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Metallic alloys exposed to fusion reactor neutron spectra will
experience high helium generation rates. The interaction of helium
atoms with other neutron—inauced radiation damages will inevitably
result in a deterioration of bulk material properties. Qverwhelming
experimental evidence suggests that this couldl be the second most
serious obstacle to commercialization of fusion power.

Because the lifetime of a nuclear reactor is dictated by the
integrity of the structural material, extensive efforts have been made

over the past decade to understand the effects of helium atoms on bulk

material properties.



Despite low solubility, helium atoms will precipitate into bubbles
inside structural materials. Little is known about the nucleation and
evolution of helium bubbles due to the submicroscopic levels at which
these processes occur. Lack of fusion test facilities has encouraged
the material research community to use simulation techniques. The main
drawback of these experimental techniques is the fact that various radi-
ation damage processes have to be singled out. Thus, the combined
effects of all simultaneously occurring radiation phenomena can not be
easily tested. The goal of this thesis is to use theoretical approaches
to understand the mechanisms of helium transport, interaction with
defects, and clustering with vacancies during irradiation.

Helium interaction with metallic alloys during irradiation is first
investigated. Helium—defect interaction processes that are helpful in
explaining experimental findings are identified in this work. This is
then used to determine helium atom transport processes through the
matrix. Next we establish nucleation and criticality criteria for the
stability of helium—-vacancy complexes. All processes are complicated
because of the everchanging microstructure caused by neutron inter-
actions with the material. The current efforts include the effects of
thermal fluctuations, primary knock-on atoms (PKAs), and self-
interstitiais on the evolution of the cavity size distribution.

The growth and evolution of helium-filied bubbles are examined by
developing and solving a 2-D Fokker-Planck equation describing the evo-—
lution phenomena.

Special care was taken in monitoring the boundary conditions of the

solution space. The integral finite-difference formulation of the

xviii



boundary elements assures conservation of irradiation produced defects,
thus minimizing the accumulation and propagation of numerical
instabilities.

The 2-D Fokker—Planck equation is solved numerically using a finite
differencing scheme. A nodal-line analysis coupled with a trajectory
method was used to develop a dynamic mesh-size incrementation method.
This method assures high program efficiency. A typical run requires ~ 5
to 7 minutes of Cray computer running time. Such a run will evaluate
the cavity size distribution and the helium atom content distribution in
stainless steel exposed to up to ~ 14 dpa of total damage in HFIR
experiments.

In summary, a unifying model that encompasses all poééible pro—
cesses from an atomistic level of HVCs to measurable helium bubbles is

presented in this thesis.
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CHAPTER I

INTRODUCTION

At the present time the fusion research community is still faced
with major obstacles before a safe fusion power reactor can be realized.
The primarv requirement for controlled thermonuclear fusion is that of
plasma confinement and sustainment for the duration of a burn cycle.
Present efforts in plasma physics research coupled with confinement
concept studies are setting a timetable of 20 to 30 vears before con-
finement and production of a D-T plasma can be achieved for commercially
attractive burn times. Once this primary requirement has been achieved,
several other problems will have to be solved in order to make fusion
power safe and economical. A major set of problems are the consequences
of the interactions between fusion neutrons and the structural materials
surrounding the plasma.

Generally, neutron and material interaction leads to radiation-
induced deterioration (radiation damage) of the material. Thus radi-
ation damage has been termed the second-most serious obstacle to commer-—
cialization of fusion power [i].

Because the lifetime of a nuclear reactor is dictated by the integ-
rity of structural materials, the science of radiation damage originated
soon after the first nuclear reactor was built in the early 1940s. It
was then that Wigner, for the first time, expressed concern that the
effects of fast neutrons and fission products om the microstructure of

reactor wmaterials could lead to severe technical problems. TIrradiation



induced changes In reactor material microstructure were soon discovered,
but it was not until the development of the fast-breeder reactor that
the extent of the importance of radiation damage was appreciated and the
lifetime-limiting character of radiation damage was understood.

Fast breeder reactors expose structural components to high fluxes
of neutrons in the MeV range, which leads to more pronounced radiation
damage effects compared. to thermal nuclear reactors. Since fusion
reactors will produce fluxes with a larger fraction of even higher
energy neutroms, it can be assumed that radiation damage will play an
even more crucial role in influencing the lifetime of structural materi-
als in a fusion reactor, such as first—wall and blanket components.

Figure 1! compares the integrated neutron flux spectra in a typical
fast fission reactor, the Experimental Breeder Reactor (EBR-II), in the

2

first wall of a conceptual fusion reactor with 3 MW m “ wall loading,

and in a proposed neutron stripping source (FMIT [2]). The D-T reaction

D+ T —a(3.5 MeV) + n(lé&.1 MeV) , (1)

leads to a high portion of 14.1 MeV neutrons.
Microstructural changes are caused by two elementary interactioms

between lattice atoms and radiation:

1. Particles such as neutrons, ions, and self-ioms, transfer
recoil energy to the lattice atoms. Depending on the kinetic
energy and mass of the bombarding specie and lattice atoms,

many collisions take place before the neutron is immobilized
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inside the host lattice. If the recoil energy of a collision
exceeds the displacement threshold energy (E,;) of the host
atom [generally E., ~ A(eV) for metals, where A is the atomic
number], the host atom is dislodged and embeds itself as a
self-interstitial in the matrix. The empty lattice site is
called a vacancy. Thus a vacancy-interstitial pair (Frenkel
pair, 0-D defect) is created. Once formed under continuous
irradiation, vacancies tend to agglomerate into voids (3-D
defects) and self-interstitial atoms (SIAs) form dislocation
loops (2-D defects) or join existing dislocation 1lines (1-D
defects). These types of radiation effects fall under the
category of digplacement damage. The displacemeqt damage of
future fusion reactors is predicted to be of the same order as

that of fast neutron reactors.

2. The second elementary interaction between radiation and the
lattice atoms causes nuclear reactions leading to solid or
gaseous transmutations. Metals and alloys under fast neutron
irra.diation produce helium by n,a-reactiouns. The inert gas
helium is highly insoluble inside the matrix and thus stays
highly mobile until it is immobilized in lattice defects such

as voids and bubbles.

In fission reactors, the production of inert gases in structural
materials is relatively low and the major effect of these gases lies in
stabilizing displacement damage. However, in fusion reactor environ-—

ments, the rate of n,a-reactions is considerably higher since the cross



section for these nuclear reactions increases in general with neutron
energy. In Chapter III, helium generation in materials will be dis-
cussed in more detail. Due to the high helium production rates in
fusion environments, helium filled cavities (bubbles) are formed. Their
effects on degrading material properties is regarded to be as important
as that of displacement damage.

Increased research activities on the behavior of helium in metals
can be attributed to the above reason. Figure 2 shows research trends
where the number of open-literature publications on helium effects on
materials is shown versus years [3].

Besides indicating increased activity in this area, Fig. 2 also
provides some overview over the various aspects of different research
areas regarding helium effects.

One interesting note is the lack of investigations comparing exper-—
imental findings and theoretical research. This thesis is intended to
establish such a 1link, thus allowing more insight into the effects of
helium on engineering properties of reactor materials. The reason for
the lack of theoretical comparisons to experimental findings lies in the
difficulties encountered in measuring fundamental phenomena of helium
behavior in metals.

First, as pointed out by Fig. 1, no experimental facilities are yet
available experimentally to investigate helium effects on materials
under fusion conditions. Furthermore, the combined effects of displace-—
ment damage with nuclear reactions on the microstructural evolution do
not reach equilibrium conditions, but seem to change continuously until

irradiation is turned off. Such a situation complicates understanding
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of helium effects. First, due to the submicroscopic sizes of fundamen-—
tal helium vacancy clusters (HVCs), their evolution cannot be monitored
experimentally. Second, monitoring the development of microscopic bub-
bles is only feasible after irradiation. These two conditions make most
experimental investigations equivalent to taking "snapshots” of an ever-
changing microstructure, which do not render themselves readily to
extrapolations. The wealth of data on the influence of helium on
engineering properties of reactor materials [3] was compiled by perform—
ing innovative helium production techniques. These techniques will be
reviewed in Chapter III. The shortcomings éf these techniques lie in
reproducing the simultaneous effects of displacement damage coupled with
helium production rates present in fusion environments.

The intent of this thesis is to establish a solid theoretical basis
for understanding the evolution of HVCs, and to correlate the results to
experimental data. Such a theoretical understanding of the fundamental
mechanisms contrelling the evolution process is essential to all experi-
mental work on helium effects.

To accomplish this objective, both the submicroscopic or atomistic
level of defect formation and the microscopic level of measurable bubble
evolution must be dealt with in one comprehensive treatment. The advan-
tages of this approach are numerous. The most important is the self-
consistency of the approach, from gas production to the final evolution
into microscopic bubbles. If the fundamental atomistic analysis is
accurate, then by choosing a set of experimental parameters, the
investigation should come close to experimental results. This will mean

that we can explain and understand fundamental HVC processes with more



confidence. Furthermore, we will no longer depend on extrapolating
between snapshots to understand the development of microstructural
evolutions. Being able to monitor the evolution process in its entirety
from nucleation to growth will allow us to explain many unresolved
microstructural phenomena.

Once the size distributiom of bubbles is known, a great deal of
information can be extracted to predict the engineering performance of
structural materials. The present approach yields this most crucial

piece of information: The time-dependent size distribution of HVCs in

materials under irradiation.

The importance of this investigative tool being outlined in this
thesis will later show itself when variations in input parameters allow
the study and explanation of many interesting experimental findings.

Chapter II will outline some basic properties of helium in meﬁals
followed by the influence of helium on bulk material properties. Here,

some experimental findings on the following will be briefly reviewed:

1. Tensile strength
2. Creep rupture

3. Fatigue

4, Swelling

5. Microstructural and microchemical changes

Chapter II will conclude with a discussion on basic mechanisms of helium

effects.

Chapter III starts with an overview of helium generation and

retention in fusion materials and helium introduction techniques that



simulate fusion conditions, followed in Chapter IV by an extensive
discussion of theoretical treatments up to the present time.

Chapter V is devoted to contributions of the present work to the
subject of helium transport, diffusion, and interactions with defects
during irradiationmn.

Chapter VI presents a review of the theory of cavity evolution
during irradiation and presents derivations of our approach to the
theory of defect clustering.

Chapter VII documents the development of the computational model
and its application to a typical HFIR irradiation case.

Finally Chapter VIII presents summary and conclusions of the work.



[1]

[2]
[3]
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CHAPTER II

BASIC PROPERTIES OF HELIUM IN METALS

The introduction of helium into structural materials via nuclear
reactions during irradiation results in severe deterioration of metal
properties. Some macroscopic changes can readily be monitored and
measured (e.g., enhanced swelling, intergranular embrittlement, and
surface blistering). The cause of these changes can be attributed to
the formation of helium bubbles.

In order to understand the formation and development of these
helium bubbles, one has to wunderstand the fundamental processes
involved. First the atomistic behavior of helium as a single impurity
étém inside the host lattice must be investigated. This can be classi-
fied as the helium transport phase. Next, the interaction of helium
with other defects and small defect clusters must be understood. Here
we deal with the nucleation phase of helium bubbles. Finally, the mech-—
anisms of helium and point-defect interaction with bubbles must be known
to understand bubble growth under irradiation. These three phases con—
stituting bubble evolution may also be classified according to corres-—
ponding size classes, determined by the various experimental techniques

and theoretical methods listed in Table I.

1. ATOMISTIC PROPERTIES

The goal of most experimental and theoretical methods listed in
Table I is to determine the energetics of helium atoms at various sites.

For the first two size classes, the helium~metal and helium—helium

11
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interaction is important. Figure 1 shows the Tespective energy levels
for some of these interactions in a nickel lattice.

Because of rapid developments in high-speed computing, calculations
of defect interaction energetics have been successful. Results of these
calculations and comparisons to some experimental results are given in
Chapter 1V. Important conclusions from theoretical and experimental
studies regarding the properties of helium atoms in metals are

summarized below.

1. Because of the perfect electronic shell configuration of helium
atoms, it does not readily share its electron configuration
with the surrounding metal electrons. This causes a high
strain field in the vicinity of the helium atom. Thus the heat
of solution (Ege) of an interstitial helium atom (IHA)} is very
high (2 to 4 eV)[2]. The strain field caused by an intersti-
tial helium atom is almost totally eliminated once it "falls”™
into a vacant lattice site.[and in effect substitutes for a
host atom (substitutional helium atom)]. This causes the
helium atom to be "bound”™ to a vacancy by an energy roughly

He
equivalent to E_ . In the event a self-interstitial atom (SIA)

encounters a substitutional helium atom (SHA), the SIA can

dislodge the SHA and recombine with the vacancy. (See Fig. 1).

2. The energetically more favorable position of an SHA constitutes
a very significant and effective trapping mechanism. Without

trapping, helium atoms would simply diffuse to open or closed

13
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surfaces after introduction into the lattice, and the tendency
towards helium bubble formation would be difficult. As a con-
sequence, the equilibrium concentration of SHAs is expected to

be much larger than that of IHAs.

3. The large heat of solution associated with THAs is a measure of
the low solubility of helium atoms in metals. This low solu-
bility is the main property of helium in metals that causes
helium to precipitate into clusters of helium wvacancies that
later grow to become helium bubbles. These bubbles are the
reason for the degradation of structural material engineering

properties.

After establishing the fundamental energetics of helium atoms in metals,
we can use this information to identify and quantify diffusion mechani-
sms for heiium. Although Chapter V discusses helium diffusion in more

detail we outline here some general processes related to helium

transport.

1. The first migration process of an introduced THA is achieved by
jumps between interstitial positions caused by thermal agita-
tion until it is "trapped” at a lattice imperfection. Because
of the 1large number of imperfections inside any structural
material (such as grain boundaries, thermal vacancies, disloca-
tion lines, and precipitates), the average residence time for a

helium atom as an interstitial is very short.

15



The next migration process is of a SHA moving with the vacancy
as a helium—-vacancy cluster (HVC). For this to occur, a vacan-
cy must be formed next to the HVC. The helium must then inter-
change with the self-interstitial of the neighboring vacancy.
This mechanism can be ignored totally in the absence of irradi-
ation because the thermal-vacancy concentration is small.

Under irradiation, vacancies and interstitials are pro-
duced by displacement damage and both defects are involved in
helium transport. The self-interstitial can recombine with the
vacancy being occupied by the helium atom, thus in effect
detrapping the helium atom. This 1is called a replacement

mechanismnm.

Irradiation can affect the HVC in two other ways. Recoil atoms
can dislodge the trapped helium atom if their kinetic energy
exceeds the helium-vacancy binding energy (see Fig. 1). The
second effect is due to the abundance of single vacancies
created by irradiation. With a supersaturation of vacancies
larger than one, a single vacancy may encounter a HVC on its
migration‘path. This vaéancy will then attach to the HVC thus
forming a single helium~divacancy cluster (HVZ)‘ This cluster
has a very low migration energy because the helium atom can
"rattle” between the two vacancies. Therefore, in effect, omne
vacancy is always unoccupied which renders the cluster able to

do fast—-rotational translations.

16



All of the above mentioned migration mechanisms have been investi-
gated and then included in our overall analysis. We determined effec-
tive migration energies and diffusion coefficients for various tempera-
ture ranges [3]. For the technologically important temperature range
400°K < T < 800°K the helium—effective diffusion coefficient was found
to be approximately equal to that of the single-vacancy diffusion
coefficient.

As pointed out earlier, the high ionization and potentials of inert
gases cause the electrons to remain in atomic orbitals, thus not contri-
buting appreciably to cohesion. This "insolubility” character of helium
atoms causes them to precipitate into clusters after a relatively short
incubation period which can drastically affect the migration of helium
atoms.

The migration of helium atoms to the grain boundary is the key
parameter for high temperature embrittlement of structural material
(4,5]. Therefore, any phenomena which influences helium migration must
be understood in order to predict material performance. This is why

nucleation and growth of helium clusters have received much attention.

2. NUCLEATION AND GROWTH

Nucleation and growth of HVCs have been investigated at low
(T { T,/3) and high temperatures (T = 400° to 750°C

At low temperatures, HVCs in platelets [6] and spherical shapes [7]
have been found to nucleate under high helium production rates. Bubble

nucleations can occur spontaneously, i.e., without any thermodynamic

17



barrier. In the absence of sufficient vacancies, these clusters can
nucleate and grow by a loop punching mechanism [7,8] if the pressure in
the cluster exceeds the loop punching threshold value Pip:

2y + ub

Y o ) , (1)

PLP - [ r

where y = surface free energy,
u = shear modulus of the material,
b = hurgers vector,
r = loop radius.

Under conditions relevant to fusion environments, nucleation, and
growth of HVCs are subject to thermodynamic barriers. Such thermo-
dynamic barriers determine the stability of nucleating HVCs. Three
levels of analyses are generally used to study the degree of stability

of HVCs.

The first is an atomistic [9] approach in which HVCs are analyzed
using appropriate interatomic potentials. Stable configuratioms and
helium~vacancy ratios, as well as binding and migration energies, are
found. Shortcomings of this approach are (1) the method is not applica-
ble to large clusters and (2) the effect of kinetic processes due to
irradiation cannot be included.

For the second approach, purely kinetic descriptions are used to
derive simplified analytical expressions for the "critical cavity size”
for cavity nucleation and growth [10,11]. This approach may ignore

important detailed mechanisms.

18



The third approach investigates nucleation and growth through
thermodynamic considerations. Here the energetics and formation of
helium bubbles is determined by establishing the free energy of forma-
tion [5,12,13]. Although details of this method are discussed in
Chapter V, it suffices here to say that the thermodynamic approach has
been successful in estimating the order of magnitude of the final bubble
density.

A part of this study (Chapter V) is aimed at identifying the sta-
bility of HVCs in an irradiation field. Such stability is a complex
function of irradiation variables (damage rates, helium production
rates, and fluence), as well as material parameters (sink density,
temperature, and defect parameters). Consistent with HFIR, EBR-II, and
accelerator irradiation conditions, we determine (in Chapter V) respec—
tive nucleation regimes based on a nodal line stability analysis for
various temperatures and dislocation line densities [14]. We then show
how the stability amalysis approach is further used in the analysis of
helium bubble evolution.

Now that some basic helium properties in structural materials have
been mentioned and identified, the next step is to review the influence

of helium on bulk material properties.
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3. EFFECTS OF HELIUM ON BULK MATERIAL PROPERTIES

The effects of inert gases produced during irradiation in nuclear
fuels were studied in the early years of fission reactor development.
However, it was not until 1965 that a paper by Barnes [15] appeared
which linked high temperature ductility losses [16-18] of irradiated
stainless steel to helium bubbles in the grain boundaries. The identi-
fication of the role of helium bubbles on deteriorating bulk properties
led to numerous investigatioms of helium effects on Ni-based alloys.
With develoﬁmenté in controlled thermonuclear fusioﬁ, higher helium con-
tents were expected. This intensified the need to understand and thus
investigate helium effects on bulk properties such as tensile strength,
creep rupture, fatigue, swelling, and microstructural and microchemical
changes. Many experimental proceedures to reproduce fusion reactor
conditions have been developed and are used to compile data on helium
effects. These methods are reviewed iIn some detail in the next
chapter. Most of the experimental data has been compiled from post-
irradiation tensile tests, since in-pile tests are extremely costly and
difficult to perform.

In the following sections, a limited review of the most important
experimental findings is given. We start with the extent of helium
embrittlement, or ductility loss, which is thought to be the most criti-

cal of helium effects on structural materials in fusion environments.
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3.1. Tensile Strength

Helium bubbles nucleating and growing at grain boundaries lead to
premature intergranular failure. Numerous experimental investigations
have been carried out under different irradiation and test conditions to
determine the extent of ductility loss due to intergranular helium
bubbles.

The bulk of the data is compiled from tensile strength tests.
Besides the fact that these high strain rate tests are performed as
post—irradiation tests, they may not reveal the full extent of the
influence of helium bubbles on the tested properties because inter-
granular helium bubbles have not had enough time to fully develop. How—
ever, these tests indicate the severity of helium effects on mechanical
properties. As an example, Bloom [19] has compared the temperature
dependence of the total elongation of AISI-316 stainless steel under
three different conditions: (1) unirradiated, (2) irradiated with a2 low
helium dpa ratio typical of fast reactors, and (3) irradiated under HFIR
conditions (i.e., high helium dpa ratio).

Figures 2 and 3 show Bloom's findings for both solution-annealed
and 207 cold-worked heats of 316 stainless steel. The helium concentra-
tion of the fast reactor irradiated heats of steel after about 50 dpa is
only 20 to 25 ppm, while that of corresponding HFIR heats is ~ 4000 ppm.
Although 20 to 25 ppm seems to be a small helium concentration, Fig. &
shows a significant decrease of total elongation for fast reactor irrad-
iated soclution—annealed 316 stainless steel. For HFIR irradiated stain-
less steel, the elongation decreases to even lower valuves. In fact,

above 600°C this material shows zero plastic elongation. Wiffen et al.
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have obtained similar behavior for the Inconel 600 z2lloy [20]. Cold-
worked stainless steel shows a significant reduction in plastic elonga-
tion above 600°C for both 20 and 4000 ppm helium concentration with less
pronounced reductions for lower temperatures.

Various experiments scanning different helium dpa ratios and even
lower temperatures (25° to 300°C) have been performed on variocus fcc and
bce alloys [21-29] giving similar results.

Tn summary both fcec and bece alloys experience various degrees of
high temperature helium embrittlement caused by helium produced nuclear

reactions.

3.2. Creep Rupture

Although structural materials which are able to perform below their
yield stresses are chosen, the long term accumulation of damage plays an
important role in the lifetime of structural components. Thermal creep,
which is well known for most materials, is such a process. Under irrad-
iation, thermal creep can be dramatically enhanced and can lead to very
short rupture times under otherwise acceptable conditions.

Creep tests, especially for in—pile experiments, are very time con-
suming, difficult, and expensive. Therefore, an insufficient data base
of the effects of helium on creep rupture of stainless steel exists
today. Nevertheless, some useful results have been compiled [30-33]
which allow us to establish some dependencies of helium embrittlement on
various parameters (e.g., stress, temperature, helium content, helium
implantation rates, etc.). Some of these dependencies are briefly dis-

cussed below. For more detail we refer the reader to a review article
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by Ullmaier [34]. Batfalsky et al. [32] gathered data on rupture time
tr and strain to rupture €Eg as a function of helium concentration of
annealed AISI-316 stainless steel at 750°C (Figs. 4 and 5). They
observed a loss of ductility and lifetime at very low helium concentra-
tion (starting at 1 ppm). Furthermore, these reductions did not level
out even at helium concentrations above 1000 ppm. This clearly indi-
cates the unreliability of extrapoclations of helium effects from fast
fission data to fusion conditions.

It should be noted that the results given in Figs. 4 and 5 are
obtained from post—irradiation experiments. Various in-pile experiments
{35,36] have clearly shown that ductility and rupture times obtained
from them have lower stress dependencies in general and are of lower
values than those of post-irradiation experiments. -This further ques-
tions the reliability of the bulk of post—irradiation data available on
stainiess steel.

One of the most widely used techniques of helium introduction into
materials is that of o~implantation (see Chapter III). Investigating
the dependence of embrittlement on the helium implantation rate,
Batfalsky [32] recorded an interesting result. Figure 6 clearly shows
that a reduction in the implantation rate leads to a reduction of
rupture times and strain to rupture for a given helium concentration.
In other words, the severity of helium embrittlement increases with
decreasing helium implantation rates. This finding may imply that fast
ag—-implantation experiments may very well underestimate helium embrittle-—

ment rates of fusion environments.
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Most experimental results have been carried out to establish the
principal features of helium effects on properties. For example, Fig. 7
shows a reduction of rupture time from ~ 1000 hours to ~ 50 hours with a
helium concentration of only ~ 8.5 appm at a total damage of ~ 14 dpa as
reported by Lovell [37]. This result was obtained at a high temperature
of 760°C. Helium embrittlement starts in most materials around 0.4 of
the absolute melting temperature Tm [381]. In general this effect
increases with increasing temperatures.

Schaaf et al. [39] have investigated the dependence of total elon-—
gation on the strain rate of unirradiated and irradiated stainless steel
specimens. They have determined that the ductility decreases with
decreasing strain rate, consistent with Batfalsky's experiments [32].
This behavior is shown in Fig. 8.

The macroscopic mechanical property changes caused by helium have
been identified as microstructural changes. These changes can be meas—
ured by TEM, SEM, and other techniques (see Table I). They reveal the
location, density, and size distribution of helium bubbles. In general,
helium bubbles are found to grow at preferential sites such as grain
boundary junctions, precipitate matrix interfaces and, to a somewhat
lesser degree, at dislocations. Also, high uniform densities of matrix
bubbles have been observed. It has been found that under applied
stress, helium bubbles tend to form on grain boundaries that are perpen-
dicular to the applied stress. This could explain the effect of stress
on the ductility of the material as mentioned earlier.

Investigations of various alloys with respect to helium embrittle-—

ment rates are very scarce. In recent years, Wassilew et al. [40] have
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compared martensitic steels to austenetic steels in post-irradiation
tensile tests at ~ 600°C. They report only small decreases in rupture
strains and almost none in rupture times for martensitic stainless steel
irradiated to about 8.5 dpa and with a helium content of 70 ppm, pro-—
duced by n,c-reactions. Since martensitic steels are known to be more
swelling resistant than austenetics, this feature when combined with the
above indications of better helium embrittlement resistance, makes mar-
tensitic steels a good candidate for structural materials in a fusion

environment.

3.3. Fatigue

Besides differences in neutron spectrum and flux, the next major
difference between fission and fusion is the possible cyclic operation
of fusion devices,

Inertia confinement fusion reactors (ICFRs)} and tokamaks are
examples of fusion devices. The few fatigue experiments on fission
reactor materials did not reveal any significant changes in the fatigue-
life character of irradiated specimens {[41-43]. Recently, fatigue is
considered to play an important role in the lifetime of the first wall
in cyelic fusion devices. Although the available data are very scarce,
some significant effects of helium on the fatigue life and crack growth
can be seen. This has already prompted an international effort between
the USA, Europe, and Japan to conduct extensive in-pile and post—
irradiation experiments of the effects of displacement damage and helium

on the fatigue of structural materials [44].
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The following is a brief up—-to-date summary of what is known about

this subject. For further details see Refs. [34] and [45-48].

At low temperatures (below ~ 500°C) there do not seem to be any
significant changes in the fatigue 1life even as the helium

content is increased to above 90 ppm (Batra et al. [49]).

At higher temperatures the number of cyecles to failure

decreases with

a. An increase of helium content,
b. An increase in temperature,

c. A decrease in loading frequency.

Figure 9 shows an example of ome such high temperature experi-—
ment. The figure shows a sudden drop of number of cycles to
failure at about 5 Hz. SEM observations show a change of
fracture mode from a tramsgranular at high frequencies, over a
mixed fracture mode, to a complete intergranular rupture mode
at low frequencies. The ICFR devices will eventually perform
at high frequencies but for tokamaks this finding can have
significant implications on the lifetime of the first wall

which will be exposed to low frequency operation cycles.

SEM observations show that cracks initiate within the material
and propagate towards the surface when helium is introduced

into the material (Batra et al. [49]).
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3.4, Swelling

In fast fission reactors, swelling has been recognized as one of
the most severe life-limiting effects of radiation damage on core com—
ponents. Thus swelling has been extensively studied and is well under-
stood. The primary cause of swelling in structural materials exposed to
neutron irradiation is due to voids which form by an agglomeration of
vacancies. The simultaneously produced self-interstitials tend to be
preferentially attracted by dislocations, thus creating a surplus of
free vacancies over free self-interstials. As irradiation continues,
self-interstials will cause interstitial loops to grow. The effect is
an even greater reduction in self-interstials because their bias towards
dislocation lines and void growth is enhanced. These effects change a
solid piece of stainless steel into a void-riddled, swiss—cheese-like
material. Ghoniem and this author [50] have been successful in develop-
ing a new calculational method for the numerical solution of the Fokker-
Planck equation describing voids and interstitial loops. Small defect
clusters were studied using a detailed rate-theory approach, while large
defects were simulated ‘by discretizing a transformed Fokker—-Planck
equation. Defects containing up to millions of atoms were investigated
using this hybrid approach. The numerical results of the model compared
well with previous detailed-rate theory calculations, as well as with
experimental findings on heavy-ion irradiated 316 stainless steel. The
reader is referred to Refs. [50-52] for more details.

Since the mid-1970s, extensive efforts have been put forward to
investigate and understand the role of helium on the swelling of struc—

tural components under fusion conditions. As pointed out earlier,
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simulation of fusion irradiation conditions is not yet practical, there-
fore various helium implantation techniques are used (see Chapter III).
In recent years it has been shown that these experiments produced ques—
tionable results. Figure 10 is a very clear example of a comparison of
swelling results, compiled by Packan and Farrell [53}, of two different
methods of helium implantation. Figures 11 and 12, also published by
Packan and Farrell, show the effect of the experimental method used on
the final results. These figures both point to important findings
regarding the effect of helium on swelling. The following is a brief

summary of these findings. For more information see Refs. [56-611.

1. Helium atoms stabilize cavity embryos, thus reducing the

incubation time for stable cavity nucleation.

2. Figures 11 and 12 show that the presence of helium atoms
increases the total concentration of cavities and reduces their

sizes. This is due to No. l, above. The stabilizing effect of

4]

helium on otherwise unstable cavities &eecps the cavities iser

[¢

finely dispersed in the matrix.

3. The stabilizing character of helium prevents dissolution of
cavities at elevated temperature because of the thermal-vacancy

emission process.

4. The full effect of helium on swelling can not be readily
evaluated because of the need for a more extensive data base to
evaluate the effects under different conditionms. Theoretical

studies will generally help complete the data base and identify
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experimental conditions, where the action of mechanisms are

clarified.

3.5. Microchemical Effects

It has been shown that irradiation can have an effect on the micro-
chemistry of alloys. Irradiation enhances the flow and counterflow of
solute atoms creating a process known as radiation~induced solute segre-
gation (RISS). Fdrthermcre; irradiation can lead to .the formation of
various phases not commonly found in alloys [4,62]. The RISS—produced
precipitates have been investigated [55-57] using TEM and x-ray electron
defraction spectroscopy (EDS) analysis, and various indirect conclusions

have been drawn.

1. The higher number of cavities produced under the presence of
helium provides more sites for solute segregation and defect
recombination which leads to a decrease in the kinetics of
solute segregation. The higher number of cavities is expected

to suppress RISS.

2. The helium atoms may furthermore get absorbed at various sinks,
thereby affecting their bias. Any change in bias can dras-
tically influence point-defect diffusion, which will in turn

affect any microchemical or microstructural evolutions.

Because of the paucity of data, these conclusions should nct be viewed

as decisive evidence of helium effects on microchemistry.

40



The preceeding brief discussion of the effects of helium on various
mechanical properties clearly shows the extent to which helium can
influence the lifetime of structural components of any fusion device.
Furthermore, it is clear that most of these effects are a direct conse-
quence of the presence of helium bubbles. Thus, one of the most valu-
able pieces of information is the size distribution of helium-filled
cavities as a function of various irradiation parameters. Furthermore,
the foregoing descriptions have clearly related high temperature ductil-
ity losses to helium bubbles formed on grain boundaries. This may sug-
gest that any theoretical treatment should concentrate on the nucleation
and growth processes of grain boundary helium bubbles. The separation
of grain boundary bubbles from matrix bubbles is mnot possible because
they directly influence each other. The helium flux to the graiﬁ bound-
ary is directly controlled by the helium bubble density inside the
grain. This is a direct consequence of changes in sink strengths due to

matrix cavitation. The dependence of grain

=

oundary bubbles on matrix
bubbles poses one of the biggest obstacles in developing the theory of
helium effects on mechanical properties.

Although some theoretical work [62,63] has been successful in
determining order of magnitude of bubble concentration, because of the
difficulties involved in handling grain boundary bubbles these methods
are not vet able to predict bubble size distributions, absolute values
of rupture times, and elongation.

This thesis is primarily intended to establish helium bubble size
distributions imside the matrix. This knowledge is essential in deter-

mining the helium flux to the grain boundary. During the course of this
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work we have not only developed a new computational tool to evaluate
helium bubble size distributions as a function of irradiation parame-
ters, but more importantly we have uncovered fundamental mechanisms
which explain various experimental findings [3,14]. However, because of
insufficient knowledge of basic properties of helium in metals and lack
of understanding of the most fundamental helium transport, clustering,
and growth mechanisms, many obstacles have to be overcome to achieve our
goal.

Because of the complexity of the problem at this stage, our work
considers only homogeneous conditions inside the matrix and excludes
grain boundary effects. Furthermore, the cascade nature of defects 1is
not included; therefore pure rate theory is employved. This work will
help as an investigative research teool to aid in the development of

alloys suitable for long—time fusion applications.
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CBAPTER III

PRODUCTION, RETENTIOM, AND RELEASE OF HELIUOM IN METALLIC ALLOYS

1. INTRODUCTION

There are three helium generation sources in materials emploved in
fusion devices. The most critical is the n,e—nuclear reaction affecting
the bulk of structural materials. The other two sources of helium are
surface implantation and tritium decay.

Various components of a fusion reactor face the plasma such as the
first wall, divertor plates, and limiters. These components are exposed
to high fluxes of o-particles that have escaped confinement. This is

3He

the primary source of helium surface implantation. Tritium decay to
is a source of helium that has to be considered in solid breeder
materials and in tritium recycling components. First, bulk helium
production will be discussed followed by a brief description of the
latter two processes,

This will be followed by a discussion of anticipated helium
generation rates in alloys employved in fusion reactors. To achieve
anticipated helium production rates, experimental techniques have been
developed and employed to simulate fusion environments. These techni-
ques and their corresponding advantages and disadvantages are summarized
and are followed by a discussion of some of the latest experimental
results on helium retention and release measurements.

Throughout the radiation damage community, several definitions

regarding displacement damage and helium production rates have been

adopted. One such definition is displacement per atom (dpa). When a
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neutron or ion impacts on a solid it will displace several atoms from
their lattice sites before it comes to rest within the matrix. Dis-
placement per atom 1is thus a measure used to indicate the total dpa
sustained by the irradiated material.

As will be explained in the following section, a fast neutron can
result in a neutronic reaction with the host atom leading to the
formation of a helium atom. To measure the amount of helium produced,
the community has adopted the helium atom parts per million (appm) host
atoms produced definition. These definitions will be used throughout

this thesis.

2. HELIUM GENERATION SOURCES IN FUSION ENVIRONMENTS

2.1. Helium Production by n,c—Reactions

During the development of alloys for fast fission breeder reactors,
gas—-producing nuclear reactions were investigated [1,2]. A decade
later, in the mid-seventies, data regarding cross sections and threshold
energies were being compiled. Today there exists a strong enough data
base to identify the most significant nuclear reactions that contribute
to the production of helium atoms in structural materials exposed to
fusion irradiation conditioms.

The most important reactions leading to helium production are the
high energy neutron-induced n,oc-reactions:

AM + lnf — A-3
Z 0

! 4
[ (1)
7 ZM + ZHe (several MeV) s
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or

AR
;M + 1nf — A 4M + 1 nth + ;He . (2)

Since the D-T plasma reaction [Eq. (1)] leads to a high portion of 14
MeV neutrons, the high energy n,a cross sectioms have recently been
investigated in more detail [3]. Figure 1 shows such cross sections for
some typical metals. Note the increase of the n,a cross

energies between 6 and 16 MeV. It is this energy rang
fusion~produced neutrons fall; the 14 MeV n,c-reaction

special attention. Figure 2 shows the cross sections fo1

and n,n',a~reactions as a function of target mass numb

figure clearly indicates that helium production cannot be totally elim—
inated by avoiding certain elements in structural materials. This is
probably one of the most significant reasoms for the thrust that helium

effects research has received: there is simply no way around helium

production in materials exposed to a fusion reactor neutron spectrum.

There are also thermal neutron reactions that lead to helium
production. These reactions have been studied thoroughly because they
provide a powerful simulation technique for achieving high helium

production rates.

The first of these reactions has a cross section of 4010 barns (b):

123 + énth — ;Li(0.84 MeV) + ;He(l.!ﬂ MeV) . (3)

The concentration of 1UB is generally in the neighborhood of 10 to 50

appm in stainless steel. Therefore, despite its large cross section,
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Cross sections for n,ec-reactions for different
metals as a function of neutron energy [3].
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its contribution to the helium production is negligible in fusion

environments.

The next reaction is a two-step thermal neutron reactiom with cross

sections of ~ (0.7 and 10 b respectively:

58, 1 th 59 ..
28N1 + On > 28N1 + v .
(4)
59 . 1 th 56 4
28N1 + o Y 26Fe + 2He(4.76 MeV) .

The element Ni is an important constituent of many alloys considered for

58

fusion reactors. In natural form, Ni contains ~ 69% Ni. However,

here it is the low fraction of thermal neutrons that make the contribu-

tion to helium production from Ni negligible. The fast neutroms of a

2

wall loading of 1 MW m “ on a stainless steel wall will produce ~ 269

appm helium, while the thermal reaction of Eq. (4) will produce only

-3

~ 10"~ appm helium [69].

2.2. Surface Implantation of Helium

The plasma D-T reaction [Eg. (1) in Chap. I] produces 14 MeV
neutrons and 3.5 MeV a-particles. In an Inertial Confinement Fusion
Reactor (ICFR) these neutron and o—-fluxes will bombard the first wall.
With a typical vyield of ~ 199 MJ per pellet in a spherical reactor of

16 He at./m2 will be deposited in a surface

~ 7 m radius, about 7 x 10
layer of the first wall of a thickness of a few microms. The energy

carried by the helium atoms constitutes about 7Z of the total yield.

Besides helium, fuel particles D, T, Si will also bombard the first
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wall. The effects of these incident particles on the first wall are:
(1) shock waves, (2) extremely high temperatures during a short period
of time (e.g., 1076 to 1074 s), and (3) erosion and blistering caused by
helium atoms deposited a few microns below the surface [5]. To minimize
these effects, various reactor concepts have been proposed aimed at
slowing down fuel and pellet debris and absorbing photons [6].

The magnetic confinement reactor concept (e.g., tokamaks, mirrors,
stellerator) alleviates some of the problems associated with ICFRs.
Here, typically less than 17 of D-T-produced 3.5 MeV a-particles will
bombard the first wall by escaping the magnetic field. The confined
portion of a-particles will slow down in the plasma and eventually reach
the first wall. Thus, helium atoms and other plasma particles (e.g., D
and T) arrive at the first wail with an average energy of ~ 100 eV. The
primary effect of these low energy particles on the first wall is sput-
tering. This is the process of physically knocking off surface consti-
tuents. Sputtering yields for various plasma particles have been
measured for various alloys. Figure 3 depicts such sputtering yields
{71. For typical reactor conditions, estimates of plasma wall inter-
actions produce an a—particle flux of about 1018 m_2 s-i. This will
result in a sputtering yield of about 0.2 at./a-particle, which will
correspond to an erosion rate of ~ 0.1 mm/vear [7,8]. These erosion
rates are expected to be tolerable. However, these values are only
estimates and depend on many variables not included in the calculations.

The 3.5 MeV o-particles, contrary to the slow onmes, have a range of

several microns in considered alloys. With an average flux of

1016 o2 sl they constitute only ~ 1% of the total o-particle flux
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stainless steel as a function of the mean incident
particle energy. (The current densities were assumed
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incident on the first wall. The range of the fast a-particles has been
shown to cause drastic surface modifications such as flaking, blister-
ing, and creating a spongy-type surface layer [9,10}. However at the
present time, experiments that combine both 3.5 MeV and 10 to 100 eV g-
particle fluxes have not been performed to show the combined effects of
sputtering and surface modifications (e.g., blistering, flaking, spong-
ing). It has been shown that blistering will not be a maijor problem in
fusion environments because simultaneous surface erosion by sputtering

helps to mitigate blistering.

2.3. Helium Production Through Tritium Decay

The third source of helium atoms in fusion devices is due to
tritium decay. Major efforts are now underway to understand the effects
of tritium and helium in breeder materials [11-13)}. As far as struc~-
tural alloys are concerned, helium production by decay can reach values
comparable to neutron reaction rates if the tritium solubility is very
high [14]. This is the case for V-base and Nb-base alloys. However,
this problem can be eliminated by coating structural components exposed
to tritium with tritium—impermeable films. Nevertheless, tritium decay
is a very valuable experimental tool for simulating helium effects in

the absence of controlled radiation damage.

3. HELIUM PRODUCTION RATES IN FUSION REACTOR STRUCTURAL MATERIALS

The previous discussions explained the origins of helium atoms

produced in fusion reactor components. Fver since conceptual designs of
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fusion reactors were proposed in the 1970s, detailed calculations were
performed to determine neutron spectra, afterheats, displacement rates
é and gas production rates é. These calculations show an insensitivity
to changes in magnetic confinement concepts, but depend on the choice of
materials wused in structural components. In ICFRs, the resulting
displacement and heljum gas production rates depend very strongly on the

first wall protection concept. Table I, compiled from Refs. 6, 15, and

16 clearly demonstrates this point.

TABLE I
ESTIMATED DAMAGE RATES IN FUSION REACTORS [6,15,16]

ﬁ[dpaaa_l] é[appm-a_l] He/dpa
Displacement He-Production [appm/dpa]
Concept Material Rate Rate Ratio
Magnetic Stainless steel 11.6 145 12.7
confinement (AISI-316)
Vanadium alloy 11.7 59 5.0
(v20 Ti)
Molybdenum 7.5 L7 6.3
ICFR HIBALL
Ferritic steel
(BT9)
Unprotected 10.1 92 9.1
Protected 1.1 0.14 .13
Lithium/
wetted wall
stainless steel 10 40 4
Carbon dry wall
Molybdenum 7 31 4,5
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Experimental procedures for determining radiation effects on structural
materials are very time consuming, complicated, and expensive, Thus
irradiation experiments can not keep pace with changing conceptual
designs. Furthermore, experimental procedures (see Sect. 4) set certain
restrictions on the ranges of displacement and gas production rates that
can be investigated., These reasons have prompted the experimental com—
munity to establish an anticipated order of magnitude displacement and
helium production rates given in Table TII. The last row is for

comparison.

TABLE IT

ANTICIPATED ORDER OF MAGNITUDE FOR DISPLACEMENT AND
HELIUM PRODUCTION RATES IN FUSION REACTOR FIRST WALLS [17]

Rldpa-s~ 1] é[appm-snl] He/dpa NF
Displacement He-Production [appm/dpal No. of Power

Concept Rate Rate Ratio Cycles/Yr
ICFR 107! 1071 5 108
Magnetic 1070 107> 15 10°
confinement
(Tokamak)
Fast-breeder 1070 10~7 0.2 5~10
reactor

At present, the goal is to simulate irradiation conditions listed in
Table 1I for alloy development. The next section examines wvarious
experimental techniques that simulate helium introduction into

structural materials.
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4. EXPERIMENTAL TECHNIOUES FOR SIMULATION OF FUSION REACTOR DAMAGE

CONDITIONS

The fusion community has been faced with a challenging problem:
the lack of a fusion-simulating test environment for the development of
structural fusion materials. Even the next generation of large fusion
devices will not achieve fusion's anticipated burn cycles. Thus, they
cannot be regarded as immediate future material test facilities. This
situation is not expected to change drastically over the next decade.
Therefore, non—fusion irradiation sources have to be used to study the
effects of anticipated fusion irradiation on materials.

Because the damage rates are comparable in both devices (~ 10_6
dpa/s), Fast Breeder Reactors (FBRs) allow the study of displacement
damage expected in fusion. The high helium production, specific to
fusion, must also be simulated to achieve damage conditioms similar to
fusion reactors. Superimposing displacement damage and helium
production effects may be the only simulation method which, coupled with
theoretical efforts, could lead to the required progress until a fusion
reactor prototype has been constructed.

In combining results of various experimental procedures, special
caution must be taken in interpreting the results. Helium atoms
interact with the fundamental defects affecting their migration,
clustering, and growth. Helium atoms interact with both vacancies and
interstitials by immobilizing vacancies and competing with self-
interstitials for vacancies., Thus helium is expected to affect the
microstructural evolution of the material. It is for this reason that

different helium introduction techniques will lead to different and



sometimes seemingly contradictory results. Theoretical efforts play an
essential role in understanding and interpreting experimental findings
and are meant to compliment experimental findings. In the following, we
will discuss the advantages and disadvantages of various damage simula-

tion facilities and experimental proceedures.

4.1. TFission Reactors

Because the displacement rates of fission and fusion reactors are
similar (see Table II), fission reactors are one of the most important
test facilities for fusion materials. The following is a list of some

fission test reactors:

[ ]
ja
o=
-
=
|

High Flux Isotope Reactor (ORNL)

© EBR-II - Experimental Breeder Reactor II (Idaho Falls)

 ORR - Oak Ridge Research Reactor (ORNL)
® BR2 - Belgium Reactor 2 (SCK/CEN Mol)
e PFR - Prototype Fast Reactor (Dounreay)

Gabriel et al. [18] have calculated the irradiation response of materi-
als (Fig. &) using fission reactor neutron spectra. Figure 4 shéws the
helium production and displacement damage in Ni-containing austenitic
steeis in various reactor maximum flux positionms. The full dots of
Fig. 4 show attainable values after one vear of irradiationm assuming a
100% plant duty factor. This is a good example of the time involved in
performing experiments. Figure &4 also shows displacement and helium

production levels for o-implantation and tritium decay experiments
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(see Sects. 2.2. and 2.3, respectively). Figure 5 shows the same rela-
tions for ferritic steels. It is to be noted that while He/dpa ratios
typical of fusion reactors are achievable for austenitic steels (e.g.,
ORR), this is not possible for ferritics because of the lack of nickel.

The following are advantages of fission reactors:

® Ni has a thermal n,a cross section of several b [Eg. (4)].
Therefore in austenitic steels (Ni = 18%) high He/dpa ratios can

be achieved for a mixed neutron spectra. (See Figs. 4 and 5.)

8 In principle, in-pile tests are possible.

® The large test volume available in most material test reactors
allows the study of irradiation effects on bulk specimens in

addition to surface and foil experiments.

® During the development of fast breeder materials, extensive
experience has been gathered which can be utilized to set up
experiments and to perform in-pile and ©post—irradiation

testings.

The following are disadvantages of fission reactors:

8 The main drawback in using fission reactors to simulate fusion
is the low He/dpa ratio of fission reactors for most materi—
als. Unless Ni is used (see Figs. 4 and 5), the He/dpa ratio of
fission devices is generally a factor of 40 to 70 lower than for

fusion neutrons.
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o Some concepts of fusion devices such as ICFRs, and possibly

early tokamaks, are pulsed systems (see Table II). This mode of

operation cannot be duplicated readily in fission reactors.

® Irradiation experiments in fission reactors are time consuming
(see Figs. & and 5) and expensive. In-pile experiments are

complicated and difficult to perform.

® An additiounal complication is the high radiocactivity of fission
reactor irradiated specimens. Post—-irradiation experiments are

therefore difficult and are performed in hot cells.

4.2. High—Energy a—Implantation

With the use of a cyclotron, a-particles can be introduced into a
specimen with energies ranging from several to 100 MeV. Figure 6 shows
the dependence of penetration range and number of defects produced as a
function of a—-particle energy. The number of defects produced is fairly
insensitive to the starting energy of the a~particles. But, since the
range is energy dependent, a rather uniform He/dpa ratio can be achieved
throughout the specimen up to a depth of several 100 pm (Fig. 6). This
is very significant for mechanical property measurements [19].

The following are advantages of ag—-implantation techniques:

& High helium production rates make o implantation via cyclotron a
fast experimental procedure. Rates up to 100 appm/hr can be

achieved.

® Helium production rates are not test material dependent.
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® A homogeneous helium concentration can be achieved by g—-particle

energy control.

@ In-beam experiments are simple to perform.

® The pulsed nature of some fusion devices can easily be simulated

by beam breakers.

® c-implantation induces only small radioactivity therefore hot

cells are not required for experiments.

The following are disadvantages of the g—-implantation techniques:

® The main drawback of a~implantation facilities is the very large
He/dpa ratio compared to fusion (see Figs. 4 and 5; 100 times
higher). Thus the combined effects of displacement damage and
helium production can not be investigated for fusion regimes of

He/dpa ratios.

@ The maximum range of implantation is in the neighborhood of a
few hundred um (Fig. 6). This limits the thickness of the

specimen being tested. Therefore fracture mechanics experiments

cannot be performed.

4.3. High Energy Neutrom Sources

The best simulation of fusion environments can be achieved by using
high energy (14 MeV) neutrons produced by accelerators. One such neu-

tron source is the Rotating Target Neutron Source (RTNS-~IT) at Lawrence
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Livermore Laboratory. However, the biggest problem is the low peak flux
of 1.3 x 107 n « w2 « s7! of 14 MeV neutroms. (Fusion is typically

~ 2 x 1018 o « n72

. 5—1 14 MeV neutron flux). This low flux does not
permit production of fusion-relevant damage levels in reasonable times.
For this reason new facilities are being designed to increase the inten-
sity of the neutron source. One such design is the stripping neutron
source FMIT (Fusion Material Irradiation Test facility [20,21}).

The following are advantages and disadvantages of high energy

neutron sources:

@ The neutron spectrum can be tailored to produce a He/dpa ratio

closely resembling that of fusion at 14 MeV.

® The He/dpa ratio is not heavily dependent on the material.

-9 -1

e Peak neutron fluxes above 1019 n e m » s can be achieved

(FMIT [21]).
@ In-beam experiments and testings can be performed.

¢ The capital cost for the comstruction of FMIT is expected to be
in the 150 to 200-million—-dollar range. This cost can be pro-
hibitive. Fundamental understanding of radiation effects
through modeling and existing facilities may provide an

alternative.
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4,4, Other Helium Implantation Techniques

4.4.1. Boron doping [22]. The thermal n,c-reaction of boron [Eq. (3)]

has a 4010 b cross section. Therefore, by doping a material with boron
and then exposing it to thermal neutrons, high helium generation rates
can be achieved. The main disadvantage is the low overall defect
production in thermal reactors. Furthermore, the final helium concen—
tration is limited by the amount of 10B doping.

Since doping can affect material properties, the doping concentra-—
tion cannot be increased beyond certain limits. Furthermore, boron
tends to segregate into the grain boundaries which makes uniform helium

production very difficult.

4,4.2. Tritium trick [23-25]. Tritium has high diffusivity and

solubility in metals and alloys. It decays with a half life of 12.3
vears. Thus, uniform helium generation rates can be produced in any
size specimen in reasonably short time periods. The main disadvantage
is, of course, the absence of displacement damage because of the low

recoil energy associated with the B—decay of tritium.

4.4.3. Heavv-—ion beam simulation [26,27]. The main disadvantage of

o—implantation is the low displacement production. This can be allevi-
ated to some degree by using a heavy-ion beam simultaneously with the
a-particle heam on the specimen. The main drawback is the relatively

short range of heavy ions (< 1 ym).
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Therefore, dual-beam irradiations are used mainly to study the
effect of helium on swelling. Because of the short range of the heavy
ions, other mechanical property changes caused by helium cannot be

investigated.

4.4.4, Proton and deuteron damage simulation [28]. Cyclotrons can be

used to bombard the specimen with protons or deuterons with energies
between 5 and 20 MeV. Reaction rates of p,a or d,a can be controlled by
varying the p and d energies and thus fusion-relevant He/dpa ratios can
be achieved in many materials. The biggest disadvantage lies in the
limited beam intensity. Furthermore, the excessive heat produced during
bombardment must be constantly removed; otherwise annealing of radiatiom
effects will distort displacement damage and helium production effects.
The low beam intensity would require long-term continuocus bombardment
periods in order to study accumulating helium and damage-level effects.
Cyclotrons can not be operated for long enough periods. Therefore,
these experiments are mainly used to study the effects of helium

production rates and radiation damage rates.

5. HELIUM RETENTION AND RELEASE

5.1. Experimental Findings on Atomistic Helium Retention and Release

As pointed out in the previous section, helium can be introduced
into the lattice by various means, such as cyclotron implantations of
a-particles at various energies or by forming metal tritides thus

supplying He3 by the decay of tritium.
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After helium has ©been introduced to desired specifications
(concentration, temperature, and uniformity), the diffusion of He4 or
He3 can be studied at various temperatures by measuring helium release
rates. Helium migration has also been studied by using transmission
electron microscopy (TEM) on thin films, or by electrical resistivity
measurements [29,30]. In the following, we summarize important
experimental results on helium retention and release.

Cost et al, [29] used 46 MeV o-particles on film specimens of puri-
fied Ag (Tm = 660°C, fcc-crystal structure). They irradiated Ag at 60°C
up to helium concentrations of 50 appm. The experimental observation
method used was electric resistivity measurements performed at half-hour
isochronal anneals up to 450°C.

Excess resistivity is attributed to atomic helium at temperatures
above room temperature because vacancies and interstitials anneal out at
low temperatures (< 23°C) in pure aluminum. As temperature was
increased, resistivity decreased sharply around 350°C. This would indi-
cate that helium remains atomistic up to ~ 350°C. TEM observations
confirmed bubble formatiom at ~ 350°C,

Bauer et al. [31] also used a-particle bombardment as the helium
introduction technique. They used 300 keV (low damage) a-particles at
very low implantation temperatures of -180°C (low thermal vacancy con-—
centration) on high purity Ni (T_ = 1455°C, fcc-crystal structure).
They used helium release reasurements by mass spectroscopy for 20-min
isochronal anneals between 0° to 1250°C and a linear heatup rate of
10°C/min from -180° to 700°C. They found a strong dependence of release

rates on helium concentration levels. For helium concentrations up to
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~ 1000 appm, they found that increased annealing temperatures are
required to achieve release. Beyond 1000 appm, the anneal temperatures
dropped with increasing concentrations until about 400,000 appm when
release occurs spontaneously at 23°C. For linear heatups, they measured
very little helium release for helium concentrations up to ~ 10,000
appm. At 100,000 appm a very substantial release was measured. 1t
could be argued that bubbles account for helium until ~ 10,000 appm, and
that beyond 100,000 appm an interconnecting bubble network can cause
high release rates.

Barnes (30] and Bauer [31] performed similar experiments on copper
(T, = 1083°¢C, fce—crystal structure). Here they wused a 38 MeV
a-particle beam and irradiated Cu foils at 250°C to helium concentration
levels of 1000 appm. They used TEM during annealing with ~ 100 keV
electron-beam heating pulses at 700° to 800°C. During the early stages
of annealing they found large numbers of small bubbles. TEM allowed
them to distinguish between grain boundary and matrix bubbles. With
annealing, they found grain boundary bubbles to be larger than matrix
bubbles. Furthermore, grain boundary bubbles were surrounded by denuded
zones ~ 3000 A wide which suggested bubble coalescence on grain bound-
aries. Their measurements showed a comservation of total bubble surface
area as coalescence occured. They observed bubble migration in steep
temperature gradients, and showed migration velocities to be inversely
proportional to bubble size (~ 1000 A/sec for R = 350 A bubbles). This
velocity was suggestive of a surface diffusion mechanism. Another
important observation was the lack of bubble shrinkage. This pointed to

the high insolubility of helium in the matrix. Therefore, bubbles do
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not grow by absorbing helium atoms dissolved from other bubbles but only
by bubble coalescence. Also, bubbles attached to dislocation lines did
not shrink. So, bubbles did not lose helium to dislocation lines along
which single-helium atom migration can be very fast.

Several authors [32-34] have used metal tritides to study helium
retention and release in metals. Bowman [32] used LiT, allowing helium
levels of 0 to 66,000 appm via tritium decay at room temperature
(23°C). They used nuclear magnetic resonance (NMR) as the observation
method at 23°, 75°, and 100°C. They found that at room temperature,
practically all helium was retained up to 66,000 appm. They did not
observe atomistic helium, but found that all helium was inside clusters.
An increase in temperature reduced the amount of helium retained in
bubbles. After one year of decay the helium concentration level had
reached ~ 83,000 appm resulting in bubbles of r = 50 A at 23°C and
r = 500 A at 100°C.

Perkins et al. [33] used ScT, {scandium-tritium solid solution) and
TiT, compounds. They allowed helium levels to reach ~ 320,000 appm at

3 release was measured by pressure gauge and mass

room temperature. He
spectroscopy on ScTy and by NMR on TiTz. In ScTy, helium release was
measured at 23°C; it was found that up to ~ 200,000 appm, all helium was
retained. Above this level, it was released at generation rates. 1In
TiTz, this release occured above ~ 320,000 appm.

Similar experiments performed on UT3 {32,34] showed a retention
saturation at ~ 116,000 appm of helium. These saturation levels may

3

indicate (1) that the produced He” could produce its own trapping sites
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and (2) that bubble pressures can reach rather high values in order to

3 atoms being produced.

accommodate the He

In general, these experiments all point to very high helium reten-
tion levels (> 100,000 appm), and that significant release does not
occur until ~ 0.45 T/Tm in metals. Beyond ~ 10,000 appm of helium, the
release of helium occurs at lower temperatures as the helium concen-
tration increases.

Furthermore, under aging (no continuous defect or helium produc-—
tion) bubbles were found not to shrink; instead they only grew or

coalesced [35-38]. Bubbles formed first at grain boundaries and then in

the matrix. Grain boundary bubbles were found to be larger [39,40].

5.2. Experimental Findings on Helium Retention in Cavities

Generally, cavities are classified as 3-D defects. They consist of
vacancies and gas atoms. We refer to a bubble as a cavity that contains
enough gas atoms to be stabilized against thermal shrinkage below tem-
peratures of ~ 0.75 T/Tm. Voids are those cavities that contain a small
number of gas atoms (sufficient to stabilize nucleation) and they shrink
or grow by vacancy emission or capture, respectively.

Bubbles can exist on grain boundaries, dislocations, precipitates,
or in the matrix. Grain boundaries are assumed to be infinite sinks for
vacancies and interstitials. This feature of grain boundaries prevents
void formation along grain boundaries. This is an important point for
experimentalists investigating cavities, since they can immediately dis-

tinguish between bubbles and voids along grain boundaries.
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One of the most widely used experimental metheds to gain informa-
tion on the cavity size distribution is aging of helium pre-injected
alloys. Using a TEM, samples were investigated at certain times or
temperature intervals.

The first comprehensive studies of helium bubbles in copper were
conducted by Barmes and Masey [30,41] in the early 1960s; Oela and
Russell [42,43] followed in the mid-1960s. Barnes and Masey preinjected
copper by ion-irradiation; Oela and Russell used neutron-irradiated Cu-B
alloys (see Sect. 4.4 for boron characteristics).

More recently Smidt and Preper [44], and Rothaut and Schroeder [45]
have used helium pre-injected—and—aged 316 stainless steel to study
helium bubble behavior. As an example, Fig. 7 shows the temperature
dependence of bubble sizes and concentrations. This figure is from more
recent work by Mazey and Francis [46] who used ion-irradiated 316 stain-
less steel to reach 100 appm of helium before aging the samples. The
same experiment was performed at various pre-—injected helium levels of
1, 10, 100, and 1000 appm. Bubbles were found starting at 570°C, for
helium levels of 10 to 1000 appm. Above 750°C, bubbles were observed at
all helium levels.

Figure 7 clearly demonstrates a decrease in bubble concentration
and an increase of bubble radius with annealing temperatures, indicating
a bubble coalescence mechanism via Brownian motion through the matrix.
An interesting observation bv Mazey and Francis was that when the amount
of pre-injected helium was raised from 100 to 1000 appm, little change
in bubble sizes was found, but the bubble concentration increased by a

factor of up to ~ 100. Consistent with the Mazey and Francis data,
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Maziasz has recently reported similar results for helium pre-injected-
and-aged SA-316 stainless steel [56]. This could be explained by the
fact that as og-particles come to rest inside the matrix, they produce
their own defects (vacancies and interstitials). Therefore, the higher
the implantation rate the more trap sites are produced. Thus, at higher
helium levels larger bubble concentrations are observed. This clearly
suggests that radiation damage plays as crucial a part in bubble size
evolution as do the helium levels. Therefore, a separation of these two
phenomena can be very misleading. This is one reason why one of the
major goals of this thesis it to develop a tool for the analysis of both
radiation damage and helium production simultaneously.

Besides helium pre-injection, two techniques to study helium
bubble-size evolution commonly wused are exposure of alloys to
(1) thermal reactors and (2) fast fission reactors. (See Sect. 4,1).

Rowcliffe [47,48] irradiated austenitic stainless steel at 650°C,
allowing a helium buildup to ~ 50 appm from lOB reactions. No observ-—
able helium bubbles were found prior to post-irradiation annealing
experiments performed at higher temperatures. Similar findings were
recorded by various other experimentalists (Bloom [49], Brager [50],
Robbins [51]). These findings can be explained by the presence of high
trap concentrations produced by radiation damage. These traps are able
to absorb helium readily and thus disperse the produced helium finely
throughout the matrix. Only at higher temperatures will these HVCs

either coalesce or become unstable, leading to the growth of stable

bubbles.
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During the 1970s, the Fast Breeder Reactor (FBR) was extensively
used to study voids in the context of swelling behavior of alloys.
Nevertheless bubble formation, together with voids, was detected and
recorded at temperatures above 625°C in SA~316 stainless steel irradi-
ated in EBR-II by Brager and Straalsund [52]. Post—-irradiation anneal
experiments of FBR-irradiated stainless steel clearly showed a shrinkage
of voids coinciding with the formationm of small bubbles [53,55].

Recently Maziasz did an extensive investigation of bubble and void
formation in stainless steel using EBR-II and HFIR [56]. Using TEM, he
distinguished between voids and bubbles forming in the matrix, on pre-
inoitates, or along dislocations. SA-316 stainless steel was irradiated
from 500° to 630°C up to doses of 36 dpa. TFigure 8 is a summary of void
and bubble occurrence as a function of temperature and fluence.
Precipitate—associated voids were found at ©both temperatures and
fluences, while matrix voids were found only at higher temperatues. At
625° to 630°C, bubbles were present at low and high fluences; but at
lower temperatures of 500° to 525°C, bubbles formed only after high
fluences of 31 dpa. It is interesting to note that at ~ 630°C, both
bubble and void nucleation seem to stop after about 10 dpa; while at the
lower temperatures {(~ 500°C) bubble and void nucleation do not saturate,

Maziasz® size distribution analysis for both intermediate and high
temperatures revealed even more detail. At intermediate temperatures of
500° to 520°C, a fine, dense, and uniform dispersion of bubbles after
31 dpa was observed (Fig. 9). Previously, bubbles were not observed
under these conditions below ~ 600°C [52,57]. The bubbles found at

higher temperatures (625° to 630°C) were located initially along
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dislocation lines for low fluences (8.1 dpa) but as fluence was
increased they appeared in the matrix as well (Fig. 10). At higher
temperatures another interesting bubble size distribution was observed
which was not found at intermediate irradiation temperatures: As the
fluence increased the bubble size distribution broadened. This indicates
that bubble growth is also accompanied by a small additional nucleation.

Maziasz also investigated the location of various bubbles. He
found bubbles in trails near dislocations with a size gradient of the
smallest ones mnearest to dislocations. It was suggested that bubbles
were formed at dislocations and then released as the dislocation moved
through the matrix.

In addition to EBR-ITI, Maziasz also used HIFR to examine bubble and
void evolution in SA-316 stainless steel. Because of the nature of void
and bubble evolution characteristics, this set of experiments was
conducted at different temperature ranges. Also, the HFIR facilities
allowed irradiations up to 68.5 dpa. Again, Maziasz distinguished
between voids and bubbles forming in the matrix, the grain boundaries,
or on precipitates. Figure 11 shows cavity characters plotted as a
function of temperature and fluence.

Cavities (voids or bubbles) formed above 425°C. Although voids
were only present at 425° to 450°C for fluences < 20 dpa, bubbles were
present over the entire range of conditions .except for temperatures
between 580° and 640°C and fluences between 47 and 64 dpa. At tempera-
tures between 425° and 450°C and low fluences of ~9 to 14 dpa, many

fine bubbles were present with an average diameter of ~ Z2nm. Under
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these conditions, swelling peaked as matrix precipitate-associated voids
grew [Fig. 12(a)].

At the higher irradiation temperatures of 515° to 640°C, void for-
mation was delayed and the cavities formed were judged to be bubbles.
Between 515° and 550°C, a bi-modal bubble distribution developed
[Frig. 12(b)]. With dincreasing fluence, these bi-modals grew and
coarsened.

Around 600° to 640°C, bubbles nucleated at an almost single-size
population with little growth at low fluences (~ 10 to 18 dpa)[see
Fig. 13(a)l]. Maziasz pointed out that between 515° and 640°C, all
bubbles eventually convert to matrix- and precipitate—associated voids
as fluence reached 47 dpa.

However, at 730° to 7553°C all cavities reported at high fluences
(<53 dpa) were found to be large matrix and grain boundary bubbles [see
Fig. 13(b)]. Thus, under these high fluence conditions void swelling
had peaked at 500° to 650°C. Figure 14 shows the various cavity charac-
teristics found in HFIR-irradiated SA-316 stainless steel [56].

Figure 15 compares the fluence dependence of cavity concentrations
for SA-316 stainless steel irradiated in EBR-II and HFIR at 500° to
550°C. Maziasz pointed out the appearance of dense populations of very
fine matrix bubbles (~ 2 nm diam) in both reactors at higher fluences,
while at lower fluences such bubbles were not observed. Furthermore
there were about 100 times more bubbles than voids in both reactors and
about 30 to 40 times more bubbles in HFIR than EBR-II (see Fig. 15).
The enhanced bubble nucleation in HFIR versus EBR-II was related to the

higher helium production rate in HFIR. It 1is this early bubble
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nucleation process in HFIR that is suspected to suppress early void
formation in HFIR relative to EBR-II. [In EBR-II specimens voids form
starting at 31 dpa while in HFIR their formation starts above ~ 47 dpa
at 515° to 550°C (see Fig. 12b).]

Another important finding of Maziasz was the lack of precipitate-
assisted void formation, despite the many coarse precipitate particles
present in the HFIR samples. In HFIR-irradiated samples, bubbles that
became unstable comverted to matrix voids more readily than in EBR-II
samples. Thus, swelling was enhanced in HFIR, while in EBR-II voids
increased in size and decreased in concentration with increasing
temperatures (see Figs. 9 and 10).

In summary, Maziasz [56] finds that the HFIR data show delayed-
followed-by—enhanced void swelling at 500° to 650°C compared to EBR-II
experiments. He concludes that the presence of helium changes void
swelling behavior because of increased bubble nucleation. The fine
distribution of small bubbles affects the balance between dislocation
and cavity sink strengths. The net effect is that helium extends cavity
swelling to higher temperatures beyond the normal swelling cutoff tem—

peratures present in thermal reactor experiments.
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CHAPTER IV
REVIEW OF THEORETICAL TREATMENTS ON

HELIUM CLUSTERING IN IRRADIATED MATERTALS

1. INTRODUCTION

The energy of solution of helium atoms in metals has been shown to
be highly negative [1], indicating insolubility no matter how small the
concentration. As a result, it 1is emnergetically favorable for the
helium atom to become substitutional (by residing in a vacant lattice
site), and for more helium atoms to precipitate out in the form of over—
pressurized bubbles.

The phenomena of cavity formation in fast breeder reactor cladding
and ducts, and the associated swelling and loss of dimensional stability
are now well known. Typically, cavity densities of some 1015 cm_3
produce swelling of several per cent to tens of percent over

23 n/cm2 fast neutron fluences {~ 130 dpa) to which fast

the = 3 x 10
reactor claddings are subjected. The swelling occurs mostly in the
temperature range between about 0.3 and 0.6 of the absolute melting
point. |

Cavities form by the agglomeration of irradiation-induced vacancies
which remain after preferential absorption of self-interstitials at dis-
location lines. Helium which is formed by (n,a)-tramsmutations, and in
simulation studies may be ion implanted, often plays an important but
puzzling role. In some materials, very few cavities form in the absence

of helium, even after intense irradiation. In many other materials

cavities form readily under a variety of irradiation conditions, even in



the absence of helium. Why some materials require helium to stabilize
cavities, typically in the 1070 apa (atom per atom) range, and others do
not, and the reason for that particular level, can be understcod by
studying detailed nucleation and growth mechanisms.

Summaries of experimental observations of cavities in metals have
been presented by Bement [2] and by Norris [3]. In addition, the papers
in two conferences devoted to cavities [4,5] contain much detailed
information pertinent to the experimental and theoretical status of the
subject. Emphasis is placed on cavities formed in neutron-irradiated
stainless steel. 1In addition to fast-neutron irradiation, cavities may
be formed by bombarding metals with heavy ions (e.g., protons, carbon,
and self-ions) or with electrons. The bulk of the experimental infor-
mation on cavity formation in metals has been obtained by transmission
electron microscopy (TEM). Most theoretical treatments, however, only
predict the average cavity size, assuming that the cavity density is a

specified number rather than the complete cavity distribution function.

2. CLASSICAL NUCLEATION

Cavity formation theofies usually divide the overall process into
distinct nucleation and growth phases. At high temperature, the cavity
distribution functions tend to be very broad and to contain some very
large cavities and a small proportion of small ones. This type of dis-—
tribution suggests that nucleation has ceased and a constant density of
cavities is in the process of growing.

Nucleation of cavities refers to the rate at which small embryos of

these defect clusters appear in the solid. Once nucleated, the embryos
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tend to grow and are safe from destruction. Supersaturation of the
solid with point defects is a prerequisite to both nucleation and
growth, but a higher supersaturation is required to force nucleation
than to continue growth of existing embryos.

The most common example of nucleation is the condensation of water
vapor in air. If the partial pressure of water in dust—free air is
slowly increased beyond the equilibrium vapor pressure, nothing happens
until the supersaturation (i.e., ratio of the partial pressure to vapor
pressure) attains a value of about 5 to 6. At this point a fog, which
corresponds to nucleation of small liquid droplets, appears. The super-
saturation of the gas phase falls abruptly at the onset of nucleation,
and the newly borm droplets consume the remaining excess water vapor at
a purely diffusion-limited rate until the equilibrium vapor pressure in
the gas phase is attained.

Formation of cavities in solids may not be as clearly divisible
into aucleation and growth phases because, in this case, generation of
point defects acts to maintain the supersaturation. Nucleation of new
cavities may proceed in parallel with the growth of existing ones.

Nonetheless, nucleation and growth processes have been analyzed as
individual phenomena, the rates of which are functions of the point-
defect supersaturations, the helium content of the solid, and the
temperature.

As with the condensation of water, nucleation of cavities in metals
can be classified as either homogeneous or heterogeneous. Homogeneous
nucleation refers to the buildup of small clusters by chance encounters

of individual point defects executing random walks in the solid. The
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stability of these clusters relative to the individual point defects of
which they are composed (i.e., cavities contain vacancies and helium
atoms) is the driving force for nucleation.

Heterogeneous nucleation refers to the appearance of cavities on
distinct structural features of the solid. In water condensation, for
example, dust particles provide heterogeneous nucleation sites. In
metals the heterogeneities that may accelerate cavity nucleation include
existing gas—-atom clusters, incoherent precipitate particles, and
dislocations.

The details of the processes by which helium affects cavity nuclea-
tion were not precisely known until recently. The mechanism was simply
speculated as a matter of stabilizing embryo cavities that have nuclea-
ted without the aid of gas atoms. Fowever, it will be shown that helium
is intimately involved in the nucleation process by precipitating simul-
taneously with vacancies to form embryo cavities that are partially gas
filled. Although cavity nucleation probably occurs by a mixture of
homogeneous and heterogeneous processes, each assisted by helium, only
homogeneous nucleation has bpeen treated quantitatively. Classical homo-
geneous nucleation of cavities. in metals is not simply a matter of
applying classical nucleation theory to é new system.

Classical theory, which was developed to explain liquid-droplet
formation from supersaturated vapor of condensible gases, has been
applied to many precipitation processes occurring in solids. However,
in all nucleation problems that have been treated by classical theory,
growth or shrinkage of small clusters occurs by exchange of a single

species between embryos and supersaturated medium. Cavity nucleation,
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however, involves the exchange of at least two species (the vacancy and
its antiparticle the self-interstitial) between the cluster and the
lattice, Moreover, if helium is involved in the nucleation process,
three species which contribute to homogeneous nucleation must be
considered in the shrinkage and enlargement processes.

The physics of cavity nucleation, particularly the role of helium,
have been the subject of several theoretical papers [6-12]. The
earliest theories [10,11] were for cavity nucleation by co-precipitation
of wvacancies and self-interstitials. Simple rate equations were
derived, which of course could not reflect the influence of helium.

These early theories for cavity nucleation in a solid supersatura-
ted with vacancies and self-interstitials were based on the assumption
of high mobility of point defects between the cavity and the bulk solid.
Katz and Wiedersich [8] and Russell [9] later extended the cavity nucle-
ation theory to account for helium in the metal. They assumed that
helium was immobile once it was introduced into the solid and further-
more, that any release of helium atoms from any cluster, cavity, or trap
was very difficuit.

So, in effect, they regarded the helium atoms as immobile nuclea-
tion sites to which vacancies and interstitials can migrate to form
clusters. Consequently, nucleation in the presence of helium need not
involve the simultaneous equilibration of all three species (vacancies,
self-interstitials, and helium atoms). In addition to the heterogeneous
nucleation paths provided by helium clusters in the metal, they [8,9]

kept the homogeneous nucleation mechanism {6,7] to derive a combined
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nucleation rate for cavities. All nucleation processes were assumed to
be driven by the prevailing vacancy and interstitial supersaturations.

A gas—free cavity cluster can grow by capturing vacancies or emit-
ting interstitials. Thus, the nucleation current 1is the difference
between the rate at which clusters pass from size m to size mt+l plus the
rate at which clusters of size m+l are reduced to size m.

I(m — mtl) = Sv(m)N(m)

s (D
- av(m-l—l)N(m+1) - si(m+1)N(m+1)

where I{m — mt+1) nucleation rate of size m+l clusters of vacancies,

N(m) = cavity number density for non-equilibrium but steady
state,

Bv(m) = rate of vacancy capture by size m cluster,

av(m) = rate of vacancy emission by size m cluster,

Bi(m) = rate of interstitial capture by size m cluster.

Generally a  is eliminated from Eq. (1) by the use of the principle of
detailed balance or constrained equilibrium. This principle states that
equilibrium is attained if the rate at which clusters of m vacancies
capturing single vacancies is equal to the rate at which clusters of

size m+l emit vacancies, or
B, (@ (m) = a (m DN (m1) . (2)

Here N®9(m) is the equilibrium cluster distribution function of size m.
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Katz and Wiedersich [8] and Russell [9] extended the homogeneous
nucleation current [Eg. (1)] by accounting for the stabilizing effect of
helium. They evaluated the reversible work to form a cavity embryo of m
vacancies and n gas atoms [13].

Since helium is nearly insoluble in the metal, it has a natural
tendency to escape from the solid to the gas space of the cavity.
Therefore, we expect that work camn be recovered by reversibly trans-
ferring helium from the solid to the cavity, or that this step reduces
the work requirea for cavity formation and consequently enhances nuclea—
tion. Isothermal reversible expansion of n helium atoms of an ideal gas
from pressure Peq to pressure P provides a release of free energy of the

amount of W:

P .
W= nkT an(-53) . (3)

Assuming an ideal gas law and using statistical thermodynamic, Peq is
determined (Xatz and Wiedersich {8] and Russell {9]}). Thus they were
able to determine the free energy of cavity formation as a function of
the number of vacancies and number of gas atoms. This information
allowed them to determine the heterogeneous nucleation rate which,
combined with the homogeneous rate, gave the total cavity nucleation
rate in the presence of helium atoms.

To include the effects of mobile inert gas and continuous helium
production, a unified treatment of the nucleation process was developed

by Russell [14]. The theory begins by considering cavities as

characterized in a 2-D phase space (Fig. 1), where a cavity is fully
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Fig. 1. Phase space for cavity nucleation, showing movements of a
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or loss (av,a4,KE)(after Russell [141).
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characterized by the number of vacancies v and the number of helium
atoms h that it contains. Each coordinate in the vacancy-helium phase
space can be assigned a phase velocity.

The cavity may move in the positive v direction by capturing a
vacancy and may move in the negative v direction by either emission of a
vacancy or capture of an interstitial. Movement in the h direction can
occur by capture or emission of a helium atom, or by radiation re-
solution. Radiation re-solution 1is the process by which a gas atom is
knocked back into the bulk by a primary knock-on atom. The rate of
vacancy capture B, vacancy emission a, interstitial capture Bi, gas
capture 8, gas emission LE and gas re-solution rate KX, define average

velocities in this helium-vacancy phase space given by

dv . 1/3 1/3 PN -
it " v = va - e 81 v ’ (&)
du _ & 1/3 _ _ r -
T N o TR ()
where the factor v1/3[vﬂ = (4/3)wr3} accounts for the dependence of the

capture rates upon cavity size, and Kﬁ is the rate per gas atom of
radiation re-solution.

The emission rates are solved in terms of arrival rates by using
the constrained equilibrium principle {see Eg. (2)] and by using the
Gibbs free energy of formation of a cavity containing v vacancies and
h helium atoms as derived earlier by Katz and .Wiedersich. [8] and

Russell {9]:
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_ 1/3
a, =BV exp(

L 36y (6)

kT av

1/3

where va is the arrival rate of vacancies to a cluster size v and

the exponential term is a mathematical expression for the probability of
emission. This is sometimes also expressed in terms of binding energies
B.

EV.
Probability of emission = exp(- Eg/kT) . (7)

where kT 1s the Boltzman factor; G, the free energy of formation

includes the stabilizing effect of helium on the cavity. It comsists of

s

7 and the work

the vacancy formation energy Es, the surface energy E

required to compress the gas WC:

AG = E + E + W s (8)
v v
where
E\, = —vkT 2a S, (9)
and
Cv
5, = — - (10)
C"q
v

Cv is the total vacancy concentration and Ciq is the termal vacancy

equilibrium concentration. SV is called the supersaturation of vacan—

cies. Equation (9) is based on the principle of chemical equilibrium.

5 = 36 )2y (11)
Q = a3/4 . (12)
[¢]
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where a, is the lattice constant, Q is the atomic volume, and y is the

2

surface tension of the solid (~ 500 ergs/cm“ for stainless steel).

The work done in compressing the gas is given by,

W = hkT ga(b/h_ ) - hkT (13)
eq

where he is the cavity gas content which would be in equilibrium with
gas in the matrix.

Equations (4) and (5) are two first-order differential equations
which lend themselves to Nodal Line analysis. This analysis emphasizes
the loci of points where Vv and h are zero (nodal lines) and points of
intersection where ¥ = h = 0 {critical point). Thus by setting v and h
equal to zero and by plotting the nodal lines, Russéll determined three
nucleation mechanisms (spontaneous, homogeneous, and gas—assisted) which
are visualized in Figs. 2 and 3. A mechanism is established according to
helium generation rates, temperature, and sink density. Two types of
cavity nucleation paths, spontaneous and homogeneous, are shown in
Fig. 2. Solid lines denote steady growth»and the dashed line is growth
by fluctuation. Spontaneous growﬁh takes place for any cluster whose
coordinates lie above the v = 0 and below the i nodal line, because only
these are guaranteed stability against thermal dissociation or radiation
defects causing shrinkage. When the two nodal lines do not cross
(Fig. 2), any cluster forming between them is stable.

Homogeneous cavity nucleation occurs- only when vacancies are

collected. While nucleation and growth rates take place at the average

ot
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Fig. 2. Schematic of spontaneous and homogeneous nucleation paths,
shown on a nodal line plot (after Parker and Russell [17]).



velocities given by Egs. (&) and (5), the homogeneous nucleation is not
a kinetic process governed by these equations. A void (cavity with no
helium) can only survive dissociation by some statistical probability,
where enough vacancies cluster together simultaneously to achieve a
cluster size larger the v*. Any cavity containing less than v*
vacancies will dissociate.

The third nucleation path, defined as “gas—assisted” by Russell
[14], occurs when nodal lines cross (see Fig. 3). Nucleation occurs
when an equilibrium bubble undergoes a fluctuation in which it collects
several vacancies and reaches the rapid growth region of the helium-
vacancy phase space. Both the spontaneous and gas—assisted growth
regions are characterized as a rapid phase by vacancy acceptance alone.
At the critical point v*,h* (see Fig. 3), equilibrium bubbles have zero
velocity and all of the unstable cavities in its vicinity will dissoci-
ate to the combinmation of vacancies and helium atoms of the critical
points. Thus, it is the largest possible gas—assisted nucleation site.

In Chapter V, we will outline our contributions to the nodal line
analysis [15]. In particular, we used it to explain various bi-modal
cavity distributions found in HFIR-irradiated samples. Figures 4
through 6 show some of Russell's results using the nodal line analysis
compared to measured cavity distribution from Ref. [51]. The figures
show that the theory has a temperature dependence which is too strong
for the cavity number density. Although the calculated mean size is
only about a factor of 2 to 4 too large, it does not produce very

symmetric bell-shaped curves for the size distribution.
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Fig. 3. Schematic of nucleation paths for gas—assisted nucleation
on a nodal line plot (after Parker and Russell [17]).
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Despite some recent improvements [17], quantitative predictions
cannot be made using the model, because of approximations made in the
model and uncertainties in the physical parameters.

Wiedersich, Burton and Katz [12] also contributed to the theory of
nucleation with constant helium generation rates. Single helium atoms
were found to increase the cavity nucleation rate only modestly, whereas
clusters of helium atoms give substantial enhancements. However, the
assumption of immobile helium is not consistent with the need  for some
mobility to form clusters.

Wiedersich et al. [12] also based their theory of cavity nucleation
on the processes shown in Fig. 1 and, in addition, allowed for displace-
ment of a helium atom by capture of a self-interstitial. They derived a
system of simultaneous equations for the concentrations of cavities of
various sizes and gas content and then solved the system numerically
under steady-state conditions.

To assist subsequent discussions, we present a simple derivation of
concentrations of vacancies and of mobile gas atoms. Detailed deriva-
tions can be found in Refs. [18-20]. The calculations which follow are
only valid in the central portion of the temperature range of the cavity
swelling, where dislocations are the primary point defect sink, and
where thermal production of vacancies is relatively unimportant. The
steady—state vacancy concentration Cv (in atomic fraction) is then
dictated by the balance between the atomic displacement rate K and the

annihilation at dislocation sinks. Thus,

¢ =0=K-CD2Z (14)

v v v vpd
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where D_ =
v
Zv =
Dd =
K =
then

e
where C, =

D

]

A similar

vacancy diffusivity in cmz/sec,
dislocation bias factor for vacancies = 1,
3

dislocation density in em/em”,

displacement rate,

A
M Dzvpd
\'4

thermal equilibrium vacancy concentration,

Dvc§ = vacancy self-diffusion coefficient.

calculation may be perfcrmed for interstitials, to

ratio of the arrival rates of the two defects as

where Z, =

(15)

(16)

give the

(17)

biasing factor for seif interstitials. The ratio Zv/zi is

between about 0.9 and 0.99.

The same arguments hold for helium:

)

NI D‘Ol——i

éh=0=lé;cg—ChDh(k,r21—

a
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rate of detrapping of helium from sinks,

Dy, = diffusivity of intestitial helium,
CE = trapped helium concentration,

Ch = mobile helium concentration,

k% = sink strength [Eq. (21).

The helium flux is

J = h B (19)

where a = lattice parameter

T
I - = FLOW-T2
h(CT, ax Ch) FLOW-IN of He atoms , (20)

C
L2 _ T,max (21)

and &h = az

The trapped and untrapped helium concentrations are related by
! (22)
c, =¢C + 2
“h Ch >

where Cg = total helium concentration.

In cases where sinks are far from saturated, Brailsford and
Bullough [19] use the following arguments to derive an equation for the
mobile helium (untrapped) concentration given by a balance between

trapping and detrapping.
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First, the total helium concentration Cg is much less than the

total trap concentration CT,max:

o
Ch <L CT,max (23)
Using the definition for the sink strength we get
22
CT,maX - kha ' (24)
Since all helium introduced into the system is immediately trapped, the
total helium concentration can be approximated by
o T
¢, =C - (25)
So Eq. (18) becomes
o
o) h o h
= = ¥ - !’ T = .
C, =0 =KC - CD (k -— (26)
But from Egs. (23) and (24) we have
o) 22
Ch << kha , (27)
or C; ,
_a_z << kh . (28)

So Eq. (26) combined with Egq. (28) gives

0 Jhoo 2
Cp =0 = X0 -Gl

(29)
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which can now be solved for the mobile helium concentration

M
=il o]
=g

C, = . (30)

o)
=2
e
= S

Bullough and Brailsford [19] were thus able to find the free helium
concentration as a kinetic balance between trapping and detrapping.
Wiedersich [12] used an expression equivalent to Eg. (18) in solving for
Ch‘ A study of their equations shows, however, that instead of solving
directly for the mobile gas concentration, they solved for Cg by a

series expansion and obtained Cy by difference. They found for Gy

(¢
L | S (31)

h .0 2.2

(Ch + kha )

Thus instead of the free gas concentration being given by the balance

between trapping and detrapping [Eq. (30)] the kinetic factors do not
enter at ail in Eq. (31).

-6 2

For Cg = 10" ° apa, a“ = 1075 cm? and ki = loll/cmz, Eq. (31) gives

c =102 ¢° (32)

if we use a typical value for K? = 10_3 dpa/sec and D,,1 = 0.1 cmz/s.

Equation (31) thus overestimates €, by a factor of about 101l,
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Calculations based on this equation are thus unlikely to predict either
absolute values or trends in the cavity nucleation rate.

This brief review of Refs. [12] and [19] clearly points out the
discrepancies between various theoretical approaches which are expected

in view of the inconsistent approximations made.

3. CLASSICAL GROWTH THEORY

Having nucleated, the cavity embryos are now driven to grow in the
presence of displacement damage. Point—-defect balances provide the
means of computing the vacancy and interstitial supersaturations (Sv and

S or equivalently, Ce and Ci) which drive both the nucleation and

i
growth processes.

The concentrations of vacancies and interstitials in the irradiated
solid are determined by equating the rate of production of point defects
to the rate of removal by all mechanisms. The analytical treatments are
performed quasi-stationary because the time derivatives dcv/dt and
dCi/dt are neglected. This approximation is justified on the grounds
that changes in the sink strengths due to the evolution of the micro-
structure during irradiation, and hence the rates of point—-defect
removal, are very slow compared with the time required for the point-
defect population to respond to such changes.

The spatial gradients in point—defect population are also neglected
because both the rates of production and removal are assumed to be uni-
form throughout the metal. Therefore, the calculations are of the
infinite-medium type. Very strong concentration gradients which are

responsible for point—defect absorption do exist in the immediate
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vicinity of the microstructural features of the solid. This complica-
tion is removed from the point-defect balances by homogenizing the
sinks. That 1is, the discrete sinks in the solid are replaced by
spatially uniform absorbers of point defects. The strength of the
homogenized sinks, however, must be determined by solving the point-
defect diffusion equations in the immediate vicinity of the discrete
sinks.

Point-defect balance equations have been developed by Wiedersich
[18], Brailsford amd Bullough [19}, and Harkness, Tesk and Li [21].
These three analyses are equivalent in approach but differ in detail.

The theoretical description of irradiation damage (Harkness and Li
[21]) entails analysis of the migration of intrinsic point defects to a
spatial distribution of sinks. The latter are almost invariably distri-
buted at random and only rarely is any long-range order observed. Thus
spatial disorder in the dispersal of sinks is a prime characteristic.
This complexity on the microscale may be contrasted with macroscopic
quantities such as electrical resistivity, creep rates, etc. Such
macroscopic properties will be largely insensitive to the finer details
of the sink distribution, much as the properties of a gas are indepen-
dent of the detailed kinetics of its ccnstituent molecules. Thus, in
the same fashion as averages suffice for the description of properties
of a gas, one expects some averaging method to work in the description
of defect problems.

This philosophy, in fact, underlies the majority of theories known

to us in this field.
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3.1. Point-Defect Concentrations

The concentrations of vacancies and interstitials must be known in
order to determine nucleation and growth of clusters. These are deter-
mined from the rate theory commonly used in point-defect problems. We

follow Ref. [19] in describing the rate theory.

The rate theory is derived from the basic continuity equations for

vacancies and self-interstitials which are:

aC /3t + div J_ =K - aC C. , (34)
v v v 1

3C./3t + div ], = K - oC.C , (35)
1 1 1 v

where C, and C; are the atomic fractions of the defects, and 3v and ji
denote the respective fluxes. The quantity K is the defect production
rate in displacements per atom per second (dpa s—l), and a is the
intrinsic recombination coefficient. For simplicity, higher order
cluster production is ignored.

In the derivation of rate theory it is assumed that the sinks form
some type of a periodic array. Thus we can divide space into a set of
primitive cells (unit cells). The normal component of point-defect
fluxes vanishes on the cell boundaries. Brailsford and Bullough [19]
take the first moments of ‘Egs. (34) and (35). These are obtained by

integrating over the cell volume. The result from Eq. (34) is:

aC v
[—Ldv+ )3 =KV, -a [CcC dv , (36)
at L M iv
vy L v,
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> +>
where JE is the integral of jg over the sink surface, Vy, is the volume

of matrix within the cell, and L denotes sink type. The corresponding
self-interstitial equation can be obtained by interchanging the labels
i and v. As & reminder, there is no point-defect loss across the outer
v
boundary by construction. The main issue concerns the JL and the cor-
responding quantities for self-interstitials. Brailsford [19] defines
each flux in terms of a sink strength k% vy and a thermal emission rate
y

K.

L. v> by the following relation:

v 2
3L = D, ki, é e AV SR G Ty (37)
M

with a corresponding definition for interstitial quantities. 1In

Eq. (24), D_ is the vacancy diffusivity.

\Y%

Introducing the notation:

> =v.t [fcav (38)
M \

M

Brailsford and Bullough derive the two rate equations:

d<C> 5
- - = (39
- * %(DV ki y<Cy> = Kp) = K +adC><C> =0 (39)
and
a<c >
=0 . (40)

i 2 .
— + E(Di k  <C.> =K, ) - K+ ol >Cpo
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These equations are to be solved to obtain the <Cy> and <C;> as func-
tions of time for some prescribed initial conditionms. In principle,
such a procedure is straightforward, if the sink strength kg and the
thermal emission rate K; are known for each defect and each sink type.
Thus, the subsequent procedure is: One must solve the continuity
-+

equations within each cell to compute JX and hence derive k% y and
¥

KLV' The same must be done for self-interstitials.

3.2. Methodology for Sink-Strength Calculationms

First, the concept of so—-called quasi-steady-state growth is
invoked. Because the relaxation times for changes in the concentrations
are generally much shorter than characteristic times for changes in
reaction rate constants, all characteristic dimensions entering the sink
strengths are to be treated as time independent.

Subject to this simplification, if the production rate is independ-
ent of time, the time derivatives in the rate equations are of no impor-
tance except for deriving initial tramsients or treating pulsed irradi-
ation conditions [19]. The rate equations are then simply algebraic
relations which can be solved for the concentrations, with the sink
strengths and emission rates entering as parameters (Wiederich 1970 [7},

Brailsford and Bullough 1972 [19], Harkness and Li 1971 [20]). Results

of Ghoniem and Gurol [22] are given below:

1 1/2

o e - - 11
Cv,i = (za - V)[(l + he K otot.) 1, (41)
v T (D é ) ? (42)
» i,v “1,v P
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where T, v is the mean time it takes a self-interstitial or a vacancy to
b

diffuse to a sink, respectively, and Zi y» are the notations used hence-
>

forth for sink strengths.

3.3. Sink Strengths and Sink Efficiencies

The sink strength is essential in determining the loss rate of a
point defect to a sink type. The loss rate is simply the product of the
bulk point-defect concentration C, with the point~defect diffusion coef-
ficient D, and the sink strength S. A complete treatment is given in
Refs. {23] and [24], where other work is also mentioned. We follow here
the notations used in Ref. [24] for the derivation of sink strength for
the cavity. Results for other sink types are also gquoted.

Assume an isolated cavity in an infinite medium with smeared-out
sinks of strength 8. Furthermore neglect recombination and thermal-
vacancy generation bv sinks other than cavities. Thus in spherical

coordinates we can write for either defect type:

0]
a0
@}

r——DSC+G=O R (43)

|
(3]
[aNjeN
H

and the boundary condition at the cavity surface is given by,
p 4cl =w[c(r ) - (] . (44)
dr[ c ¢

Here r is the distance from the cavity center, w is the point-defect
transfer velocity at the cavity surface, G 1is the defect production

rate, and Ce(rc) is the thermal equilibrium bulk concentration given by:
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e =8 2Y _ o8
C (rc) = Cv exp[(r P)k T] s (45)

where T is the temperature, vy the specific surface free energy, Q the
atomic volume, kB the Boltzmann's constant, and P the pressure due to
any enclosed gas.

The solution to Eq. (43) is

[Cm - ¢%(r Y]wr /D =
51/2 < < =< exp[—Sllz(r - rc)] , (46)

r

1+ r + wr /D
Cc [od

where Ccc is the bulk concentration.

The current of point defects to the cavity is:

r e
9 acl AwLCm - C (rc)] wr o .
byr”™ D — = . (475
S1/2

dr
‘r=r 1 + r +wr D
c c c

o
0

By the definition of sink strength, the sink strength of a cavity

given by:

l/2r . WrC/D
J 1/2
< (1 + S‘/—r + wr D)
c c

$¢ = 4mr (1 + 8
C

Equation (48) consists of three parts. The first part, 4wr is a simple
c

/

[N
(R

geometric term; the second part, 1 + § Tos is designated as a
multiple sink correction term; and the third part is the sink capture
efficiency designated as Z®. The latter measures how good an absorber
the sink is. Alternatively, Mansur et al. [25] have lumped the second

and third terms together as a generalization of capture efficiency.
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An equivalent definition of capture efficiency is [26]:

. c - C(rc)
Z = "————-'e———— . (49)

c-Cc(rJ

c
The sink strengths of straight dislocatioms, dislocation loops,
grain boundaries, free surfaces and precipitates have all been derived

by analogous methods [27-28]. For example, the sink strength for

straight dislocations is given by:

Sd = de s 7 (50)

where

7d ZN/Rn(rL/rd) . (38)

-1/2

Here p is the dislocation density, T = (L) is a measure of dislo-

cation spacing, and T4 is the dislocation capture radius for a point

defect. The capture radius depends on the type of defect. Generally

z4

d , i v
> Z because r, > r. .
i v d d

4, MODERN APPROACHES TO MICROSTRUCTURE EVOLUTION

The previously mentioned treatments have not been found to be com—
pletely satisfactory for describing the develoopment of microstructural

components under irradiatiom. This stems primarily from two reasoms:

l. In many instances, nucleation is a continuous process that
cannot be easily separated from growth. Cavity evolution is
therefore dependent on both nucleation and growth acting

simultaneously.



2. Details of the size distribution cannot be obtained through
analysis based on the previous theories. In fact, using
previous methods, Hayns [29] has failed to produce even

qualitative agreements with experimental observations.

In the mid-1970s, Brown, Kelly and Mayer [30] carried out calcula-
tions for interstitial clustering in graphite. They considered hetero-
geneous nucleation to occur when one unbound interstitial encounters
another interstitial atom already bound to a trapping site such as boron
impurities. Using di-interstitials as the smallest size loops, they
concluded that heterogeneous nucleation can be taken into account in the
reaction rate theory by reducing the velocity of interstitial by an
amount which corresponds to the time they spend bound to an impurity.
Recently Kiritani [31] used a model similar to Brown et al. to explain
high voltage emission microscopy (HVEM) experimental results on
interstitial loop formation. Vacancy mobility and the existence of di-
vacancies have been included in his analysis.

Hayns [32] studied the nucleation and early stages of growth of
interstitial dislocation loops in irradiated materials. A hierarchy of
rate equations was solved to simulate the homogenecus nucleation of
interstitial dislocation loops. The assumption that di-interstitial
atom pairs are stable against thermal dissociation was examined and it
was concluded to be appropriate. Lam [33] developed a tiwe— and space-
dependent model to study the radiation—induced defect buildup and
radiation—enhanced diffusion in a foil under irradiatiom. The distribu-

tion of interstitials, monovacancies, and vacancy aggregates (containing
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two to six vacancies) in a silver foil under irradiation was calculated
as a function of both distance from the surface of the foil and irradi-
ation time, by numerically solving the rate equations for various tem—
peratures and internal sink concentrations. In an investigation of
interstitial cluster nucleation at the onset of irradiation, Johmson
[34] developed rate equations for the concentrations of single and small
clusters of vacancies and interstitials. The effects of irradiation,
temperature, and displacement rate were investigated, and it was found
that the cluster concentrations are sensitive to cluster binding
energies. Hall and Potter [35] included interstitial-impurity trapping
in a time—dependent nucleation and growth model that is used to calcu-
late both vacancy and interstitial cluster densities and size distribu—
tions during irradiation. Calculations were performed for nickel alloys
with interstitial-solute binding energies between 0 and ! eV. Recently,
Ghoniem and Cho [36] developed a rate-theory model for the simultaneous
clustering of point defects during irradiation. Size—dependent bias
facters and self-consistent reaction rate constants were used to evalu-
ate the feedback effects between the vacancy cluster and interstitial
loop populations. An atom conservation principle was used to determine
the number of necessary rate equations as a function of irradiation
time. It was found that the concurrent presence of vacancy clusters
depletes the matrix vacancy population and thereby reduces mutual point-—
defect recombination. This was concluded to enhance interstitial loop
formation, increasing loop concentration, nucleation rate, average size,

and growth speed of the average size.

125



The basic limitation to the rate-theory approach (or equivalently,
the Master Equations formulation) lies in the one-to-—one relationship
between the number of simultaneous differential equations and the number
of species in a cluster. Although the previously mentioned methods have
been detailed enough to analyze fundamental point-defect kinetics and to
describe the effects of various irradiation and material parameters, the
computations become prohibitively expensive for large defect clusters.

Correlating the results of the computations with experimental data
can be very useful in theory development and for guiding well thought-—
out experiments. The need for the correspondence of theory and experi-
ment has prompted the development of approximate computational methods
for the kinetics of defect clustering. Kiritani [37] has developed a
scheme for the nucleation and growth of clusters in which clusters with-
in a range of sizes are grouped together, and he has applied the method
to vacancy clustering after quenching. Hayns [38] has applied the
Kiritani grouping scheme to study the nucleation and growth of inter-
stitial loops during irradiation, and he has shown that objections to
the method by Koiwa [39] can be surmouhted. Hayns [40] also reported
calculations using the grouping scheme to study nucleation and growth of
interstitial loops under fast reactor and simulation conditions.

A different approach for studving the nucleation and growth of
defect clusters has considered solving continuum equations rather than
rate equations. Sprague et al. [41] were able to describe vacancy
clusters containing up to 3920 vacancies by descretizing a diffusion-
type equation with variable diffusivity. Recently Wolfer et al. [42]

followed similar lines to demonstrate that the rate equations describing
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clustering kimetics can be condensed into one Fokker-Planck continuum
equation. The latter was interpreted as a diffusion equation with drift
terms. They showed that cavity nucleation and growth can be both incor-
porated into such a unified formalism. No attempts were made to inves—
tigate the numerical solutions of these equations, however. Hall [43]
investigated point-defect clustering, considering a different form of
the continuum description. Only the cluster councentrations were
expanded in a Taylor series and the resulting set of rate equations were
shown: to be condensed into one partial differential equation.

Either because of the high computational penalties in rate-theory
methods or because of the restrictive approximations in grouping
methods, the majority of the approaches mentioned above have not been
able to accurately describe the long-term behavior of defect clusters.
We developed a novel calculational method for the solution of the
Fokker-Planck equation describing cavities and interstitial loops
[36]. The strength of that method lies in its hybrid nature. Small
clusters were treated using separate rTate equations including all
possible details. On the other harnd, a continuum approach was used for
larger clusters by descretizing a transformed Fokker-Planck equation.
Defects containing up to millions of atoms were investigated using this
hybrid approach. The numerical resuits of the method compared well with
experimental findings on heavy—-ion irradiated 316 stainless steel.

All approaches mentioned above are directed at understanding the
nucleation and growth processes of irradiation produced cavities. One
of the general results of research in radiation effects is that the type

and severity of radiation damage are found to be highly dependent on
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alloy composition. An impurity mostly singled out (first, because of
its extreme potency and second, because of its unavoidable production in
transmutation reactions during neutron irradiation) is the insoluble
gas, helium. The modern approaches mentioned so far have all excluded
the effects of helium on cavity nucleation and growth. Various nucle-
ation and growth mechanisms for helium inclusions in cavities have been

suggested. We will briefly mention the basic ideas of some of these.

Critical Cavitv Radius

Because of differences in capture efficiencies, unequal partition-
ing of point defects to sinks leads to biases which results in a larger
flux of wvacancies to cavities and of interstitials to dislocations.

However, the thermal emission rate of vacancies from cavities follows

(&)

el/r dependency. Therefore, at a given temperature there is a critical
radius above which the bias-~induced vacancy influx is larger than the
thermal-vacancy outflux. A similar critical radius concept was develo-
ped earlier in calculations of gas bubble growth in fissile materials
[44]., Brailsford and Bullough [45] have introduced the related concept
of a critical stress for stress—driven breakaway swelling. For a given
stress this can be translated to a critical radius. There it arises
because the cavity absorbs a net vacancy flux provided by sources, such
as dislocations and grain boundaries, that emit enhanced vacancy fluxes
under stress. Many other workers in the field have also used the
concept of a critical radius (e.g., Ref. [46-48]).

Lately, Hishinuma and Mansur [46] gave a simple explicit expression

for both the ideal and the Van der Waal's gas law, with accurate dose
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rate and temperature dependences. The solution of this equation was
used to develop a cavity stability map and to discuss the occurrence of
bi-modal cavity distributions in experiments where helium is present
during irradiation.

The related concept of a critical number of contained gas atoms has
also been developed and applied by Mansur and Coghlan [47] to develop
predictions of interest. For example, the temperature shifts of cavity
growth with dose rate and microstructure was derived by Mansur, using
the critical cavity-radius concept [48].

Wolfer and Glasglow [49] on the other hand, state that cavity
growth in the presence of helium is not bias driven but pressure driven
because small clusters of helium atoms and vacancies have a significant
interaction with self-interstitials. They suggest three growth
mechanisms: self-interstitial ejection, dislocation loop punching, and

stresgs—assisted thermal vacancy absorption. Under the assumption that

[Sad

the overpressure in the helium ciuster is the driving force for al
three mechanisms, it is shown that the interstitial ejection is the

to

A

dominant mechanism for the growth of bubbles with radii less than
10 Burgers vectors, while loop punching becomes dominant for larger
radii. Finally, they show that thermal-vacancy absorption becomes
important at still larger radii and temperatures S 700°K. Above 800°K
and helium production rates of 10—4 appm/s however, they show the

thermal-vacancy absorption to be the dominant growth mechanism at all

bubble radii.
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CHAPTER V
HELIUM TRANSPORT AND INTERACTIONS WITH DEFECTS

DURING IRRADIATICN

1. INTRODUCTION

The physical situation of interest is the transport of helium atoms
in alloys undergoing simultaneous radiation damage. The radiation—
produced helium atoms interact with radiation-produced defects and with
the‘microstructure of the material. During the course of irradiation,
the wmicrostructure of the irradiated material changes, which in turn
affects the diffusion behavior of the helium atoums. Because of the
complexity of the mechanisms involved in helium transport during irradi-
ation, simple experiments designed to measure activation energies of
motion for helium through the material of interest ﬁay be difficult to
interpret. Therefore, in order to answer the question of how helium
migrates or diffuses through the lattice, several mechanisms must be
investigated.

In this chapter, we will first deterwmine in Sect. 1.l how a highly
insoluble inert gas atom like helium resides in metals. In Sect. 2 we
will discuss an investigation of helium transport and migration mechan-
isms through the metal during irradiation. In Sect. 3 we will introduce
the concept of trajectories to investigate the stability and average

size development of HVCs under irradiation.

1.1, Helium Residence in Metals

Helium permeation through metals was first studied shortly after

helium was isolated as an element, in ahbout 1897. In order to explain
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the solution of an inmert gas in metal, researchers postulated compound
formation between the metal and the helium. In 1957 Rimmer and Cottrell
[1] suggested a defect configuration between imert gas atoms and
vacancies which pointed to a strong trapping of helium to a vacancy.

A helium atom can reside in the lattice either as an interstial
atom or as a substitutional inside a vacant lattice site. In simple
defect configurations, helium can also occupy more complex defects such
as divacancies or several helium atoms and several vacancies forming a
helium vacanéy cluster (HVC). In order to study the defect nature of
helium, detailed theoretical atomistic calculations are performed {2].
By calculating interatomic potentials for the host atom interaction and
studying the atomic relaxation of a few hundred atoms in the vicinity of
the defect, the energetically most favorable positions of host atoms can
be determined. These calculations also determine the most favorable
migration jumps with the associated activation energies.

Bauer and Wilson [3] used interatomic potentials for He-Fe, He~Pd,
and He-Cu to investigate helium interstitial and substitutional posi-
tions in bcc and fee metals. Figures 1 and 2 show the symmetrical
interstitial positions for helium atoms in fcc and becec metals,
respectively,

It can be seen from Figs. 1 and 2 that an interstitially lodged
helium atom can jump from one possible interstitial site to a neighbor-
ing one, provided enough energy is available to overcome the potential
barrier. The activation energies for the jumps are generally in the 0.1
to 0.7 eV range, depending on the metal and lattice crystal structure

[3]. Bauer and Wilson found the activation energy for interstitial
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Fig. 1. 1Interstitial positions of
helium atoms in a bec metal
lattice.
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*\\\\\\\\;i (1,0,0)

Fig, 2. Interstitial positions of
helium atoms in an fecc metal
lattice.

137



helium motion to vary little (0.45 to 0.71 eV), depending on the choice
of potentials used in Cu [3]. 1In bcc metals such as V, Fe, Mo, Ta, and
W, the interstitial activation energies were in the 5 0.25 eV range,

which is about half that of Cu. The results of Bauer and Wilson are

shown in Table I [3].

TABLE I
CALCULATED ACTIVATION ENERGIES OF MOTION FOR HELIUM (eV) [3]

Metal Interstitial Substitutional Pop-0ut
Cu 0.57 2.15 1.88
rd 1.74 - 3.16
Ag 0.86 _— 1.53
Fe 0.17 3.98 3.75
v 0.13 3,20 2.96
W 0.24 4,75 4 42
Ta 0 3.44 3.30
Mo 0.23 4,19 3.87

Interstitial formation energies are about a factor of two greater
in bee(s) than in fce(s). The strain energy for an interstitial helium
in Cu is 1.74 to 3.22 eV while the strain energy for helium in a vacancy
is 0 to 0.13 eV. Furthermore, the strain energy to place a helium atom
into a becc vacancy is an order of magnitude greater than into an fec
vacancy. Once lodged inside a wvacant lattice sits, the helium atom has
two means of migration: (1) To move as a whole in its simple defect
configuration, and (2) to acquire enough energy to pop out of its
substitutional site. Both mechanisms were considered by Bauer and
Wilson. Table I includes their results for both mechanisms [3].

Figures 3 and 4 depict the paths of helium atoms during the
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Fig. 3. Various wmigration paths for substitutional detrapping
of a helium gas atom (pop—-out) in an fcec metal lattice.
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Fig. 4. Migration paths for a substitutional detrapping
of a helium gas atom in a bcec metal lattice.



substitutional de-trapping or pop-out process. Because a higher energy
barrier has to be overcome, the substitutional pop-out energy is con-
siderably larger than the interstitial motion energy but slightly less
than the substitutional defect migration energy. Because of these high
activation energies (1.5 to 4.2 eV), the rate-limiting step for substi-
tutional motion is the initial jumping of a helium atom from a substitu-
tional site to an adjacent interstitial site. It occurs only at high
temperatures, above 500°K/eV. Although the contribution of this migra-
tion mechanism seems to be negligible, we will later discuss the effects
of a radiation environment on the pop-out rates.

Besides studying simple defect configurations, extensive research
has been done on determining properties of multiple gas atoms and vacan-
cy clusters. Experimental observations of the migration of helium in
metals provided some guidance to the theoretical study of the properties
of small clusters of helium and vacancies.

The experimental method widely used in studying the behavior of
helium migration is the technique of thermal evolution spectrometry [a1.
Gas ions are implanted into the target metal at energies from a few eV
to a few MeV. A careful choice of the implant energy, dose, tempera-
ture, and the target pre-damage allows one to make deductions about the
nature of the helium gas diffusion. In a post-bombardment annealing
schedule, the target is heated, usually linearly, at rates of from z few
deg/s up to 40°K/s. During these anneal schedules, the rate of release
of the implanted species is monitored. In general, the release occurs
in a number of stages, each corresponding to an evolution Tate maxi-

mum. The temperature of the evolution rate maximum can be related to
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the activation energy of the mechanism responsible for the release. For
example, in cases where the implanted gas resides within a few layers of
the surface, a single jump mechanism can be responsible for the release
(see Ref. [4]). In cases where the iImplanted species 1lie deeply
embedded in the bulk of the target, a multi-step diffusion system has
been adopted [5,6]. However, the release of implanted gas observed is
rarely by a simple mechanism. The many unresolved release-rate maxima
suggest release mechanisms that are a result of other than the simple
combination of a gas atom and a vacancy or simple interstitial diffus-
ion. This led to the investigation of clustering effects. More complex
configurations such a single helium residing in a divacancy or two or
more helium atoms clustering with or without one or more vacancies had
to be studied.

Wilson and Bisson {[7] investigated helium in a éopper divacancy and
found the minimum energy configuration of a helium atom in & divacancy
to be 0.13 eV, which is the same as that for a single vacancy they had
reported earlier [8]. Their findings on the divacancy migration energy
have been significant. When containing a helium atom, a divacancy
migration energy was found to be 0.74 eV compared with 0.47 eV when
empty, which agrees reasonably with experimental values reported by
Wright and Evans [9].

Next, clusters of the form He V for n up to 4 were Iindependently
studied by Wilson et al. [2] and Caspers et al. [10]. These studies
dealt specifically with the interpretation of thermal evolution data in
a tungsten single crystal. The data was the result of work undertaken

by Kornelson [11,12]. Two stable configurations of three helium atoms
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in a vacancy in tungsten as calculated by Caspers [10] are shown in
Fig. 5. Table II gives a comparison of experimental findings and theo—
retical results of Wilson and Casper of the binding energy of the last

helivm atom to the HenV cluster.

TABLE II
COMPARISON OF EXPERIMENTAL AND THEORETICAL LAST HELIUM BINDING ENERGIES
TO A,HenV CLUSTER IN TUNGSTEN (eV)

Kornelson [11] Wilson [8] Caspers [10]
HeV 4,05 4,39 5.07
HeZV 3.14 2.89 3.43
He,V 2.88 2.52 3.02
He,V 2.41 2.50 2.94

The next clusters examined were He V_ clusters for n and m up
to 3. Instead of listing the details of these findings, some interest—
ing trends that develop in the higher order clusters will be noted. For
both divacancy and trivacancy clusters, the addition of more helium
tends to immobilize the cluster and inhibit wvacanecy loss. The binding
energy of one of several helium atoms to the larger clusters tends to be
a constant high value. So, for in clusters of the Henvm type, there is
less possibility of helium migration or vacancy loss. In tungsten, it
seems [10] that the cluster He,V, is most stable {except HeV), with a
migration energy of 4.0 eV, a vacancy dissociaztion (binding) energy of
4,83 eV, and a helium dissociation (binding) energy of 4.34 eV.

Wilson et al. [8] also investigated properties of helium clustering

for copper. They have investigated the binding energy of the nth helium

atom in a cluster of n interstitial helium atoms and the binding of the
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Fig. 5. Two stable configurations of three helium atoms
in a single vacancy (HeBV) in tungsten.
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nth helium and the mth vacancy in a cluster Hean. Their findings are

summarized in Table III.

TABLE IIT
THE nth-HELIUM BINDING ENERGY (eV)
TO A.Henvm-CLUSTER IN COPPER [2]

No. of
Vacancies No. of Helium Atoms in the Cluster
1 2 3 4 5 6 7 8 g 10
0 - 0.08 0.18 0.08 0.18 0.02 - - - -
1 1.84 0.79 0.57 0.66 0.60 0.86 0.25 0.24 0.20 0.20
2 1.84 1.84 1.09 0.60 0.85 0.90 0.75 0.85 0.67 0.85
3 1.84 1.84 1.84 1.25 0.89 0.99 0.59 0.78 Q.98 0.70
4 1.97 1.84 1.73 1.93 1.25 1.13 1.12 1.10 0.65 0.82

The binding energy of the nth heiium atom in an interstitial
cluster was found to be small {see Table III) with the sixth atom not
bound at all. The presence of a vacancy increases the binding energy of
the nth heliuwm atom. The binding energy of a vacanecy, on the other
hand, tended to increase with helium content.

A radically different approach to evaluating the binding energies
of helium atoms or vacancies ¢to Hean clusters was used by Russell
[13]. He used a thermodvnamic approach to calculate the free energy
change in forming a cluster of Hean type. He found a steady increase
in the free energy with increasing n and m until a saddle point was
reached at n=6 and om=11l. Beyond this combination the free energies
decreased with increasing n and m. Russell also investigated the sta-
bility of clusters and concluded that the most stable would be around

HQ6V11 beyond which the cluster can grow freely by vacancy and/or gas
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Fig. 5. Two stable configurations of three helium atoms
in a single vacancy (He3V) in tungsten.



nth helium and the mth vacancy in a cluster Hean. Their findings are

summarized in Table III.

TABLE III
THE nth-HELIUM BINDING ENERGY (eV)
TO A Hean—CLUSTER IN COPPER [2]

No. of
Vacancies No. of Helium Atoms in the Cluster
1 2 3 4 5 6 7 8 9 10

0 — 0.08 0.18 0.08 0.18 0.02 - - - —_—
i 1.84 0.79 0.57 0.66 0.60 0.86 0.25 0.24 0.20 0.20
2 1.84 1.84 1.09 0.60 0.85 0.90 0.75 (.85 0.57 0.85
3 1.84 1.84 1.84 1.25 0.89 0.99 0.69 0.78 0.98 0.70
4 1.97 1.84 1.73 1.93 1.25 1.13 1.12 1.10 O.65 0.82

The binding energy of the nth helium atom in an interstitial
cluster was found to be small (see Table III) with the sixth atom not
bound at all. The presence of a vacancy increases the binding emergy of
the nth helium atom. The binding energy of a vacancy, on the other
hand, tended to increase with helium content.

A radically different approach to evaluating the binding energies
of helium atoms or vacancies to He V clusters was used by Russell
[13]. He used a thermodynamic approach to calculate the free energy
change in forming a cluster of He V_ type. He found a steady increase
in the free energy with increasing n and m until a saddle point was
reached at n=6 and w=ll. Beyond this combination the free energies
decreased with increasing n and m. Russell alsc investigated the sta-
bility of clusters and concluded that the most stable would be around

He6v11 beyond which the cluster can grow freely by vacancy and/or gas
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atom acquisition. A similar trend was suggested by atomistic calcula-
tions where a critical combination of a few vacancies and helium atoms
(HeyV,), if exceeded, gave rise to a stable cluster [2].

In summary, we can see that helium will agglomerate in defects that
will minimize the lattice straim, such as mono-, di-, tri-~, or multi-
vacancies. The lowest motion activation energy is for helium to move
interstitially. This migration energy increases by a factor of about 4
(see Table I) if helium is trapped inside a vacancy. The presence of
helium will also reduce the mobility of the entrapping vacaney. Once
entrapped, the pop—out or dissociation energy decreases as the number of
helium atoms inside that cluster increases.

Both theoretical approaches predict a stable HenVm cluster beyond
which growth is ensured by acquiring vacancies or helium atomé. How—
ever, it is important to note that direct application of these atomistic
or thermodynamic results to the nucleation and growth problem of the
HenVm clusters does not readily follow, since the effect of irradiation
can not be included.

Recently the interaction of a free self-interstitial with a single
occupied vacancy has been considered as a helium replacement mechanism
during irradiation [14,15]. Wilson et al. [l4] have concluded that a
first neighbor self-interstitial was able to displace substitutional
helium in copper. This re-—solution mechanism is energetically possible
because the required detrapping energy is smaller than the energy pro-
duced by the interstitial-vacancy recombination. Table IV shows the

detrapping and recombination energies for various metals [l4].
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TABLE IV
HELTUM DETRAPPING AND
INTERSTITIAL-VACANCY RECOMBINATION ENERGIES

e 55
Cu 1.88 3.81
Ni 3.16 4.81
Ag 1.53 4.15

De Hosson et al. [16] have examined a much neglected helium
trapping site, the edge dislocation. They used an atomistic approach to
study molybdenum (Mo) and tungsten (W). In both Mo and W, the dissocia—
tion energy of a helium roughly doubles from ~ 1.95 eV from
an edge dislocation to ~ 4.2 eV from a vacancy in Mo. In other words,
the helium atom is bound nearly twice as strongly in a vacancy than it
is on an edge dislocation. 1In addition de Hosson, et al. [16] have also
calculated the migration energy of helium (0.3 to 0.4 eV) along an edge
dislocation to be in the same range as interstitial helium migration
through the bulk (0.4 eV for Mo and W). This suggests the possibility

of pipe diffusion along edge dislocation until a jog is encountered.

1.2. A Continuum Approach to Calculations of Helium—-Vacancy Binding

Energies
As discussed in Sect. 1.1, atomistic calculations by Wilson et al.
[2,3,7,8,14] have provided binding energies for small HVCs up to ~ 20
constituents. However, because of computational limitations, these
calculations can not be extended to investigate larger HVCs. Since this
thesis is aimed at investigating the development of HVCs from embryo to

bubbles, we need helium~-vacancy binding energies that span the whole
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size range. While extrapolation of these atomistic results to larger
size HVCs is not feasible, the use of ideal gas laws describing helium
gas thermodynamics inside cavities has been shown to be erroneous,
especially for small cavities. Wolfer et al. [17] have estimated helium
pressures to reach 106 to 109 atm. for small cavities which are close to
liquid helium pressures.

In order to determine the binding energies of helium atoms and
vacancies to larger BHVCs, we have resorted to a continuum approach.
This approach immediately points to the question of a valid equation of
state (EO0S) for helium which takes into account the high pressures
caused by a large number of helium atoms to of vacancy ratios in HVCs.
Such a numerical equation has been formulated by Wolfer et al. [17]
using interatomic He—-He and He-metal potentials. We have utilized
Wolfer's numerical EOS to determine vacancy and helium binding energies
to HVCs [18] by estimating the compressibility factor as a function of
temperature and helium density. A description of our work is given
below.

The work done in compressing residing helium atoms when a vacancy

is emitted from a cluster is calculated by

W=-[%pdv , (D
v

where W = reversible work done in compressing helium,
V = volume of bubble,
P = pressure.
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Expressing the pressure in terms of virial coefficients we have
B C
Smzslio+s+ ., (2)

and substituting Eq. (2} into Eq. (1) we obtain, wusing up to three

virial coefficients, the following expression for the work

v
2 1 1
W = —kT[ﬁn(;J—-) - B(VZ_ - .‘T) -

519
ol

-] . (3)
V1

The virial coefficients, B and C, are obtained by fitting Eq. (2) to
Wolfer's numerical EOS over a limited pressure range. Knowing the work
done in compressing helium atoms, we now estimate the binding energy Eg

of the last vacancy to a HVC by adding to it the energy gained from the

change in surface area AES, and the wvacancy formation energy Eg:

ED ~ Eb + MAEg + W, (4)

ES = (36 w23 25, (5)

Q=alsk (6)
[8]

where a, is the lattice constant, @ is the atomic volume, and y is the
surface tension of the solid (~ 500 ergs/cm2 for stainless steel), The
derivation of Eg. (4) is based on the classical drop model [19] which
will be elaborated on in Sect. 2.3. Using the above approach, we are
now able to evaluate the vacancy binding energy as a function of the

number of vacancies, the number of helium atoms per HVC, and
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temperature. The results of such calculations for Ni parameters for the
binding energy of the last vacancy are shown in Fig. 6.

As physically expected, Fig. 6 shows that for small helium-vacancy
ratios of large clusters, the vacancy binding energy approaches the
vacancy formation energy. This is due to the fact that at low helium—
vacancy ratios, the work done in compressing helium atoms is negligible
and with increasing size, the change in surface energy decreases also.

For large helium-vacancy ratios the compression work becomes quite
large, approaching few electron volts. This means that a vacancy is
practically undetachable for large helium—vacancy ratios. Figure 6
shows correct trends of our approach for heljum—vacancy binding energies
to large sized HVCs. However, to compare our continuum model to
atomistic results of small HVCs, we produced a series of 2-D plots
comparing our results of binding emergies to those of Wilson eﬁ al., [2].
Figure 7 demonstrates such comparisons for the helium binding energies
Eg. Agreement between atomistic and continuum calculation increases as
the size of the HVC increases.

In evaluating the helium binding energy, we use a straight line
approximation for evaluating the change in energy content of the HVC

when a helium atom is emitted. Thus Eq. (1) is approximated by

W= (2, + P )V

2 - 7

2

The straight line approach was chosen because we no longer have a ther-
modynamic system of constant mass when a helium atom is emitted. By

reducing the helium content of the HVC by one atom, we effectively
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Binding Energy,

. Binding energy of the last vacancy to a HVC as a

function of number of vacancies and helium at./HVC,
using z continuum approach in stainless steel at
T=500°C [18].
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Comparison of atomistic [2] to continuum helium binding
energies [18] to a single-, and to a low-vacancy cluster
(continuum~—smooth curve).

152



evaluate the energy gained in allowing n—! helium atoms to expand to a
new low pressure.
The helium binding energy is evaluated by adding the energy of the

"heat of solution” (Eg) of helium to the expansion work.

EE = ES + W . (8)

Ingelsfield and Pendry [20] concluded that it takes at least 2.07 eV to
keep a helium atom dissolved in a molybdenum matrix. We have used
Eg ~ 3.5 eV because no precise value is yet available for Ni or stain-
less steel. Furthermore, Fig. 7 shows that with Eg ~ 3.5 eV we get the
best agreement with atomistic Ege for Ni parameters.

From these comparisons (Fig. 7}, it can be seen that our continuum

approach to evaluating helium and vacancy binding energies is applicable

for large and small HVCs containing as little as two or three vacancies.

2. HELIUM TRANSPORT AND MIGRATION MECHANISMS THROUGH METALS DURING

TRRADIATION

In order to model helium bubble nucleation and growth successfully,
a sound understanding of helium transport and migration mechanisms has
to be acquired.

Prior to this work, the only information regarding helium tramsport
through metals was based upon a very few experimental results. Theoret—
ically, very few attempts were made to describe helium transport under
irradiation [21]. This is due to the complexity of helium migration

paths through metals. Therefore, our analytical and numerical
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approaches to this problem constitute a pioneering effort in this
field. The results of our findings were published in 1983 (see Ref.
[22]). ™Most of the experimental information regarding helium migration
and clustering has been obtained from thermal desorption measurements
[23,24],

Helium is introduced first by implantation into a solid. Then the
material is heated at a constant rate under ultra-~high vacuum. The
desorbed helium is monitored by a quadropole mass spectrometer and the
helium release rate is determined. The release rate peaks are then
correlated with various vacancy helium reactions. For a review of
experimental methods, see Ref, [23]. Although a controlled amount of
damage is sometimes introduced in the sample before irradiation [23,24],
the simultaneous interaction of helium and displacement damage has not
yet been experimentally studied.

Through constant heating rate experiments on helium pre—implanted
polycristaline mnickel samples [23], an activation energy for helium
migration at elevated temperatures was deduced. Similar experiments
were performed on gold and copper [22]. At temperatures above two-
thirds of the melting point, thermal vacancies dominate as helium
traps. However, for these experiments to give useful information on
helium-vacancy trapping, the matrix helium concentration had to be kept
below 0.1 ppm [23]. This effectively ensured no precipitation of helium
into cavities with consequent small release. Philips and co-workers
[24] concluded that the effective helium diffusion coefficient in nickel

peff between 800° and 1250°C, can be expressed by
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eFf _ (72.20.3 o 0.81 & 0.04)(cm2)
He P kT s

s (9>

where k is the Boeltzmann's constant and T is the temperature in °K.

The effective activation energy (0.81 eV) was interpreted as the
difference between the dissociation energy of a helium atom in a substi-
tutional site and the vacancy formation energy. Their calculated pre-
exponential factor D is in agreement with Zener's [25] estimate. That
is, for interstitial atom diffusion,

2
R (10)
where a, is the lattice parameter and v is the vibrational frequency of
the interstitially diffusing atom.

More recently, Philips and Sonnenberg [24] measured helium inter-
stitial diffusion in nickel. Due to the strong interaction of helium
atoms with vacancies, vacancy generation during implantation was
avoided. Using a low energy ion gun (~ 100 eV), they measured a helium
interstitial migration energy Ege of 0.14 % 0.03 eV.

Under irradiation conditions, where helium atoms are introduced
concurrently with displacement damage, three more features complicate
the understanding of helium tramsport. The first is the competition
between self-interstitials and helium atoms to rteact with vacancies.
Second, helium atoms tend to agglomerate with available vacancies, which
effectively immobilizes helium. And third, displacement collision
cascades can supply enough energy to remove helium “bound™ in deep

traps. In the following section, we present a comprehensive model for
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the transport and clustering of helium in structural materials under
irradiation. The theory is presented in Sect. 2.1, including possible
reactions influencing helium migration during irradiation.

To understand and interpret the numerical results of the theory, an
analytical model is presented in Sect. 2.2. While the numerical compu-
tations are essential, the analytical model is intended to guide the
parameters of the theory and give exact values of the effective
diffusion coefficient in limiting cases. In Sect. 2.3, results of our

investigations are summarized and discussed.

2.1. Theorvy of Helium Transport

A major problem in formulating a theoretical model for helium
migration lies in the complicated possibilities of helium interaction

with point defeects. During irradiation, helium reactions include:
l. Trapping and thermal detrapping of helium in single vacancies,
divacancies, and higher order clusters,
2. Helium trapping at dislocations and grain boundaries,

3. Replacement of helium bound to single vacancies by self-

interstitials,
4. Helium clustering into HVCs,
5. Displacement of trapped helium atoms by irradiation,

6. Migration of helium as an interstitial atom or in a divacancy.
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Ignoring the majority of the above possibilities, Reed [21]
developed a simple model for helium diffusion in irradiated materials.
In this model, helium is assumed to be thermally detrapped from irradi-
ation produced vacancies. The effective helium diffusion coefficient is

expressed as:

D
2 E
eff _ AT ~2/3 He
DHe =V, B CV exp T . (11)

In this study, we 1include all of the possibilities outlined
before. The basic assumption in our analysis is that helium point-
defect interactions is homogeneous in time and space. As such, the
discontinuous defect production nature due to the generation of col-
lision cascades is not treated [26]. Reaction rate constants derived
from spatial diffusion calculations were shown to be reproducible by
Monte Carlo simulation of atomistic jumps [27]. In the present model,
reaction rate constants are derived by extending Chandrasekhar's earlier
treatment of coagulation [28]. 1In a previous paper [29], a simplified
rate theory was developed for the analysis of the effects of helium on

swelling. The focus of the present work is twofold:

1. Determination of the helium effective diffusion coefficient.

2. Calculation of the time—dependent nucleation rates for small

HVCs.
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2.2. Rate Equations

The effect of mobile helium on cavity nucleation during irradiation
has been considered by Loh [30], Russell and Hall [31], Wiedersich et
al. [19], and Wiedersich and Hall [32]. The basic approach has been to
solve a set of algebraic equations that define “constrained equilibrium”
cluster concentrations. An effective free—energy surface is then estab-
lished, from which a nucleation rate is calculated. Helium was included
in the classical nucleation analysis by effectively reducing the energy
required to create the cavity surface, and hence was found to help
increase cavity nucleation rates. Various assumptions had to be made
regarding helium mobility, and its role in stabilizing cavities.

The approach used in our work has a different basis. Chemical
reaction rate theory is used to describe clustering events between
randomly migrating species. This method has been first used to cal-
culate nucleation rates of fission gas bubbles in nuclear fuels [33].
More recently, Hall [34] used chemical reaction rate theory to analyze
point—defect clustering in the presence of mobile helium. In order to
calculate nucleation rates of HVCs, however, the mobility and binding
energies must be included in the calculations. The detailed description
of the time-dependent concentrations of HVCs is therefore essential.
The influence of helium migration om clustering and vice versa is the
major difference between our approach and previous attempts [30-32].

The following set of equations describe the time-dependent

concentrations of various helium point-defect clusters (see Nomenclature

for symbols):
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Unoccupied Vacancies

€5 d e
= [ 11— -
70 = (17e)6 + 2D p,(C ~Ciy) + goCyy
M
+ (Ry ,4C e, + 1 2 (g7 Jc . (12)
»20 20 I 10 10 i=0 320 13 10 »1] 10 ij
Self Interstitials
dc Moo
T _d _ 2
e =6~ 1 1 Ry s€i5Cp = ZyegDiCpo = 2Ry (CT . (13)
i=1 j=0
Interstitial Helium
ac .
= Gge (ZHeDHepd+R10,OlCIO)COI R 1%t
e
+ . 4
+ Zg PrePa 01 Z Z (E‘ +386-Ry; 1:%1)C 5 (14)
i=1 j=1
Divacancies
9Cs N d
= e ¢
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fe (15)
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Complexes Containing m Vacancies and n Helium Atoms

dC j} He Mo d He
m
= E - .. , . +ngG+
dt Fm,n+1cm,n+l (iZO jZO Plj,mncleZmannpd nge RI,mnCI+Emn
v v
, +
¢EanCmn * (Em+l,n+RI,m+l,nCI]Cm+l,n . X Rijklcijckl » (16)
i+k=m
j+l=n

Equations (12)-(16) are not amenable to analvtical solutions in the
present form. The Gear [35] implicit multi-step numerical integration
methods are therefore used for the solution of this set of stiff equa-
tions. A brief outline of the calculational method for the reaction
rates of the previous set of equations is given below. It is important
to note that in Eqs. (12)-(14), reactions in the double sum over i and j
should be implemented only once. Rates similar to Roo,mncmncoo are

meaningless, and therefore are not included. Also, reactions involving

diffusivities of immobile species will naturally be set to zero.

2.3. Reaction Rates

2.3.1. Impingement Rates. Gosele [39] studied the ways by which defect

clusters react, and classified the calculational methods for their rate
constants into the jump method for surface reactions and the diffusion
method for diffusion—-limited reactions. In the jump method, which is
more suitable for small clusters [37], the reaction rate constant for

the impingement is given by:

- ¢
Ra,mn = Rola (a7
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where

effective surface area/area per atom .

=
QR
Il

combinatorial number for the dinteraction of mobile
defect o with an mn complex s

I =jump frequency of defect « s
= v_ exp{- EM/kT) . (18)
a o1

The effective surface area can be written in terms of an effective

trapping radius Rtr and the area per atom,

. lm'Rir
Kmn = —2—- . (19)

The combinatorial number Kgn can be dependent on a number of variables.
It has been recently shown by Fastenau [27] that this number is depend-
ent on both sink concentration and temperature. Their conclusions are
based on Monte Carlo studies of helium-vacancy interactions.

In corder to determine the combinatorial numbers, we consider two
groups of cavities. In the first group, m > n (number of vacancies is
larger than the number of helium atoms per cluster), and in the second
group m < n. For the case m > n, the cavity will behave like a void,
and the trapping radii of these clusters for mobile species can be
determined from the bias calculations of Wolfer et al. ([38]. The

effective trapping radius Rtr is related to the bias factor Z by

R - remyz(my (20)
tr
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where R(m) is the physical radius of the cluster containing m vacancies.
The bias factor Z(m) is calculated directly from Ref. [38]. When m < n,
cavities will contain more helium than vacancies. The approach taken by
Wolfer et al. [14] will no longer be applicable because of the differ-—
ence in the strain field around the cluster. Based upon thermal desorp-
tion measurements, Kornelson et al. [39] proposed an empirical equation

for the effective trapping radius of the cluster. This is expressed as
Rtr(n) = Ro[l + 0.25(1+n)] 1 < n < 10 . (21)

where RO is the physical radius of the cluster. The results of this
combinatorial analysis are shown in Table V. The results are shown only
for vacancies and interstitial atoms. However, the other mobile species
are approximated by either a vacancy or an interstitial for the calcula~
tion of their respective combinatorial numbers. It is to be noted that
the values in Table V are in general agreement with the Monte Carlo
calculations of Fastenau et al. [27].

Vibrational frequencies Vg of the mobile species are not well
known. If the average vibrational frequency of an interstitial atom is

1 -—
taken as 5 x 10‘3 sec 1, the following values are simply estimated:

single vacancy - vy =5 x 1012 gec?
divacancy - vvz =1 x 1012 gec”!
interstitial helium - Vge = 5 X 1013 gec™!
self-interstitial - vy =5 x 1013 sec™!

single helium divacancy - VHev, = 5 x 1012 sec
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TABLE V
COMBINATORIAL NUMBERS FOR SOME HVCs

Complex K;n Kin
m>n

HeV 11.84 45,49

HeZV2 16.09 53.53

He3V3 19.50 59.54

HeV, 16.09 53.54

HeVq 19.50 59.59
m<n

He,V 20.0 20.72

He3Vé 35.46 35.46

2.3.2. Emission Rates. Two different approaches have been usually used

to determine the emission rates EY_ and Edgn.

£
an The first method as

proposed by Wiedersich et al. [19] uses the idea of detailed balance on
a2 hypothetical equilibrium Boltzmann—-distribution of voids. This
approach 1Is sometimes referred to as the classical drop model., The

emission rate is given by

i3]

voo_ v _ V¥ e84 _
o = Kon Ve exp|( E,/KT)Cy, exp(~ AF/KT) (22)
where AF is the free energy change in the emission process. The free
energy 1is calculated using the Wiedersich~Hall model [32], where AF
depends on the surface energy and the work done on the helium gas. When

the cluster size is small, this approach may not be valid. The concepts



of surface energy and of gas pressure are suspect when there are only
few gas atoms and vacancies in a cluster.

Small HVCs are treated by a different method in our analysis. The
emission rate of a vacancy is given by

v
Emn

(no. of sites for emission) x (vib freq)

x (probability of dissociation)

K;n vy exp[—[Eg + Eﬁ)/kT} . (23)

Comparing Eqs. (22) and (23), the energy needed for the binding of
the last vacancy to a cluster containing m vacancies and n helium atoms
is therefore given by

v =V

Ej = AF + B . (24)
The binding energy Eg is shown in Fig. 7 as a function of the number of
vacancies in a cluster. The solid line is obtained by using the classi-

cal drop model, and the discrete points are computer simulations or
deduced from measurements, as in Table VI.
The thermal emission rates of helium atoms are calculated using the

method described. Values, calculated, are in basic agreement with Refs.

[40,41] and [43-46].
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TABLE VI
DEFECT PARAMETERS FOR NICKEL ARD COPPER

Vacancy Helium Atom
Migration Binding Binding Energy,
Energy, E; Energy, E; Ege
Defect, « (eV) (eV) (eV)
i 0.2 [44]
2v 0.9 [45] 0.25 [40]
He 0.08 [271,
0.17 [42]
HeS 3.26 [43] 2.15 [41] 2.15 [41]
He,V, 1.27% [6] 1.84% [41]
He,Vs, 1.20% [6] 1.84% [41]
He,V 3.87*% [6] 0.79 [41]
HeV, 1.35 [43] 0.47 [40] 1.84 [41]
HeaV,y 1.79% [6] 1.09% [41]
He, Vs 0.45% [41] 1.84*% [41]

*
Values for pure copper.

Finally, the coefficients for the migration of mobile species to
dislocations are calculated from their jump frequencies ', using the

relationship
D = £A°T , (25)

where fa is a numerical factor of order unity and Ay is the jump

distance for defect a.
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2.4. Analytical Model for Helium Transport

While the set of equations [Egs. (12-16)] describes the basic
features of helium and point-defect interactions, it must be numerically
integrated under any given conditioms. This can be computationally
tedious if the most important underlying physics is not clearly brought
out. In an attempt to guide the numerical model of Sect. 2.1, and to
find exact expressions for the helium effective diffusion coefficient,
we present a simplified analyti;al model in this section. The basic

assumptions of the present model are:

1. The system is considered to contain the following defects:
interstitial helium atoms, substitutional Thelium atoms,
vacancies, self-interstitials, dislocations, and a cavity size

distribution.
2. This system is in quasi-equilibrium (steady state).

3. Nucleation and clustering are ignored; existing cavities are

only in a state of growth.

4. The divacancy population is negligible.
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2.4.1., Simplified Steady—State Rate Equations.

UTnoccupied Vacancies

He
e 4w
G + CT + _llcll
= R 10%0

where
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Interstitial Helium

He d
Gyo + E4C R, ,.C + Dy Zy04(C

€q
+
H 11711 I,11 ICll He He ¢

o1 = 01)

H .
+ {[E e(rc) + jgG - ROl,rCCOI]}éanN(rc)drc

" Ro1,10%:1%10 =0 - (31)
Substitutional Helium
R C. . C.. —E®C  -g6C.. ~R ..C.C. =0 (32)
01,10%01710 ~ “11°11 ~ &%F11 I,11711°1 ~ .

Equations (26), (29), (31), and (32) are equivalent to Egqs. (12), (13),
(14), and (16), respectively.

Understanding helium clustering and transport under irradiation can
be accmplished by the simultaneous solution of the set of Egs. (12-
i6). When clustering 1is neglected, the solution of Eqs. (26-32)
provides a simplified insight into the problem of helium transport at

steady state. An effective helium diffusion coefficient for helium

migration is defined as
N
7 D C , (33)

where the sums in Eq. (33) are only for mobile species. In the special
case where helium is transported only as an interstitial or a

substitutional atom, Eq. (33) simplifies to
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+C.)=D_C _ +D _C . (34)

Since D;; << Dpy, Eq. {34) gives

b .C
eff 01 01
D = —— . (35)
He Cll -+ COl

Solving Eq. (32) for Cyy> and substituting back in (35)

He
Leff Doy (Eyy * 86 *+ Ry 1,C;)

He He
p Fee RI,IICI)

- . {(36)
(ROI,loclO +E

Equation (36) gives the effective diffusion coefficient ofﬁhelium in
terms of the following quantities: the interstitial helium diffusion
coefficient, the helium—-vacancy binding energy, capture radii for point-—
defect reactions, the helium radiation displacement rate, and the vacan-
cy and interstitial and diffusion coefficients concentrations . In the

following, we will analyze limiting cases for the solution of Eq. (36).

2.4.2., Helium Effective Diffusion Coefficient in Limiting Cases.

2.4.2.1. Domination bv thermal detrapping. In this case, the thermal

dissociation rate of substitutional helium is greater than the intersti-
tial replacement rate and the radiation displacement rate. Equation

(36) therefore becomes:
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He

D .E
off _ 01811
DHe - He ’ (37)

Ro1,10%0 T Epy

substituting for E?? {Eq. (23)1, ROI,IO [Eq. (17)], and setting

ClO = thermal equilibrium vacancy concentration, we obtain
B M f
Deff _ ¢ eXp[_(EHev * EHe - Ev)/kT] (38)
He h I's B £ 3 ?
1 +8 exp[—KEHev - Ev)/kTJ
where,
Kly
B = 10 F s (39)
KOl exp(Sv/k)
and
e}
a = BDHe . . (40)

This equation reverts to the expression derived by Philips and co-

B f
workers [42] for Erev > E;.
2.4.2.2, Domination by replacement reaction. When the irradiation

temperature 1s low enough for thermal detrapping to be negligible,
substitutional helium can only be detrapped by the effect of irradi-
ation. This may be direct by irradiation displacement or indirect by
self-interstitials replacing helium in the substitutional sites. We
will now derive an approximate expression for the latter case. In this

case, Eg. (36) becomes

peff _ Do1®r 114 (1)
- y
Be  Ryp10%0 R, 1%
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and substituting for RI,ll’ ROI,lO’ and Dy we obtain

—Eg /KT £ T
Pe B gL e T ¢
eff VHe 111 I
Pre T i T . (42)
-E_/kT -E /kT
Koy e T c. + 0 e 1 C
1Yz 1 T N1VEe 10

However, at steady state

—— — e
= C -—
D C ZVDV(UIO clo) , (43)

e . .
where Clo is the average thermal-vacancy concentration and the Z's are
weighted averages of the sink capture efficiencies. When several not
too stringent conditions are satisfied, the effective helium~diffusion

coefficient takes a much simpler form. Under the following conditions

Crg > C?o , (44)
Ege « Eg , (45)
Tz'v = Ei , (46)

the effective helium—diffusion coefficient simplifies to

eff
- &7
DHe n Dv ? (&7)
where Dv = DlO = vacancy—diffusion coefficient, and n is a factor of

order unity given by

_ ll;.10
= K; /KO1 . (48)
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2.4.3. Domination by Displacement Reaction. The rate of displacement

of helium from vacancies is greater than both the thermal-dissociation
and the self-interstitial replacement rates. Under these conditions,

Eq. (36) becomes

Deff _ DOlgG (49)
He ROI,IOCIO + gG

Using Eqs. (17) and (18) for ROI 10> the effective helium—diffusion

coefficient is

eff D518

He  _10
Ko1 Vo1

. (50)

D M
eXP(—D%e/kT)ClO + gG

In order to simplify Eq. (49), an appropriate expression for CIO must be
substituted. This depends on whether point—defect concentrations are
controlied by either mutual recombination or by diffusion to sinks. For
mutual recombination to dominate, the following condition must be

satisfied [46]
R > 1 . (51)

where

4K£1G exp(E%/kT)

R = 7 . (52)
S.S v X
I'vyv

If R >> 1 (recombination—-dominated regime), the vacancy concentration

CIO is given by [46]:
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A'G S
C  a _I) p /2, (53)
v

Substituting in Eq. (50) and rearranging, we obtain

eff 1/2

DHe = q’(G Dv) ’ (54)
where
K61 Sv 12
b = 5 . (55)
10 S
XKOI I

In deriving Eq. (54), the second term gG in the denominator of Egq. (50)
is much smaller than the first term, for any reasonable combination of
parameters.

On the other hand, when point-defect diffusion to sinks is more

dominant (R << 1), the vacancy concentration becomes

and the effective helium—diffusion coefficient in Eq. {(50) takes the

form

where

w - a2
¥ = gi SV/K01 . (58)
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2.4.4, Conditions for the Validity of Approximations. 1In this section,

we will derive formulas representing the conditions under which the pre-

vious approximate treatments of Dﬁif are valid.

2.4.4,1. Domination by thermal detrapping. In this case the thermal

emission rate must be large:

gG
H B
KI? Ve exp[—(Ege + EHev)/kT] >> . (59)
2
(Kll/l )DICI
This is satsified when
nG«Kl1l |, (60)
where
M T
g exp[(qu + Ege)/kT]
n = ﬁe . (61)

K11 VHe

Also, the following conditions must be satisfied

e G K1 , (62)

I B M
Kll eXp[(E'dev * EHe)/kT]
e = R (63)
KOl kz v S
11 He I

for diffusion-limited point~defect kinetics, and,
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EG KL,
I .2 M B M
K\ v, exe{2[E, + B - (E /2]]/kT]

S BT 2 ’
11/ re Sy

for recombination-limited peint—defect kinetics.

2.4.4.2. Domination by replacement reaction.

gG

RI,IICI >> .

v
- +
Kll vHe exp[ (EHe EHev)/kT]
This is satisfied when both
2 >> 1
and ’
e G > 1

for sink-controlled point—defect concentrations where

- vl 2
£ =K/ g sy .

For the case of recombination-limited point—defect kinetics,

following must be satisfied:

-1/2

m G >> 1

and R

EGO>> 1

where
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(68)
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(69)



11 Ey
m = T e . (70)

The results of Egqs. (67) and (69) are straightforward substitutions in

Eq. (66).

2.4.4.3. Domination by radiation displacement.

Re,11%r

gG >> . (7D)
v M B
K11 Vme ®¥P[(Bge + Eygy)/KT]

Equation (71) is satisfied when both

2 K1
and . (72)
nG >> 1
for diffusion-limited point—defect kinetics. For the case of

recombination-limited kinetics, the following conditions wmust be
satisfied:
ncH2 ¢y

and . (73)
nG >> 1

2.5. Helium Transport Results

It 1is computationally prohibitive to solve the previous set of
numerical equations for the entire range of wmaterial and irradiation

conditions possible. Moreover, dominant reaction mechanisms are not
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immediately clear. Therefore, we will first discuss the results of the
analytical formulation, and then proceed to compare it to the more exact
numerical computations.

Figure 8 shows the dominant detrapping mechanisme at any given
combination of damage rate and irradiation temperature of well annealed
nickel (Sv ~ 109 cm/cm3). Recombination determines the kinetics of
point defects for any combination of G and T above the line R=1. The
effective helium—diffusion coefficient is determined therefore by ther-
mal detrapping below the line £G=1. Immediately above this line, self-
interstitial replacement of trapped helium becomes the dominant mechan-—
ism. It is interesting to note that the higher the damage rate, the
higher the dividing temperature between interstitial replacement and
thermal displacement as detrapping mechanisms. This is effectively a
temperature shift because of the higher displacement damage rate. Above
this temperature, the effective helium migration energy is the differ-
ence between the dissociation energy of bound helium and the vacancy
formation energy. Below this temperature the effective helium migration
energy is roughly the vacancy migration energy. At still lower tempera-
tures, radiation displacement takes over as a dominant detrapping mech-
anism., For example, the irradiation temperature has to be below 350°K
for radiation displacement to be dominant under reactor conditions
(G = 10—6 dpa/s) and below 400°K under typical accelerator conditions
(G = 1073 dpa/s). At higher effective sink densities, point-defect
concentrations are controlled by diffusion to sinks, except at very

low temperatures. The dividing line for the temperature between
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self-interstitial replacement and thermal detrapping is therefore £G = 1
above the line R=1, and £G = 1 below the line R=l, as shown in Fig. 9.
The validity of the amalytical approximations is dependent on the
attainment of conditions satisfying the basic assumptions. Many of the
equations have been simplified by the assumption that the overall self-
interstitial current to sinks is equal to the overall vacancy current to
sinks. This is expressed as Z.D.C =.E§Dv(cv - Cs); the bias factors

I"T'I

E&,v being averaged over>all sinks. This can be violated under two
conditions: (1) when the time interval is less than a few vacancy mean
lifetimes; and (2) when a fraction of the produced vacancies are
retained in clusters that have a different mobility (divacancies), or
immobile higher order clusters. Figure 10 shows the ratio of the inter-
stitial to vacancy flux, as previously defined, for typical reactor
irradiation conditions (¢ = 107° dpa/s and py = 101 Lem/cn) allowing for
clustering and divacancy formation. It is shown that at higher temper-
atures (> 800°K), divacancy and multiple vacancy cluster formation is
very weak and the flux ratic reaches approximately unity within seconds.
However, at lower temperatures, the ratio is much larger than unity at
the start of irradiatiom and then gradually decreases to a steady—-state
value that is still larger than unity. The basic reason for this is the
formation of vacancy clusters that change the balance between vacancies
and selif-interstitials. In order to have numerical computations that
are based on the same analytical model, the calculations were again
performed without allowing for divacancy or vacancy cluster formation,

and the results are shown in Fig. 11. It is clear that the assumptions

of the analytical approach are valid for times greater than few vacancy
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mean lifetimes. However, this can be very long at low temperatures as
shown in Fig. 11. The mobile self-interstitial flux is orders of magni-
tude greater than the vacancy flux at temperatures lower than 450°K and
irradiation times less than roughly one year.

A comparison between the numerical calculations and the analytical
approximation for the effective helium diffusion coefficient is shown in
Fig. 12. While the comparison is not meaningful at low temperatures
because the point—defect concentrations are still building up, it shows
that the analytical soclution cén be used as a first order estimate of
Dggf. The agreement is almost perfect at very high temperature where
thermal detrapping iIs the only operating mechanism for helium release
from traps. At intermediate temperatures, the combination of detrapping
mechanisms makes the numerically evaluated Dﬁgf higher than the
analytical approximation.

Further comparisons between the two methods are shown in Figs. 13

and 14. The effective helium migration energy during reactor irradi-

eff

e Vs 1/T as in Fig. 12.

ation for nickel is taken as the slope of
Allowing for vacancy clustering and divacancy formation in the numerical
model, the effective migration energy is given in Fig. 13 as a function
of temperature. Figure 14 shows similar results when clustering and
divacancies are suppressed in the numerical model. The agreement is
reasonable in Fig. 14, especially at the high temperature limit, and in
that intermediate temperature regime. It is to be emphasized, however,

that the analytical solutions are not intended to duplicate the more

extensive numerical ones. Analyticali estimates are used to explore
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mechanisms and to give a first order approximation to the exact value of

Dﬁgf under irradiatiomn.

2.6. Conclusions of Helium Migration Theorv

The problem of helium migration during the production of radiation
damage is a critical one. Without understanding migration mechanism and
diffusion rates, it is hopeless to account for the fate of helium atoms
injected or produced by irradiation in structural alloys. This study
provides two parailel and complementing approaches to the problem. An
analytical formulation is developed which is valid roughly above 350°K
for reasomable reactor irradiation times {~ years). Below this tempera-
ture, the slow transient buildup in point-defect concentration necessi-
tates a time—-dependent numerical solution. Under reactor irradiation
conditions, the amalytical model gives the following approximate values

for helium—effective migration energy in nickel:

eff _ . eff _B M SFy. 0
1. o = 0.83 eV; (Bge = Ego * Bgo — EJs T > 8000K,
eff _ . eff _ My, 0 0
2. Ep. = l.doev; (aHe E ) 4009% < T < 8009k,
E =3
3. ST - 0.65 ev; T < 4000K.
He

The numerical model gives values of the effective migration energy
that are functions of material and irradiation parameters as well as
time. It is found that, at temperatures between 400° and 600°K in

nickel irradiated in typical reactor conditions, the mobility of helium
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is enhanced over the analytically predicted results by migration in
divacancy single-helium complexes. Also, above ~ 800°K, helium mobility
is less than the amalytical value because of increased trapping at
irradiation~produced vacancies. The influence of such irradiation-

produced vacancies is totally megligible by ~ 1100°K.,

3. THE "TRAJECTORY” METHOD FOR THE AVERAGE SIZE CAVITY DEVELOPMENT

The objective of the previous sections was to find an expression
for the effective helium— diffusion coefficient. This is useful in
understanding microstructural phenomena that depend upon the overall
helium flux to a specific zone in the irradiated material (e.g., matrix
cavities, grain boundaries, dislocations, and precipitates). The arri-
val of the helium flux to grain boundaries, dislocations, and precipi-
tates generally does not affect their characteristics (i.e., size dis-
tributions, concentrations, and demsities. However, helium arrival to
cavities has a determining effect on their physical characteristics.
This will in turn influence the effective diffusion coefficient of
helium.

This interdependence between cavity evolution and various defect
fluxes (helium vacancies, and self-interstitials) comstitutes the major
complication in any cavity evolution model. Furthermore, conditions
such as temperature, helium to dpa ratio, displacement damage, and

material choice will all affect cavity evolution.
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3.1. Stability of HVCs During Irradiation

One of the major uncertainties in understanding cavity nucleation
and growth is the degree of stability of HVCs under given irradiation
conditions. Such stability is a complex function of irradiation vari-
ables (damage rates, helium production rates, and fluence), as well as
material parameters (sink density, temperature, and defect parameters).

Stability studies generally aim at establishing a critical HVC
size. This is defined such that larger clusters are ensured to grow
under the current irradiation conditioms.

The nodal line analysis has been developed for stability studies of
kinetic systems [47]. Recently, Russell [48,49] used the same approach
to analyze phase stability under irradiation.

We will follow here a similar method for the linear stability
analysis of helium—vacancy clustering. An important aspect of our work
is that we use vacancy and helium binding energies instead of changes in
free energy to describe various HVC growth and shrinkage processes uqder
irradiation. The model we have developed to determine helium and
vacancy binding energies as a function of the number of vacancies and
helium atoms/HVC has been described in Sect. 2.

Furthermore, we are able to include two more irradiation reactions
in our extended nodal 1line analysis. These reactions are helium
replacement by self-interstitial impingement on HVCs and radiation
resolution of helium atoms from HVCs into the lattice.

By considering HVCs as characterized in a 2-D phase space, various
kinetic processes can be represented schematically as shown in Fig. I in

Chapter IV. An HVC can grow by capturing a vacancy or helium atom
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(Rs’h) or by emitting a SIA (Rg). Also it may shrink by thermal
emission of either vacancy or helium atom (Rs,h), by capture of SIAs
(R;), by a gas replacement mechanism (R%r), or because of PKAs (Rg),
The summation of these rates results in corresponding component veloci-

ties in phase space, given by:

v o= *z,ﬁ - Pf, -RY (74)
' _ oC _ pe _ T _ pr
h = Rf - RS R% Ry - (75)

The rates in Eqs. (74) and (75) are calculated by using quasi-steady-
state values for Cys Cy» and Ces Im the present analysis we ignore SIA
emission.

GChoniem and Gurol [46] showed approximations for vacancy and SIA
concentrations. With the knowledge of an effective helium diffusion
coefficient [18] as & function of CV and Ci’ we are ablie to estimate a

quasi-steady-state helium concentration.

Setting ¥ = 0 and h = 0 and plotting the loci of points which
satisfy this condition in the helium—vacancy phase space, we find the
helium and vacancy nodal lines. Now if we investigate the trajectories
in the vicinity of these nodal lines, regions of growth or shrinkage of
HVCs in this phase space can be determined, as shown in Fig. 15. We

find that:

® In region I, HVCs grow im vacancy but shrink in helium atom

content,
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® In region IT, HVCs shrink in both number of vacancies and helium

atoms.

® Region III lets HVCs grow in helium content but they shrink by a

net loss of vacancies.

® Only in region IV do all HVCs experience growth in both number

of vacancies and number of helium atoms.

Thus, region IV can be termed the “region of »stability" which will
ensure growth of HVCs. The boundary of this growth region thus sepa-—
rates the stable from unstable HVCs. We can therefore view the HV(Cs
residing on the boundaries of region IV as “"critical” HVCs.

We have found, using the nodal 1line analysis/clustering method,
that there are two general nucleation modes. In the first one, helium
precipitation into bubbles occurs spontameously (see Fig. 16a). Very
small nucleation barriers exist in this case, and nucleation proceeds
homogeneously in the matrix. This occurs under irradiation conditions
of high helium generation rates, low temperature, and low sink density.
The high helium generation rates tip the competition for vacancies
between SIAs and helium atoms in favor of helium atoms. This reduces
vacancy annihilation rates by SIAs, and the chance for survival of
fundamental HVCs is enhanced.

Stochastic nucleation is the second mode. Here, cavity formation
proceeds with substantial nucleation barriers (i.e., regions I, IT, or
IIT in Fig. 16b), which must be overcome by subcritical HVC embryos in

order to reach stable configurations. This case is best achieved at
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high temperatures, high dislocation sink density, and low helium genera—
tion rates. The combination of high temperature and high sink density
renders short defect mean-life times. These, coupled with low helium
generation rates, increase the chances of SIAs of competing against
helium for vacancies. These effects (nucleation barriers) suppress the
production of stable HVC embryos. Therefore, stable HVCs must be pro—
duced by some mechanism, such as a stochastic one, able to overcome the

nucleation barriers.

3.2. Spontaneous and Stochastic Nucleation Regimes

To simulate fusion irradiation environments with existing facili-
ties, extensive use has been made of the HFIR, the EBR-TII, and accelera-—
tors. These facilities differ mainly in their helium dpa ratios. 1In
HFIR, the helium dpa ratioc is 57 while in EBR-II it is 0.1 at 107 dpa/s
of damage production.

50] concerning cavities in the

r—

The basic experimental findings
temperature range of 300° to 650°C are as follows: (1) in HFIR,
cavities appear to be bubbles rather than voids, (2) they are about 10
times smaller, and (3) they are 20 to 50 times more numerous in HFIR
than voids are in EBR-II-irradiated steels.

Scanning a temperature range between 300° and 650°C with other
irradiation conditions (helium dpa ratio, dislocation sink density, and
dpa) fixed, we were able to trace the loci of points which separate
regions of spontaneocus from delayed nucleation as a function of temper—

ature and helium dpa ratios (see Fig. 17 and 18).
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For EBR-II irradiation, we find that all cavity nucleations proceed
as stochastic (Fig. 17). ©Nodal line analysis for EBR-II conditions show
strong nucleation barriers, such as shown by region ITI in Fig. 16(b).
Nucleation of critical HVCs is delayed because any size HVC outside of
region IV disassociates to subcritical clusters. When the helium dpa
ratio is increased, the nucleation barrier (region II [Fig. 16(b)]) is
reduced until it vanishes completely. These conditions are met in HFIR
experiments where small cavities with a high number density are found.

Decreasing the dislocation line density shifts the spontaneous
nucleation region to higher temperatures and lower helium dpa ratios
(Figs. 17 and 18). -

Similar spontaneous and delayed nucleation regimes can be identi-
fied by investigatingAaccelerator conditions (~ 1073 dpa/s) (Fig. 18).
When compared with reactor conditions (~ 1070 dpa/s), the basic
difference can be seen in the low temperature region. Here we see the
reappearance of a nucleation barrier after a minimum between 400° and
500°C. The growth of the nucleation barrier shifts the nucleation mode
back into the delayed one. This can be explained by the high helium re-
solution taking place in accelerator enviromments. As the temperature
is increased from 300° to 400°C, the re-solution becomes less signifi-
cant because helium capture rates increase with increasing temperature.
By further increasing the temperature beyond 500°C, the helium emission
rates take over and the nucleation barriers become stronger.

This high temperature behavior of HVC number densities in accel-
erator environments has been established experimentally [51] as a

function of temperature and helium dpa ratios.
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3.3. The Trajectory Method to Determine Average Cavity Sizes

As pointed out in Sect. 3.1, we used the nodal line analysis to
determine regions of stability for HVCs under various irradiation
conditions. We have identified regimes of spontaneous and stochastic
(delayed) nucleation as functions of temperature, helium dpa ratios,
dislocation densities, and re-solution parameters for both reactor and
accelerator conditions. Although this information is very valuable in
understanding cavity evolution, it is not sufficient for determining HVC
size evolutions. The nodal line analysis determines the irradiation
conditions under which stable HVCs will nucleate and it gives some
indications as to the regions of possible ultimate growth.

However, we need to establish regions in the helium-vacancy phase
space that will ensure HVC evolution. Since our model depends on numer-—
ical solutions of coupled rate equations (see Chapter VI), analytical
guidance is needed to investigate the correct regions for the evolution
of the cavity size. Knowledge of the regions of the most probable HVC
combinations mnot only reduces the numbers of equations to be solved, but
will also increase confidence in later numerical results.

For this purpose we use the method of growth trajectories which was
recently developed by Trinkaus [52]. He developed an analytical
formulation to predict the average helium-vacancy ratio in helium—
vacancy phase space for constant helium and vacancy fluxes. This
approach is used to evaluate the evolution of the average HVC size and

helium-vacancy ratio, for varying helium and vacancy fluxes.
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We start here with the growth equations for vacancies and helium
atoms in a HVC. For vacancies, the HVC growth equation is represented

by the difference between the vacancy and self-interstitial fluxes:

Q (2
DC =D -DCiexplyz (3r-2)] -1 ., (&

where Dva vacancy flux,

D.C interstitial flux,

and the last term in Eq. (76) is the vacancy emission rate which is a

function of:

P = pressure due to helium gas,
vy = surface tension of the bubble,

T = temperature.

{Please see Nomenclature at the end of this chapter for the remaining

symbols.)
In the analytical work of Trinkaus [52], the assumption is made
that helium atoms do not return to the matrix once captured. Thus the

helium growth equation is simply the capture rate of helium (h):

= 47R D C e/g . (77)
Equation (77) depends on the helium flux Dy Cu,, which can vary during
irradiation. A simpler growth equation states that all helium produced

is distributed equally among all bubbles. Thus,
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dh/dt = PHe/CBQ . (78)

where PHe is the helium production rate and CB is the bubble concen~
tration. Equation (78) also assumes no loss of helium to other sinks
(such as grain boundaries and precipitates). It is also to be noted
that these growth equations assume that nucleation of HVCs has stopped
and growth is the only wmechanism under investigation. Equation (76),

the vacancy growth equation, can also be expressed in terms of v, the

number of vacancies:

dv erl kT Cv ii 2y
3t = 4R D C (2[5 (Ce -~ Ce) +P -2, _(79)
v v v

where we have linearized the exponential e* ~ 1 + x + XZ/Z ... and kept
only the first two terms.

By defining:

- e
D =D.Co |, (80)
o = kT/Q(C,/CT - D;C;/D CSY (81)
dv/dt =% (82)

we obtain the growth equation used by Trinkaus:

= 4nro(=)(p v 0 - D) ' (83)

The symbol ¢ was chosen because this term reflects the effects of the
hydrostatic stress on vacancy emission or capture at HVCs,

The following section gives a brief analytical solution to the

previous growth equations as developed by Trinkaus [52].
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3.4. Analytical approach to growth trajectories

Starting with the growth equations [Eqs. (77), (78), and (83)] we

can determine several dimensionless quantities.

r=r*: (84)
N =Nty , (85)
L=t T . (86)

From Eq. (83) and

2
dv _ 47r” dr
it g dt (87)
we get
« /DRy 1 2y
r= ()T (ro -] . (88)

The dimensionless quantities r* and N¢* can be determined from the

condition of:
r =dr/dr = 0 . (89)

To illustrate the meaning of r* and N* we refer to Fig. 19. The rate of
change of radius of a HVC containing N helium atoms can behave differ—-
ently as a function of N. The symbols r* and N* stand for the values of
size and of the helium content of the critical HVCs.

Helium atoms stabilize clusters of vacancies from disintegration.
When the helium content is not enough to do so, N < N¥, a cluster with a
size smaller than r*, will shrink to a size of ry (see Fig. 19). When

the cluster reaches a size r,, growth is ensured. When a cluster
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contains N* helium atoms, it is assured gorwth no matter what its
original size. The same holds true for clusters containing N > N¥
helium atoms. N* is determined from the curve when both r and dr/dr are
ZEero. Mansur [53] has recently used an approach similar to the one

described here in order to determine the critical size. From Eq. (88)

we have
dr _ @Dy 1, 3NKT _ by
-G 33 o+ 0
r W
ar T ¢, 2 3
- =0 gives N = 5= (4yr“=or”) (91}
and
o 41\' 2'\’
r =0 gives N = o= C;* -ag) ., (92)

or solving for r* and N*, and using Eqgs., (91) and {92) we obtain

% = 2 , (93)
3o
128 1y

N* =———“Y—2— . (94)
81 kT ¢

Now we can use r*¥ and N* to express the growth equations in terms of

dimensionless quantities x and y. From

r =r¥*x (95)
and

dr | s & 96

dr 3 ? (96)



coupled with Eq. (88), we get

dx a1 N*y kT 21
K — = —— -+ —
r dt kT r*x o r*x]

(4/3)n(rrx)>

where y = N/N*,

Using for N* [Eq. (94)] we get upon rearranging

dx QD 4r y 3
Tl e W G R S~ B
3r*

And using r* [Eq. (93)] and defining

o 72D oR ’

we get for the dimensionless vacancy growth quation

i~
4
Moo
1}
ST

Y .y -3
2
N

(97)

(98)

(99)

(100)

We can now derive the following two—dimensionless growth equation for vy,

corresponding to Eqs. (77) and (78), respectively,

<%
fl

ax s
where
a = 21D, C. r*KkT/(DoR’)
He "He ’

and

204

(101)

(102)



y=8 , (103)
where
g =p_ r*kr/(20 C 00%) . (104)
He b
The new system of growth equations is thus:
(a) For vacancies
s LY -3
Zx =55+l -5 . (105>
(b} For the given helium flux (case 1)}
y=oex (106)

(¢} For total helium absorption in clusters, this is given by
(case 2)

y =8 . (107)

By taking the ratio of %/y, we can eliminate the time dependance. For

case 1 we get:

2
4y Zox (108)

e/ + 1 - (3/2%)

and for case 2 we obtain

4
dy _ 48x
&y - > (109)



Solving Egs. (108) or (109), the distinet relationship between y and x
or number of helium atoms to number of vacancies can be determined for
the average size in the distribution. The loci of these points, the
trajectory, thus represents the average helium and vacancy contents of
HVCs during their evolution.

Trinkaus was able to develop an analytical solution for the trajec—~
tory of case 2, but case I did not seem to have a simple analytical
solution.

By défining vy =1+n, Eq. (109) is transformed to

4
gg.z 4§X , (110)
(z-1)"(2x+1)

which can be solved for n

4 1 10 1
n= 3 8[ _}(:1 + 3 JZ,n(x 1) + -2"Z (2X+1)
9 3
+=x +%x2] + 3(% 3)2/ . (111)

Thus for the assumption of a uniform dispersion of helium among bubbles,
and ideal gas law, Eq. (111) coupled with Egqs. (94) and (85) can predict

the average HVC during evolution.

3.5, A Numerical Aoproach to Determine Average Cavity Sizes

As pointed out in the previous section, we [18] have established

similar growth equations as used by Trinkaus. These are given by

dv _ ﬁﬂg _ _ o g_. gx._ i
ac o <DVCv Dici Dva{exp[kT (R P)] 1}) . (112)
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for vacancies, while for helium we have
Tt - 7 (PgCpe) — M (113)

where b is the re-solution parameter and N is the number of helium atoms
per HVC.

In our approach, we do not need to make restrictive assumptions and
simplifications in order to achieve an analytical solution. The Van der
Waal's Equation Of State (E0S) for helium is used in our amalysis. Thus

pressure given by

P = NkT ] (114)

(4/3)wR3 - NB

For high gas pressures at small radii, a virial expansion is wused for
greater accuracy:

2 k] 4

Fa 3 %
NkT NBy , (NB ., (NB NB .

where vl is the volume occupied by v number of vacancies. per HVC. 1In
our analysis, the exponential term in Eq. (112) is not linearized. More
important is the fact that our solution is no longer restricted to the
simple helium dispersion equation [Eq. (78)]. Also, case l is chosen,
where the arrival rate of helium atoms rather than the production rate
of helium determines the growth, Furthermore, we can include the
effects of helium atom re-solution due to primary knock-on atoms (PKAs).

Using Egs. (112) and (113) we establish the trajectory by numerical

integration of the equation:
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- = f(V,h) ’ (116)

where f(v,h) is the ratio of the right-hand sides of Eqs. (112) and
(113). Equation (116) depends on the various defect fluxes (i.e., va—
cancy, interstitial, and helium fluxes). The solution of a small set of
coupled rate equations provides the necessary information. In Sect. 2,
we have described the methods used to determine these fluxes.

Examples of the solution of Eq. (116) are shown in Fig. 20 for var-
ious irridiation facilities. HFIR and EBR~II have similar displacement
damage rates of ~ 107 dpa/s but differ in the helium dpa ratios [i.e.,
HFIR:  helium/dpa ~ 57.1 (appm/dpa); EBR-II: helium/dpa ~ 0.1 (appm/
dpa)]. Accelerators generally deliver a displacement rate on the order
of ~ 1073 dpa/s with high helium dpa ratios of = 100 (appm/dpa).
Besides the trajectories depicted in Fig. 20, the helium~vacancy
contents for cavities in mechanical equilibrium is also shown. The
pressure is simply in equilibrium with the surface tension force.

Figure 20 shows the effect of the helium dpa ratio on the helium
content of bubbles. The effect of the ideal gas law on the trajectories
is also investigated in Fig. 21. Figure 21 shows the trajectory for
EBR-II irradiation conditions using Van der Waal's KOS and the ideal 2as
law. 1t can be seen that, as the size of the HVCs increase, the ideal
gas law trajectory approaches that of the Van der Waal EOS trajectory.

The effect of the re-solution parameter b was studied. Figure 22
compares the effects of b=0 and b=1 on the trajectory behavior of EBR-II

irradiation conditions at 500°C. Even though the effect of re-solution
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is negligible on small HVCs containing less than 104 vacancies, it
becomes an important parameter in determining the helium content of
larger bubbles.

Finally there is one more question that needs to be addressed
regarding our numerical approach to finding the growth trajectories.
Our integration scheme requires a starting point or critical HVC size.
If the method used here is sound, then regardless of the starting HVC
size, the trajectory should always lead to the same final trajectory.
Four starting points near the four cormers of a square of 10 He x 10 v
in a helium—vacanc} space are chosen to represent initial nucleation
conditions. Figure 23 shows such an example for HFIR conditions, where
it is clear that, regardless of the starting lpoint, " the four

trajectories converge to one trajectory at larger sizes.

3.6. Determination of an Equivalent "Finite" Solution Space for

Numerical Analysis

Any attempted numerical solution to a time—dependent, 2-D partial
differential equation of the Fokker-Planck type is expected to be compu~
ter intensive. Since the mathematical solution space is the infinite,
positive helium—-vacancy phase space, it is important to make appropriate
approximations for the numerical solution. Also, boundary conditions
must be clearly specified for the equivalent “finite” solution space.
In this section, we develop a method for the determination of this
space, and for prescribing the appropriate boundary conditions.

The numerical solution of the trajectory, as described in Sect. 3,

leads to an approximate determination of the position of the average
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size in the helium-vacancy phase space. It can be shown that the tra—
jectory solution is gquivalent to an approximate solution for the first
moment of the distribution function described by the Fokker-Planck
equation.

Our approach is to conserve the zeroth moment of the distribution,
by invoking zero-current boundary conditions on a prescribed contour in
- the helium~vacancy phase space. This contour should contain, at all
times, the first moment of the solution. It is therefore necessary to
define the zero-current contour around the trajectory. The extent of
the chosen sclution space should be determined by higher moments of the
distribution function. A reasonable choice is based on the second
moment, which is described below.

Starting with growth equations ¥ and ﬁ, Egs. (74) and (75), we can
quantify a diffusional spread in the vacancy and in the helium direc—

tions as follows:

(117)

1]
B~
(W]
<
-

<Av>2
<n>? = spbe (118)

where DV and Dh are determined from the corresponding growth equations:

v _ 1 4m el fo (v 0.1
D =33 Dvcv + Dici + DvcvleXp[?T (R Pﬂ lj , (119)
p* - 2[R (D G ) + M) . (120)
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A numerical approach must be used to calculate the time 1, corresponding
to every vacancy-helium combination on the trajectory. This can be

given by

t 14
[ —dn___ (121)

T 4 -—
= [det = Tvim) f (v,n')

0
where the integration is a line integral along the trajectory, from
either v* or h* to V or H that correspond to T.

Now that diffusional spreads have been determined we will use these
results in the evaluation of approximate values of the standard devia—
tion in the vacancy and helium directions. As a conservative estimate
for diffusion spreading, we use a multiple of the standard deviation. A
factor between 5 and 10 is a reasonable estimate. Figure 24 shows the
results of calculations, where we have used a multiplication factor of
5. Note that the diffusional spreads of helium and vacanciez trace dif-
ferent loci. This is due to the diffusional terms which are sensitive
to irradiation conditions. As a rule, we choose the larger of the two
boundaries. In case of HFIR irradiation conditions the boundaries are
determined by the helium spread (see Fig. 24). Later, we will demon-
strate that the choice of a multiplication factor between 5 and 10 has
minor effects on the distribution function. Thus the loci determined by
diffusional spreads around the growth trajectories constitute the bound-
aries of a system across which no cavity evolution currents flow. We
thus have a closed boundary system, provid?d we establish a maximum
possible HVC sgize. This, as will be shown later, is an important

ingredient in evaluating cavity evolution.
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NOMENCLATURE

Symbol Description Units

a Lattice parameter (cm)

B Van der Waal's constant

e  q ey .

Cv Thermal equilibrium vacancy concentration (at./at.)
Cy Self-interstitial concentration (at./at.)
i3 Concentration of complex containing

i vacancies and j He atoms (at./at.)
Da Diffusion coefficient of defect o (cmz/s)
Dg Diffusion ceoefficient pre-exponential )

for defect o (em“/s)
Ez, Emission rate constant of a vacancy

J from an ij complex (s™h

He s s i

Ei' Emission rate constant of a helium atom
2 from an ij complex (s-l)

M . .

Ea Migration energy of defect « (ev)
EB RBinding energy of defect o (ev)

o
Ez Formation energy of defect « (ev)

D .

EH He detrapping energy from a
€ substitutional site (eV)

G Frenkel-pair generation rate (dpa/s)
Gy He atom gemeration rate (at./at./s)
GT Thermal vacancy generation rate (dpa/s)

g Re—-solution parameter 1 - 10

i No. of vacancies in a cavity

3 No. of He atoms in a cavity
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—~

R AR O

AF

Boltzmann's constant

Combinatorial no. for defect «
impinging on an ij complex

Maximum no. of vacancies in the 1ij complex
Maximum no. of He atoms in the ij complex
Cavity No. density per unit size

Gas pressure inside a cavity

Critical growth radius

Trapping radius

Reaction rate between a self-interstitial
and an mn complex

Reaction rate between an ij complex
and an mn complex

Reaction rate between an ij complex
and a cavity with radius r.

Self-interstitial sink strength

Vacancy sink strength

Entropy of vacancy formation

Time

Temperature

Cavity bias factor for defect a

Line dislocation bias factor for defect «
Free energy change due to an emission process

Fraction of vacancies produced directly as
divacancies by irradiation

Jump frequency of specie o
Surface tension

Jump distance for defect a

eVe K~

(em™®)
(eV/cm3)
(cm)

(cm)

(s™H

(s)
(°K)

(eV)

1

)

(eV/cmz)

(s™

(em)



v, Vibration frequency of specie o (s_l)

3

Q Atomic volume (cm

P4 Line dislocation density (cm/cmB)
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CHAPTER VI

THEORY OF CAVITY EVOLUTION DURING IRRADIATION

The goal of experimental and theoretical investigations of bubble
formation during irradiation in structural materials is to determine and
understand the cavity size distribution. As pointed out in Chapters I
and II it is the cavity size distribution that will ultimately decide
the level of structural material property degradatiom.

O0f all the stages of cavity evolution, the cavity-size distribution
has proven to be the most challenging one to model, because of the
stochasticity effects on atomic clustering.

Stochastic effects can be divided into two groups; external and
inherent. External stochastic effects are due to the nature of defect
and nucleation sources. Both. are random functions of space and time.
On the other hand, inherent stochastic effects associated with atomic
clustering is due to the atomic discreteness of absorption and emission
processes for individual atoms or vacancies.

If the nucleation process produced bubbles of the same size, all
bubbles would grow at the same rate provided that the only processes
operating on the bubbles are addition or removal of one gas atom at a
time. Markworth and Baroody [1] have determined the shape of such a
bubble distribution. Thev showed that the variance of the distribution
at time t is the product of the variance of the initial distribution and
a decay time [2] exp(-bt), where b is the microscopic re-solution

parameter. Thus an initially non-uniform distribution becomes narrower

o
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because of re-solution, but an initially uniform distribution (i.e.,
zero variance) remains uniform during growth.

Hayns and Wood [3] investigated the void-size distribution
functions using a numerical procedure and void growth laws. It was
found that diffusion controlled void growth invariably Ileads to
tightening of the void size distribution due to the faster growth of
smaller cavities. The expected broadening of the distribution due to
thermal emission effects was found to be small, and confined to low
doses, but more appreciable for surface-reaction contreclled growth.
However, they caution that their numerical results are only intended for
illustration, and that at higher doses, or for high void concentrations,
one would expect coalescence amongst the population, which would lead to
a broadening of the distribution regardless of growth kinetics [4].

In their model [3], Hayns et al. assumed that the void density
remains constant with increasing dose. Furthermore, to utilize their
numerical model they had to assume an initial distribution of void sizes
which is representative of the end of the nucleation period.

Experimental findings on cavity size distributions [3], clearly
indicate that the size distribution broadens as dose is increased. It
is easy to show that coalesence events are rare, and do not generally
contribute to such broadening. The theoretical work of Markworth and
Baroody {1] and Hayns et al. [3] are not therefore comnsistent.

In the following section, a brief discription of stochastiecity
effects will be given, and of how such stochastic effects have been
modeled by appropriate rate counstants for various processes. The next

section also describes the use of chemical reaction rate equations which



enable us to model, in detail, the fundamental kinetic processes
resulting in defect fluxes and initial critical HVC concentrations.
Stable complexes resulting from these discrete rate equations will
then be considered as the nucleii for larger cavities. These cavities
will now be examined in the final section by using a continuum approach

that leads to the derivation of the Fokker—-Planck equation.

1. SOURCES OF STOCHASTICITY IN ATOMIC CLUSTERING

Radiation damage and radiation effects can be distinguished by
their characteristic time scales; the primary events produced by nuclear
irradiation are over in less than ~ 107! seconds after the bombarding
particle has interacted with the solid. Subsequent processes require
much longer times; the diffusion of radiation—produced point defects to
sinks in the solid can take milliseconds to months. The time scale for
the nucleation and growth of cavities in metals by agglomeration of
radiation-produced vacancies is of the order of months to years.

The energy transferred to a stationary lattice atom in a collision
with a high—-energy bombarding particle is on the order of tens to
hundreds of kiloelectron volts, which is much higher than the displace-
ment damage energy {~ 25 eV). The lattice atom first struck and dis-—
placed by the bombarding particle is called the primary knock—-on atom
(PKA). Because a PKA possesses substantial energy, it becomes an ener-—
getic particle, which is able to create additional lattice displace-

ments. These subsequent generations of displaced lattice atoms are



known as higher order knock-ons, or recoil atoms. The ensemble of point
defects created by a single PKA is known as a displacement cascade.

The earliest theory of radiation damage treated the cascade as a
collection of isclated vacancies and interstitials and gave no consid-
eration to the spatial or time distribution of point defects. In the
simplest approximation the number of displaced atoms is computed by
approximating the collision partners as hard spheres. Hard—-sphere
scattering can be represented by energy-transfer cross sections based on
realistic interatomic potentials. Many improvements on these simple
collision models have been made, but the idea of a cascade consisiting
of isolated poin_E defects was retained until recently.

When the distance between successive collisions of a recoil atom
and the stationary lattice atoms approaches the interatomic spacing of
the crystal structure, a dense cluster of point defects called & dis-
placement spike is formed. These displacement spikes are random func-
tions of space and time. It was hypothesized that the nature of these
displacement spikes would have a profound influence on nucleation and
growth of defect clusters under irradiation. Although still under
investigation, it has been shown that previous estimates of average
defect concentrations are good approximations [6]. In particular, it
has been established by Chou and Ghoniem [6] that the variance of
cascade spikes decreases for higher energy PKAs, typical of fusion
conditions.

The production of point defects in displacement cascades is an
example of external sources of stochasticity. Others are the distribu-

tion of sinks within the medium, and the random nature of sink-cavity
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pairs. Previous work in this area [6] has indicated that such external
sources of stochasticity may have a small effect on cavity evolution,
especially during the growth period. We will therefore not include such
effects in our analysis. The theme of this thesis 1is to analyse the
effects of inherent stochasticity on the evolution of the size
distributions.

The inherent sources of stochasticity for atomic clustering are
absorption and emission processes, since they occur at a discrete atomic
level. Here clusters can absorb or emit atomic constituents, with the
rates being dependent on different atomic sizes. If such rates were to
depend on only one size, no size distribution would occur. This simple
origin of the evolution of the size distribution will be demonstrated

in the following sectiomn.

2. RATE EQUATIONS FOR HVCs

As pointed out in Chapter III, the problem of nucleation and growth
of defect clusters during irradiation has been a challenging one.
Defect clustering is a complex combination of kinetic processes, such as
diffusion of point defects and wmigration of clusters, and time
independent processes such as absorption and emission which depend on
concentrations and geometrical factors.

A successful approach to study the nucleation and growth of defect
clusters has been the use of chemical reaction rate theory [7]-{13].

Hayns [9] studied the nucleation and early stages of growth of
interstitial dislocation loops in irradiated materials. A hierarchy of

rate equations was solved to simulate the homogeneous nucleation of
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interstitial dislocation loops. The assumption that di-interstitial
atom pairs are stable against thermal dissociation was examined and it
was concluded to be appropriate. Lam [10] developed a time— and space-
dependent model to study the radiation-induced defect buildup and
radiation—-enhanced diffusion in a foil under irradiation. The distribu-—-
tion of interstitials, monovacancies, and vacancy aggregates containing
two to six vacancies in a silver foil under irradiation was calculated
as a function of both distance from the surface of the foil and irrad-
iation time by numerically solving the rate equations for various tem—
peratures and internal sink concentrations. In an investigation of in-
terstitial cluster nucleation at the onset of irradiation, Johnson [11]
developed rate equations for the concentrations of single and small
clusters of vacancies and interstitials. The effécts of irradiation
temperature and displacement rate were investigated, and it was found
that the cluster concentrations are sensitive to cluster binding
energies., Hall and Potter [12] included interstitial-impurity trapping
in a time—dependent nucleation and growth model that 1is used to
calculated both vacancy and interstitial cluster densities and size
distributions during irradiation. Recently, Ghoniem and Cho [13]
developed a rate theory model for the simultaneous clustering of point
defects during irradiation. Size—dependent bias factors and self-
consistent reaction rate constants were used to evaluate the feedback
effects between the wvacancy cluster and interstitial loop populations.
An atom conservation principle was used to determine the number of

necessary rate equations as a function of irradiation time.



The wunderlying oprinciple of rate equations 1is to represent
production and removal rates of a particular defect size in a species

balance equation.
For the sake of self-consistency, we will briefly discuss the rate

equations approach as described in Chapter IV, Sect. 2.2.

Discrete Rate Equations

The kinetic processes involved in the nucleation of stable HVCs
require far more detailed analysis as compared to growth mechanisms. It
is therefore essential to include in our model of cavity evolution a
detailed description of the time-dependent concentrations of small HVCs.

In order to calculate nucleation rates of stable HVCs, the mobility
and binding energies must be included in the calculations. This will
allow a study of the influence of helium migration on clustering and
vice versa.

The major problem in formulating a theoretical model for HVC forma—
tion lies in the complicated possibilities by which helium interacts
with point defects. During irradiation, helium can be trapped and
thermally detrapped from single vacancies, divacancies, and higher order
clusters. Also, helium can be trapped at dislocations and grain bound-
aries. Helium bound to single vacancies can be replaced by self-
interstitials or it can be displaced by irradiation produced PKAs.
Combined with the wmany possibilities for helium-defect reactions,
special attention must also be given to vacancy and self-interstitial
reactions with each other and with external sinks such as dislocation

networks and grain boundaries.
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The chemical rate theory can be used to describe clustering events
between randomly migrating species
In our model, we include all possible reactions of mobile and

immobile HVCs. We consider mobile species to be

1. Single vacancies,

2. Self-interstitials,

3. Interstitial helium atoms,
4. Divacancies,

5. Divacancies single helium clusters.

Repreéenting the number of vacancies per HVC by m, and the number of
helium atoms per HVC by n, we have derived a generalized rate equation
for any combinations of m and n. Thus, a set of rate equations can be
written to span the helium—-vacancy phase space up to any desired
combination of m vacancies and n helium atoms. For a description of the
rate equations, the reader is referred to Chapter IV, Sect. 2.2.

The number of rate equations necessary to describe cavity evolution
is prohibitively too large, if not impractical to solve unumerically.
Thus, we will use this system of discrete rate equations only to
determine quasi-steady—state  values of point-defect fluxes and of
nucleation currents for the critical HVCs.

The results of calculations for HFIR dirradiation conditions are
shown in Fig. 1, using discrete rate equations. Note that we have
excluded the following clusters from our description: di-helium

cluster, tri—-helium cluster, trivacancy cluster, and trivacancy
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Fig. 1. Steady—-state concentrations of HVCs in HFIR at 500°C.
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single~helium cluster. Furthermore the choice of such a small system of
equations simplifies the rate equations [Egs. (12)-(16), Chapter IV] by
reducing the number of double summation for each equation.

These fluxes for mobile species, combined with the nucleation
current of stable HVCs, constitute the necessary input parameters to the

continuum rate-theory model described in the following section.

3. FORMULATION OF THE FOKKER~PLANCK EQUATION FOR HVCs

The basic limitation for the rate-theory approach lies in the one-
to—one relationship between the number of simultaneous differential
equations to be solved and the number of species in a cluster. This
limitation is made even more severe by the fact that we are looking at
two species in a single cluster (helium atoms and vacancies).
Therefore, the computations become prohibitively expensive for Ilarge
defect clusters. This has ﬁrompted the development of approximate
computational methods for the kinetics of defect clustering. Kiritani
[14] has developed a scheme for the nucleation and growth of clusters in
which clusters within a range of sizes are grouped together, and has
applied the method to vacancy clustering after quenching., Hayns [15]
has applied the Kiritani grouping scheme to study the nucleation and
growth of interstitial loops during irradiation, and has shown that
objections to the method by Roiwa [16] can be surmounted. Hayns [15]
also reported calculations using the grouping scheme to study nucleation
and growth of interstitial loops under fast reactor and simulation

conditions.
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A different approach for studying the nucleation and growth of
defect clusters has considered solving continuum equations rather than
rate equations. Sprague et al. [17] were able to describe vacaney
clusters containing up to 3920 vacancies by descretizing a diffusion—
type equation with variable diffusivity. Recently, Wolfer et al. [18]
followed similar lines to demonstrate that the rate equations describing
the clustering kinetics can be condensed into a Fokker-Planck continuum
equation. The latter was interpreted as a diffusion equation with a
drift term. They observed that void nucleation and growth can both be
incorporated into such a ;nified formalism. No attempts were made to
investigate the numerical solutions of these equations. Hall [19]
investigated point—defect clustering considering a different form of the
continuum description. Only the cluster concentrations were expanded in
a Taylor series and the resulting set of rate equations were shown to be
condensed into one partical differential equation. The majority of the
approaches mentioned above have not been able to accurately describe the
long term behavior of defect clusters, either due to the high computa-
tional pemnalties in rate theory methods, or because of the restrictive
approximations in grouping methods. We developed a novel calculational
method for the solution of the Fokker—-Planck equation describing voids
and interstitial loops [20]. The strength of that method lies in its
hybrid nature. Small clusters were treated using separate rate equa-
tions including a1l possible details. On the other hand, a continuum
approach was used for larger size clusters by descretizing a transformed
Fokker-Planck equation. Defects containing up to millions of atoms were

investigated using this hybrid approach. The numerical results of the



method compared well with experimental findings on heavy ion irradiated
316 stainless steel [20]. The newly developed method will now be -
extended to include helium bubble dypamics and kinetics. This will
result in a two~-dimensional array of coupled linear differential

equations to be solved numerically.

3.1. Derivation of the Fokker—Planck Equation for HVC

In deriving descrete rate equations describing fundamentél helium—-
vacancy clustering, we assume that vacancies, self~-interstitials, inter-
stitial helium atoms, divacancies, and divacancy single~helium atoms to
be mobile. Seven rate equations, five to describe the time dependent
concentrations of mobile species, one describing the matrix bubble con-
centration, and one describing critical bubble embryo concentrations,
were solved., This provides defect fluxes as well as the concentration
of critical HVCs. The stable or critical HVC concentration resulting
from these discrete equations will now be considered as the nucleus for
larger HVCs. These cavities will be examined using the following con-
tinuum approach, which will result in a Fokker—Planck equation describ-

ing the evolution of HVCs.
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During irradiation, the vacancy—gas clusters follow the

differential equation:

%%-v,h R N O Rt AR LIS i U 'L LD

V,h V,h

ic+ve
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Cv—l,h kv—l,h
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v+1,h+1 “v+l,h+l ?

where k*Y stands for the rate constant of process xy, and
ic = self-interstitial capture,
ve = vacancy capture,
gc = helium capture,
gr = helium replacement,
ge = helium emission

ve = vacancy emission,

and ic+ve is a sum of the rate constants for the two reactions. We have
excluded the two reactions resulting from the capture of divancancies
and divacancy single—helium clusters. Figure 2 will clarify this point.
Expanding the last five terms of the equation in a Taylor series and

truncating after the second derivative, we obtain,
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Fig. 2. Reactions leading to the formation of a v,h complex.
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where we have used [21]

f(x,y) = f(a,b) + Ax f;(a,b) + Ay f}(a,b)

P sz £" (a,b) + 2Ax Ay £" (a,b)
2! XX Xy

1 2 3
+ 5 Ay fyy(a,b) +a_ Ap R

3

= R/§p”°, R = remainder. If we substitute

where §p = (6x)2 + (Gy)z, oy

back into the cluster equation we get
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For the purpose of simplifying the analysis, we will introduce the

following notations:

Ky = ke,

Kh = kgc,

Ay = rictve k8T

A, = kBE & kBT,
We now define the drift function as F = x — X = point defect net bias
flux and the diffusion function by D = {x + A)/2 = point defect average

diffusion flux. Assuming 8T to be small, the continuum equation can

now be written as

2 2
dic 3 3 S 3
5t~ "oy Fy® T ap (Fp© 4 1o (D C) + 2 (0,0 -

This is now the well known form of the Fokker-Planck equation that

describes diffusion in a drift field [22]. If we denote the nucleation
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current by t;; then :F = FC -‘EIDC). Now the continuum equation can be
expressed in the vector form: 3C/3t = — V « J.

The Fokker-Planck equation has been the subject of investigation in
various areas of physies [22-24], especially the physics of a non-
equilibrium system of particles. However, even with the simplest
initial and boundary conditions, this equation proved to be intractable
for amalytical solutions [22,23]. 1In order to utilize the Fokker-Planck
equation to describe the wicrostructural behavior after large irradi-
ation doses, we will therefore follow numerical methods outlined in the

next chapter.
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CHAPTER VII

NUMERICAL MODEL

1. TFINITE DIFFERENCE ANALYSIS OF THE FOKKER-PLANCK EQUATION

While separate rate equations are used for mobile defects such as
single vacancies, self-interstials, and helium atoms, larger size
clusters are simulated by condensing the set of rate equatious into one -
generalized Fokker-Planck equatiom.

As shown in the previous chapter, the continuim equation that
describes the nucleation and growth of helium-vacancy clusters (HVCs)
can be expressed as a continuity equation in HVC space. This is given

by:

LR % .3, W

where Cv,h = Concentration of HVCs containing v-number of vacancies and
h—number of helium atoms, and 3 = the nucleation current.

Equation (1) is derived in the absence of sources and sinks in the
vacancy-helium space. This is expected to occur if cavity coalescence
does not exist. At temperatures of interest, and in fusion reactor
applications, coalescence plays a minor role, and can therefore be

ignored. J is denoted by:

J(v,h,t) = F(v,h,t)C(v,h,t) - % (D(v,h,t)C(v,h,t)]

—-(S_E [D(V,h,t)C(V,h,t)] ’ (2>

243



where v = vacancies and h = helium-atoms, F = DRIFT-function = point-—
defect net bias flux, and D = DIFFUSION-function = point—defect average
diffusion flux. The derivation of the above form of the Fokker-Planck
equation is discussed in Chapter VI.

The approach we use here to solve the Fokker-Planck equation is
strictly numerical. We will first discretize the independent variable v
(no. of wvacancies) and h (no. of helium atoms), and then express all
dependent variables in terms of the discrete points.

In order to simplify the description of our approach, we first
start by a 1-D description of the Fokker-Planck equation. This is
accomplished by assuming that the number of helium atoms is comnstant,
and that discretization proceeds along the vacancy independent
variable. We will later extend the technique to the 2-D problem.

The 1-D Fokker-Planck equation can now be given by:

aC 8J
T T 5y s (3)
3, (v,t) = F(v,t)C(v,t) - -2—; [D(v,0)C(v,t)] - (4)

The total concentration of BVCs per unit volume is given by:

l @0
Ctot(t) =_Q-£ C(v,t)dv , (5)
MAX
-1 Y Cv,t)av Av > 1 . (6)
Q
v=1

244



Because v and t are independent variables, we can integrate Eq. (3) over
a small interval Avi; for the ith mesh point,
Vit Y, Vit

= [ Tgwav=- [ Tay (7

Vi- 1/2 Vi 1/2

For simplicity, we use 1+1/2 at Vig1/2° Figure 1 illustrates the
notation and coordinates of this problem. From Fig. 1, and using

central differencing, we have:

Ay = Vi T Vie2 (8)
and
Vivrsp = M2y ) (%)
Vi1/2 = 1/2(vi + vi—l) s (10)
thus
Av, = l/2(vi+1 - vi—l) . (11)
With this definition of Avi, the left-hand side of Eq. 7 becomes:
i+ 1Yy ac,
2 Tedv == av, . (12)
3t ./ i ot i
i-Y5
The right-hand side of Eq. 7 becomes:
Vi+ 1/2
- o= Yl iy,
Vi~V
2
P 4 v
= (Jin Jout)i * (13)



Ci

\j;-B/ P?l/é

—\

Fig. 1. Schematic of finite difference notations.
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and

aDC
iy, = By oy - Gliey, o (14)

with

[Fcl, + [FCl,_,

where Eq. 15 is obtained by a simple linear interpolation of the
function [FC] between i-l1 and 1i. For the midpoint value we are

considering, central difference gives:

[bc]; - [oc]

55 ¢l

i-1 2
DC}, 1, = + o[ (av)"] (16)
v i- 4 Av, 1 /s

with

=V, =V, . (17)

Combining Egs. (14), (15) and (16), we get:

[Fcl, + [FC], |

Jin 950172 2
[pc], - [DC],
- = 5l S (18)
i-1/2
where
AV, =v, -V, . (19)



So the continuim Fokker-Planck equation [Eq. (3)] is now represented by

finite number of discrete equations of the form:

11 [y -3° 1.1 (20)
St Avi in out"i ?
where
1
Avp =g gy = Vi) 21

Thus, by simply exﬁending the finite differencing scheme outlined above

to both varigbles, we get

aC
ij _ 1 v W 1 h _ h
ot T oAV, . [Jin Jout]i,j * Ah, [Jln Jout]i,j » (22)
i,j 1,3
and 1 3
Clv,h,t) = iz; izl Ci,j(t) Avi,j Ahi,j ’ (23)
where
bvp o= W20 =V )5
dhy o= V2thy, =By
v = no. of vacancies per HVC ,
h = no. of helium atoms per HVC . (24)

I and J are maximum number of vacancy and helium intervals,

respectively.
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The resulting system of ODEs [Eq. (22)] is generally a stiff non-
linear system of eguations. Efficient multi-step implicit numerical
integration methods are therefore necessary. For our purposes, we use
the GEAR [4] numerical integration techniques, which have been widely
used during the past decade.

To simplify the development of the numerical model, we will first
investigate the 1-D Fokker-Planck equation [Eqs. (20) and (21)]. Thus
we will assume for the time of growth no change in the number of helium
atoms per HVC, and that the only means of growth or shrinkage of a HVC
is through single-vacancy and self-interstitial interactions. This case
may correspond to the development of a void size distribution with a

fixed number of gas atoms.

2. DISCRETE SYSTEM OF EQUATIONS WITH FIXED BOUNDARY CONDITIONS

In developing a numerical method for the solution of the 1-D
Fokker-Planck equation [Egs. (20,21)] varicus cases were studied.
Table I lists the cases examined that led to the method of dynamic mesh
size incrementation.

As a first step in the numerical analysis of the discretized
equations, we first investigate a system of equations with fixed
boundary conditions.

As previously indicated, critical size HVCs can grow in an irradi-
ation environment by acquiring a mobile single vacancy. During the
initial stages of nucleation, the behavior of small HVCs is of prime
importance. Therefore we will limit the vacancy phase space to its

lower end and solve a system of equations describing the development of
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TABLE I
CASES STUDIED

System With System With
Constant No. Variable No.
of Eauations of Equations

Fixed boundary Zero—current

conditions boundary condition

(constant mesh sizes) (Jin=0, Jout=0)

Non—-zero current
boundary condition
(35,70, Jout¥0)

Moving boundary Uniform size mesh Uniform size mesh
conditions Variable size mesh Variable size mesh

(Jinzjout=0)

clusters containing up to only ~ 500 vacancies. The vacancy phase space
is devided into 25 equal size mesh intervals, starting at a critical
cluster size of 3 vacancies.

In this section, the number of equations, mesh size, and boundary
conditions are all kept comstant during numerical integration

representing the evolution process.

2.1. Boundary Conditions

To simplify the development of numerical methods in solving the
Fokker-Planck or growth equations, the following approach is followed:
A set of detailed rate equations is solved for small clusters. This
produces a self-interstitial flux, a single-helium atom flux, a single-
vacancy flux, and a critical HVC nucleation current. Once quasi-steady-
state flux rates are reached, mobile defect fluxes and the concentration

of critical HVCs are taken as input parameters for the Fokker—Planck
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equations. This separation of nucleation and growth is reasonable,

since nucleation time scales are much shorter than growth time scales.

2.1.1. Zero—Current Boundary Conditions. In considering the nucleation

and growth of HVCs in two stages, we are in effect setting the
nucleation current (Jin for the lower boundary) equal to =zero and
monitor the growth of these clusters. If at the upper boundary (Jout)’
is also set equal to zero, the total number of HVCs will be conserved at
all times. By setting Jout equal to zero we are allowing only shrinkage
or growth but no annihilation of any HVCs. This conservation principle
thus constitutes a check on our numerical solution to the Fokker~Planck
or growth equation. The zero—current boundary conaition is Jin/lower =

J = 0.

out/upper
As a case study, we consider the High Flux Isotope Reactor (HFIR)
irradiation conditions and stainless-steel material parameters. Figure
2 shows the behavior of the HAVC size distribution at different irradi-
ation times. At the onset of evolution (tl = 0.1 s), the distribution
is shown to be dominated by small clusters. At ty = 8.6 x 103 s we
notice a decrease in the concentration of critical HVCs and a broadening
of the distribution. Because the nucleation current Jin is set equal to
zero, there is no supply of critical HVCs. As irradiation continues the
distribution function broadens and the peak value decreases.
This behavior is expected from a Fokker—Planck equation in which

the DRIFT term F forces the peak to move while the DIFFUSION term D

causes a broadening of the distribution.
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Because we have set Jou equal to zero, there are no destruction

t
mechanisms for the largest HVCs. The calculations indicate that the
number density of large clusters increases steadily at the expense of
smaller ones. Thus, once the peak has reached the maximum size con-
sidered, it stays at that position and its value steadily increases
until about 105 seconds. Beyond this time, the distribution remains
unchanged for any practical irradition time considered.

The conservation of the zeroth moment of the HVC distribution must
now be checked. A simple trapezoidal rule, for estimating the area
under the distribution function in Fig. 2, gives very satisfactory re-—

sults. The largest error in the zeroth moment is found to be ~ 10710y

which is close to the machine round-—off error {(~ 10-14 for the Cray).

2.1.2. Non-Zero~Current 3Boundary Condition. A variation on the

previous boundary condition is to let Jout # 0 while keeping Jin = 0.
Figure 3 depicts the results of this case. By comparison of Figs. 2
and 3, it is observed that the behavior of the HVC size distribution is
almost identical until t = 4.4 x 104 S. Beyond this time the peak of
the distribution reaches the maximum HVC size considered. Because the
system has a "leaky” boundary condition at the upper boundary of the
phase space, the distribution gradually disappears. Accordingly, the
zeroth moment is no longer conserved and at t = 1.2 X 105 s an error of
100% is already reached. The behavior of the error in the zeroth moment

is shown in Fig. 4.
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3. DISCRETE SYSTEM OF EQUATIONS WITH MOVING BOUNDARY CONDITIONS

By investigating a small and fixed system of Fokker-Planck equa-
tions, we established the general validity of the present numerical
approach. Qur goal is to follow the development of HVCs from sub-
critical to microscopically measurable sizes. To achieve this we have
to expand our system of equations to include HVCs containing up to 107
vacancies (bubbles with a radius of a few hundred Angstroms).

Handling a system of non-linear first order ODEs which spans such a
range in the vacancy phase space (from 1 to 107 vacancies) requires
programming efficiency, flexibility, and economy. Therefore, the fol-

lowing considerations were followed in structuring the computer program:

1. Computing the minimum number of variables. Thus, time
invariant quantities are computed omnce at the beginning. Time
dependent equations contain the minimum onumber of time

invariant arithmetic operations.

All wvariable input constants are incorporated in NAMELIST

(3]
.

statements, so that any input data can easily be changed.

3. The numerical output is stored on user's files, such that

plotting is easily implemented.

These guidelines are easily implemented. However, the major means to
save computer time is to keep the number of ODEs to a minimum. In the
following discussion, various approaches to insure programming economy

will be outlined.
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3.1. A Constant Number of Equations with Dynamically Increasing Mesh

Sizes
As a start, the vacancy phase space between 1 and 107 may be di-
vided into equally sized mesh points. The total number of equations are

limited, for example, to 50; the mesh size would be 2 x 105 vacancies:

——— —®——» no. of vac.

1 leO5 4x10S 6xlO5 lO7

]
")
)
[

Each interval is represented by one discrete equation, which is coupled
to its two neighboring equations. The coupling, which stems from the
diffusion and drift expressions, is included in J;, and Jout of each
equation.

At the onset of evolution, changes in the distribution function are
very rapid. The distribution broadens while the peak moves rapidly to
larger sizes.

The cluster distribution tends towards an equilibrium Gaussian-like
distribution. Figure 5 shows the distribution function for sizes in the
range of 3 to a few million vacancies at different times. As irradi-
ation time increases from ty = 0.1 s to tg = 6.4 x 104, the distribution
tends toward an equilibrium resembling a Gaussian. It is to be noted
that as the distribution moves, the rate of change slows down. There-
fore, it 1is crucial to monitor both fast and slow wvariations in the
distribution function. This can be achieved by choosing a fine mesh
size for small clusters and increasingly larger mesh size for larger

clusters. Starting with a HVC size of 3 vacancies and then doubling the
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mesh size to 6 and then to 12 and so on, we can span the 107 range in
about 25 equatioms.

In this case, the initially very sharp distribution is observed to
flatten out with an accompanying motion of the peak value towards larger
sizes. But once the peak value moves beyond ~ 100 vacancies per
cluster, fluctuations are observed which eventually result in
unacceptably negative distribution values.

Because of the highly economical nature of this approach, it will

not be abandoned, but the following variation, is investigated.

3.2. Fixed Number of Equations With Variable Mesh Sizes

A variation of the above method is to allow the mesh size to remain

constant over only a given range of values.

x2 x2 no.
— —
. e I . S S o +» of
3 10 20 30 40 50 100 200 300 400 500 1000 vac.

The choice shown spans the 107 vacancy range in about 35 equations.
This system is designed to shed more light on the cause of instabilities
in the previous method. In this case, the distribution function is
observed to move toward larger sizes with numerical instabilities
appearing at a much later time as compared to the previous method. Many
variations on the choice of mesh sizes were examined. Because of numer-—
ical instabilities, this approach was found to be unsatisfactory when

the number of equations was over 100.
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The two previous investigations both point to a more stable system
if the mesh sizes were kept constant. In order to solve the problem at

a reasonable computing cost, the following scheme is developed.

3.3. Fixed Number of Equations with Dynamic Mesh Space Enlargement

In this approach, we first fix the number of equations to, say,
20. We then let these 20 eguations span a cluster size range containing
from 3 to 200 vacancies. The system of equations is then solved and the
distribution function behavior 1is monitored. As expected, the peak
moves éway from the critical size (3 vacancies) towards larger cluster,
while at the same time the distribution flattems.

The progréﬁ'is structured such that once the peak value of the dis-—
tribution moves beyond, say, one-half of the range being monitered, the
mesh spacing is doubled.

The cluster sizes under investigation range from 3 to 400. The
concentration of the newly added sizes are initialized to some low floor
value. Every other previous equation is dropped. Equations are renum-
bered and the system is solved as a new system with a given initial
distribution function determined at the end of the previous calcula-
tion. Figures 6 and 7 schematically illustrate the process.

From t = t the distribution moves toward its mew shape at t = t*
as shown in Fig. 6. Once the peak has moved, say, beyond 100 vacancies
per cluster, the system is changed to Fig. 7. This expanding mesh space
method is automatically controlled to continue as long as peak motion is

detected. The frequency of expanding the mesh space is determined by

the speed of the peak movement,
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This method was found to be the most stable of all previous ones.
Instabilities occur only towards the latter part of the calculations.
However, the method is still not satisfactory, because the zeroth moment
of the distribution function is not conserved. Many variations in mesh
space expansions and t* were examined but conservation of the total
number of clusters is found to be violated by more than 507 after only a

few expansions.

3.4. Dynamic Size Incrementing Method

Each of the previous three methods has its shortcomings:

1. The increasing mesh size (Sect. 3.1) method is unstable.

2. The constant mesh size over a range (Sect. 3.2) is

uneconomical.

3. The expanding mesh space (Sect. 3.3) violates the zeroth moment

conservation principle.

Because the second method is stable and only uneconomical, we will
investigate methods aimed at reducing computational times for that
approach.

First the program is structured such that, once the peak of the
distribution moves to larger sizes, a number of equations describing
small sizes are removed from the system and another number is added to

cover the evolution of large sizes.
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At every output interval a check is run to determine the contribu-
tion of the smaller clusters (already surpassed by the peak) to the
zeroth moment. Those equations contributing up to about 0.05%Z to
the zeroth moment are removed from the system (see Fig. 8). This
avoids using equations that do not significantly contribute to the
system's behavior.

Equations are “dynamically”™ added to the distribution wavefrount as
it moves towards larger cluster sizes. For program efficiency, the
addition of equations is only done every output interval to avoid
constant peak monitoring at every interval timestep of the ODE solver
(GEAR package [4]). Thus, a prediction of the distribution peak must be
made at every output interval in order to decide whether an addition of
equations is necessary and if so, at what mesh spacing and/or how many
must be added.

By using the method of trajectories (described in Chapter V), it is
possible to predict the temporal behavior of the average HVC size. The
knowledge of the average cluster size at any time allows monitoring the
movement of the distribution peak.

Thus, by simply adding enough equations to the wavefront of the
distribution, such that the known average size is always somewhere close
to the center of the system, the most significant system's range 1is
always studied. Furthermore, the experience with constant mesh spacing
indicates that S5 to 10 additional equal mesh spaces are adequate. The

following is a summary of the method.
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We start with a system of equally spaced mesh points spanning a
small range from 3 to 600 vacancies per clusters. The boundary
condition of Jin and Jout into and from the system is set equal

to zero. The distribution starts to move towards larger sizes.

At each output interval (at the beginning, say, logarithmic up
to 106 s of irradiation and from that time on, equally spaced
at 105 s) the average HVC size is computed using the trajectory

method.

At all times a check is made to ensure that the total discrete
range in cluster size is at least five times larger than the

average HVC size evaluated by the trajectory method.

If the peak position of the distribution becomes too ciose to
the average HVC size, then 5 to 10 equations are added to the
system. The mesh spacing of these new equations is chosen such
that at the new output interval the total range covers 5 to 10

times the average size at the next output time.

At each output interval, a check is run on the small-size part
of the distribution. The number of equations contributing less
than 0.05%7 to that moment are removed from the system. Accord-
ing to removing or adding equations, the boundary conditions

are also moved along with the system.
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3.5. Example Using the Dynamic Incrementing Method

The following example is to show the application of the previous
dynamic incrementing method to typical HFIR-irradiation conditioms at a
temperature of 500°C. Furthermore, we adopt a zero—current boundary
condition (Sect. 2.1.1) to monitor the accuracy of our numerical
model. This boundary condition 1is equivalent to having a zero
nucleation current condition. Thus the total cluster concentration must
remain constant at all times, or:

[7 ctv,eddv] . = [ cv,odav] . (25)

0 "1 0 2
At time t = t, it is assumed that all clusters comntain 3 vacancies and 3
helium atoms. The initial concentration of critical HVCs is evaluated
under HFIR-irradiation conditions using a set of discrete rate equa-—
tions. This set of rate equations is solved until quasi-steady-state
conditions are established. This is true when: (1) the single vacancy
concentration reaches its steady state and (2) the ratio of the vacancy
flux to the self-interstitial flux (DVCV/DiCi) is larger than unity
(D = diffusion coefficient). For typical HFIR-irradiation conditicns at
500°C this condition is achieved within a few vacancy mean-lifetimes
(TV = l/pde, where Py = dislocation density) of about 50 seconds. The
defect fluxes are assumed to remain at the quasi-steady-state values.
Because the unucleation current of critical HVCs 1is set to zero, we
expect the concentration of critical size clusters to decrease steadily
as they grow into larger HVCs.

In Fig. 2 the time behavior of the HVC is shown. The critical HVC

concentration starts to decrease monotonically until it completely
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vanishes. Alsd, it 1is shown that the number density of a particular
cluster size peaks at the expense of smaller clusters. It then
decreases as the concentration of larger ones start to increase. In
this fashion, the peak of the distribution of the HVC always moves to
larger sizes as irradiation time increases. Simultaneously, the peak
value decreases due to the broadening of the distribution. An indica-
tion of the problem’s stiffness is the wide variation of time constants
for different cluster sizes. |

The figure also shows typical behavior of a Fokker-Planck egquation
composed of a DRIFT and DIFFUSION terms [Eqs. (1,2)]. The drift func-
tion represents growth of individual clusters due to an excess vacancy
flux (bias). The diffusion-in-size describes random fluctuations about
the average size, and it is this term that prevents all clusters from
attaining the average cluster size. It acts as a diffusion effect in
size space. Subject to diffusion and drift effects, the symmetrical

part of the size distribution tends towards an equilibrium Gaussian-like

distribution.
As shown above, our choice of boundary conditions, Jin = Jour = 0,
allows us to monitor the zeroth moment of the concentrations:
© I
M) = [ Clv,t)dv = ; c,(B)av, . (26)

0 i
The percent error in the zeroth moment is thus an indicatiom of accuracy
of our numerical analysis. Because of the nature of the dynamic system
of equations (variable mesh size), we are not able t? use Simpson's
methods in estimating the integration of Eq. (26). The trapezoidal rule

has been used instead. Figure 9 shows the results of monitoring the
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zeroth moment. The error remains practically zero until the system of
equations being solved is altered at 105 sec. As equations with larger
and larger mesh sizes are added, the error starts to increase up to a
maximum of ~ 10%. As the distribution tends toward the equilibrium
shape, the error starts to decrease and settles around ~ 27%. Consider-—
ing the vast variations in size space and in the magnitude of time con-
stants, this level of error is felt to be reasonable.

The dynamic incrementing scheme has to be both flexible and econom—
ical. A typical run that (1) evaluates quasi-steady-state values of
fluxes and critical BVCs; then (2) uses the method of trajectory to give
values of the average cavity size, and (3) simulates the evolution of
HVCs using not more than 50 discrete equations takes less than 0.1 CPU
minutes on the Cray computer,

The program is quite flexible, and includes the following features:
® A choice of moving or fixed system of equatiomns,
° Zero- or non-zero—current boundary conditioms,

° Determination of initial mesh size,

o Control of the number of equations added at each necessary

expansion time,

L Control of the peak position relative to the total range.
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3.5.1. Instabilities of the 1-D Fokker—Planck Equation. 1In developing

the above mentioned numerical schemes, inevitable numerical instabili-
ties were found to develop. This is typical whenever a system of time-
dependent ordinary differential equations are solved using the finite

difference method. We will first discuss the following instability

causing parameters.

1. Tolerances for convergence of solutionm,

2. Number of ODEs being solved,

3. Mesh spacing between grid points,

4, Relative size of the last grid spacing,

5. Absolute value of the solution's floor value,

6. Time steps between solver's interruptions,

7. "Dyvnamic” or "fixed" system of equations,

8. Relative peak-value position in the mesh grid,

9. Criteria for eliminating equations in a "dynamic” system,

10. Number of equations added to the ODEs in a "dynamic™ system.

Our discussion of instabilities is then concluded with the description

of a method developed to suppress numerical instabilities.

3.5.1.1. Tolerances for convergence of solution. The user of the GEAR

package has a few options in setting the solution convergence tolerances
(see Sect. 3.5.2). One can choose a relative (RTOL) or absolute (ATOL)
error criterion for convergence. We adhere here to the relative toler-
ance method in which the user specifies the relative error criteria for

each equation solved. As it turns out there is an optimum RTOL for
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every problem solved. If the tolerance is chosen too loosely, instabil~
ities occur very early. Reducing RTOL reduces the magnitude of numer-
ical fluctuations. However, if RTOL is reduced to very low values
(~ 10_10), one will inevitably pick up machine round-off errors which
will render the solution unstable. For our application of the GEAR

package, the optimum RTOL value was found to be around ~ 10_7.

3.5.1.2. Number of ODEs. 1In.developing the dynamic and fixed systems,

we were inclined to reduce the number of equations in order to save CPU
time during the development stages. We found for our particular problem
that the minimum number of equations being sclved should not fall beyond

ten.

3.5.1.3. Mesh spacing between grid points. Because our goal is to span

a mesh range from 1 to 107 vacancies, we first tried to increase the
mesh spacing between two grid points in successive runs. If successful,
the larger the mesh spacing the fewer the number of equations to be
solved. It became apparent that with increasing mesh spacing instabili-

ties are enhanced.

3.5.1.4. Relative size of the last grid spacing. In using a fixed

system (see Sects. 3.2 and 3.3) with zero-current boundary conditions we
are in effect imposing a reflective boundary condition at the upper end
of the system. Thus the last mesh point experiences instabilities
because of the stringent zero—current boundary condition. To avoid

this, we chose a relatively large mesh spacing for the last equation

o
~I
(3]



being included in our system. This suppresses the reflective
instabilities at the upper bound of the system. A similar effect was
later discovered to occur for the lower bound of the system. That

problem is discussed in 3.5.1.9.

3.5.1.5. Absolute value of the solutions' floor value. To avoid

unnecessary and excessive computatiouns, 2 minimum value is imposed on
the concentrations. This minimum value is called the floor value. The
floor value reduces the number of iterations performed by the solver
because the relative error criterion is a function of the absolute value
of the solution. Thus, by choosing a large absolute value, for a floor
value we reduce the computational time. However, the larger the floor
value the more unstable the system becomes. Thus, it is desirable to
find an optimum floor value which minimizes computational time but at
the same time renders the system stable. That optimum value was found
to be ~ lO"20 for fractional concentrations. 1If the value was decreased
any further, instabilities recurred because of the machine accuracy

limit.

3.5.1.6. Time steps between solver's interruptions. In order to keep a

check on the integration performed by the GEAR package, the user has the
option to determine these checkpoints called TIME-QUTs. At every TIME-
OUT the Gear package reinitializes the integration parameters and
assumes it is starting a new problem with the previous TIME-OUT's solu-
tion as a new set of initial conditions. During an integration proce-

dure between two counsecutive TIME-OUTs, many integration parameters are

273



dynamically optimized in order to be able to deal with a stiff system
and to reduce computational time.

Some of these parameters are the internal integration initial
stepsize (HHO), maximum step size (HMAX), and maximum number of itera-
tion steps between two TIME-QUTs.

By choosing a small delta TIME-OUT, these parameters are reinitialized
more frequently and thus instabilities due to ever growing internal

integration step sizes can be suppressed.

3.5.1.7. Dynamic or fixed system of equations. Developing a dynamic

system of equations challenged the stability of our numerical results
more than any other parameter choice. The following points (3.5.1.8 -

3.5.1.10) will elaborate on this.

3.5.1.8. Relative peak value position in the mesh grid. By this we

mean the position of the peak of the cavity size distribution relative
to the system's end points.

If, in describing the size distribution of a Gaussian-like shape,
one chooses the system such that the Gaussian tails are not well repre-
sented {(chopped off), end effects will render the system unstable.
Therefore, in developing a "dynamically increasing system of equatioms,”
it was found that a sufficiently long distributiom tail is desirable.
Specifically the peak position had to be kept roughly at one~third of

the total mesh size considered in order to keep the system stable.

274



3.5.1.9. Criteria for eliminating equations in a dynamic system. If

the equations describing the system behavior behind the peak of the size
distributions are dropped too soon, instabilities will immediately
occur.

Another stability guideline was found to lie in the zeroth moment
cf the distribution. Because it is important to conserve the total
number of cavities regérdless of the size—distribution evolution, the
eliminated equations should not cause an excess error in the =zeroth
moment of > 0.05%. This choice was found to result in a stable system

with a maximum of ~ 50 equations representing the size distribution.

3.5.1.10. HNumber of equations added to the ODEs in a dynamic system.

As the system of equations tracks and follows the size distribution
dynamically, a number of equations have to be added to the wavefront of
the size distribution. The concentration of these added sizes are
initialized to the floor value of ~ 10720 (at./at). If too many equa-
tions are added, the relative peak position slips back in the mesh grid
and the system becomes unstable. If too few are added, the peak posi-
tion moves forward too fast, and instabilities occur. Thérefore, the
approximate new peak position has to be known at the next TIME-OUT
interruption. From this, the peak-movement velocity can be found and
the optimum number of equations to be added can be determined. This
procedure could be implemented with the help of the trajectories method
we developed earlier (Chapter V). The optimum number of equations added

was found to lie between five and ten.
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While some of these instability causing parameters can be deter-
mined and set at the beginning of the integration, others will change
during the course of the dynamically peak—-tracing method. The number of
equations is a function of the size-distribution evolution, so 1is the
position of the peak value, the average mesh spacing, and the rate of
adding and of dropping equations from the system. Even 1f one is most
conservative and cautious with all other parameters, at some point along
the size-distribution evolution, numerical instabilities will initiate
and cause unacceptable fluctuations. Figure 10 shows such instabilities
occuring at an irradiation time of approximately 107 S.

We developed the method described below to alleviate these
instabilities which tend to occur during the latter stages of the
calculations.

At every TIME-OUT the solution is checked for unacceptable fluctua-
tions. In general these fluctuations extend over two to seven mesh grid
points and if left as is, will eventually propagate to cover the whole
system {(see Fig. 10).

However, if at the onset of the fluctuations they are smoothed out
and the new smooth system is resubmitted as a new initial condition, the
fluctuations will not propagate any further and will be suppressed
altogether.

The smoothing out was performed by fitting a second order poly-
nomial over three times the range of the initial numerical fluctuation
range. This included, on the average, fitting not less than six to nine

mesh points to a polynomial. To ensure conservation, a check is run to
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monitor the effect of fitting on the zeroth moment. The smoothing had
no effect on the conservation of the zéroth moment. With this scheme we
were able to rid the system of numerical instabilities while ensuring
conservation of the cavity number demnsity. Figure 5 shows the results
of the size-distribution evolution using the smoothing routine in our
code, and Fig. 9 shows the behavior of the corresponding zeroth
moment. We feel that an error of ~ 2Z tc 3% in the zeroth moment is
acceptable (see Fig. 9) considering the range of void sizes covered with

not more than 0.1 s of CRAY/CPU time used.

3.5.2., Numerical Aspects. As discussed above, the present numerical

model is not free from numerical instabilities inherent to any system of
ODSs.

The set of discretized Fokker—-Planck equations {(Eq. 20) is solved
using a new version of the original GEAR package [4], which is designed
for stiff non-linear ordinary differential equations. The following is
a brief description of the methods used by the LSODE version of the GEAR
package in error control of the solver. The user supplies values for
ATOL (absolute tolerance), RTOL (relative golerances), and ITOL (integer
value) determining which one of the error criteria is to be used by the
solver. For a more detailed description, please see Ref. [4].

The problem we are solving is of the form:
— = f£(yr) , (27)

The error of the problem is evaluated by:
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e(i)
rms—-norm of [ewt(i)] .LE. 1 , (33)
ewt(i) = RTOL(i)*abs[Y(i)]+ATOL(1i) , (34)
neq 2
- rms—norm(Y) = izl (Y1) , (35)
neq
where ewt = vector of weights which must always be positive, and neq =

no. of equations solved.

By increasing ATOL and/or RTOL the vector of weights [ewt(i)]
increases, thus the rms—-norm of e(i)/ewt(i) decreases more rapidly and
the above inequality is satisfied more readily. The opposite is also
true. If pure absolute error control is used, the Y(i) with the largest

error will determine convergence of the solver because then we have

yb .
ewt(i)- _ foe(i)] * 1 (36)
neq { atol2 neqz}
and
1 nee 2 & (i)max/
' X _ e(i)max/neg
(ATOL) (neq) izl [e(i)] ) ® TTTATOL . (37

By using purely relative error comntrol this problem is relieved but the
solver will converge very slowly. To control the convergence, it is

best to use the combination of ATOL and RTOL optiom.
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3.6. Integral Formulation of the Two-Dimensional Finite Difference

Solution of the Fokker—Planck Equation

3.6.1. The 2-D Fokker-Planck Equation. The previous section outlined

the finite difference scheme we developed to solve the 1-D Fokker-Planck
(void growth) equation. This allowed us to investigate and comsequently
demonstrate the validity of our numerical approach. We can now apply
the above method to the 2-D Fokker—Planck equation with confidence. In
the next sections we demonstrate the expanded finite difference scheme.

The Fokker-Planck Equation, in absence of external sources or

losses, is:

3¢
la

> +>

= =V «J (38)

Our analysis looks at HVCs and assumes only two comstituents: vacancies

and helium atoms, Precipitates or other impurities are excluded in our
3

description of bubble evolution. Thus the current J consists of two

components:

+» <+ _h +> v
J=eJ +eJ 39
h v ? (39)
> . e . .
where: ey = unit vector in helium, vacancy direction in a helium—
v
2
vacancy-phase—-space, respectively.
Jh’v = the scalar values of helium and vacancy currents,

respectively.
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With this current the 2-D or 2-component Fokker-Planck equation

describing the growth evolution of HVCs is given by:

Com _ 33" 3" (40)

3t v 3h ?

where: CV B = the concentration of HVCs containing v (no. of vacancies)
Y
and h (no. of helium atoms).

The helium current Jh is given by:

I = 13,01, = [Fh,0em,0 - & b, ocm,01} 4D

and the vacancy current JV:

77 = [w,0)], = [F(v,0)C(v,t) = 3= [D(v,0)Cv,0)]},  ,(42)

where F DRIFT-function point defect net bias and D = DIFFUSION-

function = point defect diffusion flux.

In short form notation, Egs. (41) and (42) can be written as:

h
h h 3D C
3 =1[Fcl_- [—ah ] ,
v
v v BDVC
Jo=[Fcl, - [ ]h . (43)

Because v,h and t are independent variables we can integrate Eq. (40)

over a small element Ah Av for the (i,j)th meshpoint:
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by =172 Vit+1/2,3 3C; |
b
/ / 3v 3h —=

by 5-172 Vi-1/2,3

by se172 Vi-1/2,3 3, L 8 .
i / v oh (—=L + —=d) . (44)

v 3h R
i,j-1/2 i-1/2,j

It
1

h

Figure 11 illustrates the notation and coordinates of this (i,j)th

element. From this figure and using central differencing, we have for

the vacancy direction:

[avi] = [viryn = Vimy2d, (43)
] J
and
[Viersn] =[5 (Faer + 91)]
i+1/24, T L2 i+1 i/, ’
3 ]
. . 1 _ ;
ivi—l/zj. = fi (vi + vi—l}}. . (46)
] ]
Equations (45) and (46) give:
1
[Avi]' = [E'(vi+1 - Vi_l)]' R (&47)
3 ]
Similarly in the helium direction we get:
r - L -
LAhj]i - [2 (hj+1 hj_l”i ¢ (48)
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Notation and coordinates of the i,jth element

Fig. 11.
in a helium—-vacancy phase space.
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With these definitions of Avi . and Ahi . the left-hand side of Eq. (44)

3 3

becomes:

by s+1/2 Vit1/2,3 \C
3_ - _ 1,3
5t / . J ci,j 3v 3h = Ahi,j Avi,j TS , (49)
i,3=1/2 "i=1/2,j
and the right-hand side of Eq. (44) becomes:
h, . v, .
i,j+1/2  Ti+1/2,3 aJ? j an 1
—_— 2. 3. -
) / / 3v 3h | T ]
i,i-1/2 Vi-1/2,j
Ri,341/2 Vit1/2,3
-av, . 3% - ah, / 33, ., (50)
1,3 4 i,] i,i i,
i,j-1/2 i-1/2,3
with
i,j+1/2
h h h
T / 8355 = My ¥ Jj-—1/2]i
i,3-1/2
h h
= [yoin - Jj+1/2]i y GD
Defining
h _r.h
lower {Jj—l/Z]i
h _rth
upper = [Jjﬂ/z]i ’ (52
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Eq. (51) becomes:

by 4172
h h
- SR L L B (53)
h i3 low upp -y
i,i-1/2

Similarly, for the vacancy integral of the right-hand side of Eg. (50)

we get:
Vi+1/2,3
v - v _ v b
i} J BJ; ;5 = (9] 0w Jppl. (54)
where:
v I
Jow = [Ji-l/Z]. ?
J
v _ 1.V
Jupp = [Ji+l/2]j . (55)
. h h v v . e s
The expressions for J , J and J s J are derived by finite
low’ “upp low upp
differencing equations (41) and (42).
h _ r-h
Jow = [Jj—l/Z]i
h 3DhC
= [F0_y,] [(_EE—Jj—l/Z] . (56)

i

Using a simple linear interpolation of the function (FhC)j_l/2 between

j=1 and j we obtain:



Foy, + (o), _,
1 — =2 . (57)

i

1/0] = [
i-1/2 i

And for the midpoint value considered, central differencing gives

h h
(D c)j - (D c)j_

5 b 1 2
[GzDC) 1 =1 ] +o[am] , (58)
N S VeI ARs_1/2

1

with Ahj—l/Z = hj - hj—l'

Combining Egs. (56), (57) and (58), we get:

h h
h {(F c)j + (F C)j-l]
low 2 i
ooy, - (DhC)j_l]
- . (59)
Ay 172

i

Finite differencing Jh s 37 , and I we get:
upp low upp '

h h
(F C)j+l = (F C)j

h
Jupp h 2 i
o’cy. . - ("o,
r ! i 6
j+1/2 i
where Ah, = h -h, ,

i+1/2 j+1 j

and
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1
1ow = 3 [FO, + o, 1}
J
1 \4 v
- [ [0, -, ]} , (61)
AVi—l/Z 1 i-1 .
and
1
szp - {3'{Fvc)i+1 * (Fvc)i]}j
1 \Z v |
- {m [(D C)i+l - (D C)l]}J ’ (62)
where
Ai172 T % T Vi1
Av, = v, - v, . (63)

The Fokker-Planck equation (40) is now represented by a finite number of

discrete equations of the form:

i,j 1 h _ .h
Btj - [Ahj]i {[ low Jupp]i}

1 v v
+ ———[Avi]j {[Jlow - Jupp]j} , (64)

where [Av, ]., [ah.]., o , Jh , JY , and 3’  are given by Egs. (47),
i3 j i low’ "upp low upp

(48), (59), (60), (61), and (62), respectively.
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3.6.2. Integral Finite-Difference Formulation of Boundary and Interior

Elements in a Helium—~Vacancy Phase Space. One of the biggest advantages

of Eq. (64) is the convenience with which the conservation principle can
be enforced through the boundary conditions.,

During irradiation the bubble size and helium-content distribution
follows a certain path in a helium=vacancy phase space (see Fig. 12)
depending on irradiation parameters.

The deviation of bubble sizes from this path (called trajectories)
tends to be a Gaussian. Thus a solution space or "cage” can be con-
structed around the trajectory beyond which the contribution to the
bubble distribution is negligible (see Fig. 13). The trajectory
represents the average size and helium content of the HVCs.

Upon discretization of the Fokker-Planck equation (64), the
continuum variables are replaced by discrete units of vacancies and
helium atom. Thus the helium-vacancy phase space is also discretized
(Fig. 14).

The discretization leads to six different types of mesh elements:

1. Upper Corner element
2. Upper Bound element

3. Interior element

4, Lower Corner element
5. Lower Boundary element

6. OQuter Boundary element

Each element in this helium-vacancy phase space 1s represented by one

discrete equation (64), which consists of four currents. Because there
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is no current across any of the boundaries along the solution space, the
six elements experience different combinations of current components in

the v- and h-direction.

Figure 15 illustrates the current-conditions for the six possible
discretized mesh elements.

Enforcing the current conditions on all mesh elements of our
discretized Fokker-Planck system of equations ensures conservation of
defect concentrations. Since nothing can leak through the boundaries of

the solution space (see Fig. 14), the total number density must be

conserved at all times:
My = [ [ #v 3h Clu,h,e ) = [ [ avshclv,he ) . (65)
v h v h
In other words, the zeroth moment MC must be comnserved.

inite Differencing the Transition Elements Between Small and

}‘:1

3.6.3.

Large Mesh Grids. By using a Fokker—Planck analysis, we have replaced a

series of coupled rate equations (ordinary differential equations) by a
partial differential equation, in which the particle numbers in clusters
are considered continuous variables.

The principal advantage of the chemical rate equations lies in
providing insight into atomistic details, while the Fokker-Planck equa-
tion provides insight into the main kinetic features of the microstruc—
tural evolution. This prompted us to develop a hybrid [5] (combined)
approach in which rate equations are used for small cluster sizes where-

as the Fokker-Planck approach is applied to large cluster sizes. This
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approach is based on the division of bubble evolution into character-
istic periods of nucleation and growth. Nucleation is analysed with the
rate equations while growth is vrepresented by the Fokker-Planck
equations.

Bubble evolution is caused bv the interaction of three species:
single vacancies, self-interstitials, and single-helium atoms. Because
more than one specie is involved, the classical nucleation theory
approach 1in determining nucleation periods and the onset of growth
periods cannot be utilized. Besides the multi-component character of
bubble evolution, its sensitivity to many parameters makes the division
between the characteristic periods even more difficult.

Our hybrid approach allows for an analysis of bubble evolution
without being forced to distinguish between nucleation and growth
periods. This is simply done by choosing a very fine mesh spacing for
the Fokker—Planck equations at the boundary of the hybrid rate
equation/Fokker-Planck equation system. In fact by reducing the mesh
spacing to unity in the Fokker—Planck equations we should recover the
system of single-step rate equations. 1In our original documentation [5]
of this hybrid method we have shownr this to be satisfied. Here we
allowed for a smooth transition between the rate equations and the
continuum Fokker-Planck equation by using a dynamically expanding mesh

spacing (see Sect. 3).
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We want to utilize the same principle in describing the helium
content evolution in bubbles. For this purpose we derive a set of
finite—difference equations for transition elements. By transition
elements we are referring to mesh elements that interlink two different
sized mesh grids (see Fig. 16). Our transition elements consist of two
kinds: quadriléteral and triangular.

First, we will derive the finite-difference formula Ffor the
guadrilateral transition element; second we will derive it for the

triangular transition element.

3.6.3.1. Quadrilateral transition element. To derive the finite-—

difference formula for the quadrilateral transition element we start

with the Fokker-Planck equation:

ac__3

3t ’

(66)

with

=13
i
:J_{U+
—
+
(13

v (67)
v

>
where Jh,JV are given by Egs. (41), (42), and (43) and ey and ;v are
unit vectors in the vacancy and helium directions, respectively.
We integrate Eq. (66) over the area of an expansion element as

shown in Fig. 17.

ff—g%dhdv=—ff(v-3)dvdh . (68)
v h v h
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Using Gauss' divergence theorem we replace the volume integral by a
g g g y

surface integral. The right-hand side of Eq. (68) becomes

[[G +F)avdh =47 «ds . (69)
v h s
Equation (66) thus becomes:
aC r r ¥
[ [==dvdh=-¢J -ds . (70)
ot
v h s

sC. . 2 3 4 1
(—=1)a =-([F-ds +{ Jods + | . ds + / . 35) .(71)
3t T1-4
1 2 3 4
The line integrals of 3 are:
2+ H+ v2 =
[3.ds 3R cos 8+ IR, sinp ,
1 21 in 1
I
5 = out 23 >
2
4 H=- v3 —
| 5.d5s=-J3"% cos 9+ J " R., sin 8 ,
3 u A in 34
L vl =
[Jeds=J_ R s (72)
A in 741
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where we have defined any current leaving the element as a negative and

any current entering the element as positive,

length. Furthermore:

R cos ©

o

R sin ©

Ah

1 hi,j+1

cos ©

sin ©

- Vi+1,j

AV s

N

Ah,

NI

AR,

N
s

2 Ah .

— T
Vi,g o o’

1,3

Combining Egs. (72), (71), and (73) we get:

= [J;I(AV) +J

v2,1
in(E-Ahl)

v3, 1

1
+ 372Gz an) + 37 (ah)]

in

and for the area Ay_, we have:

A = E-Ah. AV .
2 i

1-4

300

and R denotes the arc

(73)

v H
- Jout(z Ahl) - Ju(AV)

(74)

»

(75)



Equations (75) and (74) give:

aC

ij | _ 2 (JH _ JH )
ot 3 Ahl L i,5-1 u i+l
v2 J3
2 v in in v
Sy Uit ) T 2 el
b
The currents are defined as follows:
h - h 4 h ., h
[JH] . [F Cly i * [F Cly -1 ) [D cly 5 - D c]i’j_1
L 2 (G; o = hy L))
5] i,j~-1
[Fc] [Fc] [Dhci - %]
[JH] N L7 ¥li 341 .3 Ji,341 LT VL4
s 2 (b 541 - Pi3)
The vacancy currents:
v oV Vv .1 A4
7 ] - R R e A L P I Lkt
out 2 (Vie1,5 = vi’jj
v v \ v
v [F c]i,d + [F c]i_l’J [D Cji’j [D c]i_l’j
[J ] = 7
in . 2 (v, . — V. .
1,] 1,] i-1,3
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3.6.3.2. Triangular transition element. In order to write the

expressions for Jgg and J{i we first have to derive the finite-
difference formula for the triangular transition element depicted in
Fig. 18. Figure 18 shows the notation for this element. Using the same

approach as for the quadrilateral transition element we have

aC
¢ iz-! _ T H, _ Ve i \
(e layog = ~13, () = 30 (5 ahy)

vu 1 v
- Jout(E Ahl) - J'E(AV) + Jin(Ahl)] , (81)

and for the area A; 5 we have,
1
A = 5 AV 4b . (82)

Combining Eqs. (81) and (82) we have

acC
I 2 q H 2 1 L S TR
1.7 - _ (TQ_J)__\;[JV __(JV +,qu )} ,(83)

ot B Ah a A in 2 out out

where Ah,, AV, JH Ji are the same as described by Egs. (73), (77), and

12 2’
(78) respectively, and Jgn is the same as Jgé given by Eq. (80).
£

v 2 vu v3 ey s
7 = JVv = JV
Furthermore Jout Jln and Jout Jln' The difficulty in deriving

, ve . A
the expressions for Jout and ngt of the triangular transition element

. ; . vy
lies in the absence of an (i+l,j) element. To evaluate Jout and Jgﬁt we

will have to approximate the triangular element by two rectangular

elements as depicted in Fig. 19.
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Notations for the approximation of the

triangular element by two rectangular elements.
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The concentrations at the center of the lower and upper rectangular
elements is approximated by a second order polynomial fit between (i,j)
and (i+1,j) and (i-1,j) points. Once determined we can readily derive

. vi vu
the formulations for Jout and Jout.

v v
+
. R LA TR Y
out’_ . 2
o
v — Ve
D7Clse1,5ys [P Cles 5y
- (V - v ) > (84)
i+1,5 1,3
and
v v
FCi,. . + [F'C
[ vu ] . [ H(i+l,5)u [ ](1,J)u
out-, 2
i,
r v [
iD CI,. . - 1D Ci,. .
_t ](1+1,J)u l Y, )u (85)
RECTE IO b
Because J%Y, is equal to JY3 and JVR is equal to JYZ in the trapizoidal
T Yout * in out - in & T

transition element, we now have all necessary equations to describe the

transition band finite-difference formulas.

4,1. Model Application to Stainless Steel Irradiated Under HFIR

Conditions
An important aspect of the present work is its ability to analyse
the behavior of very large clusters of vacancies and helium atoms. The
majority of previous theoretical treatments has been confined to small
clusters of helium and vacancies or did not properly include helium in

the evolution analysis [6]. For example Wehner and Wolfer [6] used the
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path integral approach to study cavity evolution. A drawback of this
method is neglecting the influence of helium on the evolution process.
Their analysis has been only one dimensional,

The present model 1is applied to stainless steel irradiated in
typical HFIR conditions at 450°C. We have restricted ourselves to
studying this case because of lack of experimental data regarding
helium—filled cavity evolution.

Recently, Maziasz [7] investigated the sensitivity of microstruc-—
tural evolution to increased helium content during neutron irradiation.
In particular, he used EBR-II- and HFIR-irradiated samples to study
cavity evolution. The increased helium generation in HFIR makes its
data a useful test of the present theory. HFIR conditions have been
previously identified to result in spontaneous nucleation.

In his experiments, Maziasz [7] found that the low fluence swelling
peaks at 425° to 450°C, as cavities grow among a constant background of
finely dispersed bubbles present at ~ 9 to ~ 14 dpa. This results in a
bi-modal cavity distributioun, characteristic only to this temperature

range.

4.,4.1. Results of Discrete Rate Equations. Before cavities can reach

the growth stage, we have to establish the quasi-steady-state concentra-
tion of critical HVCs. As explained in Chapter V, this is accomplished
by solving a set of detailed rate equations describing the kinetics of

interaction between helium and displacement damage.
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The typical displacement damage rate for HFIR dirradiation
conditions is 1l.11 x 10-6 dpa/s, and the helium production rate is 6.35
X lO_11 at./s. While the re-solution parameter b has been set equal to
1, and the dislocaticn bias factor to Zi=1.08, the remainder of material
parameters are the standard values for 316 stainless steel and are given
in Table II.

Figure 20 shows the conentrations of single wvacancies Cy» self-
interstitials C;, interstitial helium atoms CHe’ as well as critical
HVCs. Although the time structure of Cv and Ci is little affected by
the presence of helium, the absolute magnitude of the vacancy concentra-—
tion in this case is less than the corresponding case [5,13] without the
interaction with helium gas. During the early stages of irradiation,
helium is generated as an interstitial helium atom, but is soon trapped
when vacancies become available. This mechanism keeps the concentration
of untrapped helium atoms low. This frapping eventually leads to the
formation of ©bubbles from substitutional helium., The bubble
concentration has been reported to be ~ 2 x 10-8 at./at. for HFIR
irradiation experiments performed at 467°C [14]. Our simple set of rate

-9
equations predicts a critical HVC concentration of ~ 8 x 107° at./at.

(Fig. 20).
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TABLE II

STANDARD MATERIAL PARAMETERS FOR 316 STAINLESS STEEL

Notation Parameter Value Units Ref.
a Lattice parameter 3.63 & 8
k Boltzmann's constant 8.617 x 107° eV/X
p Dislocation density 3 x 1010 cm/cm
E? Migration energy of single

interstitials 0.2 ev 9
EGr Migration energy of
© interstitial helium 0.1 eV
E" Migration energy of single
v
vacancy 1.4 ev 9
Eg Formation energy of a vacancy 1.6 eV 9
¥
E£ Formation energy of an
interstitial 4.08 eV 3
Yy, Surface energy 6.24 x 1014 eV/cm 3
vy Interstitial vibration frequency 5 x 1013 ¢t 10
v Helium vibration frequency 5x lO13 s_'1 11
v, Vacancy vibration frequency 5x 1012 s_'l 10
B Van der Waals' constant 1.75 x 10723 11
b Re-solution parameter 1
Zi Bias factor of interstitials 1.08
. -23 3
Q Atomic volume 1.1958 x 10 cm 12
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Fig. 20. 1Irradiation produced defects and critical HVC
concentration as a function of time for HFIR
irradiation conditions at 450°C.
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Having established the Qquasi-steady-state concentrations of
critical HVCs and mobile defects, we use the trajectory analysis
(Chapter V, Sects. 3.1 = 3.6) to establish the most probable helium—
vacancy combinations for growing cavities. Using the parameters of
Table II and the results of the detailed rate equation analysis, Fig.
21(a) shows the trajectory of these calculations. Using Van der Waal's
equation of state for comparison, we have also shown the trajectory of
cavities in mechanical equiligrium. with the surrounding lattice. In
equilibrium cavities, the pressure is equal to the surface tension
stress. It is shown [Fig. 21(a)] that the amount of helium is smaller
than that needed for mechanical equilibrium for cavities with less that
~ 1000 vacancies. The opposite trend takes place for larger cavities.
When the rate of radiation re-solution is set to ~ 1 times the atomic
displacement rate, a different trajectory is obtained in the helium-
vacancy phase space [Fig. 21(b)]. Note however that the scales of
Figs. 21(a) and (b) are logarithmic, and that large cavities become
underpressurized because of the effect of re-solution. In our applica-
tions we have used a re-solution rate that is equal to the atomic dis-
placement rate. Therefore we will follow the trajectory outlined in
Fig. 21(b).

At this point, we can compare the prediction of the trajectory
analysis to that of the experimental findings of Masziasz {[7]. When
plotted as a function of irradiation time, the cavity diameter along the
trajecttory of Fig. 21(b) can be compared to measured hubble diameters.
Figure 22 shows our analytical results and the available experimental

data points. Although only a few data points are available, it can be
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Fig. 21(a). Growth trajectory for HVCs under
HFIR irradiation conditions at 450°C.
(b=0, re—-solution parameter)
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seen from Fig. 22 that the average trajectory analysis comes close to
experimental findings. This experimental and analytical agreement is of
significance to the remainder of our model. The present Fokker—Planck
model follows the evolution of cavities from the critical HVC size of
three vacancies and three helium atoms to large bubbles containing
millions of helium~vacancy combinations.

Figure 22 shows the ranges in a helium—vacancy phase space that
need to be considered. We need to consider cavities containing up to
107 vacancies and 105 helium atoms. Since the trajectory traces the
path of the average helium—vacancy combination, we can assume that HVCs
located far from the .trajectory are nonexistent. This concept is used
to develop a regime in helium~vacancy phase space where the analysis can
be carried out and can be realistically compared with experiments. By
using an estimated diffusional spread around the trajectory (Chapter V,
Sect. 3.6), we determine the outer boundaries of the solution domain.
Figure 23 shows the diffusional spread around the trajectory. This is
estimated as five times the standard deviation, containing more than 99%
of the distribution.

We will solve the Fokker—-Planck equation describing the growth of
HVCs for the region between the upper and lower boundaries of Fig. 23.
The results of the Fokker—Planck analysis should be insenmsitive to the
choice of trajectory boundaries. 1In the following we will investigate
the results of the evolution analysis and analyze the effects of the

size of the solution domain.
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Fig. 23. Growth trajectory for HVC for HFIR irradiation
conditions at 450°C with 5 times the standard
deviation diffusional spreads.
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4.4.2, Results of the Fokker—Planck Equation. In applying the Fokker-

Planck equation to the domain outlined in Fig. 23, one is faced with the
question of mesh spacing. As mentioned in Sect. 3.4, a dynamic mesh-
space incrementation method is developed to minimize computation time
and errors while assuming numerical stability. At the onset of computa-
tions omnly ~ 20 equations are solved describing FVCs containing up to
300 vacancies and 200 helium atoms. Using the dynamic meshspace method,
that svstem of ~ 20 equations is eventually increased to ~ 110 equations
describing HVCs containing between 5 x 10° and 2 x 10° vacancies and 10%
to 105 helium atoms. This method is computationally very efficient. To
investigate the present case up to ~ 15 dpa, the total CPU time needed
was ~ 4.5 minutes on the E~Cray machine for solving the discrete rate
equations, the trajectory analysis, and the Fokker—Planck eguation.

The cavity evolution model assumes a separation between critical
HVC nucleation and cavity growth regimes. .Thus, we assume that the
total concentration of critical HVCs does not increase once the growth
state has set in. Therefore, the total cavity concentration at any time
during cavity evolution must be conserved. Because of the dynamic mesh-
space incrementation method, we frequently eliminate equations from the
system and add some at the same time. To ensure conservation of the
zeroth moment, this parameter is monitored throughout the computations.
Figure 24 depicts the error in the total cavity concentration from the
onset of irradiation to ~ 15 dpa. Considering the range of cavities
being monitored by our model (from 3 to 2 x 10° vacancies) and not uti-
lizing more than 110 equations at any time, the small error accumulated

is reasonable.
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An importantvquestion that needs attention is the influence of the
extent of the solution domain on the results. 1In Fig. 24, we show that
if the boundary is determined as seven times the standard deviation away
from the trajectory, the accumulated error is only few percent up to
~ 106 seconds. At later times, roundoff errors seem to start accumula-
ting becaﬁse of the larger extent of the solution domain.

Aside from the increase in concentration error, increasing the
solution domain of HVCs in helium—vacancy phase space does not change
the results of the cavity evolution analysis. The reliability of the
model is therefore established with a sclution domain determined by five
standard deviations away from the trajectory. The following results are
for the choice of HVC size region as depicted by Fig. 232, where we have
used five times the diffusional spread around the trajectory.

At the onset of cavity growth, all cavities are of the same size.
They contain three vacancies and three helium atoms. As irradiation
oroceeds, these critical HVCs diffuse in the helium-vacancy phase space
and the ounce-peaked distribution broadens. Figure 25(a) and (b) show
the results of such a cavity distribution at ~ 14 dpa after irradiation
has set in. (For HFIR conditions this corresponds to ~ 1.3 x lO7 s of
irradiation.) In Fig. 25 (a) and (b), the concentration of cavities is
shown as a function of helium and vacancy content. While the distribu-
tion is narrow for small clusters, it broadens as the peak traces out a
path close to the trajectory prediction. Although all previous analyti-
cal attempts have only been able to predict the trajectory path of HVCs
[15], our model is the first ome that establishes the time—dependent

distribution of HVCs in the helium—vacancy phase space.
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To demonstrate some aspect of cavity evolution, we will first
investigate the cavity size distribution for average helium contents at
various displacement damage levels. Figure 26 shows the helium content
as a function of irradiation time. During the early stages of irradi-
ation (~ 0.1 dpa), the average helium content of HVCs is only ~ 170
helium atoms, while at ~ 14 dpa it increases to ~ 3 x 104 atoms.
Figure 26 also shows the size distribution at various dpa levels. The
distribution of average size cavities as a function of helium content at
various irradiation times is shown in Fig. 27. We see that at the omnset
of irradiation (~ 0.1 dpa), there is a large concentration of small HVCs
(~ 2 mm/diam), all containing between 100 to 200 helium atoms. As
irradiation proceeds, the HVCs grow in size and one can find S nm HVCs
containing from a few hundred to several thousand helium atoms. This
evolution process is followed up to ~ 14 dpa. At that time, the average
HVC thas a diameter of ~ 20 nm and may contain from 2.5 x 104 to

1

3 x 10% helium atoms. Because the distribution spreads, while the

W

zeroth moment is conserved, the peak of the concentrations decreases
(Figs. 26 — 28). OUnfortunately there are no experimental data for the
helium content distribution of cavities as a function of irradiation
time and cavity size. The data available are only with respect to the
size distribution. Most of the experimental data report the percent of
the distribution as a function of size at various dpa's. Figure 28
shows the results of calculated size distributioms. While at ~ 0.1
dpa, the distribution consists only of small cavities (< 2 nm/diam), the

distribution has broadened to sizes of ~ 20 nm cavities.
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To compare our computer model to experimental findings, we have to
convert the numerical concentration results into distribution percen—
tages. In this regard, a simple transformation relating the number of

vacancies to the radius of a cavity is used:

ve = (4/3)7rS (86)

where v = no. of vacancies,
Q@ = atomic vol,
r = radius of cavity containing v vacancies.

At any time, the total cavity concentration is given by

Coop = [ [ c(v,n)dvdéh , (87)
v h
= z z C(v,h)AvAh . (88)
h
where Av = meshsize in the vacancy direction and Ah = meshsize in the

helium direction. In terms of size, the total cavity concentration is

given by

Coop = i C(r)dr , (89)
=) C(r) At . (90)
r
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At a particular radius T,» corresponding to a number of vacancies v, We

have from Egs. (87) and (89)

C(r ddr = (1 C(v >h) ghldv (91)
or
- d
c(r) = [%1 C(v ,h) ab](3) - (92)

Equation (86) yields

We have shown experimental [7] data at 9.2 dpa of the size distribution
in detail in Fig. 29. The results of the computer mode; using
Eas. (92) and (93) are shown on the same figure as a smooth curve. The
model predicts a narrower size distributiom, with the peak shifted by a
few nano-meters towards larger cavities. In Fig. 30 we compare our
results to the experimental findings [17] of Maziasz at 14.2 dpa.
Again, the model predicts a narrower distribution but the experimental
peak position is roughly coincident with the model at ~ 20 am. Equation
(92) combined with Eq. (93) transforms the vacancy-helium atom dependent
distribution function into one that is dependent only on the radius. It
is this size—dependent cavity concentration which can be expressed as a
percent of total cavity concentration and compared to experimental data.

It is encouraging to observe that the computed size distribution is
narrower than that experimentally observed. The broadening in our model

is solely due to the dependence of the emission/absorption probabilities

on the cavity size. We have not accounted for other stochastic effects
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CAVITY DISTRIBUTION AT 14.3 dpa (HIFR at 450 C)
10

89— Fokker—-Planck Model
{80.4 % of total distri.)

£
7-—
=
o
::; £~
o |
=
c 5
i
[+3]
o A |
= Experimental
@ 3= {(71.6 % of total distr.)
c S B |
g

—

1 1 i 1 1 I
0 5 10 15 20 25 30 35 40 45 50
Cavity Diameter (nm)

Fig. 30. Comparison of analytical and experimental cavity size
distribution at 14.3 dpa for HFIR irradiation conditions
at 450°C. (Experimental data after Maziasz [16].)
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on these probabilities, which are reflected in the function D. If other
stochastic effects are considered (e.g., spatial distribution of
cavities and stochastic nature of point-defect production [17]), the
computed distribution may broaden even further.

As pointed out earlier, Maziasz also examined the fine bubble con-
centration persistent at ~ 450°C up to ~ 14 dpa. Those fine bubbles
constitute a large portion of the total distribution. At 9.2 dpa, 437
of the total cavity concentration 1is im the form of bubbles ranging
between 1 and 3 nm/diam (Fig. 3la). This fraction slightly reduces to
~ 31% at ~ 14.3 dpa, while the sizes of these fine bhubbles stay around
2 nm/diam (Fig. 31b). At both dpa's the sum of the fine bubbles with
their coarse counterparts adds up to ~ 100Z of the total distribution.

In our model, we monitored the behavior of all sizes and found that
various HVCs did not grow beyvond a certain size and helium content. The
continuum rate equations (Fokker-Planck) describing the helium~vacancy
phase space are coupled via reaction rates. These reaction rates are a
function of helium content and size of the HVC being investigated. The
code is written in such a fashion that, when the concentration of a cer-
tain HVC reaches a low value (floor value), the equation describing that
cluster is eliminated from the system in order to avoid numerical
instabilities (see Sect. 3.5.1). Thus in effect, this method eliminates
unstable HVCs from the system of equations bheing monitored. Therefore,
a HVC containing, for example, 5 x 104 vacancies may be stable with
respect to vacancy emission if it contains 7 x 103 helium atoms
(Fig. 23). That same size HVC is unstable with regard to vacancy emis—

sion if it contains far less than 7 x 103 helium atoms, i.e., 500 helium
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atoms. Therefore a HVC containing 5 x 104 vacancies will emit vacancies
until it reaches the size at which 500 helium atoms will prevent any
further reduction in size [~ 104 vacancies (Fig. 21)]. A similar
scenario may happen with respect to helium emission from a cluster. 1In
this fashion we have monitored HVCs that have been isolated from the
growing system of HVCs. These HVCs are therefore the most stable
clusters that will no longer undergo any transformation in the helium or
vacancy direction. This process of isolation eventually comes to an end
as the cavity sizes increase. In our case, no more HVC isolations occur
above a mean diameter of 10 mm. This is due to the fact that for larger
gvCs (> 10 om), the distribution is very broad in vacancy ;nd helium
content (Figs. 26 and 27). By monitoring the zeroth moment of the
‘cavity distribution, we determined the percentage of isolated HVCs as a
function of irradiation time and cavity size. Our statiomary background
HVCs constitute about 20% of the total HVC distribution at 9.2 dpa which
remains constant from here on. These “statiomary” HVCs are the reason
for not having 100% of the cavity distribution present in Figs. 29
and 30. ith regard to the size distribution of the calculated back-—
ground HVCs (bi-modal), we found a broader and less peaked distribution
compared to the experimental findings.

Besides these differences, it is interesting to note that our model
not only predicts the correct size evolution of HVCs for HFIR irradi-

ation conditions, but it also indicates the development of a bi-modal

distribution.
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CHAPTER VIII

SUMMARY AND CONCLUSIONS

The effects of helium on bulk material properties such as tensile
strength, creep rupture, fatigue, etc., were outlined in Chapter II of
this thesis. 1In a fusion enviromment, helium production rates will be
in a regime that can cause any one or all of these properties to degrade
in metallic alloys (see Tables I and II, Chapter 111). In order to
minimize the effects of helium on alloy property degredation, the
formation and growth of helium bubbies during irradiation would have to
be suppressed. Until prototypical fusion test reactors are available,
this can only be accomplished through experimental alloy tailoring,

supported by detailed theoretical understanding of Thelium bubble

(6]

volution.

This thesis provides a tool aimed at understanding the formation
and the development of helium bubbles from atomistic to macroscopic
sizes.

First the atomistic behavior of helium as a single impurity atom
inside the host lattice has been reviewed. Atomistic calculation
results have been compared with experimental findings aimed at
determining the energetics of helium atoms at various lattice sites
(Chapter 1II). These findings have been used to investigate the
interaction of helium with other defects produced during irradiation.
Using a wmodel based on rate theory equations, it has been possible to

identify the effects of these interactions on the helium migration

mechanisms (Chapter IV).
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The developed model enables us to reproduce experimental findings
regarding the effective diffusion energy of helium measured under
specific irradiation conditioms. Furthermore, without resorting to
extrapolation techniques, it 1is possible now to estimate eifective
diffusion coefficients under conditions that are experimentally
difficult to measure. Under fusion reactor irradiation conditions, the
model gives the following approximate values for helium—effective

migration energies in nickel:

eff

E. =~ 0.83 eV for T > 8000%,
He

.F
Egi‘ = 1.4 eV for 400 < T < 800°%,
eff
Ep, © 0.65 eV for T < 4009%K.

Our analytical and numerical approaches to this problem constitute a
pioneering effort in this field, since all mechanisms influencing helium
transport have been included. These features consist of the temperature
effects on HVC_stability, the competition between self-interstitials and
helium atoms to react with vacancies, and the displacement collisidn
cascade re—-solution of helium atoms from HVCs.

The inclusion of all mechanisms in our model allowed us to
determine and identify the domain of each detrapping wechanism as a
function of irradiation conditions and material parameters. Thus we

determined that for fusion reactor irradition conditions, thermal
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detrapping is the main mechanism responsible for the effective helium

migration energy above 800°K. Below 400°K, helium re-solution due to

eff

He = 0.65 eV).

PKAs keeps the effective helium migration energy low (E
For temperatures between 400° and. 800°K, the competition between gelf-
interstitials and helium atoms for free vacancies affects the effective
helium migration energy the most.

The next step in understanding the evolution of helium bubble
evolution deals with the stahility of HVCs. It is the size and the
helium content of the critical (stable) HVC that determine the final
bubble size distribution.

To determine the helium-to~vacancy ratio of critical HVCs, we
followed the nodal line analysis first applied to HVCs by Russell et al.
(Chapter V). We expanded their model by including the self-interstitial
helium replacement reaction and the PKA helium re-solution mechanisms.
Our approach allowed us to map the nucleation regimes for spontaneous
and stochastic regions as a function of irradiation conditions and
material parameters.

In the spontaneous nucleation mode, very small nucleation barriers
exist and nucleation of stable HVCs proceeds homogeneously in the
matrix. This occurs under irradiation conditions of high helium
generation rates, low temperatures, and low sink density.

The second mode, that is stochastic nucleation, proceeds with
substantial nucleation barriers, which must be overcome by subcritical
HVCs 1in order to reach stable configurations. This case 1s best

achieved at high temperatures, high dislocation sink density, and low

helium generation rates.
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Thus we are able to explain the differences in basic experimental
findings concerning cavities in HFIR and EBR-II irradiation samples.
The high helium generation rate of HFIR renders a spontaneous nucleation
mode which leads to the formation of 20 to 5C times more numerous, and
10 timgs smaller, bubbles than found in EBR-II-irradiated steel samples.

In setting up our nodal line method for HVC stability analysis, we
added one other feature not present in Russell’s approach. While he
used estimates of free energy of formation of HVCs, we used numerical
equations of state for dense gases in cavities to estimate the binding
energies of the last helium and the last vacancy to a HVC.

When applied to very small HVCs, our approach to calculating the
helium—vacancy binding energies <compared supprisingly well with
atomistic calculations performed by Wilson, Baskes, and Johnson. Thus
we no longer needed to use estimates of free energies or extrapolation
of atomistic values to establish the nodal line analysis for HVC
stability.

After determining the irradiation conditions under which stable
HVCs nucleate, we next focused our attention on establishing the
evolution path of bubbles in a helium—vacancy phase space. The goal has
been to predict the average HVC size and helium—vacancy ratio as a
function of time and irradiation conditions. For this, we used the
method of growth trajectories recently used by Trinkaus (Chapter V). He
formulated an analytical model which can be solved for a narrow range of
conditions. We employed a similar approach and developed a simple
numerical model that compared well with Trinkaus's analytical

solution. However, our numerical model is no longer limited to a
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specific case but can be applied to a variety of realistic irradiation
conditions.

We have established the growth trajectories for accelerator, HFIR,
and EBR-II irradiation conditions and compared these with growth
trajectories for equilibrium helium bubbles. Furthermore, we have been
able to show the effects of using the ideal gas law versus the Van der
Waal equation of state on the development of the growth trajectories
(Chapters V and VII). As expected, the choice of gas law onlv affects
the early stages of HVC trajectories, while for larger HVCs the answers
converge to similar values.

The growth trajectory of HVCs in a helium—vacancy phase space not
only traces the loci of the average HVC size and helium-vacancy ratio,
but it can also be used to determine a finite solution space for
numerical analvsis. Here, we have used a multiple of the diffusion
spreads in the helium and vacancy direction for loci along the growth
trajectory to establish the size of the solution dowmain for Fokker-—
Planck analvsis. By envoking a zero-—current boundary condition on this
prescribed contour, we have been able to minimize the solution space in
the helium—vacancy phase space.

This brings us to the final stage of bubble evolution: the growth
of HVCs to macroscopic sizes. To model bubble growth, we have derived
the Fokker-Planck equation for HVCs. This has been established by
expanding a generalized rate equation for BVCs using a Taylor series
expansion technigue. Collecting terms resulted in a continuum rate
equation in which the coefficients of the drift term represents the

first moment and the coefficients of the diffusion term the second

338



moment of the fluctuation probability in point-defect absorption
rates. We have developed a novel calculationzl method for the solution
of this 2-D Fokker—-Planck equation. First, we sclve a set of eleven
discrete rate equations describing the time-dependent concentrations of
five fundamental mobile species and the concentration of critical HVC
embrvos. The five mobile species being monitored are single vacancies,
self-interstitial atoms, interstitial helium atoms, divacancies, and
divacancy single-helium clusters.

The quasi-steady—state solution to these equatioms provides five
defect fluxes as well as the critical HVC concentration, which will now
be considered as the nucleus for growing HVCs.

At this stage, the Fokker-Planck equation is solved numerically.
In order to maximize programming efficiency and to minimize
computational time, a dynamic incrementing mesh spacing method has been
developed. In this method, only equations are solved that lie in the
vicinity of the moving peak of the HVC size distribution (Chapter VII).

The application of these hybrid discrete and continuum rate theory
equations are demonstrated in Chapter VII. We have chosen typical HFIR
irradiation conditions in order to be able to compare our results to
experimental findings. Good agreement between our predicted size
distributions and those measured by Maziasz has been found. In
addition, our calculations allow the estimation of the helium content
distribution which cannot be experimentally determined at the present
time. Our calculations can thus be considered as pioneering in
establishing a 2-D distribution of HVCs. Other stochastic sources for

the spread in the size distribution due to cascades have been recently
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discussed by Kitajima. Those can easily be included in the analysis,
with the effect of spreading the distribution function further. - There-
fore better agreement with experiments 1is expected.

Thus we have followed the bubble evolution from an atomistic level
of helium~defect complexes over the stable nucleation regime of HVCs to
macroscopically verifiable helium bubbles. Although other
microstructural evolution processes such as grain  boundaries,
precipitates, and dislocation line densities have been grossly modeled,
this work is a first attempt in developing a unified bubble evolution

model that is not subject to non-physical simplifying assumptions.
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