf):

Thax ° Teut 1 1
cdf = - - , (4.25)

Tmax - Tcu Tcut T

where T is the actual kinetic energy transferred to the electron.
Curves of the cdf are shown in Figure 4.3 for a typical krypton-
silicon interaction for different values of Teut. By choosing a
random number between zero and one and equating it with the cdf, the
coxresponding energy transfer is calculated directly. Another random
number is generated to represent the position of secondary-electron
generation along the ion path between successive nuclear collisions.
The kinetic emergy of the generated electron is compared to the
magnitude of the discrete component of the electronic energy loss (to
secondary electrons) between the successive nuclear scatterings.
This comparison gives the relative weight of each electron (i.e. the

discrete energy component divided by the electron energy):

weight — AEg/Eq.; . | (4.26)
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If this weight is less than 1.0, the discrete component of electronic
energy loss between the two scatterings 1is mnot sufficient for
secondary-electron generation, and this electron is discarded. If
sufficient discrete energy exists for generation of additional
electrons, they are created based on the conservation of discrete
energy transfer. A flowchart for SE creation within the ion
transport code is given in Figure 4.4.

After creation of the electrons, each one moves according to an
electron transport scheme similar to that proposed by Fitting et al.
[4.1]. The routine of Fitting et al. was implemented with
alterations in path-length and inelastic mean-free path
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determinations. To determine the path length between electron

interactions, Fitting et al. propose the following scheme:

As As As
—— | =— | — | no interaection . (4.27)
Aeﬂ Ac .AD '

0- Ri o1

where the random number Ri determines which interaction of the
energetic electron, if any, occurs. The path length between

~ interactions, As, is taken to be:
As = 0.7 « Agoe = 0.7(z A;DH)1 (4.28)

For each electron traversing a path length As, this approach results
in a 70% probability of collision. We use the more traditional Monte
Carlo approach is the use of a random number determination for both
path length and interaction mechanism. The path length is given by

[4.13]:
A= Aot () = -z A;L) L mee) (4.29)

with { some random number between 0 and 1. The type of interaction i

is determined from:

(4.30)
where Pg = 0, Py = Agop/Aegs Py = ‘ot 3 + AsD), and p3 -
Atot(A;% + Aﬁl + Aél) = 1. This scheme is _computationally more
efficient by having a collision at the end of each path length. It

was found to give results for electron range as a function of energy
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similar to those of the scheme of Fitting et al. This random number
scheme was therefore integrated into the present modeling effort.

For each interactioﬁ, both the energy lost by the electrdn and
its polar scattering angle aj must be determined. Elastic scattering
results in no loss of kinetic energy; the angle of scattering is
determined by another random number, €ap [4.1]:

2 ag £eyp

- -1{q .
aeﬂ cos 1 - (4.31)
1 + ag - Eeﬂ

Core ionizations involve an energy loss of 100 eV and an angle of
scattering given by equation (4.18).

Dielectric energy loss and scattering angle determinations are
more involved. The approach of Fitting et al. is incorporated here.
The magnitude of the dielectric energy loss is represented by the
dielectric loss fungtion, which for silicon is given in Figure 4.5
[4.247. A random number gives the dielectric energy loss AE by
application_of the following equation:

AR,
Im{-1/¢) dE
0

Rp = , 4,32
D = S00ev (4.32)

Im(-1/¢) dE
0

where the denominator represents the area under the curve in Figure
4.5. This integrated area was obtained as a function of AE, and a

fit of this data allowed use of the random number scheme.
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Figure 4.5: Dielectric loss function for silicon [4.24].

After AE is evaluated for each dielectric interaction, the
dielectric scattering angle is obtained. A random number can be
related to the dielectric scattering angle a, by [4.1]:

E + E' - 2(EE')O'5 cos a
in

E + E' - 2(EE")0.5
R, = : (4.33)
E+ E' - 2(EE")?:5 cos o
£
An
E + E' - 2(EE")0-5

where E’ is the energy of the electron after collision (equal to

E - AE) and e 1s a cutoff angle limited by the maximum wave vector:
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2.2
2E - AE - (h%q2 /2m )
cos ap = , {4.34)
2E[1 - (AE/E)]Q-3

with hzqiax/Zme = 20 eV, The cutoff angle ap is evaluated from
equation (4.34). @, is finally evaluated as:
E + E

cosa, = (1-B)+B , (4.35)

where B is given by:

E+ E' - 2(EE')0'5 cos a.
B = . (4.36)
E + E’ - 2(EE’)9-3

The above scattering angles represent deviations from the original
trajectory of the electron. The azimuthal scattering angle is also
determined randomly between 0 and 2r.

Fitting et al. state that equation (4.19) is largely material
independent. Ashley and Tung [4.25] obtained material-specific
equations for inelastic mean-free paths by analyzing experimental

data. For silicon, they report the following:

Ain = 0.200 E0.665 200 < E < 400 eV
Xin = 0.108 g0-768 400 < E < 2000 eV (4.37)
Ain = 0.0611 E0-843 9000 < E < 10000 ev |

with the mean-free path X given in A and the energy E in eV, We
found the results of Ashley et al. to give electron ranges in better

agreement with an empirical range formula than those of Fitting et
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al. A comparison between equation (4.19) of Fitting et al. for total
mean-free path as a function of energy was compared to calculations
by Akkerman et al. [4.23] and Ashley et al. [4.25] in Figure 4.5. To
test the validity of the two mean-free path formulas, the routine of
Fitting et al. was used to model electron Penetration at a surface
with normal angle of incidence, and the mean range of all mnon-
backscattered electrons was compared to an empirical formula for mean

. projected range of electrons in silicon as a function of energy given

by [4.26]:
7000 , . : ]
— eXxperimental mean range [4.26) y
6000 - __ Fitting's original routine [4.1] ,.-/

o

-+ this work /
5000 % .

.
=
N’
T
> 4000 - RO
St ' -
@ 3000 | -~ ;
Z
< 2000 |
= 1000 | ]
0 1
0 8 10

ELECTRON ENERGY (keV)

Figure 4.6: Comparison of electron mean-range formulations in
silicon.
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R - 180 gl-54 (4.38)

with R given in A and E in keV. Figure 4.6 shows that the original
routine of Fitting et al. gives mean ranges significantly lower than
those determined experimentally. Equation (4.37) of Ashley et al.
was then incorporated into the routine, and the range results give
significantly better agreement (also Figure 4.6). Because of this,
we used the equations of Ashley et al. in TRIPOS-E,

Different energy minima at which tracking of the electron was
halted were compared. Because a minimum of 200 eV gives better
agreement with equation (4.38) than lower energies, this minimum
energy value is used. This choice also adheres to the lower limit of

validity of equation (4.37).
4.4 Results
4.4.1 Secondary Electron Distributions

Four different incident high-energy ions of current interest are
studied: 100 MeV proton, 180 MeV argon, 270 MeV krypton, and 1 GeV
iron. Figure 4.7 shows typical tracks for the first three ions,
where the endpoint of each generated secondary electron (i.e., the
point where the kinetic energy falls below 200 eV) is plotted with
Tespect to the ion path. Changes in the direction of the ion path
because of collisions are mnot shown; a straight line path is

simulated to better show the radial distribution.
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Figure 4.7:
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Figure 4.7: Two-dimensional profile of secondary electron ranges in
silicon as a function of track depth for (a) 100 MeV proton, (b) 180
MeV argon, and (c) 270 MeV krypton ions.

The minimum energy of generated SEs is assumed to be 1 keV. As
the ion loses energy it reaches a point toward the end of its track
where it can no longer generate 1 keV secondaries. This point is
particularly evident for the heavier ions. This phenomenon is in
agreement with equation (4.2), which is used as the basis for this
binary collision model of ion-electron collision and resultant
secondary-electron generation.

The SEs generated by light ions have a higher average energy at
creation than those from heavy ions and tend to travel further from
the track, This fact is representative of better energy coupling
between electrons and light ions, as expected from equation (4.2),
For heavier ions, the initial energy of the secondaries at generatiom
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decreases as the ion loses energy, resulting in a shorter range for
the electrons generated further along the track. This result is
apparent in the funnel-shaped tracks of Figures 4.7(b) and 4.7(c).

An evaluation was made of the average time spent bj the
electrons within each track between generation and reduction of
energy below 200 eV, The time elapsed between interactions was
calculated and summed for the total slowing-down time by knowing the
distance between interactions and the kinetic energy of the electron.
For all three types of ions, the average time is on the order of
10-14 s, indicating very rapid track formation. The range of a 200
eV electron in silicon is estimated to be 69 A [4.27); with this
short range and the randomized direction of electron motion, further

slowing down will not alter track profiles.
4.4.2 Electron-Hole Pair Distributions

Each secondéry electron undergoes many inelastic collisions
between generation and thermalization. With high initial energies,
they can carry a significant portion of the ion;s deposited energy
far from the immediate vicinity of the track. To evaluate this
energy deposition radially from the track, a series of concentric
zones are set up around the track and energy losses by inelastic
collisions within each zone are tabulated. These losses are
considered to be deposited locally, and the radial e-h pair densities
can be obtained by dividing the total energy deposition within each
zone by the energy required to produce an e-h pair (i.é. 3.6 eV in
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silicon). Once the radial distributions of e-h pairs are obtained,
these results can be fit to an equation to express the distribution
in a convenient form. As some track widths change with depth into
the medium, several positions along the track are evaluated iﬁ terms
of the energy deposition within a slice of the silicon material (e.g.
a l-pm-thick slice perpendicular to the direection of ion
penetration).

Results are shown in Figure 4.8 for 180 MeV argon, 270 MeV
kryﬁton, and 1 GeV iron ions. An exponential tail is apparent for
the charge distribution away from'the central core of the ion path,

suggestive of penetration by the high-energy SEs. The narrowing of
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Figure 4.8: Radial volumetric charge density in silicon due to high-
energy secondary electrons using Tour = 1000 eV for (a) 270 MeV
krypton, (b) 180 MeV argon, and (c) 1 GeV iron ions.
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the charge-density profiles in Figure &4.8(a) for the krypton ion at
increasing depth reflects the reduced probability of generation of
secondaries above 1 keV as the ion loses energy. Figure 4,.8(b) does
not reflect this behavior as the argon ion travels significantly
farther before losing a comparable amount of energy. Figure 4.8(c)
shows significant energy deposition out to 1 #m radius for a high-
energy heavy ion that might be encountered in space. A cutoff energy
of 1 keV for secondary generation is used for these figures.

Charge generation arising only from the secondary electrons is
reflected in Figure 4.8. The low-energy transfer to electrons below
the cutoff energy must also be accounted for in a total charge-
density profile. With a cutoff energy of 1 keV, these electrons

would be expected to deposit their energy within a 200 A core around
the ion path, in agreement with equation (4.38). For this
deposition, a Gaussian profile can be postulated similar to that of
equation (3.2) which can also account for the non-exponential
behavior of Figure 4.8 at small values of radial distance. Combining
the Gaussian and exponential components in an expression for charge-

density profile gives:

1 2
n(r) = G — [exp(-r2/bT) + £ exp(-r/by)] , (4.39)
T
where C is some constant, bj and by are analogous to track widths for
the Gaussian and exponential regions, respectively [as in equation
(3.2)], € is a correlation factor between the two components, and the
1/r dependency reflects the cylindrical geometry. Equation (4.39)
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can be integrated over r from zero to infinity to obtain the total
charge deposition, which in turn provides an expression for the

constant C and gives:

Ny

n3/2 by + 2xéby

rn(r) = lexp(-r?/b12) + ¢ exp(-x/bp)] , (4.40)
where Nﬁ is the total charge deposition along a unit path length of
the ion. Figure 4.9(a) is a conversion of Figure 4.8(a) to a graph
of In[rn(r)] vs r, in which the exponential tail is still apparent.
Note that the non-Gaussian portion of equation (4.40) can be
expressed in the form:

NEE r

In{rp(r)] = iIn - — . (4.41)
x3/2 by + 2xéby by

The slope along the linear portion of Figure 4.9(a) provides a value

for bs, and extrapolation of the 1linear portion to r 0 and

I

comparison with.equation (4.41) gives an expression for ¢ = £(b1).
The Gaussian component reflected by b1 must account for the curved
region of Figure 4.9(a) at small values of r plus an additional
enhancement within that region due to the low energy transfers.
Equation (4.40) can be converted into a form dependent only on r and
b1. This expression should give good agreement throughout the linear
portion of Figure 4.9(a). Thus, a least-squares comparison of this
equation to the data throughout the linear regime can provide the
"best" value of by while also aécounting for all low-energy transfers
within the assumed Gaussian regime. Once bp is determined, a value
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for the parameter £ is obtained directly from the expression ¢ =
£€(b1). Figure 4.9(b) shows the resulting analytical curve o_btained
from Figure 4.9(a).

Results for the radial distribution of e-h pairs can now be fit

to the above equations to express the distribution in a convenient

form. Given the total e-h pair generation within a region and the.

excess carrier profiles resulting from the high-energy secondary

electrons as in Figure 4.8, the parameters bl, b and £ can be

2!
evaluated to give an analytical expression for the e-h pair profiles
at different depths of peﬁetration {4.4]. Figure 4.10 shows the

profiles given by the analytical expressions at different depths

corresponding to Figure 4.8 for krypton. The higher density core
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Figure 4.10: Radial volumetric charge-density profiles as a function
of depth for 270 MeV krypton ion, given by the analytical formula,
equation (4.39).
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contains all low-energy transfers. Although peak densities exceed
1022 cm“3, these core concentrations quickly decline due to Auger
recombination of e-h pairs within the time frame of initial 6harge
collection. Simulations of charge collection during SEUs show the.
initial curtrent pulse to occur between 10 and 100 ps after the ion
passes [4.28]. Within this time frame densities will decline to
values on the order of 1020 cm‘3, a value in agreement with peak e-h
pair concentrations generated during laser annealing of silicon
[4.29].

To evaluate the effect of the choice of cutoff energy on the
values of these parameters, several analyses are performed using
cutoff energies ranging from 200 eV to 2 keV. Results for b1 and by
for 270 MeV krypton and 180 MeV argon are plotted in Figure 4.11(a)
and 4.11(b), respectively. For krypton, by extrapolates to about 800
A for a depth in silicon of 5 um and drops off rapidly as the depth
of penetration increases. For argon, by extrapolates to
approximately 1000 A. Both ions give similar values for by:
approximately 300 A for krypton and 400 A for argon. Values for ¢
tange between 0.06 and 0.16 for both ions. These results are listed
in Table 4.1,

In general, extrapolation of track parameters as a function of
Tc indicated lower values of To to give more consistent results; a
value of 500 eV for Tc was used in most calculations. Results for bl
and b2 for 270 MeV krypton and 180 MeV argon at greater depths are

listed in Table 4.2.
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Table 4.1. Analytical track parameters for different cutoff energies

270 MeV Krypton

5 um depth 10 pym depth
Te (eV)  b(a)  by(a) ¢ bL(A)  ba(a) ¢
500 265 639 .0695 225 437 .0874
1000 295 446 .0622 225 276 .104
1500 190 314 .135 175 248 .158
180 MeV Argon
200 380 1037 .0879 310 872 .0822
500 305 919 .0732 430 956 .0671
1000 355 850 .0606 365 777 .0643
2000 290 509 .123 280 612 .109
Table 4.2. Analytical track parameters at several depths
270 MeV Krypton 180 MeV Argon
depth (pm)  by(A)  by(A) ¢ b1(A)  by(A) ¢
5 246 483 0.0462 384 893 0.0342
10 262 359 0.0345 325 909 0.0622
15 146 205 0.0443 268 741 0.0596
20 128 149 0.0140 232 583 0.0661
25 64 77 0.0074 200 404 0.0644
30 -- -- -- 115 222 0.0913
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4.5 Conclusions

Results indicate an exponential charge generation prbfile
extending hundreds of nanometers from the ion path. Such a profile
has been postulated for radiolysis in liquids [4.30], but not for
charge tracks in semiconductors. Our results show the radial
distribution of charge in the track is neither constant nor Gaussian
as used-in simulations, but agrees well with an exponential decay
typical of high-energy SE penetration. Without consideration of
these SEs, the large track sizes and long exponential profiles would
not be created.

The radial distance over which the excess charge carrier
concentrations remain above background dopant levels (typically 1016
cm'3) is important for amalysis of transient behavior. This distance
was found to exceed 0.25 um for 270 MeV krypton, 0.33 pm for 180 MeV
argon, and 0.5 gm for 1 GeV iron. These values are greater than the
previously mentioned assumptions for track width [4.31,4.32].
Although tracks of 1 um radius have been postulated due to diffusion
processes, the time frame for this is believed to be on the order of
500 ps [4.32]. Qur simulation has found average SE slowing-down
times on the order of 10-1% s, allowing for creation of larger
initial tracks than has previously been thought.

Different results for the radial extent of the tracks of cosmic
iron and those arising from cyclotron simulations also raise issues
relating to the accuracy of cyclotron simulation of cosmic damage.
Charge tracks generated by high-energy ions such as argon and krypton
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are in general narrower than typical cosmic tracks. In addition, the
cyclotron particle track profiles are attenuated faster and are less
uniform than the cosmic particles., For typical device dimensions
these differences may make accurate quantitative evaluations
difficult for cyclotron simulation of cosmiec phenomena.

Parameters have been evaluated to provide analytical expressions
for the charge-density profiles along heavy ion tracks. These
expressions provide much more detail than previous assumptions and
will be useful as initial conditions for future modeling of transient
charge transport. As an example, charge track profiles obtained from
TRIPOS-E have been coupled with a PISCES code device analysis of the

probability of double-bit upsets in NMOS SRAMs [4.33].
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Chapter 5

TRANSPORT OF ELECTRON-HOLE PAIRS

5.1 Introduction to Semiconductor Device Modeling

Semiconductor device simulation is a well-studied field, and a
number of comprehensive references are available as background (e.g.,
references [5.1-5.4]. The differential equations governing
semiconductor device behavior are Poisson’s equation and the electron

and hole continuity equations:

VeeV¢ = —q(p —n + N¥ = N°) | (5.1)
d a

in 1

— ==V«J_ +-(G—-R) , (5.2)

at g :

a 1

LY i + (G -R) , : (5.3

dat q P

Plus the related current density equations:

- - -

Jn = qnynE + anVn , {5.4)
- = -

J = E—qD Vp , (5.5)
P qpﬁp q P P

in which ¢ is the material permittivity, ¢ the potential, n and p the
electron and hole densities, Ng and N; the ionized donor and acceptor
densities, g the electronic charge, jn and Ep the electron and hole

Curtent densities, (G — R) the net generation/recombination rate, u

the mobility, D the diffusivity, and E the electric field. Coupling
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petween these equations typically requires either the Newton-Raphson
iteration scheme for simultaneous solution of ¢, n, and P, or an
iterative technique in which Poisson's equation and the continuity
equations are alternatively solved until the desired accuracy is
obtained for each time step.

When the governing equations are strongly coupled (e. g., in
transient simulations), the Newton-Raphson method is typically
favored because of its quadratic rate of convergence, although at a
cost of large matrix inversions. With M the number of computational
nodes, the governing matrix is nonsymmetric of size 3M % 3M, thus
requiring an order of magnitude more storage than a simple solution
of the potential. = Alternatively, an iterative solution can be
employed in which Poisson's equation is solved assuming known quasi-
Fermi levels (using an M x M symmetric matrix), these results used to
solve the continuity equations (also M x M matrices), and the process
repeated for each time step until the desired accuracy is obtained.
This approach requires less computer memory, but the slow rate of
convergence becomes a problem when the governing equations . are

strongly coupled [5.3].

3.2 Introduction to the Hybrid Finite Element/Particle Simulation

Method

Particle simulation is a technique originally developed for
Plasma physics simulations, with one "superparticle” representing
Bany individual particles and transported as if it were an individual
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particle [5.5]. Application of particle simulation (PS) methods to
semiconductor devices was reported by Hockney, Warriner and Reiser in
1974 [5.6]. Their approach was an extension of previous simulations
of plasmas, in which the entire collection of charged particles
within the plasma is represented by a computationally reasonable
nuwber of superparticles, and these superparticles transported over
each time step using a method appropriate to the material medium and
the device conditions. Use of PS techniques is attractive because of
the convenience with which Monte Carlo transport methods can be
implemented when appropriate.

The use of particle methods to represent the current continuity
equations allows decoupling of these equations from Poisson's
equation, permitting consecutive evaluation of the particle-pushing
and potential solution steps at each time step. This decoupling
permits significant reduction in matrix solution and storage
requirements, with only the solution to Poisson’'s equation requiring
matrix evaluations. In addition, PS transport of the superparticles
makes the non-equilibrium transport problem more amenable to accurate
treatment than do the traditional current continuity equations. This
approach allows accurate treatment of transient device conditions if
the time step and mesh sizes used are appropriately determined for
convergence, and the mobility accurately approximates the scattering
mechanisms involved.

Our approach merges these PS techniques with a finite element
(FE} solution of Poisson’s equation. To avoid discontinuities of
electric field across interelement boundaries, we have used quadratic
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interpolation of potential and density rather than the linear

interpolation typically used in FE device analyses. To facilitate

three-dimensional (3-D) analyses of charge collection from ion
tracks, we have taken advantage of the axisymmetric track geometry by
using an axisymmetric FE formulation for the solution of Poisson's
equation. The axisymmetric form provides realistic 3-dimensional
results with reasonable (2-D) demands on computer resources.

We chose the FE method for solving Poisson’s equation for
several reasons. The FE method has convenient similarities with PS
methods, such as the use of the same shape functions for
interpolation of potential from the mesh nodes across the triangular
elements as are used in the particle-to-mesh charge weighting and
mesh-to-particle force interpolations required by particle methods.
Evaluation of the local shape functions at the particle’s position
also provides a convenient means of locating the particle within
specific elements after the particle-pushing step. FE meshes also
provide more flexibility for irregularly-shaped device geometries and
nonuniform meshes.

Although linear interpolation of potential across a triangular
.element is much simplef than quadratic interpolation (i.e., requiring
three nodes per element vs six), the resulting discontinuities in ;he
force on particles crossing interelement boundaries generates
increased computational noise in the system. To avoid this, we use
quadratic interpolation to Vmaintain continuity of forcé across

element boundaries. Although more complicated, such a formulation
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permits larger element sizes for similar accuracy compared with the

linear interpolation.

After calculation of the nodal potentials, the particles are

advanced to new positions. One of two approaches can be followed for
particle motion, depending on the transport regime (i.e., linear or
nonlinear, as determined by the local field strength and carrier
energy). In the linear regime, the static-mobility diffusion
approximation is convenient; i.e., particle motion is composed of a
drift component induced by the local field and a random component
resulting from scattering. In the mnonlinear regime, a full MC
approach can randomly select scattering mechanisms and recompute the
wave vector after each scattering event. We use the simpler drift-
diffusion model of carrier transport as a good approximation for
carrier transport in silicon, as hot electron effects are much less
significant in silicon as compared with, e.g., gallium arsenide.
After each time step, the potential is recalculated. The sequence of
calculations progresses from TRIPOS (ion track) to TRIPOS-E (high
energy e-h pair spatial and energy distribution) to FE/PS (non-

equilibrium transport).
3.3 The Finite Element Solution to Poisson’s Equation
3.3.1 The Finite Element Formulation
FE methods have been used extensively for structural mechanics,

and several good references are available [5.7,5.8,5.9]. The use of
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FE methods for device simulation has become well established after

its introduction by Hachtel et al. in 1974 [5.10] and popularization

by Barnes and Lomax [5.11,5.12]. More recently entire device

modeling workshops have been devoted to this method {5.131.

Although the use of FE codes for semiconductor device simulation
is well established, only linear interpolation of potential across
the elements has been reported. Higher-order interpolation, although
more accurate, has not been pursued due to greater complexity in
formulation and coding. Although 1linear interpolation permits
continuous variation of potential across interelement boundaries, the
resulting electric field is constant across an element and
discontinuous across the boundaries. With quadratic interpolation of
potential, the electric field varies linearly écross elements and

maintains continuity across the boundaries, allowing use of a coarser

grid, reducing computational overhead, and reducing computational -

noise which can arise from the discontinucus electric fields.

The computational demands of a three-dimensional simulation of
charge collection from an ion track are prohibitive. Most
simulations have used 2-D Cartesian geometries. An ion path which
perpendicularly intersects the center of a p-n junction is amenable
to a 3-D simulation in axisymmetric geometry (r-z coordinates). By
superimposing triangular elements onto a 2-D slice of the device,
each element represents a 3-D triangular ring around the axis of
symmetry of the ion track. We use triangular elements rather than
tectangular elements because they more easily approximate irregular
boundary regions and interfaces.
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Although axisymmetric FE codes for the solution of Poisson’s

" equation are common [5.8], those using higher-order interpolation arg-

uncommon, A higher-order FE code for the solution of axisymmetric-

field problems has been reported, applicable for Laplace’s,
Poisson’s, and Helmholtz's equations [5.14,5.15]. This code can
provide up to fourth order polynomial interpolation, but is reported
to be limited to problems with matrix size of approximately 100 by
100. Realistic semiconductor device simulation typically requires
the larger matrices which result from thousands of grid points. Our
study also requires a FE code amenable to direct coupling with a PS8
scheme. These two factors encourage the development of an original
axisymmetric FE code wusing quadratic interpolation, rather than
attempting to modify this pre-existing code.

Cur FE formulation is deséribed in detail in reference [5.16].
The FE method approximates the exact solution ¢ to the Poisson

equation by an'interpolating function defined over each element:
$ = N1®p + ... + NyB; (5.6)

with &; the value of the potential at each node i of the element and
Nj the nodal shape functions of magnitude 1 at node i and 0 at all
other nodes [5.8]. The shape functions are defined such that at any

point within the triangle:
TNy =1 . (5.7)

Linear shape functions require only 3 nodes per triangle, but we use
6 nodes per triangle for our quadratic formulation.
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For higher-order interpolating functions (i.e. non-linear shape
functions), the concepts of loeal and global shape functions must be
clarified. For example, consider a simple triangular element with:a
linear interpolating function defined with respect to the three
corner nodes, and consider a local coordinate system defined with
respect to the isolated triangle rather than in terms of r and z
coordinates. The local shape function for node 1 can be defined

relative to a point P inside the triangle as:
L, = AI/A ) ' (5.8)

where A is the area inside the triangle and A, is the region

1

indicated in Figure 5.1. These shape functions Lj can be related to

the global coordinates r and z by:

Li = (ai + bir + ciz)/ZA . (5.9)

Figure 5.1: Area coordinates for linear triangular elements [5.7].
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with the coefficients aj, bj, and c¢i algebraically defined in terms
of the r- and z-coordinates of the corner nodes [5.8].

For a linear interpolating polynomial, the local shape functions
Li and the global shape functions Ni are identical. For a quadratic
interpolating function, the global shape functions Ni for the six
nodes are quadratic in the local shape functions Li’ i.e., of order
L]g-. For the triangle shown in Figure 5.2, Ll’ L2, and L3 are defined
at the corner nodes 1, 2, and 3, and vary linearly across the

triangle, while Nj vary quadratically as in Figure 5.3.

i 2 u

(a} deftnition

(&) shape functions

Figure 5.2: Linear triangular elements in finite element analysis,
showing (a) the element and its nodes, and (b) the linear shape
function for each node [5.17].
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(a) definition
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(b} shape functions

o,
.

Figure 5.3: Quadratic triangular elements in finite element
analysis, showing (a) the element and 1its nodes, and (b) the
quadratic shape function for each node [5.17].
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The Poisson equation for axisymmetric geometyy can be
represented by:
—
div D = p(r,z) , (5.10)
- =+
where D = ¢k = e(— grad ¢) (5.11)
and p(r,2) = —q(p —n + N} - N) (5.12)
Typical FE formulations of Poisson's equation wuse either the

variational or Galerkin approaches (see e.g., references [5.11] and

{[5.18]). 1In the first approach, the governing equation is cast in

the form of a variational principle, while the second begins by
casting the governing equation in terms of a residual. Governing
equations were derived for both approaches, but the Galerkin method
was found to give simpler governing equations (i.e., with lower
powers of the local shape functions) and was thus used in our

formulation [5.16].

In the Galerkin formulation, we define the residual as:
-+
R =4div D — p(r,=z) (5.13)

The Galerkin approach weights the residual by some shape function Nj,

and that product is integrated over the region to be modeled., 1In
axisymmetric cylindrical coordinates the governing equation becomes:
18 a6 a%g
Ny |2 —(r2) + —| &V = — — Ny p(r,z) dV , (5.14)
v ar d 322 v

83




in which we assume an isotropic dielectrie constant. The volume
element dV equals 2axr dr dz. The region is broken up into a

collection of triangular elements.

To evaluate the spatial derivatives in equation (5.14), we note °

that Ny is a function of r and %, while ®{ has a specified value only
at the node i and is zero elsewhere. The &; thus behave as
constants, and the spatial derivatives only act on the shape
functions. With the integral now evaluated over the region of a

single element, equation (5.14) takes the form:

6
[N Ll ale} 3 | » dav. (5.15)
= —(r —) + av| &5 - — = ; plr, . (5.
§ e e R L B R
i=1- "V ve

With six nodal variables &; per triangle, both i and j must take on

values from 1 to 6. This generates the matrix equation for the

element:
[k®] (&) = (£%) , (5.16)

with [{k®] a 6 x 6 symmetric matrix and (&) and {f®) 6-element column
matrices. - The matrix [k®] is traditionally called a stiffness
matrix, and {f®) the loading or force vector.

The elements of the stiffnesé matrix are given by the integral
term on the left-hand side of equation (5.15). This integral term
corresponds to NjV2Ni in cylindrical coordinates, and the first form

of Green'’'s theorem can be used to obtain:
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kij = J Nj VzNi dv = - I 6Nj°$Ni dv + I NjeNi-; ds , (5.17)
ve ve §®

with n the unit vector normal to the surface enclosing the region ve,
We can show that the surface term equals zero for common
semiconductor device modeling boundary conditions (i.e., Dirichlet
boundary conditions with Ohmic contacts, or Neumann boundary
conditions at planes of symmetry or typical semi?onductor/insulator
interfaces) [5.16]. TUsing this result, we convert equation (5.17)
into the form for cylindrical coordinates:

BNj dNg aNj dNy

ki: = + r dr dz , 5.18
ij .|t ar ez az (3.18)
v

in which the minus sign cancels with that in equation (5.15). The
term for r can be expressed in the form of a linear interpolation

with respect to only the three corner nodes:

r = rlLl + r2L2 + r3L3 . (5.19)

For the element of the force vector, p(r,z) must be interpolated from
the same nodes at which the potential is evaluated, analogous to ¢ in
equation (5.6).

The integrals for kij and fi‘ are too involved to evaluate
analytically, so numerical methods of integral evaluation are
employed. We use the technique of Gaussian quadrature [5.8].

Numerical integration is simplified by converting all terms in
equation (5.18) to functions of the local shape functions Ll' L2’ and
L3. Gaussian quadrature is then be applied to local L-space.
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Briefly, we convert the spatial derivatives of equation (5.18) into
the product of the derivatives with respect to Lj and the inverse of
the Jacobian [J]. The products of the spatial derivatives in

equation (5.18) are evaluated in terms of Ll’LZ’ and L3, and

nultiplied by r [equation (5.19)] and the determinant of [J}] to

obtain a function g(Ll’LZ’L3) amenable to Gaussian quadrature:

1 rl-L
=j f £(L,,L,,Ly) |det[J]| dL, dL

0o 2

k..
1]
(5.20)

g

Wi g(Ll,L2 ,I..3) .
i=1

The function g is evaluated at £ specific points with tabulated
values of Lj, té give an exact solution for the interpolation of g
across the triangle. The value of g is multiplied by tabulated
weights, and the process repeated over the £ points and summed to
provide a numerical value for kij'

The elements of the loading vector can be similarly evaluated
using Gaussian quadrature. As these values are evaluated element-by-
element, they are combined into an overall matrix equation. After
the values of kij and fi have been evaluated for each element, these
elemental matrices must be combined into an overall matrix, For
this, we let the values of i and j in kij and fi take on the number
of the node as it is labeled in the overall system, i.e. some number
between 1 and M, where M is the total number of nodes. We then

construct the matrix equation:

K] (&) = (F} , (5.21)
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with [K] an M x M symmetric matrix and {®) and {F} column vectors of

length M. Each element Kij of [K] contains the contributions k.

[ W

i
from any triangle which contains the nodes i and j; the elements F

[t

are constructed in a similar fashion by sumning all terms fi from
those triangles containing the node i. Prior to solution for (&),
any ®; specified by Dirichlet boundary conditions must be imposed on
the system of equation (5.21). That is, any ‘I)i specified .on the
boundary are no longer unknowns and must be imposed on the system,
The matrix is modified by standard approaches [5.8], but remains
symmetric, With all elements of [K] and (F} evaluated, {3} can be
determined wusing whatever matrix solution technique iz most

efficient.

5.3.2 Solution Methods for Systems of Linear Equations

Several good references are available on solution techniques for
systems of algebraic equations (e.g., reference [5.19]).
Applicability of the wvarious techniques was studied in detail in
reference [5.16]. For rectangular devices with simple boundary
conditions, the rapid elliptic solvers such as FFT are very useful,
Development of fast Fourier transform (FFT) solutions to Poisson’s
equation have received increased attention over the past decade for
their speed and convenience. However, these FFT routines have
traditionally been applied to finite difference approximations rather

than our FE approach.
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Other techniques fall either into the category of mesh-
relaxation methods (essentially iterative methods) and matrix methods
which act on the matrix representing the linear equations. The meéh-
relaxation techniques include the Gauss-Seidel, successive
overrelaxation, successive 1line overrelaxation, and alternating
direction implicit schemes. The matrix methods include the Thomas
tridiagonal algorithm (for 1-D), sparse matrix methods (e.g., banded
Gaussian elimination), the conjugate- gradient algorithm, Stone's
strongly implicit procedure, and incomplete Choleski-conjugate
- gradient method.

For our problem, ﬁhe Choleski LU decomposition of the banded
symmetric matrix [K] is efficiently used to solve for $;. We use
IMSL routines LEQLPB for initial inversion of the K-matrix and LUELPB
for subsequent solutions of @i at each ;ime step [5.20]. Although
this method may be more time consuming than some iterative matrix
solution methods, no convergence problems are expected. To minimize
matrix storage requirements and improve efficiency, the nodes are
nunbered such that the bandwidth is kept as small as possible.

Although FFT solutions of Poiéson's equation are very rapid, the
requirement of regularly spaced meshes and the difficulty of treating
irregular device geometries has tended to discourage widespread use
of the FFT method. The presence of internal electrodes also requires
"~ additional computations involving capacitance matrix methods [5.19].
Because FFT methods cannot be formulated in axisymmetric geometry, a
three-dimensional FFT formulation would be required to simulate our
ion track problem, and a 3-D capacitance matrix routine would be
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required for the internal electrodes typical of semiconductor
devices. To our knowledge, only one formulation of a 3-D capacitance
matrix routine has been reported [5.21]. Typical spacings of #he
computational mesh are smaller for FFT routines than thése we have
found practical for our FE Poisson solver, and extension to 3-D
geometry would require significant matrix computations due to the
large number of nodes required. Although Moglestue has recently
reported the use of Hockney’s FFT routines for 3-D simulations "to
analyze semiconductor microcomponents of any geometry", he apparently
has not implemented a capacitance matrix routine which would allow
the simulation of internal electrodes [5.22].

The advantages of using a coarser mesh in true axisymmetric
geometry and the ability teo do future simulations for any irregular
geometry favored our use of FE methods rather than FFT. The easy
availability of packaged linear equation solvers was felt to be
preferable to the major software development required for devéloping
and coupling a 3-D capacitance matrix routine to our PS routine. We
have found that the computer time required by our linear equation
solver in the FE formulation is not a major factor in the overall
cost of running our code. Although an FFT formulation might reduce
this cost, the other inherent disadvantages might not aid in the
general applicability and future development of our numerical method

to simulations of charge tracks and radiation effects in other media.
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5.4 The Particle Simulation Method

5.4.1 Introduction

Application of particle simulation (PS) methods to semiconductor
devices was reported by Hockney, Warriner and Reiser in 1974 [5.6].
Hockney et al. simulated the steady-state operation of GaAs and
silicon FETs and diodes using 12,000 to 30,000 particles. This
simulation was done by using either a full Monte Carlo transport
scheme or the static-mobility diffusion approximation (SMDA) in which
a particle’s motion consists of a drift and a diffusive component., A
ltime step of 5 x 10°1% 5 and a uniform mesh were employed; the
- uniform mesh permits use of fast Fourier transform (FFT) techniques
to solve for the potential profile. Both the potential and force
equations were solved by finite difference schemes. Hockney and
Eastwood [5.19] reviewed this PS/FFT approach to device analysis in
1981.

In 1977 Watriner applied this PS model to simulate GaAs
negative-resistance oscillators and FETs [5.23], with cell sizes of
0.1 and 0.02 um respectively. Also in 1977 Rees et al. applied this
model to simulate a low-temperature FET [5.24).  In 1979 Moglestue
and Beard used the same approach to simulate GaAs FETs [5.25]; they
simulated 10,000 particles with a time step of 5 x 10714 g for
Tecalculation of the field. In 1982 Pone et al. [5.26] did another
analysis of CaAs FETs using particle and SMDA methods; their
numerical approach is similar, although more discussion is presented
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on the relation of carrier relaxation times to the SMDA appfoach and
on the limitations of particle noise (it being concluded that present
computer memories limit modeling to devices with doping less thaﬁ
1017 cm'3). More recent reports of particle models applied to GaAs
FETs [5.27] and MOSFETs [5.28] rely on Hockney et al.’s original
approach [5.6]. Analysis of millimefer-wave IMPATT devices by
Lippens et al. [5.29] again uses the SMDA and PS approaches of
reference [5.6}, with 10,000 particles, a time step of 5 x 10-14 s,
and a cell size of 2 x 1076 cm.

Although PS techniques in device analysis have been refined
since ﬁheir introduction, they do not significantly differ from the
original effort of Hockney et al. [5.6]. Many of the above-mentioned
applications rely on the FFT solutions of Poisson's equation
developed by Hockney et al. Although FFT analysis permits a major
speedup in potential calculations, complex device geometries are more
difficult to simulate and internal electrodes require additional
computations involving capacitance matrix methods [5.19]. The
requirement of regularly spaced meshes and the difficulty of treating
irregular device geometries has tended to discourage widespread use
of the FFT method. Apparently PS methods have not been extended for
use with numerical techniques other than finite difference schemes,

and only majority carrier trans@ort has been simulated.
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5.4.2 Formulation of the Method

Particle-simulation methods typically use a rectangular gfid.
The nearest-grid-point (NGP) and cloud-in-cell (GIC) methods are
commonly used to allocate charge to nearby grid points for potential
field calculations. The NGP scheme assigns the entire charge of a
particle to the nearest grid point, but the amount of inherent
computational noise can be significant as the moving particle’s
charge discontinuously jumps from one grid point to the next.
Instead, CIC allocates the charge of the particle to several nearby
grid points, in effect extending the particle from a point charge to
a cloud of charge {5.30] (Figure 5.4), with the amount of charge
allocated to each neighboring grid point equivalent to the fractional

area of the charge cloud within the cell surrounding that grid point.

Figure 5.4: Cloud-in-cell charge assignment for linear two-
dimensional weighting. Areas are assigned to grid points; i.e., area.
a to grid point A, b to B, etc., with the particle center located as
indicated [5.30].
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With an irregularly shaped triangular mesh, a scheme must be
devised to assign the charge from the particle position to the
surrounding nodes. For this, we can use the same qua@ratic sh#pe
functions that we have previously used to interpolate the nodal
potentials over the element. TFor a point P inside the triangle, the
local shape functions with respect to that point can be defined
identically with equation (5.8). The charge Qi assipgned to node i
from a particle at point P can then be handled analogously to the
interpolation of the potentials at each node over the triangle
[equation (5.6)]. For example, the relationship between Qi and QP

must take on the form:

Q. = Ni QP . (5.22)

Here, we are now interpolating from point P to node 1i. If we
calculate the wvalues of Ll’ L2, and L3 from the position of P within
the triangle, we can calculate the global shape functions Ni and
directly obtain the values of Qi for the six surrounding nodes, for
use in the subsequent solution of Poisson’s equation.

With the charge allocated t& the nodes, Poisson’s equation is
solved for the nodal potentials using the FE Poisson solver. Iﬁ
interpolating the nodal potentials, @i, back to the particle
positions, the electric field at a point is given by:

6
E=-—V4 = } cI:i—'E+

i= i=1

. (5.23)

93




We know the spatial derivatives for each value of i in terms of £he
local shape functions Li’ and have previously calculated the values
of Ll' L2, and L3 for each particle’s position. The global shapg
functions Ni are then caleculated for (rP,;P), and all Njy and Lj are
stored for subsequent caleculations. We can then calculate the values
of the spatial derivatives for each surrounding node, multiply each
by the potential at that point, and sum over all six nodes to obtain
the components of the electric field in the r- and z-directions at
the particle’s position. This value, multiplied by the charge on an

electron, gives the force on the particle due to the electric field.
5.4.3 Particle Tramsport

Hockney et al. [5.6] suggest one of two methods to advance the
position of the particle over a time step. The simpler SMDA method
(drift-diffusion model) considers each increment in particle position
to be composed of two components, one due to the electric-field-
induced drift of electrons (of magnitude pEAt with At the time step)
and the other due to a random diffusional motion [of magnitude
(2DAt)l/2 according to Hockney, although (4DAt)1/2 seems more
reasonable}. This approach assumes the carrier velocities are
instantaneously related to the field by a field-dependent mobility,
as in conventional device simulation codes such as PISCES {5.31) and
MINIMOS [5.32}.

The second.-method. is a complete Monte Carlo (MC) treatment,
where rates of scattering are evaluated for all relevant scattering
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mechanisms. For situations involving hot-electron transport effects,

inter-valley transitions, non-Maxwellian carrier distributions, or
non-local field effects, the SMDA can be an inaccurate approximation.-
The MC approach better accounts for the physics of micrescopic

transport, and a recent modification of PISCES includes the MC method
[5.33]. Expressions for the frequencies of phonon- and ionized-

impurity-assisted intravalley and intervalley scattering in silicon
for both electrons and holes are available {5.34,5.35,5.36].

Treatment of carrier-carrier scattering is not as developed because

of the uncertainty in the distribution function; however, expressions

useful for MC analysis have been obtained using assumptions [5.37].

This scattering mechanism is dominant within the e-h plasma. As

reported by Hockney et al. [5.6] , a major disadvantage of the MC

approach is the use of about ten times the computer time relative to

the SMDA method.

The carrier energy and the local Ffield strength determine
whether the SMDA gives satifactory results or if a MC formulation is
required. The secondary electrons created by the ion remain
energetic within the time frame of the initial computational cycle.
ﬁith high-density e-h plasma relaxation times on the order of 10°16 g
(i.e., the characteristic e-h collision times [5.38]), their
thermalization in the central dense region of the track is a
reasonable assumption. The use of computational time steps on the
order of 0.05 ps suggests the vast majority of the secondary
electrons and core plasma electron-hole pairs will have thermalized
by the beginning of the computational sample. The small fraction of
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energetic secondary electrons remaining at the beginning of the

computational cycle should not introduce significant error in the use

of the SMDA for transport of the thermalized transient charge. iWe
employ the SMDA by using appropriate values of 4 and D as a function
of carrier concentration. If future device applications require MC
transport, our FE/PS formulation is flexible enough that a MC
formulation could be readily introduced into the code. Simulations
could conceivably employ both methods, with particles of different
energies being transported by the method relevant to their energies,
or by different methods in subsequent steps.

Data is available to implement the SMDA, including data for very
high carrier densities within the ion track. Recently the transport
data has been augmented by experiments of carrier generation using
femtosecond laser pulses. Laser pulse measurements have provided
values for ambipolar diffusion coefficients with carrier densities as
high as 1021 ¢cp-3 [5.39]. Dorkel and Leturcq [5.40] have estimated
electron and hole mobilities in silicon under high-injection regimes,
for pn-products as high as 1036 cm‘G; at 300 K the electron mobility
drops from the typical 1430 cmz/V-s to < 200 cmz/V-s under high-
injection conditions.

As we are initially emphasizing silicon device simulations, we
have implemented the SMDA transport method for all particles as a

good approximation. We evaluate the mobility using the calculation

Procedure proposed by Dorkel and Leturcq [5.40]. This procedure can

accurately simulate mobilities for all but the largest track
concentrations. The carrier mobility is calculated as:
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b= by 1.025 — - 0.025 (5.24)
1 + (X/1.68)%"

with p, the lattice mobility, given by:
-~a
P = #y (17300) , (5.25)

in which T is the temperature and By and a are parameters dependent
o
on the type of carrier and the temperature range. In equation (5.24)

X is given by:

1/2
‘- S#L(ul te L)

, (5.26)
”I“ccs

with By the impurity mobility and B the carrier-carrier scattering

mobility, given by:

-1
' ar/? 1 (1 B2 ) B2 (5.27)
H = n + - ’ .
I -
2 x 1017 73/2 5 a1
Bics ~ (np)l/z {ln[l + 8.28 x 10° T4 (mp) ]} . (5.28)

In equation (5.27), Ndop is the net local dopant concentration and A
and B are carrier-dependent parameters. In equation (5.28), n and p
are the electron and hole carrier concentrations. The above
expressions are appropriate for weak electric-field conditions.

Extension to situations involving strong electric fields uses an

approach suggested by Caughey and Thomas [5.41]:
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Fo

b= ’ (5.29)

1+ (B/E)°1MP
in which E is the magnitude of the local electric field, E. is a
carrier-dependent constant, and Mg 1is the result from equation
(5.24). The constants used in equations (5.24) through (5.29) are
given in Table 5.1. The diffusivities D, and Dp are obtained from
equation (5.29) using the Einstein relation. For densities above
1018 cm'3, a mobility expression similar to referenmce {5.41] is uéed.

Minority carrier transport is handled simultaneocusly with the
majority carriers. The np product is used as a measure of the
relative carrier recombination or thermal generation during each time

step, after nodal carrier densities are evaluated and before the

Table 5.1. Constants used in mobility calculations [5.40]

Constant Electrons Holes
T (K) 300 300
b (em? v-1 5-1y 1430 495
a 2.2 2.2
A (em~l v-1 g-1 g-3/2y 4.61 x 1017 1.0 x 1017
B (em™3 K-2) 1.52 x 10l3 6.25 x 1014
Ee (V em 1) 8000 19,500
b 2 1
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golution of Poisson’s equation. The net rate of carrier thermal
generation and recombination is given by the standard expressions for

Shockley-Read-Hall and Auger recombination [5.42]:

R N | -1
G~ R (n:.L np) tIr_(p + n,) + 'rp(n +n.)] "+ c o+ cpp} » (5.30)
with the local carrier lifetimes given by:

-5 _ 15
T =3.95x%x1077/(1 + Wyop / 71100 s, (5.31)

-5, 15
= 352 x 1077/[1 + Mgop / 7-1x10)] s, (5.32)

with n, the intrinsic carrier density and the Auger coefficients

1 32 cm6/s.

ch = 2.8 x ].0-3 cm6/s and cp =9.9 x 10
Carrier recombination must be taken into account after each time
step. Auger recombination quickly reduces peak e-h.plasma densities,
while Shockley-Read-Hall (SEH) recombination must be considered in
lower concentration regimes. After the particle-to-node charge
assignment step, and prior to the solution of Poisson's equation, the
expressions for Auger and SRH recombination will be applied to the
charge densities at each node and this charge reduced by the‘fraction
of charge carriers undergoing recombination within the time step At.
The only boundary conditions used on the particles are those
required by equilibrium conditions at the ohmic contacts. After each
time step, the majority carrier density within the contact boundary
elements is immediately equilibrated to match the doping density, and

the minority carrier density is adjusted to satisfy the thermal

equilibrium condition at the contact:
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n?
1

= np . (5.33)

The complete computational cycle is represented by the flow .

chart of Figure 5.5,

5.5 The Combined Finite Element/Particle Simulation Method

5.5.1 Computational Congsiderations

Not much has been written on the choice of grid spacing and time
step as it applies to the finite element approach to device
simulation. The criteria which are sometimes mentioned appear to
frequently be derived from finite difference stability and accuracy
criteria, or to be based on empirical computational experience. One
such brief discussion of stability and convergence criteria has been

given by Barnes and Lomax [5.12].

Mesh Size

In terms of the mesb spacing, two criteria are given for
numerical stability: the Debye length and the cell Reynolds number.
A mesh spacing on the order of the Debye length is frequently

mentioned as a requirement for meaningful physical results [5.12],
with the Debye length defined as:
1/2

2kTe , (5.33)

Ip =
qudop
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Figure 5.5:
code,

f
'

ﬂ__.___....____

A

SET UP MESH
Y

CREATE INDIGENOUS PARTICLES

y

CALCULATE K (Ko= F)

y
CALCULATE F
K

SOLVE FOR © ( STEADY-STATE)

Y

CREATE TRANSIENT PARTICLES

Y

E - FIELD ON PARTICLES 2

Y

PUSH AND LOCATE PARTICLES

]

CALCULATE SHAPE FUNCTIONS

Y

Q FROM PARTICLES TQO MESH

Y
RECOMBINATION
Y

CALCULATE F, SOLVE FOR @

y

I ves

STOP

Flowchart for the finite element/particle
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with all terms defined as before. for example, a carrier
concentration of 1016 cp-3 requires a grid spacing of about 0.04 um
while a concentration of 1018 cp-3 requires a spacing of about 0.004
pm. Such a criteriom is computationally impossible for large doping
concentrafions. Some finite difference and finite element analfses
have adhered to this criteria. For example, Riemanschneider and Wang
[5.43] chose grid spacings of about half the Debye length for their
FE simulation.‘ However, other FE and FD analyses frequently employ
grid sizes much larger than this criterion, as a matter of
computational necessity. One detailed anaysis of the stability of FD
analyses {5.44] concluded that the mesh size should be less than the
Debye length when significant potential gradients exist over a Debye
1éngth. However, that criterion was violated in orxder to maintain
feasible computational requirements while still obtaining meaningful
physical results. This pragmatic approach seems reasonable for those
cases where the Debye length is too small to be a practical
requirement for grid spacings. This pragmatic approach is in the
spirit of reference [5.29], which deliberately avoided simulation of
heavily doped p* and nt contact regions; with dopant concentrations
in excess of 1019 cm“3, any internal field is rapidly forced to zero
and thus such regions of high carrier concentration can be considered
non-active regions in practice. Kreskovsky and Grubin in their ion
track calculations recently used an average cell size of nearly 0.2
#m with no apparent stability problems [5.457.

Inhomogeneities of charge density and doping will not be felt
beyond one Debye length. Less than one Debye length, charge and
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potential oscillations will be apparent. Although these phenomena
are meaningful for studies of plasma oscillations and properties on
this spatial scale [5.19], this criterion does not appear to be
critical for macroscopic semiconductor analysis. Because of this, we
believe grid sizes less than a Debye length unnecessarily inerease
computational effort without contributing to the overall analysis.

The second criterion for grid spacing arises from finite
difference approximations to the current continuity equations, and
requires that the cell Reynolds number Re must be small enough to
avoid overshoot leading to negative densites [5.127, i.e.:

"

Re =— <2 ' (5.34)

o

with v the carrier velocity, h the computational cell size, and D the
carrier diffusivity, Based on this criteria, cell size for electrons
should be in the range 0.064 to 0.75 pm (depending on their
velocity), and that the cell size for holes is on ﬁhe order of 0.025
pm. A major advantage of particle simulation methods is that
negative densities cannot arise numerically [5.6]. Thus, we believe
our finite element/particle simulation scheme relaxes this criterion
relative to FD formulations.

In conclusion, we need fine grid over strong potential gradients
50 as not to lose the physics and detail of the problem at the most
significant regions of carrier behavior. We also need‘fine grid over
regions of heavy doping, as we have seen perturbations in the
potential profile arise with doping levels approaching 1018 em™3,
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From experience, we have found mesh spacings of 0.20 um or more
acceptable for low doping and low field conditionms. Regions with
strong potential gradients may be handled with mesh spacings of 0.10
to 0.15 um, depending on doping conditions. For an n'-contact with
doping of 1018 cm73, we can largely suppress potential oscillations
within the contact region with a mesh spacing on the order of 0.05
pm, These results suggest that our numerical method permits
significant relaxation of the criteria accepted for finite difference

mesh spacings.

Time Step

Two criteria are suggested for determining the appropriate time
step, involving the dielectric relaxation time and the cell Courant
number. The maximum time step is given as two to three times the
dielectrie relaxation fime, or a spatial density oscillation may
result from the time delay between solving Poisson’s equation and the

continuity equation [5.12]:

€
r o=

- (5.35)
un'Ndop

The dielectric relaxation time can be defined as a time constant
which characterizes the exponential decay with time which any charge
perturbation will exhibit. This criteria is relevant to analyzing
non-equilibria situations, A charge imbalance sets up restoring
forces, and an excessively long time step would not reflect the

exponential decay of the force over that time. Thus carriers could
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be transported further than would be physically accurate, leading to
density and potential oscillations in subsequent time steps. From
this it would be expected that accurate numerical analysis of non-
equilibrium systems requires a time step on the order of the
dielectric relaxation time. However, it may be feasible to relax
this criteria as the system moves toward equilibrium, as Grubin and
Kreskovsky concluded [5.45]; they used time steps of 50 to 100 times
greater than that indicated by this criterion without reporting any
stability limitations.

Another restriction for physically meaningful transient
caleulations is that the time step must be small enough that the
Courant number is less than one, or the particles would jump across

more than one computational cell during the time step At:

c = —= <1 . (5.36)

Assuming the saturation velocity of an electron in silicon and a time
stop of 0.1 ps, a cell size greater than 0.0l gm is required. With
our minimm element sizes several times this value, this criterion
poses no difficulties for us.

Related to the dielectric relaxation time are the momentum and
energy relaxation times. Lippens et al. [5.29] analyze
nonequilibrium transport in silicon devices, and conclude that use of
a mobility relationship such as SMDA 1limits the description of
transient behavior +to time scales greater than the momentum
relaxation time (on the order of 1014 g for high-energy carriers),
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but At should also be less than the energy relaxation time. They
suggest that a time step of 0.05 ps satisfies botﬁ these criteria.
Since other particle simulations (e.g., reference [5.6]) have used
this same value, we typically use this a time step of 0.05 to 0.1 ps
in our simulations. With transient charge collection occurring on
the order of picoseconds, this choice of At requires thousands of
time steps. To reduce the computational time we can increase the
time step in the later stages of the charge collection similar to the

approach of Grubin et al. [5.45],

Particle Number

A typical number of particles used for PS techniques is 10,000,
a number primarily determined by the 1limitation of computer
resources. A trade-off exists between the number of particles and
the number of nodes needed to simulate the semiconductor device. As
an example, we can consider an incident ion with an LET of 12
MeV/(mg/cmz), passing through a 5 x 5 x 5 um® device with a dopant
concentration of 1016 em3.  If we are limited to 10,000 particles,
each would need to initially represent 900 electrons or holes on
average. This charge would be reduced by recombination and/or charge
collection at the comtacts. Qur PS§ technique is flexible in that
equal-charged particles are not required; e.g., fewer particles of
greater chargé can simulate the slow-moving charge carriers in the
core of the e-h plasma. PS5 permits flexibility in reapportioning
charge to the particles in the course of the simulation or in
changing the total number of particles simulated if desired. Because

106




thermal generation can continually increase the number of particleS
being simulated, we have implemented a particle .reformulation
subroutine to periodically combine the particles with little charge
into those nearby particles with more significant amounts of charge.
One rule of thumb is the requirement of several particles per
cell, to smooth out charge fluctuations on the nodes [5.19]. As a
rule, we use at least five particles per element to represent the
majority carriers, and three to five to represent the minority
carriers. Under heavy doping conditions, we may use several times
more particles per element for the majority carriers. For fine mesh
simulations, we have typically used between five and ten thousand
particles to simulate the device behavior, plus several thousand more

to represent the charge track.
5.5.2 Summary of Potential Advantages of the FE/PS Method

The greatest advantage of our FE/PS method is its ability to
handle transient analyses and nonequilibrium conditions. By allowing
a device to evolve to steady state and then introducing a
perturbation, e.g., an ion track, we can watch the evolution of the
device profiles with time as it returns to equilibrium. The details
and physics of transient device behavior can be studied in a way
impossible for steady-state device simulation codes to duplicate,
The number of particles can be increased in regions of interest to
obtain greater accuracy in the analysis of device transients.
However, for equilibrium conditions, our FE/PS method may not be
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preferred because of the computational time required to let a device
evolve to steady state. For these conditions a conventional code ig
most efficient, |

Decoupling Poisson’s equation from the current continuity
equations reduces computational requirements of the matrix solutions.
For highly perturbed conditions, this decoupling may simplify the
golution where more conventional- solution methods might have
difficulty achieving convergence.

The formulation of the code introduces a number of advantages
over previous FE and PS methods in device simulation. The quadratic
formulation is designed to provide greater accuracy of potential
field evaluations than linear formulations, permitting the use of
larger elements and reducing computational requirements. Contiﬁuity
of electric field across element boundaries is also maintained,
reducing computational noise. The triangular elements allow
simulation of irregular geometries, unlike the FFT solutions of
potential traditionally used in P§ applications. Our formulation can
simulate the transport of both majority and minority carriers as well
as recombiﬁation and thermal generation effects, making it more
generally applicable to a wider range of device conditions than other
PS codes.

The axisymmetric formulation is ideal for simulations involving
charge tracks. Limitations arise, however, for certain device
Structures which cannot be realistically simulated without a full 3-D

Tepresentation.
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Chapter 6

ASSESSMENT OF THE FINITE ELEMENT/PARTICLE SIMULATION METHOD

6.1 Introduction

To ascertain the validity of the finite element/particle
simulation method, comparison with known solutions of device physics
equations 1s necessary. Approximate solutions for one-dimensional
representations of p-n diodes have been worked out for some time
[6.1]. Since then, significant effort has gone into the development
of efficient numerical techniques for the accurate solution of device
equaions in a variety of applications. It is mnot our intent to
develop the FE/PS method as a general substitute for other numerical
schemes, but rather as a specialized method for the simulation of
fast transients, as in the case of single event upsets. However, in
this chapter, we demonstrate that the results obtained from the FE/PS
method are in good agreement with other solutions to device

equations.

6.2 One-Dimensional Comparison with Analytical Potential Profiles

The simplest analytical result for the potential profile is that
based on the depletion approximation for the open-circuit p-n
Junction [6.1]. The basis of the depletion approximation is that any
applied or induced electric field removes all free carriers from the
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depletion zone, with the only remaining space charge due to
uncompensated donor and acceptor ions. This approximation allows

determination of an analytical solution to Poisson’s equation for the

potential;:
¢ = EHE (d + x)2 for -d <2 <0 ,
2e a a-—
(6.1)
= ¢0 - ggg (dd -x)2 for 0 <£x< dd ;

with Na and Nd the acceptor and donor doping densities respectively,
q the charge on the electron, ¢ the dielectric constant, da and dd
the spatial extent of the depletion zone from the junction into

acceptor and donor doping regions respectively, and ¢D the built-in

potential at the junction given by:

, (6.2)

with nj the intrinsic carrier concentration. The total width of the

depletion zone is given by:

2¢ 1/2

o] -1 -1
W= T (Na+Nd) =da+<:1d . (6.3)

This open-circuit condition for a silicon device with a doping of

+ 1015 op-3 gives the values W = 1.224 um and ¢° = 0.5743 V.
One-dimensional (1-D) comparative computations were performed on

an open-circuit silicon diode with 1015 em”3 doping density on each

side of an abrupt junction (i.e., no doping variation in the radial
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direction). The device geometry is represented by Figure 6.1. For
code input, the doping concentration at the junction is modeled ag a
step function from positive to negative doping densities of magnitude
1015 e 3. The depletion zone was allowed to evolve to steady state.
The resulting potential and electric-field profiles were compared to
the analytical solutions for the abrupt p-n junction and found to be
in very good agreement. Figure 6.2 compares the results of our

quadratic code with the analytical solution. Very good agreement was

obtained for a grid spacing of 0.15 um between the nodes, with a

——"m——-——u-—-——._-—.

—
N

o [ LY S

Figure 6.1: Axisymmetric 1-D device geometry showing geometry of the
open-circuit silicon diode (V = 0 volts, Ly = 2.5 ym, Ly = four times
the element size).
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maximum deviation from the analytical potential of about 0.002 V.

Even a large mesh spacing of 0.3 um gives a good approximation, with

a maximum error on the order of (.01 V. Results obtained for a 0.15
pm grid spacing using linear shape functions is also plotted in

Figure 6.2 for comparison, and the greater error resulting from
~ -

E

linear interpolation and large grid spacings is apparent. The
results provided by quadratic interpolation are shown plotted in r-z
space in Figure 6.3. Figure 6.3(a) shows the potential profile over
a 5 pm device with the p-n junction at the mid-point. Numerical

variation of the potential in the r-direction is insignificant.

i
|
i
|
[
|
|
i

Figure 6.3(b) shows the potential profile only over the depletion

0-6 ¥ T i
~ 05}
2
o 0.41¢
2
5 03¢
< |
%-Z- 0.2 — analytical result '
}L_'_" 0.1 8 0.30 um grid (quodr.) |
S 00 8 0.13 um grid (quadr.)
' © 0.15 um grid (linear)
—-0.1

0.0 0.5 1.0 1.5 2.0 2.5
DISTANCE ACROSS JUNCTION (um)

Figure 6.2: Comparison of calculated potential profiles to
analytical results. Element size is twice the grid size.
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region, approximately 1.2 um in length. The element size for Figure
6.3(a) is about 0.31 gm and for Figure 6.3(b) 0.08 um.

Figure 6.4 shows the effect of element size on the error in the
electric field calculation, for a device twice the length of the
depletion zome. An abrupt junction is again simulated, with the
charge density given by the depletion approximation. The error is
calculated at several positions i along the device length, using the

equation:

1| (B2 + (aE,)2)1/2

i Sl e , (6.4)
max
N
® s —
" ’r\ ——0.31 um grid
O / \\ A ~—0.15 um grid
8:: 7| l" \\ II \ ~0.08 um grid
L !’ ll /| —0.04 um grid
0 I Lo
— [y [
= / \ il \ I\
b g\ ! N AR ]
O \ / AN N AN
4 A / Aopoth \\ \~f \ d
S \,< \\ll /\\ i\ /\ ], T\ /\(\ I(\ . \\ //
t 7 -\ g My ~ .
gl eyl AN G ST
0.0 0.5 1.0 1.5 2.0 2.5

DISTANCE ACROSS DEVICE (um)

Figure 6.4: Dependence of the relative average radial error in the
electric field on grid size and axial distance across the 2.5 pm
device. FElement size is twice the grid size.
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with AE, the total absolute error in the radial electric field,
summed over the N radial mesh points at each axial position along the
device, AE; the sum of the total absolute error in the axial electric

field, and Ezax the maximum analytical electric field at the p-n

junction. Eﬁax for this open-circuit condition is given by [6.2]:

a 2¢4
Emax = _{J_ = 9384 V/cm . (6.5)
with W the width of the depletion =zone {equation (6.3)]. The

analytical electric field varies linearly to zero at thé edges of the
depletion zone. Figure 6.4 shows that reducing element dimensions to
0.1 pm reduces the error to small magnitudes, and the error is
concentrated at the locations which generate the most numerical

difficulties: the p-n contact and the two ends of the depletion zone,

6.3 One-Dimensional Comparison with an Iterative Self-Consistent

Finite Element Code

The depletion approximation perﬁits useful simplification of
actual charge carrier density profiles across the depletion zone. As
a realistic comparison, our potential results were compared to
another FE code written by Dr. Philip Chou of U.C.L.A., based on the
Newton-Raphson iteration of the coupled current-continuity and
Poisson equations [equations (5.1) to (5.3)] until a self-consistent
steady state is achieved [6.3]. For this comparison, a 5 um reverse-
biased p-n junction similar to Figure 6.1 was simulated with an
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applied potential of 3 volts and donor and acceptor doping densities
of 1015 ¢p-3 across an abrupt junction. The free carrier densities
as evaluated by the self-consistent code were used as the space
charge input to our code, and the resultant potential calculated.
The results are shown in Figure 6.5. Very good agreement is obvious
across the device. A small increase in our potential wvalues relative
to the other code can be seen, but this is attributed to a net excess
charge on the order of 109 em™2 (integrated over the z—direction)
from the concentration profiles used as input. This small charge

imbalance arises from the error inherent in any non-exact iterative

evaluation of the densities.

36 T T T Oy Q)
°self-consistent code

3.0 ¢ — quadratic code ]

POTENTIAL (voits)

0 e 1 2 3 4 5
DISTANCE ACROSS JUNCTION (1)

Figure 6.5: Comparison of calculated potential profile to self-
consistent finite element results.
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depletion zone forms and steady-state profiles are obtained, in good
agreement with the benchmark calculations provided by the iterative
self-consistent code.

Very good quantitative agreement between the two codes is
obtained for majority carrier profiles and effective depletion
widths. Minority carrier profiles show some variation, but these are
not significant for realistic device modeling. The computational
noise apparent in the density profiles is inherent in the particle
method. An average of 15 particles each for positive and negative
charge per element were used in this simulation. Simulations using
half this average number showed no significant difference in the
overall profiles, but slightly more noise in the density profiles.
Although quadratic: interpolation of carrier densities is used in the
Poisson solution, the densities in Figures 6.6(a) and 6.6(b) are
represented by linear interpolation to the corner nodes. We
determined that quadratic visualization of the densities (6 nodes per
triangle) showed systematic oscillations at non-cormer nodes,

Figure 6.6(c) also shows very good agreement between the steady-
state potential profiles obtained by the two codes. The PS code
offers the advantage of oBserving the transient evolution of the
device toward steady state. Because of large electron mobilities,
the electron density profiles for these low doping levels quickly
approach steady state within 0.25 ns,. The lower hole mobilities
prevent hole density profiles from approaching steady-state for a few
ns; the minority carrier hole profiles gradually decline due to
drift, diffusion, and recombination. Figure 6.6(c) shows the
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after applying 3 volts reverse-bias to a 6 pm long, 1-D silicon
diode. The FE/PS code results (at times given in ps) for (a)
electron and (b) hole carrier demsities, and (c¢) potential profile.
The solid lines give steady-state results from iterative self-
consistent FE code. Arrows indicate direction of profile evolution
with time.

potential distribution approaches steady state on a time scale
comparable to the electron distribution.

Figures 6.7(a) and 6.7(b) show carrier density and potential
profiles at steady state for fine and coarse grids, compared to the
benchmark calculations of the iterative code. The profiles obtained
by the FE/PS code using a fine mesh (0.15-um element size, 0.075 pm
between mesh points) show very good agreement with the self-
consistent code, Surprisingly, even the profiles obtained using a
very coarse mesh (0.25 um between mesh pointsj are In good
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qualita;ive agreement for carrier densities and close to quantitative
agreement for potential profiles. These results suggest that the
quadratic FE formulation reduces the restrictions on small mesh
spacings as suggested for typical device simulations [6.4].

Figures 6.8{(a) and 6.8(b) show the steady-state results for a
more typical silicon diode, with n¥-region doping densities of 1017
cm™3 and p-region doping of 1015 em*3. Also shown are the results of
the self-consistent code, The average number of majority carrier
particles per element is increased ten-fold within the n+~region to
accommodate the hundred-fold increase in doping density. The doping
profile does not assume an abrupt junction, but rather uses an

analytical doping expression previously used in another simulation to

better represent a graded junction [6.5]:

Nt~ N7 = 1.01 x 107 exp[-116.54(1 - x2)] = 10*° en”3

4 » (6.6)

where x is a dimensionless distance across the device (O.OIat the p-
tegion contact, 1.0 at the n%-contact, and 0.8 at the junction for
this 5-pm device). The use of this doping profile is more realistic
than an abrupt junction, and also reduces the computational
difficulties inherent in a discontinuous order-of-magnitude change in

doping densities across the junction,
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6.4 Current-Voltage Characteristics

To test the effect of applied voltage on diode current dehsity
for our method, we again simulated the silicon diode ;epresented by
Figure 6.1, with doping of + 1015 cm'3, length of 6 pm, width of 0.3
pm, and element size of 0.15 um. An approximate analytical
expression is available for diode current density as a function of

voltage [6.6]:
J = Jglexp(qV,y/kT) - 1] . (6.7)

with the saturation current density Jg given by:

qu 9Dy
Jg = |— Pn +

Lp L) P

with V,; the applied voltage, and p, and n, representing the

' (6.8)

equilibrium minority carrier densities in the n and P regions

respectively. L, and Lp are the diffusion lengths given by:
_ 1/2

for carrier type 'i, with T4 the carrier lifetime, Di the carrier
diffusivity, and q, k, and T having the standard meanings, This
equation only portrays realistic device response at reverse bias and
weak forward bias (i.e., the applied voltage never significantly
exceeds the opposing built-in voltage at the p-n junction). To test
the response of our model over a widér range of voltage, we again
used the results from the iterative self-consistent FE code as a
comparative measure.
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At each value of applied voltage, we ran our code until steady-
state current results were obtained. The current is represented by a
combination of the charge on the particles which escape the ends of
the device, plus the adjustment of the charge in the boundary
elements to impose equilibrium electron and hole densities for the
device boundary condition, as discussed in Section 5.4.,3, equation
(5.33).

Figure 6.9(a) shows our current density results compared to the
results of the iterative FE code, for identical device conditions,
over the range of applied bias from -3 to +3 volts. Our results show
very good agreement with the iterative FE code over all voltages
except the strong forward bias conditions above 2 volts, values large
for typical device operationm. The analytical expression is also
plotted for comparisom, with its range of wvalidity obviously
restricted to applied potentials on the order of the built-in
potential. Figure 6.9(b) amplifies the weak forward bias regime, to
show the expected exponential relationship of our results at weak
forward bias.

Although thé comparison is very good for these low doping
conditions, the amount of computer time required for our FE/PS method
to achieve steady-state current is prohibitive relative to the
iterative code. This factor reinforces the strength of our method
for transient simulations relative to steady-state simulations.
Conventional device simulation codes are well-suited for simulations

of steady-state solutions, but they are mnot typically designed to
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demonstrate transient behavior in a computationally straightforward
manner as does our code,

‘Although these results for low doping are reasonable, simulation
of device current-voltage chatracteristics for heavy doping is not as
simple. - For doping of 1018 (p-3 and above, each superparticle
represents orders of magnitude more charge than this simulation, and
the transport of few superparticles with very large charge introduces
significant error in the current relative to many particles with
little charge in each. Under such conditions, the imposition of
electron and hole density equilibrium in the boundary elements has a
very sensitive effect on the resulting current in terms of particle
creation and placement, numbers of particles created, ete. For these
reasons, we did not pursue assessment of TI-V characterisfics at

higher densities.
6.5 Three-Dimensional Potential and Density Profiles

Figures 6.10 and 6.11 demonstrate the axisyemetriec 3-D
capabilities of our code, with maximum n+-region doping of 1018 cp-3
and p-region doping of 1015 cp-3, A schematic of the silicon device
simulated is shown in Figure 6.10; due to symmetry only half of the
device is modeled. For comparative purposes, the graded doping
profiles used were identical to those used by Kreskovsky and Grubin

[6.57:
C = (N + Pg) exp(-a?) - p, (6.10)
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h 11 i (6.11
wit a=-—-l1ln[l—— , .
2o |Nt + P )

for Nt = 1018 cm‘3, Py = 1015 cm‘3, 25 = 0.5 um, and:

£ =12z for r < 0.5 um

L

(6.12)
2=(22+ (r-0521Y2 | for v >0.5 um

Figure 6.11 shows the potential, electron density, and hole

density profiles after evolution to steady state, and Figure 6.12
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shows contour plots of the profiles represented by Figure 6.11.
These profiles show good agreement with previous simulations using
similar device conditions and geometry, such as those portrayed in
Figure 6.13, taken from reference [6.5]. The density contours of
Figure 6.13 appear to be based on a linear scale, while ours are
based on a logarithmic scale. The potential contours of Figure 6.13
show more potential gradient within the nt-region than do ours in
Figure 6.12; as the doping exceeds 1017 cy 3 over all but the edges
of the n*-region, our results appear to be more consistent due to
exclusion of the depletion zone from the n*-region and expected lack
of potential gradients.

As a measure of the computational accuracy of our method, we
used this 3-D device geometry as the basis for measuring the relative
error in potential calculations as a function of element size. We
let the device evolve to Steady state using 0.5 um element sizes,
halved the element size and let the device again obtain steady state,
and compared the potential values at the same mesh points for the two
cases using the L2-norm €rTror measure:

Ng 1/2

i M+l M.
M P E— } (QJ - @J) s (6.13)
max g j=1

with @p,;y the maximum potential across the device (3 volts for this
case), and the potential values @j for element sizes M and M+1
compared over each of the Ng grid points. We continue halving the
element size and compare consecutive cases. The results are Plotted
in Figure 6.14, which shows that the relative error converges to a
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small value as element sizes are reduced to the order of 0.1 pm,
This result shows that the numerical method ig convergent with
reduction of the element size.

These simulations use time steps of 0.05 ps for initial device
evolution, with the time step subsequently increased to 0.1 ps as the
device approaches steady state., Time steps as large as 0.5 ps are
used for light doping conditions. This choice of time step is in the
range of the dielectric relaxation time criterion discussed in
Section 5.5.1. The effect of time step on simulation results will be
analyzed in more detail in Section 7.2, Other applications of PS to

device simulations typically use a time step of 0.05 ps.

0.50

Q.25

POTENTIAL, ¢/,

©.00

Figure 6.13: Steady-state profiles from Kreskovsky and Grubin 3-D
simulation [6.5], showing (a) 3-D potential profile, and contour
plots for (b) potential, (c) electron, and (d) hole profiles. Device
geometry is identical to Figure 6.10,
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Figure 6.13: Steady-state profiles from Kreskovsky and Grubin 3-D
simulation [6.5], showing (a) 3-D potential profile, and contour
plots for (b) potential, (c) electron, and (d) hole profiles. Device
geometry is identical to Figure 6.10,
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6.6 Summary

Good results are apparent for our methodology in the previous
examples. Our quadratic FE formulation permits element sizes
considerably 1larger than previous PS device simulations have
reported. Convergence of potential for decreasing element size has
been demonstrated.

The strength of our code is in its ability to handle transient
simulations. For simulations of steady-state and equilibrium

behavior, traditional device simulation codes have the advantage of
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speed of solution compared to our simulations, which must allow
device evolution to steady state over time.

To our knowledge, no attempts to use PS methods for charge
densities as large as 1018 -3 have been published. Although we
have seen potential perturbations within these heavily-doped regions
with our method, requiring a judicious choice of mesh sizes, we have
successfully simulated these large densities and, as will be seen,
have simulated much higher transient ion track densities and achieved
reasonable results, With previous applications of PS methods
believed limited to doping concentrations of 1017 em™3 device doping
[6.7], we feel our extension of PS methods to high density regimes to

be a significant development.
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Chapter 7

NUMERICAL STMULATION OF SINGLE EVENT UPSETS

7.1 Comparison with Previous Single Event Upset Simulatiouns

The SEU simulation of Kreskovsky and Grubin {7.1,7.2] provides a
detailed numerical evaluation of charge collection and transient
current pulse, and we repeated the simulation to compare our results
to theirs. We extended the steady-state 3-D simulation of Section
6.5 for the axisymmetric silicon diode represented by Figure 6.10, by
introducing an ion track thrdugh the n*-contact identical to that
used in Ref. [7.1): 4.5 um long, 0.0565 um in radius, extending aleng
the device axis and ending 0.5 um above the ground comntact, with
uniform N, of 1018 cp3 gor a total track charge of 7.23 £GC each for
electrons and holes. The only differences between the two
simulations was in the collection area of the nt-contact with respect
to total device cross section (16% for our simulation vs. 40% for
theirs) and in.the generation time of the track: we introduced our
track instantaneously at time equals zero, while theirs assumed a
generation time constant of 3 ps [equation (3.1)] for a total
generation time of about 10 ps.

Figure 7.1 shows the evolution of the 3-D profile of electron
density across the device with time. Figure 7.1(a) shows the steady-
state profile, followed by the perturbed profile generated by the ion
track at several times after introduction of the track. Figure 7.2
shows the corresponding electron density contours, at 2.5 ps after
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track introduétion and then at later times corresponding to Figure
7.1. Outward diffusion of the track electrons with time iz apparent,
and collection of electrons by drift within the depletion zone causes
pinchoff of the track from the n*-contact by 240 ps, with continuing
decay and outward diffusion of the track at 450 pPs. The track
profile of Figure 7.1(d) would appear smoother if more particles were
used to represent the track. Over 4000 particles were used to
represent the initial track, compared with about 10,000 particles for
the device at steady-state. Electron prqfiles are shown rather than
holes because the difference between track and background hole
concentration within the p-region is less significant (3 orders of
magnitude at most compared to 13 for electrons within the p-region)
and thus track evolution is 1less distinct with respect to hole
densities.

Figure 7.3 shows the evolution of the 3-D potential profile with
time, corresponding to Figures 7.1 and 7.2. At 10 ps the potential
is slightly perturbed, but the funnel effect develops over 100 ps as
the potential field is pulled down into the substrate to enhance
charge collection from the bulk. By 240 ps the field has been fully
restored. The perturbations apparent along the device axis (r = 0)
arise as an artifact of the axisymmetric formulation: small
variations in the magnitude of the free charge near r=0 appear as
larger variations of charge density due to the small element volumes
along the axis. Figure 7.4 shows contour plots of potential
corresponding to Figure 7.3: the funnel effect is very noticeablé in
Figures 7.3(b) and 7.3(c). With the field fully restored by 240 ps,
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the track electrons and holes temaining in the bulk of the device can
only decay by diffusion to the contacts or by recombination over
time. Figure 7.5 shows the 3-D potential profiles at different times
from the simulation of Kreskovsky and Grubin [7.1]. Comparison with
Figure 7.3 shows quite good agreement between our simulation and
theirs,

Figure 7.6 shows the integrated collected charge [Q(t)] at the
n'-contact over time for our simulation, and Figure 7.7 shows that
collected at the ground contact, Simultaneous generation of track
electrons and holes within the n*-contact initially generates a smali
hole current, as Suggested by Figure 7.6. As the track ends 0.5 um
from the ground contact, no appreciable electron charge escapes from
the ground contact as seen in Figure 7.7. Because the track is more
influenced by electric-field-induced drift toward the n*-contact than
toward ground, collection of electron charge from the track is
largely completer by 800 ps, but hole collection is 'only_ half
complete,

Figure 7.8 showé the magnitude of Q(t) at the nt-contact with_
time for our axisymmetric 3-p simulation vs. the 2-D and 3-D
simulations from Reference [7.1]. Only the collected electrons are
represented in this figure for our results; unlike our results,
Kreskovsky and Grubin mention no minority carrier collection from the
n*-contact with their numerical method. As might be expected, our
axisymmetric results are intermediate between 2-D and full 3-D
results, The only qualitative difference with our results is the
initial lag in rate of charge collection; potential gradients are
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Figure 7.5: Evolution of 3-D potential profile with time for
Kreskovsky and Grubin simulation (7.1]), after introduction of ion
track with identical geometry as that in Figures 7.1 to 7.4, at (a)
2.5 ps, (b) 14 ps, (c) 38 ps, and (d) 290 ps.
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suppressed within the heavily-doped 0.5 um n"'-contact, so electrons
can drift toward the n't-contact but then must escape across the
device boundary by diffusion. Figure 7.9 compares the transient
current from our track electrons at the nt-contact with the other
simulation. Although our current peak occurs at about 135 ps rather
than tens of picoseconds for Kreskovsky and Grubin's 3-D simulation,
the qualitative features of our current peak are apparent unlike
their 2-D simulation.

Although differences in the two numerical approaches should
provide some difference in results, we can conclude that our
axisymmetric 2-D method qualitatively captures the main features of a
full 3-D simulation without the rigorous computational requirements
of the third dimension, and gives more realistic results than a
simple 2-D simulation. Although Figure 7.9 shows our transient
current peak occurs at longer time frames than both the 2-D and 3-D
results, we cannot conclude that our results are less realistic.
Rather, in comparing these results to actual transient charge
collection experiments [7.3], our results for time to peak current
are in much better agreement with the 100 to 200 ps time frame
apparent from the experiments than are FKreskovsky and Grubin's
resultg,

These results show our numerical method to be successful in
reproducing the predominant phenomena of ion hits on diode
structures. We observe the field funneling effect as do other
simulations, and we observe eventual pinchoff of the charge track at
the depletion zone coupled with radial diffusion of the track into
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the p-region. This track behavior is in good qualitative agreement
with another simulation by Zoutendyk et al. using the axisymmetric
PISCES device simulation code, which also presented contour plots of_
these pinchoff and radial diffusion effects [7.4].

Another capability of our code which will be demonstrated in
more detail in Section 7.3 is the simulation of carrier recombination
with time within the track. Although the magnitude of recombination
is not significant in this simulation due to the relatively low track
density, carrier recombination does become very significant as a
charge removal mechanism for more realistic tracks with densities
approaching 1020 cm-3.  This track phenomenon has not been given the
significance it deserves in SEU simulations because of the numerical
limitations of other methods in simulating high-density ion tracks.

Reference [7.1] mentions their 3-D simulation to 300 ps took 3.4
hours of central processing unit (cpu) time on a CRAY-1 computer,
corresponding to 0.002 cpu seconds per grid point per time step
(17,500 grid points, 350 time steps). Our axisymmetric 3-D
simulation compares favorably with this, taking 98 cpu minutes on a
CRAY-2 computer for a simulation to 800 pPsS, corresponding to 0.00083
cpu seconds per grid point per time step (1960 grid points, 3600 time
steps). A 300 ps simulation by our method would have taken
approximately one hour of CRAY-2 cpu time. The output of CRAY-1 vs.
CRAY-2 computer per cpu minute isg approximately comparable. 1In our
simulation we initially used a 0.05 ps time step and gradually
increased it to 0.4 ps, while Kreskovsky and Grubin began with a time
step of 0.05 ps and ended with 1.25 ps.
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7.2 Effect of Time Step on Charge Collection

We typically use a time step (At) of 0.05 to 0.1 ps in thé
initial stage of transient simulations, based on experience and
others’ recommendations [7.5], but the effect of At on transient
simulations requires consideration. As discussed in Section 5.5, a
time step on the order of the dielectric relaxation time is
recommended. Use of At = 0.05 ps adheres to this criterion up to
densities of about 1017 cp-3. Densities of 1018 cm3 apg above would
require At in the femtosecond range, a requirement too demanding for
reasonable computational times. A practical approach is a choice of
At which provides reasonable results with acceptable cpu time
requirements, as Kreskovsky and Grubin did with their large (>1 ps)
time steps in the latter stages of transient simulations [7.17.

To test the effect of At on transient charge collection from an
ion track, we repeated the simulation of Section 7.1 over the first
50 ps with several values of At: 0.05, 0.1, 0.2, 0.4, and 0.8 Ps.
The integrated collection of electron charge at the n'-contact over
time is plotted for each case in Figure 7.10. Values for At of 0.05
and 0.1 ps gave similar results, but the larger values resulted in
about a 20% decrease in collected charge after 50 ps.

A choice of At which is too large can induce potential and
density oscillations [7.6]. We have found from experience that use
of large At will enhance potential perturbations, especially at the
device axis where charge fluctuations have the greatest relative
effect, During these charge collection simulations, we also
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monitored the potential fluctuations and tabulated the minimum and
maximum potential values calculated during each simulation. The
results are plotted in Figure 7.11. The potential values at At =0
correspond to the steady-state potentials at the contacts. The trend
is apparent: choice of At approaching 1 ps induces much greater
potential perturbations during initial ion-induced transients. From
this we conclude that a choice of At from 0.05 to 0.1 ps during
strong transient conditions is a reasonable choice with respect to
stability of results and adherence to the dielectric relaxation time

criterion.
7.3 Modeling of the Transient Current Pulse

As discussed in Section 3.2, Messenger proposed an analytical
equation to model the transient current pulse (I¢) as a combination

of two exponential terms [7.7]:
Ie = I, [exp(-at) - exp{-8t)] , (7.1

with o 1 representing the collection time constant of the junection,
and ﬂ'l representing the ion track generation time constant (with
B> 101 s-1y According to equation (3.4), o = 1.5 x 1011 51 gor 5
(substrate) doping density of 1015 cn-3, This representation of Ie
has been generally accepted by the radiation effects community. For
example, Wagner et al, [7.3] have attempted to model the results from

their charge collection experiments using the Messenger model.
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Figure 7.10: Integrated collection of track electron charge at nt-

contact vs. time for time steps of (+) 0.05 ps, (o) 0.10 ps, (Q) 0.20
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Figure 7.11: Maximum and minimum potential values as a function of
time step for simulations of Figure 7.10.
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With our detailed results in Section 7.1 for both I¢ and
integrated charge collection Q(t), we can test Messenger’s model and
obtain values for the track constants a and B by fitting the equation
to our results for I. in Figure 7.9. For engineering applications,
development of a method by which a and # can be determined and
tabulated as a function of ion species and energy, applied voltage,
etc. would be very useful in SEU circuit simulations. Such an
evaluation has not been conducted to date.

By integrating equation (7.1) with respect to time we can also

obtain an analytical expression for Q(t) as a function of a and 8:
Qt) = Tolp 1e Pt - 1) + o l(1 - ooty (7.2)

We have not seen any previous attempts to model results for both I,
and Q(t) and compare them for consistency.

When we attempted to parametrically determine a« and 8 by fitting
equations (7.1) and (7.2) to our data, we found an inconsistency in
that a choice of o and B which gives us positive values of current
will give us negative values for Q(t), and vice versa. We are not
concerned here whether collected charge is positive or negative, so
if the general expomential relationships expressed in equation (7.1)
are reasonable, the coefficient I, may not be correctly formulated.

As an alternative approach, we looked at the governing equations
which represent the concentration of radiocactive nuclei as a function
of time for a radiocactive decay chain, The general exponential

relationships in such equations are analogous to those of equation
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(7.1) but the Pre-exponential term is more complex [7.8]. From this

analogy, we propose the following empirical forms:

UL = Q02 - A A ™2% - 1) + a1 - &G | (73

- A =Aot
and It = AAQo(Ag = A ~Lee™1E | oohoty (7.4)

in which A; and A2 are decay constants (inversely proportional to the
half-lives) of the first two species in a radioactive decay chain.
To convert equation (7.4) into a form analogous to equation (7.0), we

replace A1 with 8 and A9 with @ to obtain:
It = afQo(B - @) l(eat . o-Bty (7.5)

In this form, the Pre-exponential coefficient is dependent on the
total created charge as well as a and A, rather than simply
representing a maximum current term as in equation (7.1). Likewise,

we can convert equation (7.5) into the form:
QL) = Qo(B - @) 1[p(1 - ety 4 q(e Bt . 1y] . (7.6)

When we applied equations (7.5) and (7.6) to represent our
numerical data, we found consistent agreement with our computational
results for both Q(t) and Iz for a judicious choice of values for «
and 8. For example, for a = 7.8 x 109 g-1 and § = 1.1 x 1010 s'l,
the analytical curves agree quite well with our computational results
as shown in Figure 7.12 for Q(t) and Figure 7.13 for I-. Positive to

negative inversion of the curves from Messenger's model are apparent

from the figures. By reversing the values of a and B, curve (c¢) in
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Figure 7.12: Comparison of results for integrated collection of
track electron charge at n*-contact vs. time, from (a) computational
results, (b) radioactive decay model [7.8], and {c) Messenger model

[7.7]. 1ldentical constants used for both equations, for comparison.
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Figure 7.13: Comparison of results for electron current at nt-
contact vs. time, using (a) radiocactive decay model [7.8], and (b)
Messenger model [7.7]. 1Identical constants used for both equations,
for comparison. Computational results given by (+).
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Figure 7.12 takes on pﬁsitive values while curve {(b) of Figure 7.13
takes on negative values, but the curves obtained by the radioactivg
decay model remain fundamentally unchanged. From these results, we
can conclude the Pre-exponential term of equation (7.5) gives better
consistency for Q(t) and I+ evaluations.

Although Messeﬁger mentions that the value of B has 1little
effect on subsequent transient calculations, we found £ to have a
significant effect on the time to peak current, This dependency
raises questions about Messenger's explanation of B as related to the
time for initial track formation because of the rapid development of
the track relative to charge collection times. Another

phenomenological exXplanation for & and £ might relate to the time

constants for drift of electrons to the nt-contact and for their

diffusive motion within the heavily-doped nt-contact wuntil their
escape at the device boundary. Speculation as to the use of a third
time constant to represent, e,g., the funneling time or the diffusion
of charge carriers to the contacts after field restoration holds
promise for more refined modeling of the transient current pulse. In
Wagner et al.’s charge collection eXperiments, some delay time is
apparent before the rapid increase in the current pulse [7.3]; they
are not able to simulate this leading edge of the peak with the use
of equation (7.1), By introducing a third time constant analogous to
the radioactive decay equatiomns, a better fit with the experimental
data could be pursued.

Further study of these analytical representations for I ws.
time holds promise for contributions to the radiation effecté
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engineering community both in terms of simple portrayal of transient
current pulses within circuitry and in obtaining better understanding
of the physical meaning and phenomena involved in these time
constants. Use of our code to study Q(t) and I+ for different iong
in different devices affords an ideal opportunity for future studies

in this area.
7.4 Effects of Tracletructure

To test the effects of track density on transient charge
collection, we introduced tracks into a silicon diode for the same
conditions as in Section 7.1, except that the track radius is now
taken to be 0.1 um and N, of 1018, 1019, and 1020 ¢p-3 are introduced
uniformly across the track width, for total track charges of
electrons and holes of 0.0227 pC, 0.227 pC, and 2.27 pg,
respectively. The density of 1020 ¢p-3 1s higher than any repbrted
track simulation, with only one simulation for Ng of 1019 em™3
previously reported [7.9]. Simulations of 70 to 100 PS were
conducted for parametric evaluations, using time steps of 0.05 to 0.1
ps and 5000 to 10,000 track particles.

Figure 7.14 shows the track electron and hole charge collection
at the nt-contact for the three cases. Although potential
perturbations along the track axis become proﬁounced as the track
density increases and considerably exceed the applied contact
potentials for the largest densities, the curves for Q(t) show smooth
profiles. Charge collection does not appear to be adversely
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affected, as the pPerturbations develop within the interior of the
device during track pParticle motion and charge separation. Opx
choice of direct matrix solution methods for Poisson’s equation
appears to be justified as the bPotentials do not continue to diverge
despite the perturbations. Use of iterative solution methods would
surely not guarantee convergence under these severe conditions. Time
steps of 0.05 to 0.1 Ps may also contribute to perturbations for the
larger densities, as the criterion of dielectric relaxation time is
violated more severely as densities increase. A track density of

1018 cm”? should require a time step on the order of 0.01L ps

according to this criterion ag given in Section 5.5, and increasing
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Figure 7.14: Integrated collection of track el?ctron charge (n2 énd
hole charge (p) at nt-contact vs., time, fogdunlﬁgmn track ?enzlgles
of (a) 10%8 em™3 (b) 1013 cm‘3, and (c¢) 10 em™”., Track is 4.5 um
long, with 0.1 pm radius.
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Figure 7.14; Integrated collection of track electron charge (n) and
hole char%e (p) at n+-contact vs. time, for uniform track densities
of (a) 1018 cm'3, (b) 1019 cm'3, and (c) 1020 em™ 3, Track is 4,5 um
long, with 0.1 pm radius.
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the density by an order of magnitude should reduce the time step by
an order of magnitude. Femtosecond time steps are computationally
prohibitive, so some perturbation of potential must be tolerated at
very large N, as long as charge collection can be reasonably
simulated.

Figure 7.15 normalizes the charge collection of Figure 7.14 by
plotting the fraction of total charge collected with respect to the
total track charge generated. Despite the tenfold increases in track
charge, the fraction of charge collected over 70 Ps actually
decreases ag Np increases. This trend is éxplained by Figure 7.186,
which gives the fraction of track charge recombining over time. TFor
N, = 1020 cm'3, Auger recombination becomes very significant and
dominates charge collection at the contacts as a charge removal
mechanism. Auger recombination is not significant at Ny = 1018 -3

These effects of recombination for high-density ion tracks have
not been studied ip detail or seriously comsidered in SRy
simulations. Auger recombination must be considered for SEU
simulation of realistic tracks and heavy ions. Disregarding such
details in simulations should give poorer agreement with experiment
for heavier and more energetic ions.

In addition to demonstrating the importance of Auger
recombination in SEU Phenomena, these results demonstrate the ability
of our numerical method to simulate realistic track densities up to
1020 3

em” Such densities represent a very difficult computational

regime. The numerical approaches to SEU simulation employed up to
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the present have not been able to penetrate such a regime, and this

simulation demonstrates a major strength of our method.

7.5 Simulation of Alpha Particle Effects

a 5 um reverse-biased silicon diode. The initial track profile was
obtained from TRIPOS-E. The core densities were approximately 1020
cm'3, and decreased to 1015 to 1016 cm™3 at a radial distance of 0.1
#m.  The ion penetrated through the length of the device. A test run
was perfomed with a total diode voltage of 3 volts, then the applied
voltage was increased to 15 volts, comparable to gome charge

collection experiments using silicon detectors,

The current peak is very distinct, occeurring at approximately 160 ps,
with a maximum current on the order of 100 wA. As could be expected,

the current peak for 3 volts reverse bias was not asg sharp, with a

maximum of about 50 BA at 200 ps.

Figure 7.18, in which a large silicon detector was used with a
substrate of comparable doping to our simulation, but 25 volts
reverse bias applied {7.10]. Comparison of Figures 7.17 and 7.18
show good agreement in all main features. Although our device
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geometry and operating characteristics do not duplicate exactly the
experimental pParameters, our resultg give satisfactory agreement with
the range of results from several experiments, as listed in Table
7.1, This duplication of eXperimental results pProvides confidence ip
our method, and gives better agreement with experimental ion-induced
cturrent pulses than other simulations of alpha-like tracks, e.g.,

reference [7.1].

Table 7.1, Comparison of FE/PS simulation Yesults with

experimental results for 5 MeV alpha particles.

substrate applied time to maximum
device doping voltage current peak current Ref.
(cm™3) (volts) (ps) (pA)
large Si 1.4 x 1915 25 148 180  [7.10]
detector
CMOS 6 x 1015 5 100 58 [7.11)
nt-contact 10 96 89
in p-well 15 108 1438
20 112 212
$i ot-p 1 x 1015 3 200 50 this
diode _ 15 160 100 work
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Chapter 8 EH
SUMMARY AND CONCEUSIONS

The passage: of energetic ions through semiconductor deviceg
generates excessicharge which ¢an produce logic upset, emory change,
and device dasage. This single event upset phenomenon ig
increasingly impertant for satellite communications because of the
high energy cosmic ion envirorment in space, The continuing
reduction in semiconductor device sizes makes them more susceptible
_to ion-induced upset, and increases the probability of multiple-bit
upset by single sions, a major concern for data error detection and
correction techniques. For earth-based simulation of SEUs,
cyclotrons are used to accelerate heavy ions until their LET
characteristics are comparable to cosmic ions, However, the charge
tracks for different ions may vary significantly in their profiles
and widths, impacting the reliability of such testing,

Experimenta} and numerical simulation of SEUs is difficult
because of the subnanosecond times and large charge densities within
the ion track. Computational simulations typically employ simplified
assumptions about the track profiles such as uniform dénsity across
the track. Track densities of 1018 op-3 are usually assumed, with a
track radius of% 0.1 um commonly used, Realistic peak densities
within a track are expected to be in the range of 1020 op-3, Two-
dimensional computer simulations tend to lose the detail of the
transient curremt pulse, and ion track profiles and spreading are
adversely affected. Three-dimensional simulations provide more
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detail, but they are computationally expensive and do not necessarily
provide results in good agreement with the time and duration of
experimental ion-induced current pulses. Parametric evaluations of
the transient current pPulse as a function of ion energy and LET,
applied device voltage, doping density, etec. would be useful for the
development of engineering design equations for the use of the
radiation effects community.

The objective of thig work is twofold: (1) the determination of
the track structure and electron-hole pair generation profiles

following the passage of an energetic ion through silicon; (2) the

charge transport in semiconductor devices. By developing the
methodology to determine detailed ion track profiles, we can achieve
several objectives: a better understanding of the physics of track
formation, evaluation of the comparability of cyelotron vs. cosmic
ion track profiles, evaluation of the assumptions of track profiles
frequently wused as initial conditions for SEU computational
simulations, and avoidance of these assumptions in our SEU
simulations. By developing a numerical method specifically designed
for transient simulations, we can pursue broader studies of the
effects of ion and device parameters in simulations of SEU charge
collection and transient current, and obtain better understanding of
the physical phenomena involved in SEU effects.

A secondary electron generation and transport model, based on
the Mﬁnte Carlo method, was developed and coupled to an ion transport
code to simulate ion track formation in silicon. The result was the
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TRIPOS-E .code for coupled ion-electron transport, Secondary
electrons are created using the binary collision approximation ‘and
slow down as a result of elastic and inelastie scattering, core
electron ionization and dielectric energy loss, ultimately depositing
énergy and creating electron-hole pairs far from the ion’s path.

TRIPOS-E results indicate an energetic ion leaves in its wake an
exponential charge generation profile which can extend a significant
fraction of a micron from the ion path, resulting in a track much
wider than typically assumed. To model this profile, the pPreviously-
postulated Gaussian charge profile has been retained to Yepresent the
core of the charge track, but an exponential term has been added to
reflect the track bfoadening resulting from the secondary electrons.
Parameters have been evaluated to Provide analytical eXpressions for
the charge density profiles along the ion path. These exXpressions
provide more detail compared to previous assumptions for radial
charge profiles. Charge profiles obtained for cosmic ion tracks are
found to differ significantly from those of cyclotron ions used in
cosmic-effect simulations. The results from TRIPOS-E are used as
input for the second part of our study, simulation of the transient
charge transport and collection at device contacts,

A new numerical method is developed for the study of transient

charge transport, The numerical method combines an axisymmetric

electron and hole transport. The use of quadratic finite-element
interpolation relaxes the restriction on maximum element size, and
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provides continuity of the electric field across element boundaries.
The axisymmetric formulation is ideal for studying the evolution of
lon charge tracks as well as reducing the computational requirements
for realistic results relative to full 3-D simulations.

This formulation offers several advantages over previous finite
element and particle simulation methods for semiconductor analysis,
in addition to its capabilities for studying the evolution of device
operation with time. The generality of the code is enhanced by
simulation of the transport of both majority and minority carriers,
and includes recombination and thermal generation effects.
Decoupliné Poisson’s equation from the current continuity equations
reduces the computational requirements for matrix solutions, but also
simplifies the solution for highly nonequilibriﬁm conditions which
could prevent more conventional solution methods Ffrom achieving
convergence.

To assess the finite element/particle simulation method,
transient one-dimensional solutions for silicon diodes were compared
to analytical solutions and to a fully iterative finite-element
method based on conventional solution methods, and good agreement was
obtained between the different methods. Simulations of charge
collection from ion tracks in 3-D axisymmetric devices were performed
and compared to a previous simulation, with good agreement obtained
and all significant features 6f the SEU phenomenon reproduced:
potential field distortion, transient current pulse, and field

restoration as the track decays.
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The finite element/particle simulation method enables us to
simulate larger ion track densities than previously. reported,
permitting study of more realistic track profiles and evaluatioﬁ of
recombination effects. Charge track densities as high as 1020 ¢y5-3
have been simulated, one to two orders of magnitude higher than
pPreviously reported, Carrier recombination effects become very
significant in this regime, a factor that has not received emphasis
in previous simulations which have typically assumed track densities
of 1018 cp-3, This method allows quantification of the effects of
recombination: at track densities of 1019 cm'3, loss of transient
charge by recombination can be comparable to charge collection at the
contacts, and at 1020 op-3 recombination is predominant.

The results of this work for transient current pulses following
charged ion passage are in agreement with recent experimental data
with respect to the time frame and magnitude of the current pulse,
OQur time frame for the current pulse gives better agreement with
experiment than many SEU simulations which show peak current
occurring in tens of picoseconds. Experiments indicate times to peak
current are typically in the range of 100 to 200 ps. These
simulation results are used in the development of simple analytical
equations for circuit design to represent the current pulse and
integrated charge collection from the 1ion track. These design
equations may represent improvement over commonly accepted analytical
representations of the transient current pulse.

The finite element/particle simulation method offers versatility
in the simulation of transient device conditions and in studies of
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the physics of nonequilibrium transport. The effects of Processing
and device variables on the SEU response can be addressed with the
present method. TRIPOS-E holds promise for future studies of
radiation track formation and electron-and charged-particle-induced
radiation effects in semiconductor and other materials. This FE/PS
method shows promise for further studies of radiation effects in
materials other than semiconductors, and specifically for studies of
the physical and chemical evolution of track structures and

subsequent radiation-induced phenomena in a variety of materials.
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