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Large Scale Dislocation Dynamics Simulation of

Bulk Deformation

by

Zhiqiang Wang

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Los Angeles, 2004

Professor N.M. Ghoniem, Chair

In this work, the method of Parametric Dislocation Dynamics (PDD) is utilized

to develop new computational methods for the simulation of crystal plasticity

at the microscale. A vector form of the elastic field is developed and utilized

within the PDD framework. A new theoretical treatment for the elastic field of

dislocation ensembles has resulted in a multipole expansion, which is shown to

be convergent for distance greater than the size of the cell containing the dislo-

cation ensemble. The method is shown to be very efficient for calculations of the

long-range elastic field.

A parallel computer code for the simulation of single crystal plasticity is de-

veloped. Some of the fundamental concerns involved in dislocation interactions

have been calibrated by direct comparison with in-situ experiments on thin film

copper foils. Simulations of the elasto-plastic deformation of 5 and 10 micron

size single copper crystals are performed. Predictions of the work hardening and

microstructure are shown to be consistent with experiments.
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CHAPTER 1

Introduction

Recently, considerable progress has been made on the development of compu-

tational methods based on the elastic theory of dislocations. One of the main

reasons for the rapid development of this area is the interest in computational

modelling of material deformation in multi-scales and in the concept of materials-

by-design. Computational modeling of the behavior of materials is able to avoid

time-consuming and expensive experiments for material evaluation and design in

many engineering applications. This work focuses on using a newly developed

tool of parametric dislocation dynamics (PDD) to solve some critical problems of

plasticity which exist in science and technologies. In this chapter, we first discuss

the relationship between dislocations and plasticity of metals. Current research

activities in the area will also be reviewed. Then, some experimental results of

the problems concerned in the work, work-hardening of single crystals and surface

deformation, will be presented. In followed chapters, details of the formulation

of PDD model and the implementation of a parallel simulation method will be

first presented. Validation of the PDD model with experimental results will be

discussed next. Then, applications of the parallel method for work hardening of

FCC Cu, the multipole expansion method and statistical extrapolation method

for large scale simulations will be presented. Finally, conclusions will be given in

the last chapter.
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1.1 Material Plasticity and Dislocation Dynamics

Since dislocations are the primary carriers of the plastic deformation of mate-

rials, dislocation theory has become a very active research area and is used to

understand many of the physical and mechanical properties of crystalline ma-

terials. Single dislocation properties have been extensively studied and are well

established in past decades. These theories can be applied to explain various phe-

nomena, such as work hardening, crystal growth and grain boundary structure.

Considerable successes have been achieved in understanding crystal plasticity by

applying these theories. However, full understanding of this problem is still a

daunting task for the research community. For simple cases, analytical solutions

can be obtained, or simple numerical simulations can be done based on theories

of single dislocations. However, for much more complex cases (such as 3D mi-

crostructure), even for some simple cases(such as surface image forces), and for

cases with a large number of dislocations, it is impossible to obtain analytical

solutions for the elastic fields. Thus, new descriptions and numerical simulations

of dislocations are a challenge for further understanding of fundamental aspects

of the plasticity.

Because the macroscopic mechanical properties are the averages of micro-

scopic events, single dislocation theory can not explain and predict the mechani-

cal behavior of bulk materials containing ensembles of dislocations. To study the

plastic flow in crystalline materials, the size of the specimen and the characteris-

tic length scale associated with the external loading must be larger than the size

of the dislocation micro-structure so that macroscopic properties can be averaged

out to the continuum level[1]. Thus, it is apparent that a model of collective of

dislocations is needed. Dislocation dynamics (DD), which is based on single dis-

location theory and tries to simulate populations of dislocations with a computer,
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is proposed to accomplish this task. In recent years, dislocation dynamics has had

significant interest because of its power to simulate material deformation. Several

3D dislocation dynamics models have been recently proposed[2, 3, 4, 5, 6, 7]. The

following is a brief review of the models from several major groups, which have

large-scale DD capabilities.

1.1.1 The ONERA (France) Group

The ONERA group in france has developed a method to simulate dislocation

behavior in materials[7, 5, 8, 9, 10]. Dislocation lines are divided into straight

segments. These segments are of pure screw or pure edge characters. The effective

shear stress acting on dislocations are calculated from interactions with other

dislocations, applied forces, self-interactions and free surface image forces. After

the effective shear stress is determined, the velocity of a dislocation segment is

described in relation as:

v =
τ ∗b

B
(1.1)

where τ ∗ is the effective shear stress on dislocation, B is the temperature-dependent

dislocation mobility.

Then, the dislocation glide follows a Newtonian dynamics such that:

x(t+ 4t) = x(t) + v ×4t (1.2)

For large scale simulation, the simulated box is divided into a periodic lattice

of overlapping sub-boxes. Based on the assumption that the long range interac-

tion contributions to the local internal stresses vary smoothly in space and slowly

in time, the interactions of the segments inside the same sub-box are computed

each step. The contribution from other sub-boxes is evaluated only at the center

of the considered box and is not evaluated every such often as former one.

3



The method has been applied to study both individual dislocation behaviors

and collective dislocation behaviors. For example, figure 1.1 shows that a dislo-

cation Frank-Read source interacts with a forest of many dislocation segments.

The relation between hardening rate and the density of the forest dislocations

has been obtained from the study.

Figure 1.1: A dislocation interacts with a forest of dislocation segments[7].

The method is also applied to study the early stages of the formation of

dislocation microstructures in low-strain fatigue[11]. Simulations under various

conditions of loading amplitude and grain size have been performed. Both the dis-

location microstructures and the associated mechanical behavior are accurately

reproduced in single-slip as well as in double-slip loading conditions. The mi-

crostructures thus obtained are analyzed quantitatively, in terms of number of

slip bands per grain, band thickness and band spacing. Figure 1.2 shows the

dislocation microstructure under different different applied loads.

4



Figure 1.2: Effect of the applied strain amplitude on dislocation microstructure

in fatigue deformation[11].

1.1.2 Washington State University Group

The group at Washington State University developed a similar dislocation dy-

namics method based on straight segments[4, 12, 13, 6]. Different from the ON-

ERA group, these segments are not pure screw or pure edge, but with mixed

characters.

In this method, the driving forces F for dislocation motions are evaluated

at the center of each segment. Especially, interaction from adjacent segments,

including line-tension and self-interaction, are computed explicitly based on a

model for straight semi-infinite segments. Once the forces are determined, dislo-

cation velocities are known from the velocity-stress relationship:

(m∗
i +

1

Mi(T, p)
)Ẋi = Fi (1.3)

5



where m∗
i is the effective mass per unit dislocation, M is the mobility which could

depend on temperature T and pressure p, and X is the position of a dislocation

node.

Then, nodal positions of dislocation segments are solved for the next time

step by X t+4t = X t + Ẋ t ×4t, where 4t is the time step.

Periodic boundary conditions are used in their simulations. To deal with

long range interactions, a model of superdislocations (SD) is introduced. The

simulated crystal is divided into cubic cells. Within each cell, the interaction from

nearest cells is determined directly. For distant cells, the fields are approximated

by SDs, where the field of each SD is the same as that of a single dislocation but

with a modified magnitude of the Burgers vector.

The method is applied to study the crystal plasticity, such as problems of

dislocation interaction with point defects, dislocation patterning and localization.

Figure 1.3 shows a pattern of deformation formed inside single crystal copper

under a tensile load. The corresponding dislocation microstructure is shown in

figure 1.3 (b).

1.1.3 IBM Group

At IBM, a parallel dislocation dynamics code, PARANOID, was developed by a

group led by K. Schwarz [15, 16, 17]. In their model, dislocations are represented

as segments with mixed characters. The basic equations of dislocation motion

are the same as described above. A modified Brown procedure (splitting the

dislocation in half, moving the two halves outward by some core parameter and

averaging the result) is utilized to obtain the self-interaction, which remains stable

and loses accuracy in a controlled manner as the length scale approaches the

atomic level. Rules for strong dislocation interactions are discovered and are
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Figure 1.3: (a) Distribution of the plastic strain showing the formation of a cell

pattern, (b) the corresponding dislocation pattern[14].

applied to both FCC and BCC crystals.

The code is parallelized to run on IBM clusters. The primary application

of the code is to investigate dislocation motion in thin films and semiconductor

devices. For example, strain relaxation in thin films (SiGe) are successfully stud-

ied. Dislocation networks previously observed from experiments are predicted

from simulation. The study also demonstrate that the pairing of the threading

dislocations on parallel glide plane is by far the strongest mechanism for immo-

bilizing such dislocations in a thin film.

1.1.4 LLNL Group

Lawrence Livermore National Laboratory group has developed a highly paral-

leled dislocation dynamics code, ParaDis, to explore the single crystal hardening

process[18]. The code is utilizing the huge computational power from fastest su-
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percomputers and begins to show the potential of directly computing the strength

of materials from collective behavior of dislocations. In the code, dislocations are

represented by a network of nodes (figure 1.4). Each node can have two or more

segments connecting to neighbor nodes, and each segment carries out a unit of

Burgers vector, which denotes the direction and magnitude of the displacement

that occurs when a dislocation moves. The nodes moves according to the first

order equation of motion:

Figure 1.4: A fragment of the dislocation lines network: each line segment xy

carries a unit of ”vector current” quantified by Burgers vector bxy[18].

d~ri

dt
= M [~fi]

~fi = −∂E[{~ri}]
∂~ri

(1.4)

where fi is the force on node i, E is the energy of the dislocation network, and

M [fi] is a mobility function giving the velocity of node i as a function of node force
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fi. The network energy E includes the interaction between all network segments

and between the segments and applied stress. In addition to moving the nodes,

ParaDiS evolves the network topology to reflect the physics of dislocation motion

and collisions in real crystals by adding or deleting certain nodes.

The code has been running on LLNL supercomputers on simulating single

crystal deformation. Two typical outputs are shown in figure 1.5. Transition

stages of the stress-strain curves were obtained.

Figure 1.5: (a) Mechanical strength of single crystal molybdenum computed in

a single ParaDiS simulation, (b)the behavior of the total density of dislocation

lines as a function of strain[18].

Although various dislocation dynamics models discussed above have been ap-

plied to solve problems of material plasticity, there are limitations on these work.

For example, meshing of dislocation loops with straight segments brings singular-

ities at the connecting points of two such segments in calculation of self-forces of

dislocation loops. Also, no accurate consideration of the long-range interaction

between dislocations has been developed so far for large scale simulations. In this

work, such problems are targeted with a parametric description of the dislocation

loops. Applications of the model to single crystal plasticity and work-hardening

of copper have been carried out based on an efficient parallel computer code
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without requiring supercomputers.

1.2 Multiscale Simulations of Materials

In recent years, with the understanding that material strength is intrinsically

a problem at different length and time scales, concepts of multi-scale material

plasticity have been introduced to connect various length scales together [19,

20]. The main scales are atomistic scale(nanometers), microscale(micrometers),

mesoscale(hundreds of micrometers) and continuum scale(larger than 100 mi-

crometers). Multiscale simulations use a message-passing framework to transfer

some information obtained from the small scale to larger scale. In meso-scale,

dislocation theory is a tool for determining the physical and mechanical proper-

ties. Dislocation dynamics is used to simulate the behavior of many dislocations

in material deformation and connect micro-structure evolution with macro-scopic

material properties. Driven by technical problems in the area of irradiated ma-

terial damage, thin film size effects and nano-technology, DD has been rapidly

developed during the past two decades. 2D simulations were first investigated

by using infinite straight dislocation lines while 3D simulations are now under

development.

Classical crystal theories have no length scale, so that they can not explain

phenomena exhibiting size-dependence, e.g., in hardness of micro-indentation

when the indent size is reduced down to a few microns for a typical crystal.

This difficulty of meso-scale modelling requires a single crystal model to provide

the constitutive law, which governs the deformation of single crystals as the input

to larger length scale models. One of the objectives of DD is to predict the stress-

strain curve of single crystals without using phenomenological material variables

other than the basic dislocation velocity as a function of the internal stress, which
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can be obtained from experiments or from atomic simulations. The simulation

results can be used to explain phenomena such as work hardening.

1.3 Work Hardening Theory And Experimental Observa-

tions

A higher stress is required to deform a crystal with larger plastic deformation.

This is called work (strain) hardening. Work hardening processes are categorized

in 3 or more stages (Fig. 1.6), according to the work hardening rate θ = δτ
δγ

,

where τ is the resolved shear stress and γ is the shear strain[21]. Stage I is usually

characterized with linear hardening, with a hardening rate θ = µ/3000. Stage

II is characterized by a linear work hardening rate θ = µ/300, which is weakly

sensitive to temperature and strain rate. Stage III begins when the flow curve

deviates from linearity with the onset stress as τIII , which is strongly temperature

and strain rate dependent.

R
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II-θ=µ/300

I-θ=µ/3000

III

Figure 1.6: Schematic illustration of work hardening stages I-III
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Each work hardening stage corresponds to some specific dislocation motion

and microstructure[22]. In stage I, the hardening is mainly controlled by the

motion of dislocations on primary glide planes. At the end of stage I, dislocations

are concentrated in sheets or bundles of dipoles or multipoles. These sheets are

parallel to primary glide planes and their spacing is inversely proportional to the

resolved shear stress. In the transition region from stage I to stage II, the density

of primary dislocations increases linearly while the density of other dislocations

increases quadratically with the stress. After stage II is fully established, their

densities are roughly the same. In stage II, dislocation cell structures (figure

1.7) [23] begin to form and the size of these cells are inversely proportional to the

stress. In stage III, it is widely believed that cross-slip of dislocations controls the

hardening, such that τIII is generally considered as a critical stress value for many

dislocations to cross-slip. In this stage, dislocations escape from their locks in

stage II and internal stresses are relaxed such that the macroscopic stress begins

to increase slowly than increasing strain. More 3D dislocation cell structures

begin to form compared with 2D cell structures parallel to primary planes in

stage II, and walls of cells become sharper and the interior of cells become clearer

of dislocations. The sizes of these cells also decreases with increasing stress.

Anongba, Bonneville and Martin[24, 25] did a series of experiments to study

work hardening of copper single crystals under different temperatures and strain

rates. Their experiments have been able to characterize the hardening stages on

the stress-strain curves. Below is a brief review of their observations.

The experiments were done for single copper crystals at 3 strain rates as

2 × 10−4 s−1, 2 × 10−3 s−1, and 2 × 10−2 s−1. The applied tension is in the di-

rection of [112]which initially activated two primary slip systems [101]/(1̄11) and

[011]/(11̄1). So, these experiments are multi-slip cases which have no stage I hard-
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Figure 1.7: Dislocation cell structure in copper single crystal[23].

ening specifically for single slip. The resolved shear stress τ and resolved shear

strain γ are calculated with respect to the Schmid factor m, and the hardening

rate θ is calculated by numerically differentiating τ with respect to γ. Tempera-

tures vary from 483K to 1133K, which are divided into 3 zones as 483K−678K,

874K−1064K, 935K−1133K for different strain rates. Typical results are shown

in figure 1.8 1.10).

At room temperature (figure 1.8), normal stage II and stage III are observed.

Figure 1.8 (b) shows the hardening rate calculated. For stage II, a constant

hardening rate θII ≈ µ
300

is measured. For stage III, the hardening rate decreases

linearly as stress increases, in agreement with previous observations[26, 27].

At higher temperatures, in addition to stage II and III, two more new harden-

ing stages, IV and V, have been observed (figure 1.9 and 1.10). Figure 1.9 (b) and

figure 1.10 (b) shows that stage IV is characterized by a constant or increasing

rate of hardening with stress, while at the same time stage V has a hardening
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Figure 1.8: Experimental results at temperature 294K for strain rate 2×10−4s−1,

(a)strain-stress curves and (b) the associated hardening rates[24].

Figure 1.9: Experimental results at temperature 483K-678K for strain rate

2 × 10−3s−1, (a) stress-strain curves and (b) the associated hardening rates[24].
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rate decreasing with stress or remaining to be constant.

Figure 1.10: Experimental results at temperature 874K-1064K for strain rate

2 × 10−3s−1, (a) stress-strain curves and (b) the associated hardening rates[24].

The experimental results show that hardening rate is strongly temperature

and stress dependent. In temperature regime 1 (483K − 678K), θ is stress inde-

pendent in stage II and IV and decreases when temperature is raised. In stage III

and V, θ is decreasing with stress. In regime 2 (874K − 1064K), stage II is not

observed anymore. θ is still a decreasing function of stress in stage Ill and V, but

increases in stage IV (figure 1.10). In regime 3 (935K−1133K), plastic deforma-

tion starts with stage IV where θ is temperature independent and increasing with

stress. In stage V, θ is practically stress independent. The transition stresses for

different hardening stages are found to be temperature and strain-rate dependent.

The experimental results provided detailed information on hardening stages

with respect to stress and temperature. The study suggests that the origin of the

observed hardening stages is the dislocation motion and microstructure formation

under different strain rate and temperature.
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1.4 Free Surface Problems and Dislocation Dynamics

More recently, free surface boundary conditions have been implemented in DD

codes [9, 28], because dislocation interaction with the free surface plays a very

important role in explaining many phenomena. Surface-dislocation interaction is

significant in fatigue problems. Persistent slip bands (PSBs)(figure 1.11) [29] are

always observed in materials under cyclic loading. They are formed with multi-

parallel slip planes and large plastic deformation. These PSBs progressively elon-

gate and finally reach the surface. When they intersect with the free surface, ex-

trusions or intrusions form at the free surface [30]. These extrusions or intrusions

are the source of micro cracks. After many cycles, extrusions and/or intrusions

grow and fatigue cracks nucleate at these locations. Fatigue crack nucleation is

believed to account for a substantial part of the fatigue life of components[31].

So, microstructure evolution is fundamental to understanding fatigue life of com-

ponents.

Dislocation motion in thin films or in materials with free surfaces is different

from that in bulk materials. Free surface boundary conditions must be satis-

fied, and the dislocation behavior is affected by an additional image stress field

introduced by free surfaces. To study this type of surface related problems,

coupling between surface effect on dislocations and surface deformation caused

by dislocation loop evolution should be solved. 2D problems are relatively easy

[32, 33, 34, 35, 36, 37]. In these cases, dislocations are either infinite, semi-infinite

straight long, or parallel to the free surface. However, for 3D problems, proper

accounting for surface effects becomes more complex, because dislocation loops

are of finite size and are not straight. Also, they are not necessarily parallel to

the free surface. Some researchers adopted the approximation of straight line

image forces into 3D simulations [15]. In this case, surface effects are consid-
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Figure 1.11: Surface roughness due to PSB/surface interaction in Cu crystal

fatigue test. Strain amplitude 2 × 10−3, 120000 cycles.

ered but not in a rigorous fashion. For greater accuracy, dislocation dynamics is

combined with the finite element method to study surface image forces [28, 13],

while other investigations implemented the Green’s function method and the

Boussinesq-point-force method[9, 10].
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CHAPTER 2

Formulation of Parametric Dislocation

Dynamics

The approach of dislocation dynamics (DD) was first applied to two-dimensional

(2D), straight, infinitely long dislocations. When applied to 3-dimensional (3D)

simulation of plastic deformation, it requires more calculations. It is also critical

to get precise and simple equations to describe the mechanics of dislocations in

solid materials for such numerical simulations. Such equations would be able to

obtain accurate results of dislocation motions and interactions, maintain good

3D dislocation line shapes, while at the same time reduce the total number of

dislocation segments to keep high computational efficiency for simulations of large

systems. In this chapter, the parametric dislocation dynamics (PDD) formulation

is presented, which includes the description of dislocation lines, the equations of

motions, and the equations of dislocation fields for displacements, stresses and

strains.

2.1 Parametric dislocation dynamics

Dislocations are line defects in materials. A parametric dislocation dynamics

method has been developed[3, 38, 39, 40] for 3D simulations. This method is

different from other methods that represent dislocation loops as many straight
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segments[4, 5, 8, 15]. In this method, dislocation loops are divided into segments

that are represented as cubic spline curves.

Figure 2.1: Differential geometrical representation of a general parametric curved

dislocation segment

As shown in figure 2.1, segment j is expressed as a function of a variable ω,

which is from 0 to 1, and the positions of two dislocation nodes:

r(j)(ω) =
4

∑

i=0

Ci(ω)Qi (2.1)

where r is the vector of a point on dislocation segment, Ci(ω) are general shape

functions for cubic spline., Qi are general coordinates of the dislocation nodes.

Ci(ω) are:

C1(ω) = 2ω3 − 3ω2 + 1

C2(ω) = −2ω3 + 3ω2

C3(ω) = ω3 − 2ω2 + ω

C4(ω) = ω3 − ω2 (2.2)
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and Qi are:

Q1 = P(j)(0)

Q2 = P(j)(1)

Q3 = T(j)(0)

Q4 = T(j)(1) (2.3)

where P(j)(0) and T(j)(0) are position and tangent vectors of the beginning point

of segment j where ω = 0, and P(j)(1) and T(j)(1) are position and tangent

vectorss of the ending point of segment j where ω = 1.

2.2 Equations of motion

A derivation based on thermodynamics has been developed to obtain a variational

form for the equations of motion (EOM) for dislocation loops. The EOM is

expressed as[3, 41]:
∮

T
(f t

k −BαkVα)δrk|ds| = 0 (2.4)

where Bαk is the resistive matrix which is related to the mobility of dislocations,

Vα is the velocity of dislocations, and ft = fS + fO + fPK is the total force acting

on the dislocations and is a summation of the self-force fS of the dislocations, the

osmotic force fO and the Peach-Koehler force fPK . The Peach-Koehler force can

be written as:

fPK = b · Σ × t (2.5)

where b is the burgers vector of dislocations, t is the tangent vector of the dislo-

cation lines, and Σ is the stress fields from applied stresses, interaction of dislo-

cations, etc.

Suppose that the dislocation line is divided into Ns segments, by applying the
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Galerkin method and using the fast-sum strategy[3], the equation of motion 2.4

can be written as:

Fk =
Ntotal
∑

l=1

ΓklQl,t (2.6)

where [Fk] is the general force load, [Γkl] is the general resistivity matrix and

[Ql,t] is the general coordinates of dislocation nodes. By solving this equation,

dislocation positions are obtained.

2.3 Affine vector forms of the elastic fields of dislocations

The displacement vector u, strain ε and stress σ tensor fields of a closed dislo-

cation loop need to be evaluated in the simulation. They are given by deWit

(1960):

ui = − bi
4π

∮

C
Akdlk +

1

8π

∮

C

[

εiklblR,pp +
1

1 − ν
εkmnbnR,mi

]

dlk (2.7)

εij =
1

8π

∮

C

[

−1

2
(εjklbiR,l + εiklbjR,l − εiklblR,j − εjklblR,i),pp

εkmnbnR,mij

1 − ν

]

dlk

(2.8)

σij =
µ

4π

∮

C

[

1

2
R,mpp (εjmndli + εimndlj) +

1

1 − ν
εkmn (R,ijm − δijR,ppm) dlk

]

(2.9)

Where µ & ν are the shear modulus and Poisson’s ratio, respectively, b is

Burgers vector of Cartesian components bi, and the vector potential Ak( R) =

εijkXisj/[R(R + R · s)] satisfies the differential equation: εpikAk,p( R) = XiR
−3,

where s is an arbitrary unit vector. The radius vector R connects a source point

on the loop to a field point, as shown in Fig.2.1, with Cartesian components Ri,
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successive partial derivatives R,ijk...., and magnitude R. The line integrals are

carried along the closed contour C defining the dislocation loop, of differential

arc length dl of components dlk. Also, the interaction energy between two closed

loops with Burgers vectors b1 and b2, respectively, can be written as:

EI = −µb1ib2j

8π

∮

C(1)

∮

C(2)

[

R,kk

(

dl2jdl1i +
2ν

1 − ν
dl2idl1j

)

+
2

1 − ν
(R,ij − δijR,ll)dl2kdl1k

]

(2.10)

The higher order derivatives of the radius vector, R,ij & R,ijk are components

of second and third order Cartesian tensors, respectively, which can be cast in

the form:

R,ij =
(

δij −
Xi

R

Xj

R

)

/R (2.11)

R,ijk =
(

3
Xi

R

Xj

R

Xk

R
−

[

δij
Xk

R
+ δjk

Xi

R
+ δki

Xj

R

])

/R2

Where Xi are Cartesian components of R. Substituting R,ij and R,ijk in

Eqns.2.7-2.10, and considering the contributions only due to a differential vector

element dl, we obtain the differential relationships:

dui = −biAkdlk
4π

+
1

8πR(1 − ν)

[

(1 − 2ν)εiklbldlk −
1

R2
εkmnbnXmXidlk

]

(2.12)

dεij =
1

8π

[

1

R3
(εjklbiXl + εiklbjXl) dlk +

3

R5(1 − ν)
εkmnbnXiXjXmdlk

− 1

R3(1 − ν)
εkmnbnXmδijdlk +

ν

R3(1 − ν)
εjklblXidlk

+
ν

R3(1 − ν)
εiknbnXjdlk

]

(2.13)
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dσij =
µ

4π

1

R3
[−εjmnXmbndli − εimnXmbndlj

+
1

1 − ν

(

3

R2
εkmnXmbnXiXj − εkjnXibn − εkinXjbn

+εkmnXmbnδij) dlk] (2.14)

Fig.2.1 shows a parametric representation of a general curved dislocation line

segment, which can be described by a parameter ω that varies, for example, from

0 to 1 at end nodes of the segment. The segment is fully determined as an affine

mapping on the scalar interval ∈ [0, 1], if we introduce the tangent vector T, the

unit tangent vector t, the unit radius vector e, and the vector potential A, as

follows:

T =
dl

dω
, t =

T

|T| , e =
R

R
, A =

e × s

R(1 + e · s)
The following relations can be readily verified:

Akdlk = A · Tdω = Tdω(A · t) =
Tdω

R
· (e × s) · t

1 + e · s
εiklbldlkei = −b × t

1

R2
εkmnbnXmXidlkei = − 1

R2
εknmbnXmXidlkei

= −dω
R2

[(T × b) · R] R = −dω[(T × b) · e] e

(εjklbiXl + εiklbjXl)dlkeiej = b ⊗ (Tdω × R) + (Tdω × R) ⊗ b

= RTdω [b ⊗ (t × e) + (t × e) ⊗ b]

εkmnbnXiXjXmdlkeiej = [(Tdω × R) · b] R ⊗ R = R3Tdω[(t × e) · b] e ⊗ e

εkmnbnXmδijdlkeiej = [(Tdω × R) · b] I = RTdω [(t × e) · b] I

Let the Cartesian orthogonal basis set be denoted by 1 ≡ {1x,1y,1z}, I =

1⊗1 as the second order unit tensor, and ⊗ denotes tensor product. Now define

the three vectors (g1 = e, g2 = t, g3 = b/|b|) as a covariant basis set for the
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curvilinear segment, and their contravariant reciprocals as: gi · gj = δi
j, where

δi
j is the mixed Kronecker delta and V = (g1 × g2) · g3 the volume spanned by

the vector basis, as shown in Fig. 2.1 [42]. When the previous relationships are

substituted back into Eqns. 2.12-2.14, with V1 = (s × g1) · g2, and s an arbitrary

unit vector, we obtain:

du

dω
=

|b||T|V
8π(1 − ν)R

{[

(1 − ν)V1/V

1 + s · g1

]

g3 + (1 − 2ν)g1 + g1

}

dε

dω
= − V |T|

8π(1 − ν)R2

{

−ν
(

g1 ⊗ g1 + g1 ⊗ g1
)

+ (1 − ν)
(

g3 ⊗ g3 + g3 ⊗ g3
)

+ (3g1 ⊗ g1 − I)}
dσ

dω
=

µV |T|
4π(1 − ν)R2

{(

g1 ⊗ g1 + g1 ⊗ g1
)

+ (1 − ν)
(

g2 ⊗ g2 + g2 ⊗ g2
)

− (3g1 ⊗ g1 + I)}
d2EI

dω1dω2
= −µ|T1||b1||T2||b2|

4π(1 − ν)R

{

(1 − ν)
(

gI
2 · gI

3

) (

gII
2 · gII

3

)

+ 2ν
(

gII
2 · gI

3

) (

gI
2 · gII

3

)

−
(

gI
2 · gII

2

) [(

gI
3 · gII

3

)

+
(

gI
3 · g1

) (

gII
3 · g1

)]}

d2ES

dω1dω2
= −µ|T1||T2||b|2

8πR (1 − ν)

{

(1 + ν)
(

g3 · gI
2

) (

g3 · gII
2

)

−
[

1 + (g3 · g1)
2
] (

gI
2 · gII

2

)}

(2.15)

The superscripts I&II in the energy equations are for loops I&II, respectively,

and g1 is the unit vector along the line connecting two interacting points on the

loops. The self energy is obtained by taking the limit of 1
2

the interaction energy

of two identical loops, separated by the core distance. Note that the interaction

energy of prismatic loops would be simple, because g3 ·g2 = 0. The field equations

are affine transformation mappings of the scalar interval neighborhood dω to the

vector (du) and second order tensor (dε, dσ) neighborhoods, respectively, such

that du = Udω, dσ = Sdω, dε = Edω. The maps are given by the covariant,

contravariant and mixed vector and tensor functions:
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U = uigi + uig
i (2.16)

S = sym[tr(Ai
.jgi ⊗ gj)] + A11(3g1 ⊗ g1 − 1 ⊗ 1)

E = sym[tr(Bi
.jgi ⊗ gj)] +B11(3g1 ⊗ g1 + 1 ⊗ 1)

The scalar metric coefficients ui, u
i, Ai

.j, B
i
.j, A

11, B11 are obtained by direct re-

duction of Eqn.2.15 into Eqn.2.16.
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CHAPTER 3

Parallel Implementation of the

UCLA-MICROPLASTICITY Computer

Simulation

3.1 Introduction

Current major DD codes developed by several groups are limited to model only

a small number of dislocations in a small volume of material because of the high

increase in computational cost. Such high demand on computer resources results

from dislocation interaction calculations for large scale simulations. The increase

in computational time is on the order of N 2, where N is the number of interacting

segments. To go beyond the current limitation, a larger volume of material and

more dislocations are needed. To improve the computational capability, a parallel

implementation should be applied to solve the problem instead of doing serial

simulations on one computer.

Because of recent developments in computer technology, it is much easier to

build a computer cluster instead of a super computer. A computer cluster is

composed of many single PCs (cluster node), and parallel program codes can run

on these nodes. Communication is possible between the cluster nodes and should

be carefully taken care of. A special computer language library, called message

passing interface (MPI), was developed for this purpose[43, 44]. Communications
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can be done by calling the library subroutines. The computer program requires

a good algorithm to partition the data space such that the data is distributed

evenly on different cluster nodes. Among many parallel designs, one popular

approach is the master-slave structure. One node is defined as a master, which is

responsible for handling Input/Output, data management, etc, while the others

are defined as slaves, which are responsible for doing the main calculation.

Large scale DD simulations share some similar properties as the so-called N-

body problem in astrophysics, fluid mechanics, molecular dynamics, composite

material design, etc. Many algorithms and their parallelization have been devel-

oped by scientists for large scale N-body simulation[45, 46, 47]. Thus, we can

draw on existing experience in other fields for large scale DD simulations.

In this chapter, the N-body problem and several well-developed algorithms

are first reviewed. Then, the parallel algorithm and the implementation of DD

simulations will be discussed. Finally, numerical results of the parallel code are

presented.

3.2 The N-body problem

The N-body problem refers to problems involving the behavior of N particles,

which mutually interact with each other via a long-range force field. The difficulty

to simulate such systems lies in the calculation of the interaction forces or energies

between particles, which is on the order of N 2. It has long been a goal to decrease

the problem complexity to O(Nα) where α < 2. To decrease the order of the

calculation, and thus to increase the speed of simulation requires a careful design

of the computational algorithm.

Many approximate methods have been developed to reduce the computational

27



complexity. Two of the most famous ones are the Barnes-Hut(BH) method and

the fast-multipole method(FMM)[48, 45]. The BH method has a computation

complexity as O(NlgN) and the FMM method as O(N) if they are properly im-

plemented. Both methods are based on the concept of hierarchical representation

of the computational domain. A spatial tree is constructed with the following

rules: the domain is represented as the root node of the tree and then is recur-

sively split into sub-domains (sub-nodes of the tree) until each leaf of the tree

contains only a certain number of particles (for the BH method, the number

is 1, for FMM, it may be larger than 1). Each node in the tree contains geo-

metrical information of the sub-domain it represents, such as the coordinates of

the center point and its size. With the tree constructed, different approximate

methods are applied in the BH and FMM methods. Both methods calculate the

force on an individual object from close neighbors directly and from far neighbors

approximately[45]. For the BH method, the far-field force is replaced by a single

point mass located at its center of mass, which is then recursively applied to the

tree. For the FMM method, the far-field force is approximated by a multipole

expansion. A multipole acceptance criteria(MAC) is used to determine what kind

of interaction(direct or approximate) should be included for each particle.

Parallel formulations for both methods exist in the literature[45, 49, 50, 51,

47]. After the computational domain is represented by a tree data structure, the

partition of the domain takes place by splitting the tree structure and distributing

different parts of the tree to individual processors. It is easy to partition the tree

because the data is grouped together in the tree nodes. The partition is designed

to minimize communications between different processors, and to balance the

computational load between processors. To minimize communications between

processors, particles that are close to each other are grouped together and sent to

a single processor. For load balancing, the number of particles on each processor
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is required to be approximately equal.

3.3 Concept of Dislocation Nodal-points

Dealing with problems containing dislocations is different from dealing with prob-

lems containing particles since dislocations are continuous lines. When the com-

putational domain is partitioned into sub-domains, the continuity of dislocation

lines must be preserved. In this section, a mathematical model for dislocations is

developed such that the problem can be solved by representing dislocation lines

with groups of ”nodal-points”. This model helps in simplifying the problem and

may be solved as an N-body problems.

Parametric dislocation dynamics is developed to simulate the material be-

havior. Details can be found in references[3, 39, 40]. For each dislocation, the

equations of motion finally turns into a linear equation array. The resulted equa-

tion arrays, in matrix forms, are like[3]:
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(3.1)

where Si, Fi are conceptually elements of the stiffness matrix and force ma-

trix related to a dislocation node, which is called ”nodal-points”, and Qi =

[Px, Tx, Py, Ty] are the general degrees of freedom of those ”nodal-points”. In

these equations, the only non-zero elements are those related to dislocation nodes

(”nodal-points”) that are neighboring to each other. By applying the Gauss-
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Jacobi or Gauss-Seidel iteration method[52], the solution of equation (3.1), i.e.,

the solution for an arbitrary dislocation nodal-point ”2” at time step t + 1 can

be obtained through:

S2Q
j+1
2 = F2 − (S1Q

j
1 + S3Q

j
3) (3.2)

where j is the iteration step, and Q0
i = Q

(t)
i with Q

(t)
i as solutions for nodal-points

at time step t. This equation can be solved independently for nodal-point 2 at

time step t+ 1 provided that the solutions of nodal-point 1 and 3 at time step t

have been obtained.

It is obvious that each dislocation node i can be considered as a virtual parti-

cle, with the attributes of connection points, glide planes, and Burger vectors in

addition to that special consideration of connection between those nodal-points

should be implemented. So, the implementation of the parallelization will be

mostly similar the particle problem.

3.4 DD code parallelization

Based on above discussions, parallelization of the dislocation dynamics code de-

veloped at UCLA is presented in this section.

3.4.1 Tree structure in the DD code

The same concept of a hierarchical tree in N-body problems is used in solving

DD problems. Based on the description in section (3.3) of nodal-points, the

hierarchical tree building process is similar to those in N-body problems. The

root node of the tree represents the whole domain. The process is recursively

applied to each node as described below. The dislocation nodal-points in the

sub-domain represented by the tree node are continuously introduced into the
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tree node if the number of the nodal-points in the tree node is less than a critical

value. If the number is larger than a critical value, the tree node is split into two

sub-nodes and the group of nodal-points is divided to the sub-nodes according

to their positions. The same process is repeated on the sub-tree node until all

the dislocation nodal-points are put into the tree. The nodes of the tree, as in

N-body problems, contain geometrical information of the domain. To split the

domain evenly (i.e., to balance computational load between processors), the split

is always in the direction which has the largest domain size. Therefore the tree is

built on the basis of dislocation nodal-points. The tree structure is used to help

group and distribute data, calculate multipole expansions for the interaction, and

search for dislocations neighbors.

3.4.2 Domain Partitioning—The Tree Structure

To implement the parallel DD code, the computational domain, represented by

a hierarchical tree data structure, must be partitioned and distributed to dif-

ferent processors. To partition and distribute the tree structure, three new tree

conceptions are defined as follows.

1. The Global Tree: The global tree is the first part of the hierarchical

tree. It is used to represent how the domain is split for a number of pro-

cessors(Fig. 3.1). Suppose that there are n1 processors and there are n2

nodal-points. The critical value of the number of nodal-points in each node

of the tree is set to n1/n2 so that the global tree will be built with n1 leaves,

corresponding to processors. Each leaf now contains a group of nodal-points

and they will be distribute to different processors respectively. Each pro-

cessor will have a copy of the global tree so that it will have the information

of other processors, which will be used in the calculation later.
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Figure 3.1: Domain decomposition to build a tree structure.

2. The Local Tree: The local tree is the second part of the hierarchical tree.

After it has been assigned with a group of nodal-points, each processor

will repeat the tree-building process on these nodal-points, by setting the

critical value of the number of nodal-points in each node to 1. Thus, a local

tree is built with each leaf containing only one nodal-point. The next step

is to combine the local tree with the global tree by linking the local root to

the specific global tree’s leaf, which is corresponds to the current processor,

where the local tree is built.

3. The Ghost Tree: In parallel computations, each processor needs to know

some information from other processors, e.g., the information about the

boundaries of sub-domains. Generally, parts of the data of other processors
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need to be transferred to the current processor. This kind of data is called

ghost data. In this algorithm, parts of the local trees on other processors

are transferred. These are called ghost trees. Ghost trees are close to the

current processor and contain information from other processors. They are

needed to be considered as neighbors in further calculations. Ghost trees

are determined by comparing the distance between local tree nodes and

global leaves(excluding the one corresponding to the current processor). If

the distance is smaller than a critical value, the local tree node will be

considered as part of the ghost tree. After each processor receives its ghost

trees from other processors, these ghost trees will be attached to the global

leaves corresponding to the processor where they come from.

After the above sub-trees are constructed and combined together, each pro-

cessor will have a local essential tree (Fig. 3.2), which has all the information

that is required for simulation.

3.4.3 Searching for Dislocation Neighbors

After the tree structure has been built on each processor, dislocation neighbors

are searched through the tree traversal process based on the Close Neighbor

Criteria (CNC). This is described as follows: if any two dislocation segments

represented by nodal-points are close to each other within a critical distance, these

two segments are direct neighbors and their interaction will be calculated directly,

otherwise their interaction will be calculated by using multipole expansions, which

can be found in reference [53]. The tree traversal process is recursive and executed

as follows. The process will be done for each nodal-point on the processor. For

each nodal-point, the process always begins from the root tree node and it is

called the current-nodal-point. If the tree node is not a leaf, i.e., it does not
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Figure 3.2: Tree structure on each processor.

contain only one nodal-point, the distance between the current-nodal-point and

the tree node is evaluated. If the distance is larger than the critical distance, this

tree node will be added as a multipole neighbor in the nodal-point’s neighbor list

and the node’s children will not be visited.

If the tree node is a leaf and contains only one nodal-point, called leaf-nodal-

point, the distance between the current-nodal-point and the leaf-nodal-point is

evaluated. If the distance is larger than the critical distance, the tree node is

added as multipole neighbor. Otherwise, the dislocation segment which contains

the leaf-nodal-point is added as a direct neighbor to the current-nodal-point.

After the traversal process, dislocation neighbors will be in the lists of each

nodal-point and available for calculation.
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3.4.4 Updateing Tree Information

After the above operations, each processor can begin to solve for the dislocation

dynamics. After the dynamics part is solved, dislocations move and their dis-

tributions in space change. Thus, the tree structure need to be rebuilt and the

dislocation neighbor-lists need to be reconstructed. In this process, load balanc-

ing is also maintained. The most accurate way to update is every time step. But

this will take a lot of time for communication and it may not be necessary. Thus,

an update is only done every certain number of steps depending on the accuracy

requirements.

3.5 Flowchart of the Parallel Code

The flow chart of the parallel code is shown in figure 3.3. The detailed list of files

will be shown in the appendix.

There are totally four parts of the code, which are described as follows:

1. Initialization: This part is used to initialize the code to be ready to run.

It reads dislocation coordinate data, material data and simulation control

data from files. Variables are declared and memories are allocated. In this

part, the code has the ability to begin a new simulation from the beginning

or to restart a halted simulation from previous steps.

2. Distribution of loads: This part is the process where the tree structure

is built, as discussed in previous sections. The computational loads are

distributed to processors. Each processor builds an essential tree locally.

Dislocation neighbor lists are constructed.

3. Solving dislocation dynamics: In this part, the equations of motions
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of dislocations are solved. Numerical integration is performed to get the

positions of dislocations.

4. Updating: In this part, the dislocation microstructure is updated. Me-

chanical properties, such as stress and strain, are calculated. The I/O op-

erations are also performed here. All other detailed statistical information

of the simulation, like the dislocation density, number of the annihilation

events, is calculated here.

After the final step, the code will either stop or repeat itself until desire

simulation steps are finished.

Initialization

Read dislocation
geometry data

Read simulation
control data

Variable declaration
and allocation

Distribute global
parameters

Distribution of
computation load

Build global tree

Distribute dislocations

Build local essential tree

Transfer ghost information

Search neighbors

Solving
dynamics

Force calculation

Solve equation
of motion

Integrate numerically

Short range interaction

Update and
output

Update microstructure

Update Macromechanics

Output

Some statistics

BEGIN

END

Figure 3.3: Flowchart of the parallel code.

3.6 Test Results and Discussion

The parallel code, named as UCLA-Microplasticity, was tested on the UCLA

ISIS cluster. In the test cases, up to 60 nodes were used for 600 dislocations

loops. Significant time speedup (speedup factor S = t1
tN

, where t1 and tN are the
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computation times for 1 and N processors respectively) was obtained, showing

that the algorithm works well (figure 3.4).
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Figure 3.4: Time scaling of parallel DD code.

To study the communication efficiency, several cases were tested. For every

case, each processor has the same number of degrees of freedom to be solved

and the number of processors are increased. Because of communication overhead

increases with the number of processors, the speedup ratio (here it is called

the communication efficiency) is expected to decrease. This is seen in the test

result (figure 3.5. However, it also shows that the communication efficiencies

for different numbers of processors remain above 85%. This shows that heavy

communication overhead has been avoided and load-balancing is well controlled.
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Figure 3.5: Communication efficiency of parallel code remain above 85%.

3.7 Discussion

A parallel computer code for large scale simulation of materials based on dis-

location dynamics was developed. Dislocations are represented as conceptual

nodal-points, which helps implementing the algorithm in a way similar to parti-

cle problems while the continuity of the dislocation lines is still maintained. A

hierarchical tree data structure is designed to represent the computational do-

main and help the partitioning and distribution of the computational load. The

code has a good performance with high speedup factors and good control of

communications and load balancing.

The parallel code enhances the simulation greatly by increasing the compu-

tational efficiency. This improvement makes it a potential method to directly

simulate material deformation and to study the mechanical behavior of materials

and their microstructure. This will finally help improve the understanding of

plasticity and design stronger materials.
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CHAPTER 4

Validation of Dislocation Dynamics Simulation

with Thin Film Experiments

4.1 Introduction

In Dislocation Dynamics (DD) methods, forces on individual dislocations are

calculated and the motion of the dislocations computed [54]-[39]. Nevertheless,

accurate description of complex 3-dimensional (3D) motion (e.g., glide, cross-

slip, and climb) of dislocations requires direct experimental observation for val-

idation of computer simulations. The lack of detailed experiments on the 3-D

motion of single dislocations does not allow computer simulations direct access

to experimentally-verifiable mechanisms that control dislocation configurations.

Most dislocation microstructures in strained materials are highly complex, span-

ning many scales from the microscopic level to the polycrystalline domain. There-

fore, comparison of computer simulation to such experiments can only be based

on qualitative features of the microstructures.

Transmission Electron Microscopy (TEM) offers the most direct method of

comparison for DD simulations. However, few such comparisons have been made

to date, and these have been qualitative examinations and not quantitative com-

parisons between experiment and modelling [55, 56]. Comparisons of DD simu-

lations to static TEM images are necessarily indirect and qualitative since stan-
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dard TEM images are two-dimensional thin foil projections of static microstruc-

tures. Dynamic dislocation behavior in thin foils can be observed by in-situ

TEM, and several interesting experimental studies have been made using this

technique[57, 58]. Some 3D information about dislocation motion can be ascer-

tained if travelling dislocations leave a slip trace on the surface. However, infor-

mation on the relative positions of dislocations is largely limited to 2D results,

and without 3D information on dislocation configurations, the elastic interac-

tions between dislocations cannot be accurately determined. A technique has

been developed in which 3D dislocation configurations can be quantified before

and during an in-situ straining TEM experiment [59]. Although direct 3D ob-

servations of dislocation motion is not possible, knowledge of 3D configurations

preceding and following deformation, along with 2D in-situ records of motion

can be used to reconstruct the overall 3D behavior. Such information can also

be used for direct validation of 3D DD simulations.

This chapter details a direct comparison between experimental observations

and computer simulations of dislocations in thin foils. The goal is to use these

comparisons to ascertain the nature of forces on dislocations and the salient mech-

anisms that control their motion. The effects of the constrained geometry of the

foil and the free surface on dislocation motion are explored. Simplified elasticity

calculations of dislocation forces and motion are not reliable to correlate with

experimental data because of the complex 3D structure of observed dislocations

and the influence of surface image forces. Thus, utilization of 3D computer sim-

ulations, including surface image effects is necessary.

Two effects are examined here, which are particular to dislocation behavior

in thin foils. First, since dislocation loops may terminate at free surfaces, com-

puter simulations must track the position of dislocation-free surface intersections.
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Thus, special boundary conditions must be applied to the study of thin foil defor-

mation. Second, the free surfaces of a thin foil may strongly influence dislocation

behavior by introducing image stresses, which become significant when disloca-

tions approach the surface. Strong image forces can influence dislocations by

enhancing their out-of-plane motion through cross-slip and climb mechanisms.

Numerous experiments have shown that cross-slip, which is thermally acti-

vated, plays an important role during stage-III work hardening in FCC single

crystals[60]-[6]. Double cross-slip results in dislocation generation by expanding

new Frank-Read sources on neighboring glide planes[36]. Only segments of screw

(or nearly screw) character may perform cross-slip, because they are able to move

on any favorably-oriented glide plane. The probability of a dislocation segment to

cross-slip onto a neighboring slip plane increases significantly when the resolved

shear stress on that plane is high. Any large internal stress field, which may arise

from inclusions and other obstacles to glide, surfaces, or interfaces, may induce

cross-slip events.

Motion out of the glide plane can also be accomplished by climb [61, 62, 63].

At low temperatures or in the absence of a non-equilibrium concentration of

point defects, dislocation motion is restricted almost entirely to glide. However,

at higher temperatures or owing to a locally-high stress, an edge dislocation can

move out of its slip plane by climb.

The objective of this chapter is to utilize 3D stereo-TEM in conjunction with

in-situ straining TEM to describe the evolution of the spatial topology of dislo-

cations in thin foils. DD computer simulations are used to investigate the salient

mechanisms that determine experimentally-observed dislocation shapes. In doing

so, the importance of image surface forces and their effects on out-of-plane dislo-

cation motion by the cross-slip and climb mechanisms are explored. It is shown
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that surface-force induced cross-slip greatly influences the structure and dynam-

ics of the dislocation microstructure in thin foils, and that dislocation motion in

thin foils may not be representative of bulk behavior.

4.2 Experimental Procedure and Results

Researchers at Los Alamos National Lab has done a series experiments to study

the motion of dislocation in materials. Here, a brief review of the experimental

procedure and results is given.

Stereo-TEM was used in conjunction with in-situ straining to describe the

evolution of the spatial distribution of dislocations in thin Cu foils. In-situ TEM

experiments are generally used to develop an understanding of bulk material prop-

erties. However, the inference of bulk material properties from thin foil in-situ

observations is often controversial due to the effects of free surfaces on disloca-

tion configurations. It is planed here to link direct experimental observations of

dislocation motion and reconfiguration with computer simulations so as to dis-

cern dislocation mechanisms that are specific to thin films. Examining thin foil

behavior is an advantage in that it includes surface effects, and can thus better

gauge the fidelity of DD models.

TEM in-situ tensile specimens were cut, ground, and electro-polished from a

well annealed copper sample. Tensile Cu foils were prepared with dimensions of

11.5 mm by 2.5 mm and a thickness of approximately 175 µm as shown in Fig. 4.1.

Electrolytic polishing was used to thin the center of the specimen to perforation.

The geometry of the thinned region can be approximated as two hemispherical

dimples intersecting the top and bottom surfaces at 2 mm circles. Thinning

produced a hole approximately 400 µm in diameter, and the specimen thickness
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at the edge of the hole is generally 10-20 nm. The experimental observations

were made near the top edge of the hole at a position where the sample thickness

is about 200 nm.

(a) (b)

Figure 4.1: (a) The solid model of the sample, and (b) FEM mesh around the

central hole.

Deformation was carried out inside the TEM using a displacement control,

single tilt, straining specimen holder. During in-situ straining TEM experiments,

it is advantageous to pre-strain the specimen while viewing an area of interest

until some dislocation activity begins. This is primarily to ensure that dislocation

motion will occur in the area of interest before spending significant time doing

stereo and Burgers vector analysis. However, once the specimen is pre-strained,

there is potential for the specimen to relax somewhat while analysis is being

performed, and some dislocations can change position or escape the region being

observed.

The stereo-coupled in-situ experiments involve obtaining a 3D description of

the dislocation configuration prior to and following in-situ straining in the mi-

croscope. 3D configurations are obtained using a modified stereo-TEM technique

detailed elsewhere [59]. Standard stereo-microscopy of crystalline materials is
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almost never possible with a single-tilt TEM holder making it unfeasible for all

commercially available in-situ straining TEM holders. The modified approach is a

weak beam technique involving changing the sign of g (the imaging beam) and/or

sg (how far the imaging beam deviates from the exact Bragg condition) between

images while tilting across a Kikuchi band that is at less than approximately 10◦

to the tilting direction.

The stereo pair and diffraction pattern demonstrating the modified stereo

technique for the initial dislocation configuration is shown in Fig.(4.2), with the

tensile axis direction vertical (same as stereo tilt axis and specimen holder axis).

The positions of the dislocations are measured using a computer program that

allows the user to mark points along a dislocation line with a 3D cursor while

viewing micrographs stereoscopically [64]. The orientations of the tensile axis and

specimen plane normal with respect to the grain are [53(6̄8)51]] and [(7̄8)(1̄5)61)],

respectively. Based on this geometry, Schmid factors for the common fcc slip

systems obtained assuming a simple tension assumption are given in Table 4.1.

Burgers vector analysis was performed on several key dislocations. Dislocations

labeled 11, 13, and 22 in Fig. 4.2 have a Burgers vector of [101] and dislocation

12 has a Burgers vector of [1̄01̄].

Table 4.1: Schmid factors for Cu thin foil under simple tension.

(111) (111̄)

[011̄] [101̄] [11̄0] [011] [101] [11̄0]

0.174 0.003 0.177 0.046 0.279 0.325

(1̄11) (11̄1)

[011̄] [101] [110] [011] [101̄] [110]

0.339 0.296 0.043 0.119 0.014 0.105
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Figure 4.2: Stereo pair (top) and diffraction pattern demonstrating the modified

stereo technique.

During in-situ straining, dislocation motion was monitored in the TEM at

30 frames per second. Figure 4.3 shows dislocation configurations at various

times during the in-situ straining. Comparing the first frame of Fig. 4.3 with

the configuration seen in Fig. 4.2, it is evident that dislocation 11 and 22 moved

between the time when the stereo pair was taken and when the straining was con-

tinued and recorded. However, these two dislocations do not move during further

straining. Three dimensional representations of the dislocation configuration be-

fore and after straining are given in Fig. (4.4). In the 3D representations and

the DD calculations based on these configurations, the initial and final configura-

tions of dislocation 11 are assumed to be the same, specifically the configuration

given by the final stereo pair. This assumption is reasonable, since dislocations

11 and 22 do not react with one another in changing configuration, because the

two dislocations have the same Burgers vector.

Dislocations 12 and 13 share the same primary glide plane, (111̄), and Burgers
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Figure 4.3: Time sequence of in-situ TEM measurements during straining. Time

units are - min:sec:sec fraction
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Figure 4.4: 3D rendering of experimentally-observed dislocation configurations

in the Cu thin foil - (a) before deformation, and (b) after deformation.

vector but have opposite signs. Hence, they move in opposite directions. One end

of dislocation 13 is pinned at a node (point labeled (d) in the first frame) while the

other end terminates at the foil surface (point labeled (a) in first frame). There

is a jog, labeled (bc), along the length of dislocation 13 lying on the (1̄11) plane.

During straining, the right end remains pinned at the node and the segment (ab)

glides downward in the image. Dislocation 12 starts out pinned at a different

node, labeled (e). A straight segment (labeled (ef)) of dislocation 12 extends from

the node diagonally across the image towards the top left corner where it jogs

upwards towards the free surface (segment labeled (fg)). During straining, unlike

dislocation 13, dislocation 12 escapes from the pinning point (e) (third frame)

first, only to be pinned again at another node directly below the first pinning

point, labeled (e) in the third frame. The result is the formation of a jog along

the length of dislocation 12 as seen in frame 3. The segment (he) appears to glide

47



to the left, while insignificant movement of segment (hfg) was discerned up to

frame 3. In frame 4-6, the segment (fh) glides upward in the image. This motion

eventually leads to dislocation 12 escaping from the pinning point (e) and soon

after that, a large portion of the dislocation segment (he) escapes to the surface.

A key question not resolved from Fig. 4.3 is whether dislocations 12 and 13

intersect during glide (frames 4 and 5 appear to indicate a possible interaction).

This is very difficult to discern from the 2D in-situ straining images, but the

stereo imaging (Fig. 4.3) reveals that these dislocations do not intersect. Another

question is the distance of the various dislocation segments from the free surfaces

that can only be resolved from stereo imaging of the in-situ strained dislocation

substructures. As shown later in this paper, having quantitative information of

the dislocation positions in the in-situ straining experiment is crucial in modeling

the dynamics of dislocations in thin foils.

The bowed out segment of dislocation 11 in Fig. 4.4 is not visible in the first

frame of Fig. 4.3. This implies that this segment glided out to the free surface

in the time between stereo imaging and the onset of further straining. Since the

specimen is under strain during this time, beam heating may lead to escape of

bowed out segments that are near the free surface. The remaining segments seen

in Fig. 4.3 are not on the glide plane, and hence no further motion is detected.

Dislocation 22 appears as a straight line in Fig. 4.2 but kinked in the first

frame of Fig. 4.3. It is possible that it experiences a similar type of motion to that

described above for dislocation 12 in frames 1-3. The kinked dislocation 22 may

be strongly pinned at both ends (although the details of the pinning points are

not discerned clearly in these images) and hence, no further motion is detected in

the in-situ straining sequence shown in Fig. 4.3. Motion of dislocations motions

shown in Fig. 2 appear to be more evident for dislocations that terminate at a
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free surface. The influence of surface forces on dislocation dynamics in thin films

is discussed in more detail in the DD simulation section of this paper.

Based on slip trace analysis, dislocation glide has taken place on two glide

planes: (111̄) and (1̄11). The resolved shear stresses for the [101](111̄) and

[101](1̄11) dislocations are approximately the same, although slightly less than

the highest stressed slip systems.

There is extensive discussion of the error involved in conventional and modified

stereo-TEM given elsewhere [59]. The experimental error in the third dimension

(z) for standard stereo-TEM depends on the stereo angle and is around an order

of magnitude greater than the measurement error in the other two dimensions.

With the measurement error in the x and y directions being on the order of

1nm, the measurement error in the z direction is around 10 nm. The error for

the modified technique is the same as for standard stereo provided both g and

sg change sign but not magnitude.[59] In the present case, these ideal imaging

conditions were not obtained, likely resulting in a somewhat larger error in z.

These errors are to be kept in mind during the direct comparison of the modeling

results to the experimental data.

4.3 Dislocation Dynamics in Thin Foils

In this chapter, Parametric Dislocation Dynamics (PDD) method developed in

previous chapters is applied to simulate the motion and interaction of dislocations[3]-

[38]. Additional forces are incorporated here on dislocations as a result of their

interaction with the free surface. There are several models available to calculate

the effects of surface forces, or to directly include the image stress field into DD

simulations. These approaches include Lothe’s energy theorem [35], Gosling and
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Willis’ Green’s function method [9], and the superposition method based on so-

lution of the Boussinesq problem [9]. For complex dislocation configurations and

boundary conditions, image stresses due to surfaces and interfaces can now be

computed by the finite element method (FEM) [65, 28]. In this chapter, Lothe’s

theorem for direct calculations of surface forces was implemented into the PDD

code [39]. For an isotropic medium, Lothe [35] determined the force per unit

length induced by a free surface on a straight dislocation segment [15]:

F =
µb2

4π (1 − ν)λ

[

|(1 − ν cos2 β) tan θ|n1 + |2ν cos β sin β|n2

]

, (4.1)

where µ, ν are the material’s shear modulus and Poisson’s ratio, respectively.

Parameters are shown in Fig. 4.5. λ is the distance from point P , where the

force is evaluated, to point O at which the dislocation line intersects the free

surface. n1 is a unit vector on the plane OO’P, with direction perpendicular

to the dislocation line, n2 is a unit vector on the plane containing OP and the

Burgers vector, with direction perpendicular to the dislocation line on the glide

plane. n1 represents the direction of the force component, which acts to rotate

the dislocation line so that it is normal to the surface, while n2 represents the

direction of the force component, which acts to align the dislocation along its

Burgers vector. The angle β is between the tangent and Burgers vectors, while

θ refers to the angle between the tangent vector and the surface normal. The

surface force is then decomposed to a component on the glide plane, and added

to be a part of the resolved glide forces, along with those dictated by the applied

stress and interaction forces. Because curved dislocation segments are employed,

the tangent vector is extended to its intersection with the free surface, and EQN.

(4.1) is used to compute the force per unit length at any point on the dislocation

line. This force is also integrated along the parametric curves to determine the
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nodal positions and coordinates, as described in reference [39].

β θ

n2
n1

λ

O’

P

O

b

Figure 4.5: Illustration of Lothe’s formula to calculate surface image force.

In the present model, dislocation loops are discretized into several curved

segments that can glide on different glide planes (see Table 4.2). Internal nodes

belonging to two different glide planes can only move along the intersection line

of the two planes. Dislocations may end at the surface or at some joint nodes

with other dislocations inside the material. Surface nodes can move along the

intersection line of the glide and surface planes. Since the motion of surface

nodes is associated with the creation of surface steps, the mobility of these nodes

is assumed to be 20% of the bulk mobility (104 Pa−1 s−1)[38].

Because screw dislocation segments can move on different intersecting glide

planes, cross-slip is possible [36]. In the present simulations, the orientation of

various segments are checked to determine if the average tangent vector on the

segment is aligned within 15◦ of its Burgers vector orientation. If that is the case,
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Table 4.2: Nodal segment distributions on dislocations, with corresponding Burg-

ers vectors (b), glide plane Miller indices. All segments are in mixed characters.

Dislo-

cation

Seg. 1

Miller

Seg. 1

Nodes

Seg. 2

Miller

Seg. 2

Nodes

Seg. 3

Miller

Seg. 3

Nodes
b

11 jog 1-15 (111̄) 15-16 (1̄11) 16-29 [101]

12 (111̄) 1-7 (1̄11) 7-24 (111̄) 24-41 [1̄01̄]

13 (111̄) 1-27 (1̄11) 27-28 (111̄) 28-36 [101]

22 (111̄) 1-18 (1̄11) 18-37 (111̄) 37-44 [101]

another check is made on the resolved shear stress magnitude on all glide planes

on which the segment may glide. Following the Friedel-Escaig mechanism[60],

the probability of a cross-slip event to occur is related to the activation energy

and the resolved shear stress on any glide plane as[66, 67]:

P = β
L

L0

δt

δt0
exp(V · τ − τIII

kT
) (4.2)

where β is a normalizing coefficient that makes the probability ranging from

0 to 1, τIII = 32 MPa is the critical resolved shear stress at the onset of stage III

of work hardening, V = 300 b3 is the activation volume, k is Boltzmann constant,

T is the temperature, L0 = 1 µm and δt0 = 1 sec are respectively references to

length and time, τ is the resolved shear stress on the cross-slip plane, L is the

length of the screw segment, and δt is the discrete time-step[67].

After the probabilities of cross-slip on each plane are calculated, the plane

with a larger probability of cross-slip is selected for dislocation to move. When

the dislocation segment approaches the free surface, the resolved shear stress on

possible glide planes increases dramatically, and the probability of cross-slip is
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enhanced. Further analysis of the experimental data also indicated the presence

of many small jogs on dislocation lines. Such jogs can produce vacancies as they

move towards the sample surface, which may result in additional out-of-plane

motion due to climb of edge components as well. As a simple model of climb,

comparison between the experimental and the computed dislocation structures

was made and climb movement was attempted for segments that showed large

differences. In summary, the simulations proceeded in the following way: (1)

dislocation motion along glide planes only, (2) cross-slip motion, and (3) climb.

One uncertainty in the calculation is the stress state acting on experimentally-

observed dislocations. The direction of the shear stress was determined by exam-

ining the dislocation bow out and motion. In the simulations, the applied stress

was increased until the final position of the dislocations matched the experiment.

A 3-D Finite Element Model (FEM) was also used to analyze the stress state

in the sample. The model consisted of 7880 tetrahedral elements, corresponding

to 16268 nodes. A displacement boundary condition was used, corresponding to

sample straining by edge displacements in the range of (0-4) microns. A solid

model for the sample is shown in Fig. 4.1. Results of the axial (normal) stress

components along the tensile axis (y-direction) and along its perpendicular (x-

direction) are shown in Fig. (4.6). Also shown in Fig. 4.7 is the corresponding

normal stress contour around the central perforation. Although large stress gra-

dients are observed near the central hole region, the zone where dislocations are

observed extend over a relatively small length (microns), and the axial stress

level is estimated to be 150 MPa for the full 4 µm displacement. It is also found

that the shear stress component in this zone is negligible, confirming that tensile

stress state in our DD model is close to the correct value.
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Figure 4.6: FEM results for normal stress distribution in the sample along the

axial direction (y) and its normal (x).
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Figure 4.7: FEM results for σyy contour around the central hole.
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4.4 PDD Simulations for Experimental Analysis

Initial PDD computer simulations of the experimental data restricted the motion

of dislocations to movement on the glide plane. The initial results indicated

that while the experimental dislocation motion on the glide planes is matched

reasonably well in the simulations, motion in the direction normal to the TEM

observation plane is greatly underestimated by the simulations. To be more

concrete, with no climb or cross-slip mechanisms invoked, the difference between

the simulations and experiments for dislocation 11 is approximately 16 nm within

the observation plane and 12 nm out-of-plane, roughly within the experimental

uncertainty. The other dislocations were less well determined, with a difference

in dislocations 22 and 13 within the observation plane of approximately 61 nm

and an out-of-plane error of 80 nm. The motion of dislocation 12 is even more

poorly modeled, with an in-plane difference of 200 nm and an out-of-plane error

of 140 nm.

PDD simulations that include dislocation cross-slip and climb (using the meth-

ods described above) were thus performed. These simulation results are shown

in Fig. (4.8) and are compared with experimental observations of Figs. (4.2)

and (4.4). The results show that dislocation 22 undergoes cross-slip motion, dis-

location 13 climbs, and dislocation 12 shows both climb and cross-slip motion.

Details of the cross-slip mechanism of dislocation 22 are shown in Fig. (4.9),

where it is seen that the segment reconfigures from the original slip plane to the

neighboring one with a higher probability of cross-slip motion. The cross-slip

probabilities of two screw segments are listed in table (4.3). It is obvious that

cross-slip planes have larger probabilities. Although cross-slip does not have to

happen on cross-slip plane, the dislocation segment will select the plane that has

large a larger probability.
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Table 4.3: Probabilities of cross-slip of screw segments at an applied stresses of

100 MPa

Segment on Dislocation Original Plane Cross-slip Plane

segment 2 on Dislocation 12 P=0.44 P=1.0

segment 2 on Dislocation 22 P<0.01 P=0.63

X

Y

Z

150MPa

150MPa

22 11

12

13

X

Y

Z

22 11
12

13

Figure 4.8: Initial and final dislocation configurations simulated by PDD

Image stresses play an important role in activating the cross-slip by changing

the resolved shear stress on the cross-slip planes. For example, when cross-slip

occurs, for dislocation 12, the resolved shear stresses resulting from image forces

on the cross-slip plane(111̄) and on the original plane (1̄11) are 37.76 MPa and

20.15 MPa, respectively. The resolved shear stresses resulting from applied stress

on the cross-slip plane and the original plane are 46.22 MPa and 48.18 MPa, re-

spectively. The cross-slip plane has even a lower stress without the image effect.

The average final resolved shear stresses on the cross-slip plane and the origi-

nal plane are 81.98 MPa and 60.07 MPa, which shows that surface image forces

greatly increase the cross-slip probability on the cross-slip plane. For climb, the
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Figure 4.9: Dislocation 22 positions during cross-slip motion: (1) Final configu-

ration without cross-slip, (2) Final configuration with cross-slip
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climb stresses on dislocation 12 and 13 are calculated as 208.3 MPa and 294.3

MPa at the end of straining, respectively. It is believed that these high stresses

can lead to pipe diffusion that results in dislocation climb[62, 63]. Careful anal-

ysis of node coordinates of the simulated and experimental configurations shows

great reduction in the positional difference when cross-slip and climb motion are

included, with the largest difference for any of the dislocations of about 13 nm in-

plane and 17 nm out-of-plane. These uncertainties are well within experimental

error.

4.5 Discussion

Direct validation of DD simulations with experiments (in situ straining coupled

with 3D imaging in TEM) allowed to correctly model the motion of dislocations in

thin, annealed Cu foils with a low initial dislocation density where surface image

forces play a significant role in determining the dislocation dynamics. It is shown,

through systematic comparison between experimental observations and PDD sim-

ulations, that dislocation configurations in thin copper foils acquire considerable

3-dimensional components that cannot be explained by glide events alone. The

structure of dislocation lines is highly jogged, with non-planar components. Sur-

face image forces in the thin copper foil appear to have two main effects: (1) they

result in the inducement of cross-slip for screw components; (2) they also nucle-

ate jogs on dislocation lines. Possibly through vacancy flow from the surface, the

motion of these jogs may also result in additional out of plane displacement of

edge dislocation segments as well.
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CHAPTER 5

Computer Simulation of Single Crystal

Plasticity

5.1 Introduction

The connection between the microstructure of materials at micron and sub-

micron scale has been well-established. Recently, there has been a surge in

attempts to derive the mechanical response of metals starting from its dislo-

cation microstructure. Such microstructures could be very heterogeneous with

dislocation cells, tangles, and slip bands. The collective and individual behavior

of dislocations is very critical in determining the mechanical properties. Disloca-

tion motion and the processes by which they form different microstructures under

various loading conditions is important in understanding the physics of strength

and failure of materials. Because of the intrinsic complexity of microstructures,

such understanding is still a open problem and can not be solved by experi-

ments and analytical theories alone. Direct numerical simulation of dislocation

motion provides an alternative way to effectively study the relation between the

microstructure and macroscale properties, and to improve the understanding of

deformation behavior of materials. This will eventually help in designing new

engineering materials that are much stronger than those currently in use in many

modern industries, such as aerospace, semiconductor and automotive industry.
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In this chapter, the UCLA-MICROPLASTICITY dislocation dynamics com-

puter code is applied to study the work-hardening of single crystal copper. Dis-

location microstructure of deformed copper was simulated and corresponding

stress-strain curves of the crystal were obtained from the simulation.

5.2 Simulation Procedure

A uniaxial tensile stress is applied to simulate the deformation of bulk materials.

The stress is applied at a constant strain rate in the direction of [100]. Define

c = ε̇11 = ε̇e11 + ε̇p11 (5.1)

as the applied strain rate, where ε̇e11 is an element of the elastic strain rate tensor

ε̇e and ε̇e11 an element of the plastic strain rate tensor ε̇p. The plastic strain rate

tensor is obtained from the motion of dislocations as

ε̇p = − 1

2V

N
∑

i=1

∮ l(i)

0
v(i)(p)[n(i)(p) ⊗ b(i) + b(i) ⊗ n(i)(p)]dl (5.2)

where N is total number of dislocation loops, l(i) is the length of dislocation i, V

is the volume of the simulated material, n is a unit vector defined as v× ξ, v and

ξ are the velocity vector and the tangent vector of the dislocation loop at point

p on dislocation lines, respectively.

The elastic strain rate in [100] direction is defined as:

ε̇e11 =
σ̇11

E
(5.3)

where E is Young’s modules and σ the stress tensor.

Substituting Eq. 5.2 and 5.3 into Eq. 5.1, the expression for the relation

between the measured stress and applied strain rate is obtained as

σ̇11 = E(c− ε̇p11) (5.4)
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Because of σ̇11 =
σt+1
11 −σt

11

δt
, Eq. 5.4 leads to

σt+1
11 = σt

11 + Eδt(c− ε̇p11) (5.5)

where δt is the time step used in the simulation.

Substituting the plastic strain rate from Eq. 5.2 into Eq. 5.5, the stress-

strain curves (σ11 vs ε11) can be calculated. The simulations directly relate the

dislocation motion at the microscale to the macroscale mechanical properties.

5.3 Geometric Generation of The Initial Dislocation Micro-

structure

In dislocation dynamics simulations, an important factor affecting the accuracy

and efficiency is that dislocation micro-structures are properly represented, es-

pecially in 3D. A method has been developed to generate initial dislocation mi-

crostructures in a material representative volume (MRV) automatically for any

dislocation density. The generated microstructure is then used as an initial input

of the simulation.

The dislocation density is generally expressed in the form of the total length

of dislocations in a unit volume of material, in units of cm/cm3 or m/m3, i.e.,

cm−2 or m−2. The average length of a dislocation segment is written as 1/
√
ρ.

And this is also the average distance between dislocations.

In this method, a dislocation loop is composed of two parts: super-jogs and

Frank-Read sources (Fig. 5.1). Super-jogs are not on the glide plane so that

they will not be able to glide. Frank-read sources are on glide planes and then

can glide on these planes. Glide planes are first generated in the MRV. On these

glide planes, dislocations loops are generated. If they cross the volume boundary,
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these loops are mapped back to the volume according to their position at the

opposite side. This method is called Periodic Boundary Condition (PBC), which

is commonly used for bulk material simulations. In this case, the central cube

is called a representative material cube and all the simulations are inside it. At

the same time as the microstructure is generated, the corresponding data that is

needed in the following dynamics simulation as input are written to files.
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Figure 5.1: Dislocation loop composed of F-R source and super-jog. Periodic

boundary conditions are applied.

The only input of this generation code are the cube length and the dislocation

density. Once it receives the two parameters, it will automatically generate the

dislocation micro-structure. The generation is loop by loop, after each loop is

generated, the dislocation density is checked. The process is continued until the

generated density is equal to the desired density.

Figure 5.2 shows the microstructure in 3D. In figure 5.3, a 2D cross section

of the microstructure along the indicated plane is shown. The dimensions of the
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volume are 2µm× 2µm× 2µm, the dislocation density here is 1010cm−2, and the

number of dislocation loops is 1356.
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Figure 5.2: Dislocation microstructure in a 2µm × 2µm × 2µm with density as

1 × 1010cm−2. Thick lines are FR sources and thin lines are super-jogs. Two

cross-section cutting planes are shown.

5.4 Simulation Results

Several simulations are performed on different cases to study the single crystal

plasticity of FCC Cu, especially to obtain the dislocation microstructure evolution

during deformation and the stress-strain curves. In simulations, the following

material parameters for Cu are used: the lattice constant a = 0.3615 × 10−9m,

the shear modulus µ = 50 GPa, the Possion ratio ν = 0.31, the Young’s modulus

E = 131 GPa, and a dislocation mobility m = 104 Pa−1s−1.

At the same time, the three simulations are specially designed to study the

effect of the sizes of simulation volumes (case 1 and case 2 have the same initial
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Figure 5.3: A cross-sectional slice view of dislocation microstructure shown in

figure 5.2

dislocation density but different sizes of the simulation volumes) and the effect

of different dislocation densities (case 3 has a higher density than case 2) on the

mechanical behavior.

5.4.1 Case 1: 5 Micron Crystal with Low Initial Density

In this case, the simulation volume is 5µm×5µm×5µm, and the initial dislocation

density is 1 × 107cm/cm3. The applied constant strain rate is 100s−1. The

simulated stress-strain curve and dislocation density-strain curve are shown in

figures 5.4, the simulated strain is up to 0.4%; and the dislocation density reaches

1.4 × 109cm/cm3. Microstructures at different strain levels are shown in figures

5.5 to 5.8. The significant hardening of the stress-strain curve results from small

volume effects on dislocation annihilations and interactions.
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Figure 5.4: (a) The simulated strain-stress curve; (b) Dislocation density vs

strain.(Case 1)

Simulation volume size: 5 µm

Figure 5.5: (a) Initial simulation microstructure(Case 1, 5µm× 5µm× 5µm)
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Simulation volume size: 5 µm

Figure 5.6: Simulated microstructure at strain of 0.15%(Case 1, volume size

5µm× 5µm× 5µm).

Simulation volume size: 5 µm

Figure 5.7: Simulated microstructure at strain of 0.4% (Case 1, volume size

5µm× 5µm× 5µm)
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Simulation volume size: 5 µm

(111) slice thickness: 2 µm

Figure 5.8: (111) slice view of the simulated microstructure at strain 0.4%(Case

1, volume size 5µm× 5µm× 5µm)

5.4.2 Case 2: 10 Micron Crystal with Low Initial Density

In this case, the simulation volume is 10µm×10µm×10µm, and the initial dislo-

cation density is 1×107cm/cm3. The applied constant strain rate is 100s−1. The

simulated stress-strain curve and density-strain curve are shown in figures 5.9,

the simulated strain is up to 0.3% and dislocation density reaches 8×108cm/cm3.

The initial microstructure and the ones for increasing strain levels up to 0.3% are

shown in figures 5.10 to 5.13.

5.4.3 Case 3: 5 Micron Crystal with High Initial Density

In this case, the simulation volume is 5µm×5µm×5µm, and the initial dislocation

density is 1×109cm/cm3. The applied constant strain rate is 100s−1. The stress-

strain curve and the density-strain curve are shown in figures 5.14 and 5.15. The

initial microstructure and those for increased strain levels up to 0.3% are shown
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Figure 5.9: (a) Simulated strain-stress relation; (b) Dislocation density and strain

relation.(Case 2, volume size 10µm× 10µm× 10µm)

Simulation volume size: 10µm x 10µm x 10µm

Figure 5.10: Initial simulated microstructure.(Case 2, volume size

10µm× 10µm× 10µm)
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(a) (b)

Simulation volume size: 10µm x 10µm x 10µm
Simulation volume size: 10µm x 10µm x 10µm

(111) slice thickness: 2 µm

Figure 5.11: (a) Simulated microstructure at stain of 0.1%, (b) (111) slice view

of the microstructure.(Case 2,volume size 10µm× 10µm× 10µm)
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Simulation volume size: 10µm x 10µm x 10µm Simulation volume size: 10µm x 10µm x 10µm

(111) slice thickness: 2 µm

Figure 5.12: (a) Simulated microstructure at strain of 0.2%, (b) (111) slice view

of the microstructure (Case 2, volume size 10µm× 10µm× 10µm)
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(a) (b)

Simulation volume size: 10µm x 10µm x 10µm
Simulation volume size: 10µm x 10µm x 10µm

(111) slice thickness: 2 µm

Figure 5.13: (a) Simulated microstructure at strain of 0.3%, (b) (111) slice view

of the microstructure (Case 2, 10µm× 10µm× 10µm)

in figures 5.16 to 5.20.

5.5 Discussion

5.5.1 General observations

In general, with increasing strain, dislocations rearrange into different microstruc-

tures like dislocation tangles, dislocation slip bands and cell structures. These mi-

crostructures interact with dislocations and the strain-stress curves reflect these

underlying interaction between defects. The interactions between dislocations

lead to the formation of different patterns.
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Figure 5.14: (a) The simulated strain-stress curve; (b) dislocation density vs

strain. (Case 3, volume size 5µm× 5µm× 5µm)
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Figure 5.16: Initial simulated microstructure.(Case 3, volume size

5µm× 5µm× 5µm)
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Figure 5.17: Simulated microstructure at strain of 0.03%.(Case 3, volume size

5µm× 5µm× 5µm)
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Figure 5.18: Simulated microstructure at strain of 0.06%.(Case 3, volume size

5µm× 5µm× 5µm)
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Figure 5.19: Simulated microstructure at strain of 0.1%.(Case 3, volume size

5µm× 5µm× 5µm)
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Figure 5.20: Dislocations form into complex microstructures, strain at 0.1%.(Case

3, volume size 5µm× 5µm× 5µm)

5.5.2 Dislocation density

In all cases, dislocation densities are initially low and the deformation is primarily

due to the glide on each individual slip system. After the dislocation density

builds up to a larger strain, dislocation interactions tend to play a more significant

role in the formation of microstructure patterns. It should be noted that a more

vivid dislocation microstructure pattern is observed in case 3 (volume size 5µm×
5µm × 5µm with the high initial dislocation density 1 × 109cm/cm3) than the

other cases with a low initial density.

Beyond a strain of 0.05%, dislocation density ρ has a linear relation to the

strain. Initially, this linear relation can be expressed as dρ
dε

= 0.2 ∼ 0.3 ×
1010cm/cm3, which is calculated from case 1 and case 2. When the disloca-

tion density is higher (case 1 after a strain of 0.3%, or case 3), this linear relation

is calculated to be dρ
dε

.
= 0.68 × 1010cm/cm3.
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5.5.3 Stress-strain curves

The stress-strain curves are closely related to and are a direct result of dislocation

motions and interactions. All stress-strain curves present a linear elastic region in

the beginning of the deformation. When the dislocation density begins to increase

linearly with strain, plastic strain from dislocation motion also increases which

causes the stress-strain curve deviating from the elastic regime to the plastic

regime. The underlying dislocation motion and interactions affect the plastic

strain and are reflected by the stress-strain curves.

After transition from the elastic region to the plastic region, stress-strain

curves continue to develop with a specific hardening rate dσ
dε

. For case 1, the hard-

ening rate is about 2500 MPa, which is high and due to the effect of small simula-

tion volume. For case 2 and case 3, the hardening rates are about 1330MPa ≈ µ
30

and 2432 MPa ≈ µ
20

, respectively. The higher yielding stress and hardening rate

in case 3 are believed to due to more interaction between dislocations for the

higher dislocation density in the simulation volume.

The experimental hardening rate for different hardening stages are usually

expressed as θ = δτ
δγ

, with τ as the resolved shear stress and γ the resolved shear

strain for a single slip. For stage II, θ has a value of µ
300

∼ µ
200

. To compare the

simulation results of multislip to experimental results, a simple analysis is made

as follows to illustrate the translation of the experimental shear hardening rate

δτ
δγ

to simulated tensile hardening rate dσ
dε

.

In figure 5.21 (a), a specimen under applied force F has plastic deformation

along the slip direction. The resolved shear stress for this plastic deformation

can be calculated as:

τ =
F cosλ

A/ cosφ
=
F

A
cosλ cosφ = σ cosλ cosφ (5.6)
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Figure 5.21: (a). Calculation of resolved shear stress, (b). Slip planes form a

tetrahedra ABCD in FCC crystals.

where A is the area under the force F , λ is the angle between the slip direction

and the tensile axis, φ is the angle between the normal to slip plane and the

tensile axis, and σ is the normal tensile stress.

Knowing that the macroscopic and microscopic work are equal, σ · ε = τ · γ,
the resolved shear strain can be calculated as:

γ =
ε

cosφ cosλ
(5.7)

Thus, from equation 5.6 and 5.7, it is obtained that:

dσ

dε
=
∂τ

∂γ
· 1

(cosφ cosλ)2
=
∂τ

∂γ
· 1

m2
(5.8)

where m is the Schmid factor.

Considering FCC crystals in figure 5.21 (b), there are 4 different slip planes

with slip directions on each plane along the dashed lines. The normals to the

slip planes are [111] (ABC), [111̄] (ABD), [1̄11] (ACD) and [1̄11̄] (BCD). The
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six slip directions are [011]/[01̄1̄], [01̄1]/[011̄], [101]/[1̄01̄], [101̄]/[1̄01], [110]/[1̄1̄0],

and [11̄0]/[1̄10].

The tensile axis in the simulation is along [100] direction and all the slip

systems in the crystal are symmetric to this axis. It has been shown that for

such a multislip deformation, the macroscopic hardening rate dσ
dε

can be expressed

similarly as in equation 5.8 as[68]:

dσ

dε
= M2∂τ

∂γ
(5.9)

where M is called Taylor factor. The only difference of this equation from equa-

tion 5.8 is that the Taylor factor M is used to count for the contribution of plastic

deformation from multislip systems to the average macroscopic deformation. The

Taylor factor is calculated to have a value around 3 for FCC crystals, which give

the relation dσ
dε

≈ 10 × ∂τ
∂γ

.

It is obvious that the simulated hardening rates dσ
dε

on the order of µ
30

∼ µ
20

are in very good agreement with experimental results expressed in the form of ∂τ
∂γ

according to above analysis.

On the other hand, direct measured dσ
dε

from experimental result of a tensile

stress-strain curve[69] compares well with simulation results. The curve for single

crystal copper is shown in figure 5.22. The tensile axis here is 5o from [1̄00]

toward [011], which activates almost symmetric multislip in the experiment. The

hardening rate of the curve is calculated to be on the order of µ
20

.
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Figure 5.22: A stress-strain curve to 0.3% obtained from experiments shows

hardening rate on the order of µ
20

[69].
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CHAPTER 6

Multipole Representation of The Elastic Field of

Dislocation Ensembles and Statistical

Extrapolation of DD Simulation

6.1 Introduction

The development of a physically-based theory of plasticity has been one of the

most challenging endeavors attempted in recent years. Despite the recognition

of the inadequacy of continuum mechanics to resolve important features of plas-

tic deformation, attempts to include the physics of plastic deformation through

constitutive relations are far from satisfactory. This is particularly evident for

the resolution of critical phenomena, such as plastic instabilities, work hardening,

fatigue crack initiation, persistent slip band (PSB) formation, etc.

Although DD has been successfully applied to a wide range of physical prob-

lems, especially for problems involving length scales in the nano-to-micro range[70,

71], the extension of the approach to larger length scales (e.g. for application in

polycrystalline material deformation) is still a daunting task. The main im-

pediment in this direction is the lack of methods for systematic and rigorous

”coarse-graining” of discrete dislocation processes. Notable recent developments

in this area have been advanced by LeSar and Rickman[72].

The main objective in this chapter is to develop a ”coarse-graining” approach
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for evaluation of the elastic field of large dislocation loop ensembles of arbitrary

geometric complexity. The method is an extension of the Lesar-Rickman mul-

tipole expansion of the elastic energy of dislocation ensembles[72]. The broad

”coarse-graining” objective of this chapter is associated with a number of moti-

vating reasons for this development, as given below.

1. To access the physics of plasticity through direct large-scale computer sim-

ulations of dislocation microstructure evolution. This is enabled by a sub-

stantial reduction of the speed of computation.

2. To remove the ”cut-off” distance limitation in dislocation-dislocation inter-

actions, and hence facilitate our understanding of microstructure evolution

sensitivity to such computational limitation.

3. To allow efficient determination of the ”effective” influence of dislocation

arrays (e.g. in some representation of grain boundaries), or complex dislo-

cation blocks (e.g. in dislocation walls and tangles) on the interaction with

approaching dislocations.

4. To enable embedding into well established, O(N), computational proce-

dures for particle systems of long-range interactive force fields[73].

5. To shed more light on the connection between discrete dislocation dynamics,

the Kröner-Kosevich continuum theory of dislocations[74], and moments of

a basic local tensor that characterize the spatial distribution of dislocations.

In the following, a multipole expansion method (MEM) formulation is pre-

sented in section 6.2.1. In O(N) methods for calculation of the effective fields

in particle systems with long range interaction force fields, moments evaluated

for smaller volumes are usually transferred or combined with moments defined in
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other volumes. This issue will be explained in section 6.2.2. Results for the far-

field expansion of the stress field and interaction forces are given in section 6.2.3,

while applications of the method to dislocation arrays in special boundaries or

dislocation walls are presented in section 6.2.4. Finally conclusions of this work

are presented in section 6.4.

Simulation results shown in the previous chapters are obtained at small strains

in comparison to practical situations. To achieve larger strain, special techniques

must be applied to overcome the bottleneck for long time scale simulations. Here,

based on the statistical distribution of the dislocation loops in the representative

volume, a statistical extrapolation method (SEM) is developed to extend the

direct dislocation dynamics simulation to large strains.

6.2 Multipole Expansion Method

6.2.1 Formulation of the Multipole Representation

The stress field at any point from a single closed dislocation loop can be written

as[40]:

σij =
µbn
8π

∮

[R,mpp(εjmndli + εimndlj) +
2

1 − ν
εkmn(R,ijm − δijR,ppm)dlk] (6.1)

where R = Q − P is the vector connecting field point Q and source point P at

dislocations (Figure 6.1 (a)). The stress field per unit volume of an ensemble of

dislocation loops in a volume Ω, some of them may not be closed within Ω, is

given by:

σij =
µ

8πΩ







NCLOSED
L

∑

ξ=1

∮

ξ
[R,mpp(εjmndli + εimndlj) +

2

1 − ν
εkmn(R,ijm − δijR,ppm)dlk]

+
NL
∑

ξ=NCLOSED
L

+1

∫

ξ
[R,mpp(εjmndli + εimndlj) +

2

1 − ν
εkmn(R,ijm − δijR,ppm)dlk]










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(6.2)

where NCLOSED
L is the number of closed dislocation loops within the volume Ω,

NOPEN
L is the number of open dislocation loops, which intersect the surfaces of

the volume Ω, NL = NCLOSED
L +NOPEN

L is the total number of dislocation loops

in the volume Ω.

.

.

.

O

P

Q

Ro

h
R

r

Om

O’

r
P

rm
r’

(a) (b)

Figure 6.1: Illustration of the geometries of (a) a single volume with center O

containing dislocations, (b) a single volume (center O
′

) containing many small

volumes with centers Om.

Suppose that the distance between point P on a dislocation and a field point Q

is relatively larger than the size h of a certain volume that contains the dislocation

loop, as shown in Figure 6.1. Point O is the center of the volume. Let us write

the Taylor series expansion of the derivatives of vector R at point O as follows:

R,ijm = Ro
,ijm +Ro

,ijmkrk +
1

2!
Ro

,ijmklrkrl +
1

3!
Ro

,ijmklnrkrlrn + ... (6.3)
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where r = O − P and Ro = Q − O.

Substituting these expansions in equation (6.2), and recognizing that Ro
,mpp,

Ro
,ijm, Ro

,ppm and their higher order derivatives depend only on Ro, it is found:

σij =
µ

8π

{[

Ro
,mpp(εjmnαni + εimnαnj) +Ro

,mppq(εjmnβniq + εimnβnjq)

+
1

2!
Ro

,mppqs(εjmnγniqs + εimnγnjqs)

+
1

3!
Ro

,mppqst(εjmnψniqst + εimnψnjqst) + ...
]

+
2

1 − ν
εkmn

[

Ro
,ijmαnk +Ro

,ijmqβnkq

+
1

2!
Ro

,ijmqsγnkqs +
1

3!
Ro

,ijmqsψnkqst + ...
]

− 2

1 − ν
δijεkmn

[

Ro
,ppmαnk +Ro

,ppmqβnkq

+
1

2!
Ro

,ppmqsγnkqs +
1

3!
Ro

,ppmqstψnkqst + ...
]}

(6.4)

where the dislocation moments of zeroth order within the volume Ω are defined

as:

αij =
1

Ω

NCLOSED
L

∑

ξ=1

∮

ξ
Eξ

ijdl +
1

Ω

NL
∑

ξ=NCLOSED
L

+1

∫

ξ
Eξ

ijdl

=
1

Ω

NL
∑

ξ=NCLOSED
L

+1

∫

ξ
Eξ

ijdl (6.5)

where dl = |dl| is an infinitesimal line length along the unit tangent t. The

Eshelby rational tensor Eij, defined as Eξ
ij = bξi t

ξ
j(P), is a local tensor because it

is defined at point P on a loop ξ, where tξi is the tangent vector at position P

and bξ is the Burgers vector of the loop. It is clear that the only contribution to

the tensor αij is from open loops (i.e. the second term), since the contribution of

closed loops is identically zero by virtue of the closed loop property. Equation 6.5

gives Nye’s dislocation density tensor αij[75, 76]. This tensor is directly related

83



to the lattice curvature tensor κ by[74]:

κ =
1

2
Tr(α)I −α (6.6)

where I is the second-order unit tensor. Higher-order tensors β, γ, ψ, . . ., cor-

respond to higher-order moments of the Eshelby rational tensor, and are defined

as:

βijk =
1

Ω

NL
∑

ξ=1

∫

ξ
rkEijdl

γijkl =
1

Ω

NL
∑

ξ=1

∫

ξ
rkrlEijdl

ψijklq =
1

Ω

NL
∑

ξ=1

∫

ξ
rkrlrqEijdl

ζijklq...p =
1

Ω

NL
∑

ξ=1

∫

ξ
rkrlrq . . . rpEijdl (6.7)

The stress field resulting from a dislocation ensemble within the volume Ω

can be written as:

σij =
µΩ

8π

∞
∑

t=0

1

t!

[

Ro
,mppa1...at

(εjmn〈ζnia1...at
〉 + εimn〈ζnja1...at

〉)

+
2

1 − ν
εkmnR

o
,ijma1...at

〈ζnka1...at
〉 − 2

1 − ν
δijεkmnR

o
,ppma1...at

〈ζnka1...at
〉
]

(6.8)

where 〈ζijk...〉 represent the moments defined above of different orders, as αij,

βijk, γijkl, etc. These moments depend only on the selected center point O and

the distribution of the dislocation microstructure within the volume. They can

be evaluated for each volume independently. After the moments are determined,

the stress field and interaction forces on other dislocations that are sufficiently

well separated from the volume Ω are easily obtained.
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6.2.2 Rules for Combination of Moments

For a fixed field point, if the distance of a volume to this point is larger than

its characteristic size, moments obtained from smaller sub-volumes can be uti-

lized to generate moments for the total volume. This procedure is similar to the

”parallel axis theorem” for shifting moments of inertia for mass distributions in

mechanics. Suppose that this large volume is composed of several sub-volumes

and multipole expansions are available for each sub-volume, a procedure to obtain

multipole expansion for the large volume from those for the sub-volumes is devel-

oped instead of doing the calculations again for each dislocation loop. This idea

is very suitable for hierarchical tree algorithms, such as the Greengard-Rokhlin

method[48]. Formulations for combination of multipole expansions are described

in this section.

Assume that a large material volume Ω centered at O
′

contains M small sub-

volumes centered at Om, with their volumes as Ωm, where m is an index(Figure

6.1 (b)). Here, rm is the vector connecting Om and O
′

. The new vector connecting

the center O
′

and a point on a dislocation is r
′

= r + rm, where rm = O
′ − Om.

With the dislocation moments for the mth small material volume as αm
ij , β

m
ijk, . . . ,

the moments of dislocations in the mth sub-volume in the large volume can be

written as follows:

αm′

ij =
1

Ω

Nm
L

∑

ξ=NCLOSEDm

L
+1

∫

ξ
Eξ

ijdl = fmαm
ij

βm′

ijk =
1

Ω

Nm
L

∑

ξ=1

∫

ξ
r
′

kE
ξ
ijdl

=
1

Ω

Nm
L

∑

ξ=1

∫

ξ
(rk + rm

k )Eξ
ijdl

=
1

Ω

Nm
L

∑

ξ=1

∫

ξ
rkE

ξ
ijdl +

1

Ω

Nm
L

∑

ξ=1

∫

ξ
rm
k E

ξ
ijdl
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= fm(βm
ijk + rm

k α
m
ij )

γm′

ijkl =
1

Ω

Nm
L

∑

ξ=1

∫

ξ
r
′

kr
′

lE
ξ
ijdl

= fm(γm
ijkl + rm

k β
m
ijl + rm

l β
m
ijk + rm

k r
m
l α

m
ij )

. . . (6.9)

where fm = Ωm

Ω
, Nm

L and NCLOSEDm

L are volume fraction, the number of total

dislocation loops, and the number of closed loops in the mth volume, respectively.

Then, the total moments of dislocation loop distributions within the large

volume are given by:

αij =
M
∑

m=1

αm′

ij =
M
∑

m=1

fmαm
ij

βijk =
M
∑

m=1

βm′

ijk =
M
∑

m=1

fm
(

βm
ijk + rm

k α
m
ij

)

γijkl =
M
∑

m=1

γm′

ijkl =
M
∑

m=1

fm
(

γm
ijkl + rm

k β
m
ijl + rm

l β
m
ijk + rm

k r
m
l α

m
ij

)

. . . (6.10)

Equation (6.10) can be written in a compact form as:

ζija1...an
=

M
∑

m=1

fm







n
∑

p=0





C
p
n

∑

q=1

[(

rm
t1
rm
t2
. . . rm

tp

)

〈ζm
ijtp+1...tn

〉
]











(6.11)

where n = 0, 1, 2, . . . is the order of the moment. Here,
C

p
n

∑

q=1
means that rm’s sub-

index group of t1 . . . tp are selected from the n index group of an in a permutational

manner, and group of indices tp+1 . . . tn are the corresponding n− p indices of an

after the selection.

6.2.3 Numerical Results

Based on the equations developed in the previous sections, the multipole expan-

sion for the stress field of a dislocation ensemble is numerically implemented,
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expressed by equation (6.8). The results of the full calculation based on equation

(6.2) are considered as reference, and relative errors from the MEM are calcu-

lated as |σMEM −σref |/σref . Tests are performed on a volume with h=10 µm for

different expansion orders and different values of R/h. Dislocations are generated

randomly inside the volume and with a density of 5 × 108 cm/cm3. Numerical

results are shown in figure (6.2)-(6.6). From these results, it is clear that the

approximate moment solutions converge fast. For different values of R/h, the

second order expansion gives a relative error less than 1%, while the fourth order

expansion gives a relative error less than 0.05%.
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Figure 6.2: Relative error vs the expansion order for different R/h, Volume size

1µm.
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6.2.4 Applications to dislocation boundaries and walls

6.2.4.1 Dislocation Interaction with A Tilt Boundary

An important consequence of heavy plastic deformation is the re-arrangement of

dislocations into well-separated tangles or periodic arrays. Dislocation tangles

evolve into walls that can act as sources of new dislocations, or stop approach-

ing glide dislocations from neighboring volumes. On the other hand, some grain

boundaries can be represented by dislocation arrays. The elastic field generated

by grain boundaries in compatibility can thus be determined from the dislocation

array representing its structure. Such dislocation microstructures have profound

effect on the deformation characteristics of materials, and more often, some ”ef-

fective” properties are needed. In this section, the feasibility of ”effective” elastic

representation of periodic dislocation arrays and dislocation walls utilizing the

MEM derived earlier is investigated. The effective influence of a tilt boundary

on the deformation of a dislocation emitted from a near-by Frank-Read source

is first investigated. Then the nature of the Peach-Koehler force on dislocations

approaching a dense entanglement of dislocations within a dislocation wall is

studied. The following examples are for single crystal Cu, with the following

parameters: shear modulus µ = 50 GPa, lattice constant a = 3.615 × 10−10 m,

Poisson’s Ratio ν = 0.31.

Figure 6.7 shows the geometry of a 1◦ tilt boundary containing 35 dislocations

with 1
2
[1̄01] Burgers vector. A Frank-Read(F-R) source is located 1 µm away

from the tilt boundary. The source, which lies on the [111] glide plane, and emits

dislocations with [1̄21̄] tangent vector and 1
2
[1̄01] Burgers vector as well. The

initial length of the F-R source dislocation between pinned ends is 700 a. A

constant uniaxial stress of 25 MPa is applied in the [100]-direction.
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Dislocation motion under the influence of the externally applied stress and the

internal stress generated by the tilt boundary is determined using the method of

Parametric Dislocation Dynamics(PDD)[39, 40]. Interaction forces between the

tilt boundary and the F-R source dislocation are calculated by two methods:(1)

the fast sum method[3], which adds up the contributions of every dislocation seg-

ment within the boundary; (2) the current MEM up to second-order quadropole

term. Dislocation configurations at different time steps are shown in figure 6.8(a).

The relative error in the MEM in the position of the dislocation (at its closest

point to the tilt boundary) is shown in Figure 6.8(b). The results of the simu-

lation show that the MEM is highly accurate (error on the order of 0.4%), and

that the overall dislocation configuration is indistinguishable when evaluated by

the two methods. However, the MEM is found to be 22 times faster than the full

field calculation.

1µm

0.5µm

b t

F-R source

1o tilt bounday
(35 dislocations)

Glide plane
[111]

Figure 6.7: Illustration of a tilt boundary. A single dislocation from an F-R

source lies on the [111] glide plane with Burgers vector 1
2
[1̄01] interacts with the

tilt boundary.

91



Position x in local coordinate system

Po
st

io
n

y
in

lo
ca

lc
oo

rd
in

at
e

3600 3800 4000

7350

7400

7450

7500

t1

t2

t4

X

t3

Full Calculation
Multipole Expansion

Time Steps

E
rr

or
(%

)

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

(a) (b)

Figure 6.8: (a)Dislocation configurations at different simulation time steps: t1=0

ns, t2=0.31 ns, t3=0.62 ns, t4=1.23 ns, (b)Relative error of the dislocation posi-

tion along the line X in (a).

Time Step

Po
si

tio
n

X
of

P
(L

at
tic

e
C

on
st

an
ta

)

0 25 50 75 100

2380

2400

2420

2440

2460

2480

2500

Full Calculation

Multipole Expansion

Figure 6.9: Comparison of the position of a moving point due to different meth-

ods.

92



6.2.4.2 Dislocation Interaction with a Dense Dislocation Wall

The physical role of dislocation walls in material deformation is recognized to

be significant because they control the free path of mobile dislocations within

subgrains[77]. Dislocation walls generally contain high dislocation densities. There-

fore, explicit large-scale simulation of the interaction between these walls and

approaching dislocations can present computational difficulties. If the nature of

decay of the elastic field away from the wall is determined, this would be helpful

in studies of dislocation interaction with such walls without the excessive details.

A special algorithm was designed to implement the MEM in dense dislocation

walls. The wall was divided into many small volumes, and a hierarchical tree

structure was constructed on the bases of these small volumes. Each level of

the hierarchical tree contains one or several nodes that correspond to specific

volumes of the wall. Larger volumes correspond to higher levels of the tree.

For each volume, the following properties of center, size, dislocation distribution

and various moments are determined. Dislocation moments for the lowest level

volumes are first calculated. Then, by using Equation (6.11), dislocation moments

for upper tree levels can be easily determined.

The procedure for calculations of the Peach-Koehler force on an approaching

dislocation at point P is as follows:

1. The distance between the volume center and the point P is first evaluated.

If the distance is larger than the volume’s size, MEM is used.

2. If the distance is smaller than the volume size and the volume does not

have sub-volumes, the P-K force is determined by full calculation.

3. If the distance is smaller than the volume’s size and the volume has sub-

volumes, the algorithm checks on the distance between P and the center of
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each sub-volume, and the above procedures are repeated.

Figure 6.10 shows a dislocation wall structure with a density of 5 × 1010

cm/cm3. The wall dimensions are 5 µm×5 µm×0.2 µm. The P-K force on a

small dislocation segment, located at various positions along the center line X,

with Burgers vector 1
2
[101̄] was evaluated by both MEM and full calculations.

The results of the P-K force and the relative errors are plotted in figure 6.11.

5µm

(b)

5µ
m

0.2µm

x

(a)

b

s

Figure 6.10: Dislocation wall structure with dislocation density 5×1010 cm/cm3.

A small dislocation segment S with Burgers vector 1
2
[101̄] lies along x.

While the relative error using MEM of order 2 is very small (see Figure

6.11(b)), a great advantage in computational speed is gained. The results (fig-

ures 6.12 and 6.13) show that the CPU time (on a Pentium-4 CPU, 2.26GHz)

increases almost linearly from 416 seconds to 3712 seconds for the full calculation,

when the number of dislocations in the wall increases from 250 to 2200. However,

the CPU time does not change much for the MEM (varying from 39 seconds to

40 seconds) for the same increase in the number of dislocations. For the case
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Figure 6.11: (a) P-K forces on a small dislocation segment at different positions

along direction x, (b) Relative error of the P-K force from MEM with respect to

that from full calculation.
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Figure 6.13: Speedup factor of the multipole expansion method to the full calcu-

lation method in the case of evaluation of P-K forces.

of 2200 dislocations within the wall, a speedup factor of almost 100 is achieved

for the MEM. Recognizing that the CPU time for the MEM is almost constant

and mostly dependent on the hierarchical tree structure, it is concluded that the

method is very suitable for large scale simulations, which involve high dislocation

densities.

It is of interest to determine the decay nature of the elastic field emanating

from dislocation walls. Figure 6.11(a) shows a comparison between various forms

of the spatial decay of the P-K force as a function of the distance R away from

the wall, normalized to the force at R0 = 0.59 µm. It is seen that the force decays

faster than R−2, and it can be simply represented by an exponential function of

the form:

F (R) = F (R0)e
−α(R−R0) (6.12)

where α = 1.36 µm−1. Such simple exponential representation is a result of the
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self-shielding of the dislocations within the wall.

6.3 Statistical Extrapolation Method

Simulations in Chapter 5 have shown that the dislocation density increases dra-

matically during the loading process. Correspondingly, numbers of interacting

dislocation segments also increase. Thus, more computation is required after the

simulation has run for a period of time and strain. It is not difficult to draw the

conclusion that the simulation will become slower and slower while the system is

becoming larger and larger. An different approach to target this problem is to

neglect some of the intermediate simulations on microstructures. The statistical

extrapolation method uses the relation between applied strain and dislocation

distribution parameters obtained from previous steps of simulation at strain ε1

to extrapolate the relation to a higher strain ε2. Direct simulations between ε1

and ε2 are omitted. Dislocation microstructure and measured external load are

assumed to follow the statistical relation in previous simulations. Direct simu-

lation resumes at strain ε2 on a reconstructed microstructure corresponding to

the strain ε2 and goes to another higher strain level. The predicted strain-stress

relation in this step is used to adjust the previous results and for followed ex-

trapolations. By repeating the procedure, it is anticipated to be easier to reach

higher strain simulations with less computation compared to direct simulations

all the way up. Following results illustrate the method.

As shown in figure 6.14, there are 3 steps for the method. Direct numerical

simulations are performed for strains below 0.3%, which is the first step. For

strains larger than 0.3%, instead of doing direct simulations for all the degrees of

freedom of the system, the dislocation density is extrapolated to 0.6% strain. At

this strain level, the dislocation density is twice as at 0.3%. The microstructure at
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a strain of 0.6% is generated by adding the same microstructure at 0.3% to double

the original density but with a rigid translation of the original microstructure with

the translation distance as half the size of the simulation cube.
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Figure 6.14: Extrapolation of the dislocation density to larger strains

The regenerated microstructure is first relaxed and then the same simulation

procedure used in the first step (described in section 5.2) is applied to the current

microstructure to obtain the new stress-strain relation. Results are shown in fig-

ure 6.15. This new stress-strain curve will represent the deformation of materials

beyond 0.6% strain. On completing the second stage to obtain the stress-strain

curve at this strain level, a full stress-strain curve for the entire strain range from

0 to 1% is obtained by connecting the two separated stress-strain curves. Here it

is assumed that the evolution of the dislocation density between 0.3% and 0.6%

will follow the same rate determined from the simulations between 0 and 0.3%

strain.

By repeating the process, the stress-strain relationship for larger strains can
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Figure 6.15: Stress-strain curve from the extrapolation method extends to larger

strain.

be simulated.

6.4 Discussion

The MEM presented here shows a number of features that facilitate investiga-

tions of the physical and computational aspects of large dislocation ensembles in

materials undergoing plastic deformation. The following conclusions are drawn

for this chapter:

(1) By re-expressing the elastic field of dislocation ensembles as a series solu-

tion of moments, the relative contributions of open loops, dipoles, quadropoles,

etc are easily separated out.

(2) The method results in significant computational advantages as compared

to calculations performed in most dislocation dynamics simulation method. First,
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vast computational speed-up is achieved, especially in simulations of dense dis-

location interactions. Second, the method offers a simple algebraic procedure for

transfer of moments from one volume to another, in a manner similar to the par-

allel axis theorem for moments of inertia in the mechanics of distributed masses.

This property is well-suited to algorithms based on hierarchical tree methods that

are now efficiently used in O(N) calculations.

(3) The zeroth order term in the MEM expansion is the Nye’s dislocation

density tensor, which is a direct measure of lattice curvature, and is affected

only by open dislocation loops within the ensemble. Diagonal components of

this tensor describe screw dislocations, while off-diagonal components represent

edge dislocations. On the other hand, higher order moments of the Eshelby

tensor are associated with definite length-scale measures that may be useful in

connections between discrete dislocation simulations and the continuum theory

of dislocations.

(4) The analysis of dense dislocation walls indicates that the Peach-Koehler

force has an exponential decay character as a result of mutual shielding effects of

multipole dislocations within random ensemble constituting the walls.

With the statistical extrapolation method, dislocation dynamics simulations

can be extended to large strains in comparison to real experimental situation

which makes it possible to study the entire range of the deformation of single

crystals. The combination of MEM and SEM will be able to predict the mechan-

ical behavior of materials with a simulation containing a much larger collective

system of dislocations.
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CHAPTER 7

Conclusions

With the development of advanced material technologies and the desire to fully

understand the physical nature of plastic deformation, fundamental investigations

of the mechanisms of dislocation motion and its relation to the mechanical prop-

erties has become an important topic. Direct numerical simulation of dislocation

motion and interaction has been developed through the past decade and has be-

come more mature as a scientific discipline. Future developments are becoming

easier on the base of past successes. The theory of dislocation dynamics has been

applied to explain many phenomena. The understanding from these explanation

will enhance the design and manufacturing of stronger materials that are widely

demanded in those advanced and traditional areas.

Although computer technology has provided a lot of computational power for

simulation, it is still not satisfactory when parallel computational techniques are

not used and real material simulations are in demand. Besides the development

of a physical theory of dislocations, the development of better computational

methodology is another critical point to achieve the objective of direct numerical

simulation of materials.

In this work, both analytical understanding of material deformation and nu-

merical implementation of simulations are explored in details with the method

of parametric dislocation dynamics. The main focus of the work is on efficient

computational implementation of the method and on its application to thin films
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and single crystal material deformation.

In chapter 2, description of dislocation motion is introduced by the derivation

of equations of motion, equations of dislocation geometry and equations for the

elastic fields of dislocation loops. These equations are fundamental for the theory

of dislocation dynamics, and they need to be implemented into the computer

code and to be solved numerically. Our solution gives simple equations based on

operations of vectors and tensors, which are very easy to be implemented and are

critical to large scale simulations.

In chapter 3, a parallel computer code is presented to utilize the computational

power provided by parallel computing techniques based on computer clusters.

The concept of dislocation nodal-points is derived to translate the line defect

to a particle-like defect. Dislocation loops are represented by points and these

points are distributed to different processors. Similar implementation of the

hierarchical representation of the computational domain is introduced into the

code and 3 concepts of the global, local and ghost trees are created. The test

results show that the computational speed has been greatly improved with great

communication and load balancing control. The code provides a useful tool for

large scale dislocation dynamics simulations.

In chapter 4, dislocation motion in thin films is investigated through the

dislocation dynamics method to study the mechanisms that control the plastic

deformation of materials with small size. Because of the existence of free bound-

ary conditions, the motion of dislocations is greatly affected by the image force

from the free surface, which is different from dislocation motion in bulk materi-

als. The study reveals the effects on dislocation motion by implementation of the

cross-slip mechanism into the computer code. Experimental results are utilized

to make comparison with the simulation results. These comparisons show that
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the simulation results are in agreement with experiments. This observation gives

the numerical simulation direct experimental validation that is always needed to

make sure that the simulation correctly and accurately represents real materials

deformation. The work suggests that it is completely possible and reasonable

to use computer simulation to study the microstructure of the materials if the

simulation incorporates key dislocation mechanisms.

In chapter 5, the developed parallel computer code is used to simulate the

work hardening of single crystal copper and has shown its potential as an ef-

fective tool to solve many problems of plasticity. Initial work hardening stage

II has been predicted with hardening rates on simulated stress-strain curves in

good agreement with experimental data. Dislocation microstructure evolution is

obtained from the simulation along with detailed information, such as dislocation

density as a function of strain, which can be used for further analysis.

In chapter 6, a multipole expansion method for dislocation interaction is pre-

sented. The method is used for the determination of elastic stress fields of dislo-

cation ensembles, such as dislocation walls, grain boundaries, etc. Application of

the method to such ensembles shows that it can greatly increase the calculation

speed. As it can be used independently, the method is very suitable for incor-

poration into the parallel code for large scale simulations and to obtain O(N)

algorithm while dealing with far-field interactions with very high accuracy. In

developing this method, it is found that some variables defined in determination

of the dislocation geometry are connected to the continuum dislocation theory,

which may provide a possible connection between the microscale and macroscale

properties of materials. This will help in the implementing of a multiscale model

for simulation of materials. A statistical extrapolation method is also presented

in this chapter for modeling deformation of materials at large strains.
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Through a series of simulations, detailed investigation of material microstruc-

ture and macroscale mechanical properties were performed by the method of dis-

location dynamics. The result show that numerical simulations can be of great

help in understanding material deformation.
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CHAPTER 8

Appendix

8.1 R and Its Derivatives

R is the vector connecting a field point Q and another point P on the dislocation

or O, center of the volume (see Figure 6.1). R and its derivatives are used in

expressions of displacements, strains, stresses and energies of dislocations[40].

Here, we define a way to express R and its derivatives in compact tensor forms.

Define

R = {xi} and g =
{

xi

R

}

(8.1)

where R = |R|. Thus,

R,i =
xi

R
= gi (8.2)

R,ij =
δij
R

− xixj

R3
= − 1

R
(−δij + gigj) (8.3)

R,ijk = −δjkxi + δikxj + δijxk

R3
+

3xixjxk

R5

=
1

R2
[− (δjkgi + δikgj + δijgk) + 3gigjgk] (8.4)

R,ijkl = −δijδkl + δikδjl + δilδjk
R3

+
3(δjkxixl + δikxjxl + δijxkxl + δklxixj + δjlxixk + δilxjxk)

R5

−3 · 5xixjxkxl

R7

= − 1

R3
[(δijδkl + . . .) − 3 (δjkgigl + . . .) + 3 · 5gigjgkgl] (8.5)
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. . . (8.6)

Based on the above derivations and after careful analysis, we can write these

derivatives as:

R,a1a2...an
=

(−1

R

)n−1 |n
2
|

∑

m=0

{(−1)m(2n− 3 − 2m)!!

C2m
n (2m−1)!!

∑

(

δt1t2δt3t4 . . . δt2m−1t2m
· gt2m+1gt2m+2 . . . gtn

)

} (8.7)

where t1, t2, . . ., t2m are a group of indices selected from an in a permutation

manner, and t2m+1, . . ., tn are the other group of an after such a selection. The

summation
C2m

n (2m−1)!!
∑

means taking sum over all combinations.

By defining

1 = {ei} (8.8)

and,

R(n) = {R,a1a2...an
} (8.9)

we can write equation (8.7) as:

R(n) =
(−1

R

)n−1 |n
2
|

∑

m=0







(−1)m(2n− 3 − 2m)!!
C2m

n C2
2m

∑

[

(q⊗n−2m g)(q⊗2m 1)
]







(8.10)

In this equation, m is the number of δ
′

s and is from 0 to |n
2
| which indicates

the largest integer not larger than n/2. The symbol q⊗n indicates that there

are a number of n items of g or 1 with the operation ⊗. The second summation
C2m

n C2
2m

∑

means doing summing in a permutation and combination manner, with

the number of items 1 as 2m and the number of items g as n−2m. For example,

with m = 1 and n = 4, we have:

C2m
n (2m−1)!!

∑

[

(q⊗n−2m g)(q⊗2m 1)
]

=
C2

4
∑

[

(q⊗2 g)(q⊗2 1)
]
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= 1 ⊗ 1 ⊗ g ⊗ g + 1 ⊗ g ⊗ 1 ⊗ g + 1 ⊗ g ⊗ g ⊗ 1

+g ⊗ 1 ⊗ 1 ⊗ g + g ⊗ 1 ⊗ g ⊗ 1 + g ⊗ g ⊗ 1 ⊗ 1 (8.11)

8.2 List of computer code files

The large scale parallel computer code of UCLA-MICROPLASTICITY contains

about 20 files, which include 1 main program, 23 modules, 50 functions and 179

subroutines. The total number of code lines is 11, 555.

8.2.1 List of files

The source files of the code are listed in figure 8.1:

1. Microplasticity.f90                       2. SimInitialization.f90

3. SimulationMain.f90                     4. Update.f90

5. ZQMPI.f90                                     6. TreeModule.f90

7. SplitBuild.f90                                 8. Annihilation.f90

9. CrossSlip.f90                               10. Communication.f90

11. MPIModule.f90                         12. Module.f90

13. LoopRearrange.f90                 14. FunctionMD.f90

15. Dynamics.f90                           16. EliminateSmall.f90

17. ComputeStrain.f90                  18. Output.f90

19. CommonUsed.f90                   20. ReadWritePast.f90

Figure 8.1: Files containing source codes for UCLA-MICROPLASTICITY.

8.2.2 Sample Input/Output

There are two input files, one is named as ”materials.txt”, which contains the

parameters of materials, and the other one is named as ”geometry.txt”, which

contains input of dislocation geometries. The sample files are shown in figure 8.2

and 8.3.
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&MATERIAL MU=50D9,NU=0.31,LATTICE=3.615D-10, APPLIED_SIG=1.0D2,
DELTA_SIG=1D6, A_CUBE=13832, MOBILITY=1.0D-3,RTOLL=1.0D-4,
ATOLL=1.0D-5, ERROR=1.0D-4, DTIME=1D-11, StrainRate=250,
ElasticCons=131d9, CheckNeiBur=1, dcrit=250, IntegrateMethod=2,
logAnnihilation=0/
&DIMENSIONS MAX_QUAD=16, N_TIMES=500, ILOOP_TIME=2000,
MAX_NODE=10, MAX_LOOP=20, MAX_PLANE=2000, NPOINT_I=5/

Figure 8.2: Sample input file ”materials.txt”.

DEFECT  PLANE  NODES Mil_1 Mil_2 Mil_3 BURG_1 BURG_2     BURG_3
RIGIN_x ORIGIN_
y ORIGIN_z RADIUS Shift_x Shift_y Shift_z
frs
frs            1 2    1.00000000000000        1.00000000000000

1.00000000000000       0.000000000000000E+000  0.500000000000000
-0.500000000000000        1942.46034320707        1942.46034320707
1942.46034320707                1  0.0000000E+00  0.0000000E+00
1    1606.67024200737        1478.48575843811
2   -2811.60139166907       -1851.29956223668

frs
frs            2 2    1.00000000000000        1.00000000000000

1.00000000000000       0.000000000000000E+000  0.500000000000000
-0.500000000000000        3557.01367696510        3557.01367696510
3557.01367696510                1  0.0000000E+00  0.0000000E+00
1   -2811.60139166907       -1851.29956223668
2    1606.67024200737        1478.48575843811

frs
frs            3 2    1.00000000000000       -1.00000000000000

1.00000000000000       0.500000000000000    0.000000000000000E+000
-0.500000000000000        1942.46034320707        25721.5396567929

1942.46034320707                2  0.0000000E+00  0.0000000E+00
1    1606.67024200737        1478.48575843811
2   -2811.60139166907       -1851.29956223668

frs
frs            4 2    1.00000000000000       -1.00000000000000

1.00000000000000       0.500000000000000    0.000000000000000E+000
-0.500000000000000        3557.01367696510        24106.9863230349

3557.01367696510                2  0.0000000E+00  0.0000000E+00
1   -2811.60139166907       -1851.29956223668
2    1606.67024200737        1478.48575843811
frs
frs            5 2   -1.00000000000000       -1.00000000000000

1.00000000000000       0.000000000000000E+000 -0.500000000000000
-0.500000000000000        25721.5396567929        25721.5396567929
1942.46034320707                3  0.0000000E+00  0.0000000E+00
1    1606.67024200737        1478.48575843811
2   -2811.60139166907       -1851.29956223668

ENDDEFECT

Figure 8.3: Sample input file ”geometry.txt”.
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