
University of California

Los Angeles

Kinetic Monte Carlo Simulations of Defect

Nano-mechanics with Applications to

Dislocation Dynamics in Irradiated α-Iron

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mechanical Engineering

by

Ming Wen

2005





The dissertation of Ming Wen is approved.

D.C.H. Yang

J.-W. Ju

G.P. Carman

N.M. Ghoniem, Committee Chair

University of California, Los Angeles

2005

ii



To my parents and my wife . . .

for their love and support

iii



Table of Contents

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 EFFECTS OF NEUTRON IRRADIATION ON MECHANICAL

PROPERTIES OF MATERIALS . . . . . . . . . . . . . . . . . . 1

1.2 DEFINITIONS AND TERMINOLOGY . . . . . . . . . . . . . . 5

1.3 SCOPE OF THIS THESIS . . . . . . . . . . . . . . . . . . . . . . 8

2 EVIDENCE OF DISLOCATION DECORATION AND RAFTS 9

2.1 EXPERIMENTAL OBSERVATIONS . . . . . . . . . . . . . . . . 10

2.2 THEORETICAL ANALYSIS ON MECHANISMS OF DISLOCA-

TION DECORATION AND RADIATION HARDENING . . . . 14

3 REVIEW OF KINETIC MONTE CARLO METHOD . . . . . 19

3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 THE N -FOLD WAY ALGORITHM . . . . . . . . . . . . . . . . 20

3.3 KINETIC MONTE CARLO METHOD . . . . . . . . . . . . . . . 22

4 ELASTIC REPRESENTATION OF DEFECTS . . . . . . . . . 27
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Experimental observations of dislocation decoration with Self Interstitial Atom

(SIA) clusters, and of SIA cluster rafts are analyzed to establish the mechanisms

controlling these phenomena in bcc metals. The elastic interaction between SIA

clusters, and between clusters and dislocations is included in Kinetic Monte Carlo

(KMC) simulations of damage evolution in irradiated bcc metals. The results in-

dicate that SIA clusters, which normally migrate by 1-D glide, rotate due to their

elastic interactions, and that this rotation is necessary to explain experimentally-

observed dislocation decoration and raft formation in neutron-irradiated pure

iron. The critical dose for raft formation in iron is shown to depend on the in-

trinsic glide/ rotation characteristics of SIA clusters. The model is compared

with experimental observations for the evolution of defect cluster densities (ses-

sile SIA clusters and nano-voids), dislocation decoration characteristics, and the

conditions for raft formation.
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CHAPTER 1

INTRODUCTION

1.1 EFFECTS OF NEUTRON IRRADIATION ON ME-

CHANICAL PROPERTIES OF MATERIALS

With the constant increase in energy consumption, nuclear power has been regain-

ing stature as a serious alternative energy source other than fossil fuel. Among

all the debates surrounding nuclear energy, safety issue is no doubt one of the

biggest concerns. Most materials experience dramatic mechanical and physical

property changes when irradiated by energetic particles such as fission or fusion

neutrons [1]. Radiation damage plays a decisive role in the lifetime and safety of

components used in current fission power plants, and thus indirectly affects the

economy of fission power. For proposed future fusion reactors, radiation damage

caused by the interaction of fusion plasma ions and neutron-induced recoils with

the first walls, structures, and other functional materials is a major challenge in

the realization of fusion power [2, 3, 4, 5, 6, 7].

It is well established that neutron irradiation causes a substantial amount

of hardening and changes significantly the deformation behavior of metals and

alloys, particularly at irradiation temperatures below the recovery stage V (i.e.

< 0.4 Tm where Tm is the melting temperature). Since the early investigation

of irradiation hardening by McReynolds et al. [10] and Bleweitt et al. [11], the

effect of irradiation on mechanical properties has been a subject of extensive
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Figure 1.1: Experimental stress-strain curves for irradiated and unirradiated cop-

per. Specimens were irradiated in the DR-3 reactor at Risø National Laboratory

at 320 K, and tensile tested at 295 and 320K [8].

Figure 1.2: Experimental stress-strain curves for irradiated and unirradiated pure

iron. Irradiations were conducted in the High Flux Isotope Reactor (HFIR) at

Oak Ridge National Laboratory (ORNL) at about 70 ◦C, and tensile tested at

70 ◦C. [9].

2



investigation for more than 40 years. The post-irradiation deformation experi-

ments (i.e. tensile tests) with measurements of the stress-strain curve and the

yield stress have consistently illustrated the three significant changes induced by

neutron irradiation. First, it is noted that the yield strength of metals and alloys

increases with increasing neutron dose level. These effects are quite considerably;

for example, the yield stress for 0.2 displacement per atom (dpa) was increased

by a factor of more than 6 in figure 1.1 [8]. Second, it is observed that materials

irradiated to a displacement dose beyond a certain level exhibit the phenomenon

of a sharp and prominent yield drop, and the magnitude of yield drop increases

with increasing dose level. Third, the irradiation causes almost a complete loss

of work hardening ability and a severe reduction in uniform plastic elongation

(i.e. ductility) as measured in a uniaxial tensile test. The decrease in tensile

ductility associated with low temperature neutron irradiation was the topic of

an overwhelming amount of studies performed in the the 1950s and 1960s, and

the phenomenon was commonly referred to as low temperature radiation em-

brittlement. A more appropriate term for the low uniform elongation typically

observed following low temperature irradiation is the loss of strain hardening ca-

pacity. Under these conditions, in many cases the specimens show a clear sign

of plastic instability immediately beyond the yield drop. It is interesting to note

that these plastic deformation characteristics such as yield drop, lack of work

hardening and increase in yield stress with increasing dose levels observed in

copper (figure 1.1) are not isolated observations for particular crystal structure.

In fact, these characteristics are common to all three crystal structures, fcc, bcc

and hcp (see Ref. [12] for a review). Figure 1.1 and 1.2 demonstrate the similar

deformation behavior reported for fcc copper irradiated at 320 K [8] and bcc iron

irradiated at 70 ◦C [9].

One of the most striking microstructural features emerging from post-irradiation
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Figure 1.3: Example of cleared dislocation channels formed in pure iron irradiated

at 320 K to 3.75 × 10−1 dpa and tensile tested at 320 K [13].

investigations is the observation of ‘cleared’ dislocation channels, narrow bands of

material (∼50-200 nm in width) often completely cleared of the defects produced

during irradiation by the successive passage of dislocations generated from some

dislocation source within the material. The post-deformation microstructure of

irradiated materials displaying a prominent yield drop clearly indicates that the

plastic deformation is initiated in a very localized fashion and confined almost

exclusively to the ‘cleared’ channels (see Ref. [14] for a review). An example of

localized plastic flow in irradiated pure iron is shown in figure 1.3. Plastic flow lo-

calization will eventually lead to loss of ductility and premature failure. It is this

prospect of irradiation induced drastic decrease in ductility and the possibility of

initiation of plastic instability that has given rise to a serious concern regarding

the mechanical performance and lifetime of materials used in structural compo-

nents of a fission or a fusion reactor. The changes in mechanical properties result

from corresponding changes in the material microstructure. Therefore, the key

to understanding and predicting mechanical behavior changes during irradiation

4



relies on having a detailed understanding of both the materials microstructure

evolution during irradiation and the connection between microstructure and me-

chanical properties.

1.2 DEFINITIONS AND TERMINOLOGY

A number of important physical phenomena take place when energetic parti-

cles penetrate through solids. Those macroscopic, observable, and often techno-

logically significant results induced by the bombarding particles are collectively

know as radiation effects.The area of radiation damage and effects is concerned

with the investigation of microscopic and macroscopic phenomena resulting from

the immediate interaction of high-energy particle with solid materials. The mi-

crostructure of irradiated materials evolves over a wide range of length and time

scales, making radiation damage an inherently multiscale phenomenon.

In a fission or fusion reactor, neutrons will transfer substantial energy to a sta-

tionary lattice atom in a collision, which is of the order of hundreds to thousands

of kiloelectron volts (KeV). This amount of energy is so much greater than the

energy binding the atom in its lattice site, namely the displacement thresh-

old energy, that the struck atom is permanently displaced from its equilibrium

lattice site. The empty lattice site left behind by the displaced atom is called a

vacancy. The displaced atom which is situated between the normal sites of the

lattice is referred to as an interstitial. If an interstitial atom is of the same na-

ture with the atoms of the matrix lattice, it is said to be a self-interstitial atom

(SIA). The combination of an interstitial and a vacancy is termed a Frenkel pair.

The lattice atom first stuck and displaced by the incident particle possesses is

called the primary knock-on atom, or PKA. A PKA can possesses enough en-
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ergy to impart a fraction of its energy to neighboring lattice atoms, and therefore

create additional lattice displacements. These subsequent generation of displaced

lattice atoms are known as secondary order knock-on atoms (SKAs) or recoil

atoms. The recoils can become energetic particles in their own right and are ca-

pable of resulting in more recoils as long as their energy is above the displacement

threshold. The collection of point defects of both interstitial or vacancy types

generated by a single primary knock-on atom is defined as a collision cascade.

In addition, higher-energy cascades may be expected to break up into several

local damage zones called subcascades.

A cascade exhibits two main stages as it evolves with time. The first is a

ballistic or collision phase lasting a few tenths of a picosencond, during which the

energy of the PKA is distributed by multiple collisions among many atoms, with

the result that they leave their lattice sites. This creates a central disordered core

surrounded by regions of crystal displaced outwards. In the second, in addition to

the displaced atoms the atomic collisions of the nucleons generate sufficient ther-

mal agitation that the highly disrupted core region of atoms may be considered

to have been raised to a temperature above the melting point, producing what

is referred to as a thermal spike. Thermal-spike phase lasts several ps and the

hot disordered core initially acquires some liquid-like characteristics. During this

phase, the majority of the displaced atoms in the outer regions return by ather-

mal relaxation to lattice sites in less than one ps, but strong disorder persists in

the core for a longer time (several ps). This process can be viewed as a short

term local melting followed by a rapid quenching of the liquid phase to form a

damaged solid structure in the bombardment affected region. The atoms that are

unable to regain lattice sites during this final stage become self-interstitial atoms

at the periphery of the core and, together with the vacant sites produced when

the core crystallizes, form the primary damage state - ‘primary’ in the sense
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that damage is produced directly in displacement cascade - of irradiation during

this short time frame [15]. Following the quenching stage of thermal spike, fur-

ther rearrangement and interaction of the surviving defects take place by normal,

thermally-activated diffusion of mobile defects.

Radiation damage is not restricted to the isolated point defects produced by

the incident particles. Actually, vacancies and interstitials can be produced so

close to each other that clustering of the point defects takes place spontaneously

within the short time frame of the primary damage state. The point defect

clusters created in displacement cascades can be thermally stable and behave

very differently from the component individual point defect in a kinematic sense.

Because of the proximity of point defects in a displacement cascade, a large

portion of the point defects produced by the high-energy collision are almost in-

stantaneously annihilated by the spontaneous recombination of unstable Frenkel

pairs within their nascent cascade. In fact, the fraction of point defects, which

actually survives a cascade and is capable of producing observable radiation ef-

fects, is of the most interest. The point defects and some of their clusters become

mobile by thermal activation at elevated temperature. Therefore, soon after pro-

duction in cascades some defects will be able to escape their nascent cascade

and migrate long distances in the matrix, thus contributing to formation and

evolution of microstructure by interactions between themselves, as well as with

extended microstructures such as dislocations and grain boundaries. These dy-

namic processes that occur after the primary stage are diffusional, involving much

longer length and time scales than that of the primary damage state.
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1.3 SCOPE OF THIS THESIS

The defects created in cascades form the primary damage state and their subse-

quent evolution gives rise to important changes in the mechanical properties of

metals. The primary objective of this thesis is to develop numerical simulation

techniques to investigate the evolution of microstructure in irradiated bcc metals

and its effects on the motion of dislocations. In Chapter 2, we review the exper-

imental evidence of microstructure features under neutron irradiation, including

dislocation decoration and formation of SIA loop rafts. In Chapter 3, the general

Kinetic Monte Carlo (KMC) scheme and related subjects are briefly described.

In the following chapter, a general elastic model which is capable of evaluating

the elastic interaction between atomic-size defects is introduced. An application

of the model to perfect defect clusters is also presented. In Chapter 5, using

the elastic model described in the previous chapter, we developed a KMC based

approach describing the microstructure evolution under displacement cascades

damage with incorporating elastic interaction between defects. The main features

of the model are provided as well. In what follows we use the new KMC model to

investigate the mechanisms of dislocation decoration and raft formation, as well

as the kinetics of damage accumulation under low doses of cascade-producing

irradiation in bcc iron at room temperature. Results of the model and compar-

ison with experiments are also described in the same chapter. The dynamics of

individual dislocations, their inertial mass, as well as interactions with radiation-

induced microstructures are then investigated in Chapter 7. Finally, Chapter 8

concludes the present dissertation on the modeling of microstructure evolution

in neutron-irradiated materials as well as the dynamics of dislocation interaction

with radiation-induced defects. The related future research is briefly discussed.

8

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil



CHAPTER 2

EVIDENCE OF DISLOCATION

DECORATION AND RAFTS

The microstructure evolution in both fcc and bcc metals produced by neutron

irradiation has been studied for a long period of time. Under neutron irradiation,

primary defect clusters, which are directly produced in displacement cascade,

play an important role in microstructure evolution and changes in properties of

irradiated materials. Evidence for the existence of self-interstitial atom (SIA)

and vacancy cluster within the cascade volume has been provided by experi-

mental observations as well as by computer simulations. For example, Diffuse

X-ray scattering on fast neutron irradiated metals at temperatures below stage I

provide evidence for spontaneous SIA cluster formation in cascades [16, 17, 18].

Molecular dynamics (MD) studies have also established the fact that SIA clusters

are produced directly in high energy cascades without need for diffusion during

the cooling down phase of the cascade [15, 19, 20, 21, 22, 23, 24, 25, 26]. Small

interstitial loops can further organize to make up patches or rafts at elevated

temperature [27, 28, 29], and dislocations are often heavily decorated by SIA

clusters in the form of small interstitial loops [12, 28, 30]. Under some condi-

tions, say a high temperature for instance, a raft of small closely spaced loops

becomes unstable due to easy proceeding of glide and climb, and can eventually

result in a large dislocation loop [27].
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2.1 EXPERIMENTAL OBSERVATIONS

Using Foreman and Eshelby’s [31] calculation of elastic interaction of prismatic

dislocation loops, Barnes [32] presented a primary discussion on the migration of

point defects by slip or climb or by both processes, and suggested a ”rafts” con-

figuration of loops which resulted from loops interacting elastically with others

on neighbouring basal plane and thereby adjusting their positions and orienta-

tions to take up low energy positions. The experimental observation of rafts of

loops was provided for graphite irradiated at 150 ◦C and subsequently annealed

as well [32]. A comprehensive and systematic investigation of the development

of microstructure as a function of irradiation temperature was later executed by

Brimhall and Mastel [27] for molybdenum in 1970. Even though the formation

of rafts of small interstitial clusters/loops is one of the most striking features

under cascade damage conditions and has been found for quite some time this

phenomenon has not been investigated systematically in the past. Brimhall and

Masterl’s work still remains to be the most recognized on the mechanism of raft

formation so far. They were the first to report the observation of raft formation

in Mo. Through use of transmission electron microscopy (TEM), it was found

that at low irradiation temperatures, ∼ 50 ◦C, existing small dislocation loops,

presumably interstitial, grow by point defect addition; at intermediate temper-

atures, 400 to 600 ◦C, small interstitial loops can migrate and agglomerate into

rafts; at high temperatures, 600 to 800 ◦C, the loops are highly mobile to form

large loops, and eventually interact with each other to produce a coarse disloca-

tion network. They discussed the possible mechanisms of formation of loops rafts

and dislocation decoration by loops and attributed them to loop glide combine

with self-climb, though their treatment was limited to higher temperatures where

both prismatic glide and conservative climb were both operative. Eyre, Maher
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and Bartlett [33] have carried out experimental observations and theoretical cal-

culations on the damage structures in molybdenum irradiated by neutrons, and

concluded that the growth of interstitial loops during post-irradiation annealing

also occurs by a combined glide and climb mechanism.

 

<1 1 1> 

Figure 2.1: Idealized representation of an side view of prismatic edge dislocation

loops comprising a raft

Brimhall and Mastel [27] assumed that prismatic gliding of loops did not

occur at 323 K. However, recent molecular dynamics simulations have demon-

strated that small SIA loops glide rapidly via correlated diffusion of SIAs in the

clusters/loops [20], and furthermore, Trinkaus et al. [30] have shown that the dec-

oration of dislocation and formation of rafts are attributed to the one-dimensional

glide of SIA clusters to a great extent. An idealized configuration for a raft [27]

was also proposed with using the elastic calculations by Foreman and Eshelby

[31]. The edge-on representation of the configuration for this idealized raft is

shown in figure 2.1. Elastic analysis shows that loops lying at 42.4◦ with respect

to one another render a minimum interaction energy and form a stable configu-

ration. It was believed that rafts form by loops having identical Burgers vectors

gliding together as a result of the elastic interaction between the loops, but be-

ing prevented from complete coalescence by the limiting process of self climb

[29]. Since then more subsequent experimental observation of raft formation in

Mo and TZM (Mo-0.5Ti-0.1Zr) have been reported [34, 29, 35, 36, 37, 38]. The
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formation of rafts of interstitial loops in the monocrystalline Mo was observed

occurring at a relatively low dose level of 5.4 × 10−3 dpa [38]. The segregation

of the microstructure into rafts of loops and isolated loops eventually leads to a

very heterogeneous microstructure at a dose level of 0.16 dpa. Eldrup and his

co-workers [9] investigated the difference in defect accumulation behavior, mainly

concerned about void nucleation and growth, between fcc Cu and bcc Fe under

neutron irradiation to fluences in the range of 10−4 to 0.8 dpa. TEM observa-

tions show that the density of SIA clusters both in Fe and Cu first increases with

dose. At doses higher than ' 0.01 dpa, the clusters begin to segregate and form

rafts of SIA clusters. The formation of the rafts-like structures is significantly

more efficient in bcc Fe than in fcc Cu. A TEM photograph of formation of rafts

of loops in Fe irradiated to a dose of 0.72 dpa was presented, the engineering

stress-strain curve by tensile test for the iron specimen irradiated to 0.72 dpa

exhibited a strong yield drop as well. In their experimental observations on void

formations in nickel 270 irradiated from 1 × 1018 to 1.5 × 1022 neutrons/cm2 at

various temperatures, Stiegler and Bloom [28] also reported rafts of small, perfect

dislocation loops, which they presumed as interstitial, were dispersed throughout

the specimens. Most experimental results suggest that a raft is made up of a

bunch of clusters of small interstitial loops, all having the same Burgers vector,

the raft as a whole having a clear < 111 > habit plane identical to the Burgers

vector of the loops. The size and distribution of rafts are heavily depended on

the material purity, irradiation temperature and irradiation dose, and the size

spectrum may range from ∼100 Å to more than 1000 Å [27, 29].

In many microstructural studies of neutron irradiated metals and alloys seg-

regation of small dislocation loops of SIA type is often observed in the vicinity of

grow-in dislocations in form of a ‘Cottrell-like’ atmosphere [39]. Figure 2.2 shows

the structure of a coarse dislocation network with a high concentration of small
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Figure 2.2: Dislocation structure in Nickel 270 irradiated to a fluence of 3.2×1019

neutron/cm2 [28].

loops located on or near the dislocation lines in Nickel 270 irradiated to a fluence

of 3.2 × 1019 neutrons/cm2 [28]. The phenomenon of decoration of dislocations

by small interstitial loops under cascade damage conditions have been observed

in a wide range of metals and alloys, for instance, pure nickel irradiated with 14

MeV neutrons at 300 K [40] and 560 K [41], Ni−2 at.% Cu and Ni−2 at.% Ge

alloys irradiated with 14 MeV neutrons at 563K [41], pure copper and copper

alloys irradiated with 14 MeV neutrons at 473 K [42], molybdenum irradiated

at 500 oC to a fluence of 5.7 ×1019 neutrons/cm2[27], and pure single crystal of

molybdenum irradiated with fission neutrons to a dose level of 1.6× 10−1 dpa at

320 K [38].
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2.2 THEORETICAL ANALYSIS ON MECHANISMS OF

DISLOCATION DECORATION AND RADIATION

HARDENING

Being associated with post-irradiation deformation behavior and post-deformation

microstructures, properties of clusters of vacancies and SIAs have received consid-

erable attentions because of their significant effects on microstructure evolutions.

The escalation of understanding the production, migration, and characters of

the SIA clusters has lead to the development of dislocation- and production-bias

[43] theories in terms of defect production and reaction kinetics to explain long-

term damage accumulation and microstructure evolution in irradiated materials,

in particular the heterogeneous and segregated features of microstructure under

cascade damage conditions. The production of stable SIA clusters in cascades

in combination with the decay of vacancy clusters at void swelling temperature

provides a remarkable driving force for void swelling, which has been called ‘pro-

duction bias’, on the condition that a considerably large number of stable SIA

clusters were annihilated preferentially at extend sinks such as dislocations, grain

boundaries and surfaces.

Of particular interest here is the already-mentioned microstructure features

of the formation of rafts of small dislocation loops and the decoration of disloca-

tion sources by loops. The available evidences on dislocation decoration could be

dated back as early as the discovery of raft formation (see Section 2.1), but it is

rather limited and scattered in literatures. No attempt was made to systemati-

cally study the phenomenon of dislocation decoration until Trinkaus, Singh and

Foreman [30] took the first leap on the mechanisms for decoration of dislocations

by small SIA loops. One earlier mechanism, which was suggested by Makin[44]
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that the decoration of a dislocation by loops might result from the sweeping of

glissile SIA loops during the motion of the dislocation, was first ruled out by

examining the fact that the accumulation of SIAs near the dislocation contin-

ues even when the dislocations are locked. Calculation also shows that strain

enhanced clustering of single three-dimensionally migrating SIAs is unlikely to

produce the observed decoration phenomena, so is metastable one-dimensionally

migrating crowdion. The model proposed by Trinkaus et al.[30] concludes that

the trapping and accumulation of glissile SIA loops in terms of one-dimensional

motion is the dominant mechanism corresponding to the occurrence of dislocation

decoration and raft formation. A concept of stand-off distance is introduced such

that SIA clusters approaching the dislocation within the range of the stand-off dis-

tance get absorbed into the dislocation by spontaneously Burgers vector changes

or climb and the loop accumulation can take place only outside this region[12].

Based on the analysis of experimental measurements of plastic deformation in

metals irradiated with fission neutron, in conjunction with microstructure fea-

ture of dislocation decoration, Singh et al.[12] proposed the so-called ‘cascade-

induced source hardening’(CISH) model to explain the characteristic features in

the deformation behavior of metals and alloys under cascade damage conditions

such as the increase of the upper yield stress without dislocation generation and

followed by a yield drop and plastic instability. In the model, it is postulated

that a dislocation decorated with interstitial loops is confined by the surrounding

atmosphere of interstitial loops and unable to move as supposed until the ap-

plied resolved stress reaches a high level so that the dislocation can be released

from cluster atmospheres in the vicinity of the dislocation glide plane. The CISH

model was used to estimate the stress necessary to unlock trapped dislocations

from the atmosphere of loops surrounding them, so that these detrapped dislo-

cations can operate as dislocation sources. The increase in the critical resolved
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shear stress (CRSS), ∆τ , was shown by Singh et al.[12] to be given by

∆τ ' 0.1µ(b/l)(d/y)2 (2.1)

where µ is the shear modulus, b is the magnitude of the Burgers vector, l is the

average separation of obstacles, and d and y are the defect diameter and stand-off

distance, respectively.

In addition to the recent CISH model, there are some other theories of radi-

ation hardening used for experimental data interpretation. In those models, the

hardening and embrittlement (decreases in tensile ductility and fracture tough-

ness) that occur in irradiated metals are considered to be controlled by interac-

tions between dislocations and defect clusters. In an early effort to explain the

observed increase in the yield stress of plastic deformation due to neutron irra-

diation, Seeger proposed the so-called ‘Zone Theory’of radiation hardening[45].

It was deemed that the increase in the critical shear stress was attributed to dis-

location interaction with radiation-induced obstacles, which were referred to as

depleted zones formed during neutron irradiation. This is similar to the model

used to compute matrix hardening by barriers to dislocation motion was devel-

oped by Orowan[46] for the ‘by-passing’of impenetrable obstacles by bowing of

dislocation segments around them. Based on Orowan’s model, the most com-

monly express for the change in shear stress induced in the dislocation glide

plane by a regular array of defects is shown in the following equation:

∆τ = αµb/l (2.2)

where α is a parameter representing the obstacle strength. In principle, α is

determined by the angle between adjacent dislocation segments at the point where

the dislocation breaks free of the obstacle[47]; if the critical angle is φ, α =

cos(φ/2). For the case of a random array of obstacles of diameter d and volume
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density N , l = 1/
√

Nd. Thus Equation 2.2 becomes

∆τ = αµb
√

Nd (2.3)

This model is most appropriate for strong obstacles. An alternative obstacle-

controlled strengthening was developed by Friedel-Kroupa-Hirsck (FKH) for weak

obstacles[48, 49], e.g. prismatic loops[49, 50], where the effective inter-particle

spacing is increased compared to the planar geometric spacing due to less exten-

sive dislocation bowing prior to obstacle breakaway. A simple estimation for the

increase of the critical shear stress is given by the following equation:

∆τ =
1

8
µbdN 2/3 (2.4)

For many radiation-induced small defect clusters, which are weak obstacles to

dislocation motion, the FKH model (Equation 2.4) may be more appropriate than

the widely used dispersed barrier hardening (DBH) model (Equation 2.3)[51].

However, these obstacle-controlled strengthening models are unable to provide

rational explanation for the observed yield drop during tensile testing of irradiated

materials.

Huang and Ghoniem[52] investigated the interaction dynamics between ses-

sile SIA clusters and dislocations in terms of elastic interactions with various SIA

cluster densities, the spatial and size distributions of cluster, and the orientation

distribution of individual Burgers vectors by using the method of parametric dis-

location dynamics (PDD) simulations. A considerably smaller CRSS was found

comparing with the results of the FKH model[50] based on dislocation-defect

cluster interaction, and its extension by Trinkaus et al.[30], which were based on

calculations of elastic interaction forces between dislocations and defect clusters

in rigid and static configurations.

Both raft formation and dislocation decoration heavily depend on an impor-
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tant process, namely the production and migration of SIA clusters. Theoretically,

there are two main mechanisms which could result in the formation and growth

of interstitial loops: (1) the acquiring single SIA one at a time, and (2) the mi-

gration and aggregation of interstitial clusters. In most of the studied cases, the

first mechanism is concluded to play an insignificant role in terms of the fact that

the coexistence and simultaneous growth of vacancy and interstitial clusters[32].

If the first mechanism dominate the growth of clusters, it is necessary that an

interstitial loop mainly acquires interstitial atoms and rejects vacancies. The

efficiency of the growth process is predicably to be much lower than when the

second mechanism of loops migration are involved. Barnes[32] presented a illus-

trative discussion on the direction of migration, magnitude of the driving force,

and migration distance by considering two interacting simple prismatic edge dis-

location loops in aluminium. In reality the situation is much more complex than

in the two-interacting-loops case. When it is considered that the vacancy and

interstitial loops each have all the possible Burgers vectors, are not simple edge

dislocations, have various sizes, and in addition the interactions are not between

two loops but with all those nearby, the situation becomes overwhelmingly com-

plex. On the other hand, these atomic-scale cluster processes such as migration,

agglomeration, recombination etc., are difficult to observe in situ. The difficulties

encountered in the studies by experimental and analytical meanings make large

scale numerical simulations a practical and necessary option in investigating the

mechanisms of formation of rafts and dislocation decoration in neutron irradiated

materials.
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CHAPTER 3

REVIEW OF KINETIC MONTE CARLO

METHOD

3.1 INTRODUCTION

In the study of radiation damage, MD simulations using semi-empirical embedded-

atom method (EAM) interatomic potentials have played a very important role in

understanding the details of defect production in displacement cascades, and in

helping to study the dynamics of point defect and defect cluster diffusion. Com-

prehensive reviews of recent development in MD simulations of radiation damage

have been given by Diaz de la Rubia [53] and Osetsky et al.[54]. Radiation

damage, however, includes a vast range of irradiation effects, such as production

and diffusion of point defects, and their interaction with other microstructure

features, which take place over time and length scales that span many orders

of magnitude. From a simulation perspective, although MD techniques can be

used to study the structure and the initial evolution of the damage, the compu-

tational time becomes prohibitive beyond the first few nanoseconds, even with

recent impressive advances in computers and algorithms. To overcome these

limitations, a way of connecting the MD simulation results to other simulation

methods such as rate theory (for example [55], [56] and [23]) or Kinetic Monte

Carlo simulations (for example [57], [58] and [59]) is required. In particular, KMC
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simulations appear very promising because they provide the ability to perform

atomic-level simulations of the defect kinetics and microstructure evolution over

relevant length and time scales.

The Monte Carlo (MC) method refers to any stochastic techniques which

investigate problems by sampling from random numbers and using probability

statistics. It is generally believed that the widespread use of Monte Carlo con-

cept began with the Metropolis algorithm in the calculation for a rigid-sphere

system [60]. The MC method is simply a statistical method for solving determin-

istic or probabilistic problems. It is a physics experiment carried out numerically.

This technique can be readily used to study equilibrium properties of a system

of atoms. Since the kinetic path of microstructure evolution is physically mean-

ingless in this scheme, it is not suitable for treating defect distribution process in

radiation damage.

This chapter gives a detailed account of the Kinetic Monte Carlo (KMC)

method which is suitable for simulating kinetic evolution process. The n-fold

way algorithm [61] is first introduced which is believed to be the earliest form

of the current KMC concept. A formal KMC procedure specifically designed for

simulating cascade-induced damage evolution in this thesis is next described.

3.2 THE N-FOLD WAY ALGORITHM

In Metropolis MC methods we decide whether to accept a move by considering

the energy difference between the states. In KMC methods we use rates that de-

pend on the energy barrier between the states. The term “Kinetic Monte Carlo”

was initiated by Horia Metiu, Yan-Ten Lu and Zhenyu Zhang in a 1992 Science

paper [62]. The paper first pointed out the demands on atomic level control of
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modern electronic and photonic devices and the importance of in situ STM obser-

vations of small atomic “clusters” to a theorist who wants to understand growth

and segregation; it then elaborated upon the usefulness of KMC simulations in

reproducing these experimental observations. The basic feature of their model

was to move atoms site-to-site on a square lattice terrace. They postulated rates

for all of the elementary processes involved, such as the site-to-site jumps, the

jumps to leave or join a step or an existing adsorbate cluster, and so forth. The

atoms were deposited on the surface and moved from site to site with a frequency

proportional to the rate of the respective move: if the rate constant of the i-th

kinetic process was ri, the largest rate was chosen as a reference and denoted rr.

The probability Pi = ri/rr was then used in a MC program as the probability

that the atom performed a jump i. The work used Voter’s transition state theory

[63] to monitor the simulation time. The essence through the references can be

traced to Bortz, Kalow, and Lebowitz’s n-fold way algorithm [61, 64, 65].

The n-fold way idea was created to replace the standard MC algorithm in

generating new configurations in simulating Ising spin systems. In or near the

equilibrium state, the standard MC scheme using a Boltzmann kinetic factor,

exp(-∆E/kT ), where ∆E is the system energy change, k is the Boltzmann con-

stant and T the absolute temperature, becomes very inefficient since the Boltz-

mann factor is usually very small in comparison with a random number over the

interval [0, 1] [61]. On the other hand, the n-fold way chooses a spin site from

the entire ensemble based upon its probability of flipping. Once a site was se-

lected, the flipping was guaranteed and could be immediately performed. The

n-fold way also provided a new simulation time concept. At each flip, the time

was incremented by a stochastic variable, ∆t, whose expectation value is pro-

portional to Q−1 (where Q is the number of spins times the average probability

that an attempt will produce a flip for a given configuration). Mathematically,
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∆t = −(τ/Q) ln ξ, where ξ is a random fraction and τ a system dependent time.

This choice reflects properly the distribution of time intervals between flips for a

reasonable physical model. The cumulative time thus summed is approximately

proportional to real time. The n-fold way reduced computation time by an order

of magnitude or more for many applications [61]. A similar concept was used in

Voter’s 1987 transition state theory [63].

3.3 KINETIC MONTE CARLO METHOD

Molecular dynamics is probably the most accurate atomistic simulation tech-

nique. However, due to the fact that it simulates all the lattice atoms and, most

importantly, that it uses an almost constant time step on the order of femtosec-

onds (10−15 s), it cannot simulate the timescales involved in typical technological

processing steps (seconds to hours). The kinetic Monte Carlo method, on the

contrary, is an event-driven technique, i.e., simulates events at random with prob-

abilities according to the corresponding event rates. In this way it self-adjusts

the timestep as the simulation proceeds, depending on the fastest event present

at that time.

If Arrhenius-like relationship is assumed to describe the diffusional processes

of clusters, the jump frequency (or the probability per unit time) for a possible

jump of a cluster, i, to take place is given by:

ri = ω0 exp(− Ei

kBT
) (3.1)

where ω0 is the pre-exponential factor of the defect cluster, kB the Boltzmann

constant, Ei the ‘effective’ activation energy for jumps of the cluster, and T is the

absolute temperature. Although the values of Ei for interstitials and vacancies

are well known from experiments, the values of Ei for small clusters and glissile
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dislocation loops and of ν0 for all kinds of defects have not been obtained exper-

imentally. In the present work, we will use results of MD calculations for these

values.

In many applications of the MC method, such as the equilibration of atomic

positions in a defected crystal, the space of possible configurations that the system

can assume is continuous. Therefore, there exists (in theory) an infinite number of

new configurations available to the system at any MC step. However, since we are

simulating defects in a volume of finite size which evolves according to a finite

set of physical or mechanical mechanisms, the number of new configurations

available at any MC step is finite and enumerable. This configuration space is

discrete. In other words, at each MC step, we can determine all of the potential

changes that the system can possibly undergo. Therefore, instead of attempting

a random change to the system at each simulation step and then accepting or

rejecting that change based on some criterion, we choose and execute one change

from the list of all possible changes at each simulation step. The choice is made

based on the relative rates at which each change can occur (i.e., the probability

of choosing one particular reaction instead of another is proportional to the rate

at which the reaction occurs relative to the rates of the other reactions).

Thus the microstructure evolution of the cascade-induced defect clusters is

accomplished by a KMC procedure in which one reaction is executed at one

site during each time step. The first step in KMC simulations is to tabulate

the rate at which an event (i) will take place anywhere in the system, ri. The

probability of selecting an event is simply equal to the rate at which the event

occurs relative to the sum of all possible event rates. Once an event is chosen,

the system is changed appropriately, and the list of events that can occur at the

next KMC step is updated. Therefore, at each KMC step, one event denoted by
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m is randomly selected from all possible M events, as follows:

m−1∑

i=0

ri

M∑

i=0

ri

< ξ1 <

m∑

i=0

ri

M∑

i=0

ri

(3.2)

where ri is the rate at which event i occurs (r0 = 0) and ξ1 is a random number

uniformly distributed in the range [0, 1]. The way in which the M events are

labeled (i.e., by specifying which events correspond to i = 1, 2, 3, . . . ,m, . . . ,M)

is arbitrary. After an event is chosen and executed, the total number of possible

events, M , and the sequence in which the events are labeled, will change.

Figure 3.1: Schematic representation of various competing thermally activated

diffusional processes. The large sectors represent jump paths with large jump

rates and vice versa.

The essence of the first step for a diffusion problem can be illustrated by a pie

chart, Fig. 3.1. Consider a system with numerous potential jump paths. Allow

the big sectors to denote high probability jump paths and the small sectors to
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denote low probability paths. To faithfully execute the KMC process, any one

of them, no matter it is a high or low probability jump, should have a chance to

be selected. This can be accomplished by allowing every point on the perimeter

of the pie-chart to have an equal chance to be selected. This automatically takes

into account the weighting process. For the present work, since the number of

mobile defects is not very large, we used the simple linear search algorithm.

The reciprocal of an atomic jump probability per unit time is a residence

time for a defect cluster that moves by that specific type of jump. Since the

jump probabilities of all the different types of jumps are independent, the overall

probability per unit time for the system to change its state by any type of jump

step is just the sum of all the possible specific jump type probabilities, and so the

residence time that would have elapsed for the system in a specific configuration

is the reciprocal of this overall jump probability

∆t =
1

M∑

i=0

ri

(3.3)

which is independent of the chosen transition. It may also be important to include

the appropriate distribution of escape times. For random uncorrelated processes,

this is a Poisson distribution. If ξ2 is a random number from 0 to 1, the elapsed

time for a particular transition is given by

∆t =
− ln ξ2

M∑

i=0

ri

(3.4)

The system is then advanced to the final state of the chosen transition and the

process is repeated. By following the ensuing discrete jump path for the system,

accumulating the residence time of the system along the path, and linking this

history to the cascade arrival interval (or the damage rate), the diffusion process
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can be realistically simulated. The expression for ∆t in Eqn. 3.4 is rigorous[61],

and a derivation is also provided by Battaile[66].
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CHAPTER 4

ELASTIC REPRESENTATION OF DEFECTS

4.1 KRÖNER’S DESCRIPTION OF POINT DEFECTS

BY FORCE MULTIPOLES

Although the interaction between atomic-size defects requires extensive MD or

even abinitio calculations, the theory of elasticity can be utilized to simplify such

calculations. Defect-defect interaction does not generally result in significant local

deformation, and hence linear elasticity is expected to give accurate results. This

approach has been successfully used to describe static defect-defect interactions

[50, 67, 68, 69]. Following Kröner [70] and Teodosiu [71], nano-scale defects exert

forces on the atoms in theirs vicinity, which are different from those acting on

these atoms in a perfect lattice. Let Pv denote the additional forces exerted by

a nano-defect centred at x′ on the atom situated at x′ + lv. According to the

definition of Green’s function, the force system Pv generates in an infinite elastic

medium the displacement field (see Figure 4.1)

um(x) =
N∑

v=1

Gms(x − x′ − lv)P v
s (4.1)

where G is Green’s tensor function of the elastic medium, while N is the number

of atoms on which extra forces are exerted. Theoretically, N = ∞, but, as Pv

decays very rapidly when ‖lv‖ → ∞, it is usually sufficient to take into account

only the forces employed on the first and second nearest neighbors. Expanding
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u m

v

P(v)

 V

Perfect (Indefective)
Lattice

Defect Core Region

Defective Lattice

Figure 4.1: Schematic representation of lattice deformation induced by the oc-

currence of a defect, as well as the point forces approximation.

G(x − x′ − lv) in a Taylor series about x − x′ leads to

Gms(x − x′ − lv) =
∞∑

k=0

1

k!
Gms,q′1q′2...q′

k
(x − x′)lvq1

lvq2
...lvqk

(4.2)

where (·),m′ = ∂(·)
∂x′

m

. The expansion (4.2) converges only for sufficiently small

values of ‖lv‖, i.e. only if the application points of the forces Pv are sufficiently

close to the nano-defect.

Substituting (4.2) into (4.1), we have

um(x) =
∞∑

k=0

1

k!
Gms,q′1q′2...q′

k
(x − x′)P (k)

q1q2...qks (4.3)

where

P(0) =
N∑

v=1

Pv, P (0)
s =

N∑

v=1

P v
s , (4.4)

is the resultant force, and

P(k) =
N∑

v=1

lvlv...lv
︸ ︷︷ ︸

k

Pv, P (k)
q1q2...qks =

N∑

v=1

lvq1
lvq2

...lvqk
P v

s (4.5)
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is the multipolar moment of the k-th order, k = 1, 2, ..., of the system of additional

forces Pv exerted by the nano-defect on its surroundings. In particular, the

following tensors are called dipole moment, quadrupole moment and octopole

moment, respectively,

P(1) =
N∑

v=1

lvPv, P(2) =
N∑

v=1

lvlvPv, P(3) =
N∑

v=1

lvlvlvPv, (4.6)

Applying the differential operator

1

k!
P (k)

q1q2...qks

∂k

∂x′

q1
∂x′

q2
...∂x′

qk

(4.7)

to the equilibrium equation of a unit point force

CijmnGms,jn(x − x′) + δisδ(x − x′) = 0 (4.8)

where Cijmn is the elastic tensor and δis is the Kronecker δ, and comparing the

results with (4.3), we can see that the action of a nano-defect on the elastic

medium is equivalent to that of a body force field, which consists of force dipoles,

quadrupoles, octopoles, etc. applied at the center of the defect, namely:

fi(x) =
∞∑

k=0

P̃
(k)
q1q2...qkiδ,q′1q′2...q′

k
(x − x′) (4.9)

where

P̃ (k)
q1q2...qks =

1

k!
P (k)

q1q2...qks (4.10)

the strengths of the multipolar forces, fi(x), being completely determined through

(4.10) by the multipolar moments associated with the nano-defect [71]. It should

be noted that the resultant force and couple exerted by a nano-defect on its

surroundings are zero. Thus, the equilibrium condition implies

N∑

v=1

Pv = 0,
N∑

v=1

lv × Pv = 0 (4.11)
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The last relation may be rewritten as

N∑

v=1

εknsl
v
nP v

s = εknsP
(1)
ns = 0 (4.12)

where εkns is so called permutation tensor. The dipole moment P(1) must be a

symmetric tensor, and conditions (4.11) are equivalent to:

P(0) = 0, P(1) = (P(1))T (4.13)

Introducing (4.13) into (4.3), we obtain:

um(x) =
∞∑

k=0

(−1)k

k!
Gms,q1q2...qk

(x − x′)P (k)
q1q2...qks (4.14)

Equation (4.14) shows that the elastic field produced by a nano-defect in an

infinite elastic medium is completely determined by the multipolar moments P(k),

k = 1, 2, ..., provided that Green’s tensor functions of the medium are known.

For an isotropic material this function is

Gms(x − x′) =
1

16πµ(1 − ν)

[

δms(3 − 4ν)
1

r
+

(xm − x′

m)(xs − x′

s)

r3

]

(4.15)

where r = ‖x − x′‖. By substituting (4.15) into (4.14), we see that u(x) is of the

order O(r−2) as r → ∞, in agreement with the results obtained in modeling point

defects by rigid spherical inclusions in an infinite isotropic medium. Assuming

that the elastic medium is isotropic, we obtain from (4.15) that

∂Gms(x − x′)

∂xs

= − 1 − 2ν

8πµ(1 − ν)

xm − x′

m

r3
(4.16)

As already mentioned, the elastic field of a nano-defect is characterized by its

multipolar moments. The main procedure for evaluating these quantities is to

solve the equation system (4.14) with the displacement field u(x) acquired by MD

simulation. As a rough approximation, we can only consider the force system Pv

exerted on the first nearest neighbors and the first term in the Taylor expansion

(4.14).
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4.1.0.1 The elastic interaction between nano-defects

In this section we will study the elastic interaction between nano-defects which

are simulated by force multipoles acting in an infinite elastic medium. It should

be noted that this description of nano-defects provides a good approximation

only if the separation distance between defects is large enough. Otherwise, a

semi-discrete or fully atomic model of the interacting defects must be adopted.

The elastic interaction energy between a nano-defect located at x and an

elastic displacement field u is given, according to elastic theory, by the work

done against the forces Pv exerted by the point defect on the neighboring atoms,

i.e.

Φint = −
N∑

v=1

Pv · u(x + lv) (4.17)

By expanding u(x + lv) in a Taylor series around x, we obtain

um(x + lv) =
∞∑

n=0

1

n!
um,j1j2...jn

(x)lvj1j2...jn

= um(x) + um,i(x)lvi +
1

2!
um,ij(x)lvi l

v
j +

1

3!
um,ijk(x)lvi l

v
j l

v
k + ... (4.18)

Substituting this expansion into (4.17) and considering (4.4), (4.5), and (4.13)

yields

Φint = −
∞∑

n=0

1

n!
um,j1j2...jn

(x)P
(n)
j1j2...jnm

= −
[

P
(1)
im um,i(x) +

1

2!
P

(2)
ijmum,ij(x) +

1

3!
P

(3)
ijkmum,ijk(x) + ...

]

(4.19)

In a homogeneous strain field we have um,i(x) = const. and (4.19) reduces to

Φint = −P
(1)
im um,i = −P

(1)
im Eim (4.20)

i.e. only the dipole moments contribute to the interaction energy. Returning to

the general case, we recall that the force employed on the nano-defects by the
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elastic state which generates the displacement field u is

F = −grad
x
Φint (4.21)

Hence, by taking into account (4.19), we have

Fs = −∂Φint

∂xs

=
∞∑

n=1

1

n!
um,j1j2...jns(x)P

(n)
j1j2...jnm

= P
(1)
im um,is(x) +

1

2!
P

(2)
ijmum,ijs(x) +

1

3!
P

(3)
ijkmum,ijks(x) + ... (4.22)

We can now easily derive the elastic interaction energy of two point defects situ-

ated at points x and x′ in an infinite elastic medium and having the multipolar

moments P(1),P(2), ..., and respectively P̃(1), P̃(2), ..., by substituting the expres-

sion (4.14) of the displacement field produced by one of the defects into (4.19).

The results reads

Φint = −
∞∑

n=0

1

n!
P

(n)
j1j2...jnm

∞∑

k=1

(−1)k

k!
P̃ (k)

q1q2...qksGms,q1q2...qkj1j2...jn
(x − x′) (4.23)

Since G(x−x′) = O(r−1) as r = ‖x − x′‖ → ∞, we see that the first three terms

of the expression (4.23) decrease as r−3, r−4,and r−5, respectively, for sufficiently

large values of the separation distance r between the defects.

4.2 ELASTIC INTERACTION BETWEEN DEFECTS

The interaction between the atoms can be obtained from an (approximate) so-

lution of the Schrödinger equation [72] describing electrons, or from a potential

energy function determined in some empirical way (for example, MD simulations

[73]), but they are computationally expensive. Most often, it is sufficient to treat

the interactions between atoms in terms of the analysis of elastic interactions.

However, so far, all KMC computer simulations for microstructure evolution un-

der irradiation have not considered the influence of the internal and applied stress
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fields on defect motion (for example [74, 57, 26, 75]). We propose here a KMC

simulation, where the elastic interactions between SIA/vacancy clusters them-

selves, SIA and vacancy clusters, and SIA/vacancy clusters and dislocations are

explicitly accounted for.

Recently, a new computational method has been developed [76, 77] for ac-

curate evaluation of the elastic field of dislocation aggregates in complex 3-D

geometry. The method extends the capabilities of 2-D estimates of elastic field

variables in realistic material geometry, and enables calculations of displacements,

strain, stress, interaction and self-energies, and finally, the work associated with

rotation and translation of defect clusters. In the following sections, the numer-

ical method developed by Ghoniem [76] and Ghoniem and Sun [77] to examine

the mechanisms of interaction between small defect clusters and slip dislocation

loops is introduced, followed by the calculation needed to develop an specific

elastic interaction energies between defects for use in this thesis.

For the specific case of parametric dislocation loop representation, the elastic

field tensors (strain εij and stress σij) of a dislocation loop are given by line

integrals over the dislocation loop line vector as follows [78]

εij =
1

8π

∮

C

[

−1

2
(εjklbiR,l + εiklbjR,l − εiklblR,j − εjklblR,i),pp

+
1

1 − ν
εkmnbnR,mij

]

dlk (4.24)

where R = ‖R‖ = ‖x − x̂‖.

Since the linear stress-strain relationship is σij = 2µεij + λεrrδij, the stress

tensor is also obtained as a line integral, of the general form

σij =
µbn

4π

∮

C

[
1

2
R,mpp(εjmndli′ + εimndlj′) +

m

m − 1
εkmn(R,ijm − δijR,ppm)dlk′

]

(4.25)
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where µ and λ are the Lamé constants (µ = shear modulus, and λ/2(λ+µ) = ν =

Poisson’s ratio), bn are the components of Burgers vector, R,ijk are derivatives

of the radius vector norm between a loop point at x̂ and a field point x, dli′

are differential line elements along the dislocation line vector, and εijk is the

permutation tensor. Ghoniem [76] developed explicit forms for the integrals of

general parametric dislocation loops. An efficient numerical integration scheme

has also been developed for calculations of the stress field, as a fast summation

by Ghoniem and Sun [77]. Their results read

σij =
µ

4π

Nloop∑

γ=1

Ns∑

β=1

Qmax∑

α=1

bnwα

[
1

2
R,mpp(εjmnx̂i,u + εimnx̂j,u)

+
1

1 − ν
εkmn(R,ijm − δijR,ppm)x̂k,u

]

(4.26)

where Nloop, Ns, and Qmax are the total number of loops, segments, and Gaussian

quadrature, respectively. wα is the quadrature weight, and x̂j,u are parametric

derivatives of the Cartesian components of the vector x̂, which describes the loop

geometry. The interaction energy of two dislocation loops over the volume V of

the material is expressed by

EI =

∫

V

σ
(1)
ij ε

(2)
ij dV (4.27)

in which σ
(1)
ij is the stress arising from the first dislocation and ε

(2)
ij the strain

originating in the other. For the present study, if the second loop (defect cluster)

is assumed to be infinitesimal, the interaction energy can be simplified to [50]

EI = δA(2)n
(2)
i σ

(1)
ij b

(2)
j (4.28)

where n
(2)
i is the unit normal vector to the defect cluster habit plane of area δA(2).

By substituting Eqn. 4.26 into Eqn. 4.28 with Nloop = 1, we can readily compute

the interaction energy of the cluster, designated with the superscript (2), and the
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slip loop, of Burgers vector b
(1)
n , as

EI =
µδA(2)n

(2)
i b

(2)
j

4π

Ns∑

β=1

Qmax∑

α=1

b(1)
n wα

[
1

2
R,mpp(εjmnx̂i,u + εimnx̂j,u)

+
1

1 − ν
εkmn(R,ijm − δijR,ppm)x̂k,u (4.29)

In the above equation, we assume that the stress tensor of the grown-in (slip)

dislocation loop is constant over the cross-section of a small point-defect cluster.

In case we treat one single vacancy or interstitial atom as a center of dilatation,

the interaction energy simplifies to

EI = −4

9
πr3

0ε
(2)
ii σ

(1)
jj (4.30)

where ε
(2)
ii is the dilatation and r0 is the effective radius of a point defect. The

above equation does not reveal dependence of the interaction energy surface on

the orientation of the cluster Burgers vector, unlike Eqn. 4.29.

Kroupa [50] obtained the formulae for the displacement and stress field around

an infinitesimal dislocation loop by extending the derivation used by Eshelby [79].

The stress tensor σij is

σij =

{

− k0µ

4π(1 − ν)R3

[
3(1 − 2ν)

R2
bkρknlρl + (4ν − 1)bknk

]

δij

+(1 − 2ν)(binj + nibj) +
3ν

R2
[bkρk(niρj + ρinj) + nkρk(biρj + ρibj)]

+

[
3(1 − 2ν)

R2
bknk −

15

R4
bkρknlρl

]

ρiρj

}

δA (4.31)

where ρi = xi − x̂i is the radius vector between the loop center at point x̂ and a

field point at x. n is the the unit normal vector to the defect cluster habit plane

of area δA, and b Burgers vector. By applying Eqn. 4.28, the elastic interaction

energy between two infinitesimal loops can also be obtained.
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4.3 REPRESENTATION OF NANO-DEFECTS BY FORCE

DIPOLES

4.3.0.2 Representation of nano-defects by force dipoles

Point defects are lattice imperfections having all dimensions of the order of one or

more atomic spacing. The point defect may be a vacant sites in the atomic lattice,

called a vacancy, a foreign atom replacing one atom of the lattice, called a substi-

tutional atoms, or a atom situated between the normal sites of the lattice, called

an interstitial atom. Sometimes, two or more point defects can build charac-

teristic arrangements which are thermodynamically stable to form a point defect

cluster. Our interest will be particularly focus on these nano-scalling point defect

clusters. The collection of point defects produces viscous effects at a macroscopic

scale, which are of great importance for many processes taking place in crystals.

Moreover, the interaction of a nano-defect with other crystal defects is mostly of

elastic nature. We will try to develop elastic models of nano-defects and methods

for calculating the elastic interaction of a defect with other defects.

Firstly, let us consider now in detail the physical significance of the partial

derivatives of first order of G(x). We can obviously write

Gij,k(x) = lim
h→0

1

h
{Gij(x) − Gij(x − hek)} (4.32)

Consequently, the elastic state associated to the displacement field

ui(x) = Gij,k(x) (4.33)

is the limiting value as h → 0 of a sum of two elastic states: the first corresponds

to the concentrated force ej/h acting at the origin; the second corresponds to a

concentrated load −ej/h acting at the point with position vector hek. A straight-

forward calculation shows that the resultant of the stress vectors acting on any
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sphere Ση with radius η and center at the origin is zero, while their resulting cou-

ple equals −ek × ej. Following the terminology introduced by Love, we say that

the elastic field corresponding to the displacement (4.33) is produced by a unit

double force, which is statically equivalent to a directed concentrated couple or

to 0 according as j 6= k or j = k. In the latter case we say that the singularity at

the origin is a unit double force without moment. The elastic state corresponding

to the displacement field

ui(x) = Gij,j(x) (4.34)

which is produced by three mutually orthogonal unit double forces without mo-

ment acting at the origin, is called a center of compression, whereas the elastic

state corresponding to the opposite of (4.34) is called a center of dilatation. It

has been shown that the effects of a vacancy or an interstitial atom can be ap-

proximated by a spherical compression center of dilatation center.

In view of formula (4.33), we propose here that a nano-defect of arbitrary

geometric shape can be described by a collection of double forces. Specifically,

we have

ui(x) = Gij,k(x − x′)fkj(x
′) (4.35)

where fjk is a second order tensor of which the three diagonal components rep-

resents three mutually orthogonal force dipoles without moment, and the rest

non-diagonal components are force dipoles with moment along ej × ek. It should

be noted that the resultant force and couple of these components consisting fjk

should be equal to zero. The condition of zero resultant force can be achieved

in terms of the definition of force dipole. Then, the condition of zero net force

couple implies that the tensor fjk must be a symmetric tensor, i.e.

fkj(x
′) = fT

kj(x
′) (4.36)
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Suppose that we have already got the displacement of each and every lattice atom

somehow, say by Molecular Dynamics simulation or experiments. We then can

use the least square method to determine the point force dipolar system, i.e. fjk,

which are unknown and exerted on the center of the defect to characterize the

elastic field of the defect. If the real displacement field is denoted by ũ(x), we

define the error function

Π =
N∑

m=1

‖u(x) − ũ(x)‖2 =
N∑

m=1

[u(x) − ũ(x)] [u(x) − ũ(x)] (4.37)

where N is the number of points whose displacements are already known and we

used to calculated the error. According to the method of least squares, the best

fitting value of fjk has the property that

Π = aminimum, (4.38)

i.e.
∂Π

∂fjk

= 0 (4.39)

By solving these six equations we would be able to define a force dipole tensor

that can approximately describe the elastic field induced by the existence of the

defect.

As far as the interaction energy between two nano-defects is concerned, it can

be readily shown that

Φint = −f · gradũ(x) = −fijũj,i(x) (4.40)

where fij is the force dipole used to represent the nano-defect at x, and ũ(x) is

the displacement field induced by the defect at x′, which can also be described by

a force dipole tensor f̃ . By substituting the expression (4.35) of the displacement

field produced by one of the defects into (4.40), it results

Φint = −fij f̃lkGjk,li(x − x′) (4.41)
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4.4 APPLICATIONS

For simplicity, in the following we will choose the geometric center of the nano-

defect as origin, i.e., x′ = 0.

4.4.1 VACANCY

Gij =
1

16πµ(1 − ν)r

[

δij(3 − 4ν) +
xixj

r2

]

(4.42)

Gij,k =
1

16πµ(1 − ν)r3

[

−(3 − 4ν)δijxk + δikxj + xiδjk −
3xixjxk

r2

]

(4.43)

ui = Gij,kfkj

=
1

16πµ(1 − ν)r3

[

−(3 − 4ν)fikxk + fijxj + xifjj −
3xixjxk

r2
fkj

]

(4.44)

At r = r0, the displacement field ũ is known as

ũr(r0) = Cr−2, ũφ = ũθ = 0 (4.45)

where C is an arbitrary constant. Substituting (4.44) and (4.45) into (4.39) yields

the equations designed to determine the values of fij. Actually, the derived equa-

tions are not completely mutually independent, and some other relations have

to be introduced to help with solving equations. Due to the spherical symmetry

of the deformation, only the components of dipolar forces whose indices occur

in pairs of equal numbers are non-zero, i.e. f12 = f13 = f23 = 0. By solving

equations, we obtain

f11 = f22 = f33 = 8
(ν − 1)Cπµ

1 − 2ν
= −4πC(λ + 2µ) (4.46)

The field (4.46) represents three mutually orthogonal force dipoles without mo-

ment, having equal intensities, and acting at the centre of the point defect, and
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such distribution of concentrated loads is called a spherical dilatation centre. The

values in (4.46) are exactly the same as the solutions given by the elastic theory

with the assumption of point defect as rigid spherical inclusion.

4.4.2 INFINITESIMAL PRISMATIC DISLOCATION LOOP

Let us assume the loop is at the origin of the coordinate system on the x1x2

plane (n1 = n2 = 0, n3 = 1) and suppose displacement field is given by Kroupa’s

formula. Namely, the displacements of a pure prismatic infinitesimal dislocation

loop with an area δA, b1 = b2 = 0, b3 = b are as follows:

ũ1 =
K

6

x1

r3

[

−(1 − 2ν) +
3x2

3

r2

]

ũ2 =
K

6

x2

r3

[

−(1 − 2ν) +
3x2

3

r2

]

(4.47)

ũ3 =
K

6

x3

r3

[

1 − 2ν +
3x2

3

r2

]

where

r =
√

x2
1 + x2

2 + x2
3 (4.48)

K = − 3b3

4π(1 − ν)
δA (4.49)

The displacements at (x1, 0, 0), (0, x2, 0), and (0, 0, x3) are

ũ
(1)
1 = −K

6

1

x2
1

(1 − 2ν), ũ
(1)
2 = ũ

(1)
3 = 0,

ũ
(2)
2 = −K

6

1

x2
2

(1 − 2ν), ũ
(2)
1 = ũ

(2)
3 = 0, (4.50)

ũ
(3)
3 =

K

3

1

x2
3

(2 − ν), ũ
(3)
1 = ũ

(3)
2 = 0,

respectively, However, the displacements at these three points given by (4.44) are

u
(1)
1 =

1

16πµ(1 − ν)x2
1

[−4(1 − ν)f11 + f22 + f33] , u
(1)
2 = − (1 − 2ν)f12

8πµ(1 − ν)x2
1

,
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u
(1)
3 = − (1 − 2ν)f13

8πµ(1 − ν)x2
1

u
(2)
1 = − (1 − 2ν)f12

8πµ(1 − ν)x2
2

, u
(2)
2 =

1

16πµ(1 − ν)x2
2

[−4(1 − ν)f22 + f11 + f33] ,

u
(2)
3 = − (1 − 2ν)f23

8πµ(1 − ν)x2
2

(4.51)

u
(3)
1 = − (1 − 2ν)f13

8πµ(1 − ν)x2
3

, u
(3)
2 = − (1 − 2ν)f23

8πµ(1 − ν)x2
3

,

u
(3)
3 =

1

16πµ(1 − ν)x2
3

[−4(1 − ν)f33 + f11 + f22]

Substituting (4.50) and (4.51) into (4.37) results

Π =
3∑

m=1

3∑

i=1

[

u
(m)
i − ũ

(m)
i

]2

(4.52)

By solving the equations given by (4.39) we obtain

f12 = f13 = f23 = 0, f11 = f22 = −λb3δA, f33 = −(λ + 2µ)b3 (4.53)

It can shown that (4.53) are exactly the same as those given by Kroupa. It

implies that the displacement field produced by force dipoles (4.53), as well as

the strain and stress field will be the same as the results derived by Kroupa.
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CHAPTER 5

DEVELOPMENT OF NEW

COMPUTATIONAL MODELS FOR

RADIATION DAMAGE ACCUMULATION

AND SEGREGATION

5.1 INTRODUCTION

Under cascade-producing irradiation, defect production and subsequent defect

accumulation are strongly influenced by features of the initial cascade damage

event. The temporal and spatial inhomogeneities of cascade damage, as well as

details of damage that manifest themselves on the atomic scale, make it neces-

sary to develop atomic-scale models as the basis for understanding the effects of

cascade production on microstructure evolution and mechanical property changes

in irradiated materials. The ability to correlate and extrapolate irradiation test

data on fusion materials hinges on understanding radiation damage at this scale,

as well as understanding its influence on behavior at the macroscopic scale.

Advances in atomistic descriptions of cascade events by molecular dynamics

(MD) simulations in the past decade, coupled with experimental information,

have resulted in the identification of cluster formation directly in cascades, and

the subsequent behavior of those clusters, as key elements affecting the evolution
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of the microstructure. Stochastic annealing simulation provides a bridge between

the atomistic and macroscopic scales that enables the direct effects of cascade

production on the microstructure to be investigated. The work reported on here

is the next step beyond the application of stochastic annealing simulations to the

local short-term annealing stage of individual cascades, which has been reported

elsewhere [57, 58, 80]. We present here on the simulation of the kinetics of damage

accumulation under low doses of cascade-producing irradiation in iron at room

temperature.

5.2 A KINETIC MONTE CARLO APPROACH TO RA-

DIATION DAMAGE EVOLUTION WITH ELASTIC

INTERACTION CONSIDERATION

The jump frequency (or the probability per unit time) for a possible jump of a

SIA cluster, i, to take place is given by Equation 3.1. We first tabulate the rate

at which an event (i) will take place anywhere in the system, ri. The probability

of selecting an event is equal to the rate at which the event occurs relative to the

sum of all possible event rates. Once an event is selected, the system is changed

correspondingly, and the list of events that can occur at the next KMC step is

updated. Therefore, at each KMC step, one event denoted by m is randomly

selected from all possible M events. The reciprocal of an atomic jump frequency

is a residence time for a defect cluster that moves by that specific type of jump.

Since the jump probabilities of all different types of jumps are independent, the

overall probability density for the system to change its state by any type of jump

step is just the sum of all possible specific jump probabilities. Therefore, the

residence time that would have elapsed for the system in a specific configuration
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is the reciprocal of the overall jump probability rate ∆t = 1/
M∑

i=0

ri, which is

independent of the chosen transition. It may also be important to include the

appropriate distribution of escape times. For random uncorrelated processes, the

distribution of the time elapsing between events is the exponential distribution

if the process is a Poisson process. The elapsed time for a particular transition

is given by Equation 3.4. The system is then advanced to the final state of the

chosen transition and the process is repeated.

All KMC computer simulations for microstructure evolution under irradiation

have not yet considered the influence of the internal and applied stress fields on

the kinetics of mobile defects, for example in the ALSOME [80] or BIGMAC [26]

codes. In most realistic situations, however, interactions between dislocations

and point defects play a key role in determining the effects of radiation on me-

chanical properties. The present KMC method accounts for elastic interactions

amongst SIA clusters, nanovoids and dislocations. We explicitly incorporate here

the effects of elastic interactions between SIA and vacancy clusters themselves

(cluster-cluster type), and between defect clusters and dislocations (dislocation-

cluster type). SIA clusters are directly produced on the periphery of neutron

collision cascades, and they may contain from a few atoms up to tens of atoms

in the near vicinity of the cascade [15, 81]. According to the results of MD

simulations [73], the most stable configuration of SIA clusters is a set of 〈111〉
crowdions.

In view of the availability of size-dependent cluster characteristics provided by

MD simulations, we simulated 〈111〉 type SIA clusters, consistent with published

MD simulations. Such clusters are extremely mobile, and migrate predominantly

along highly-packed crystallographic directions, with migration energies of less

than 0.1 eV [26, 15]. Small SIA clusters may also spontaneously change their
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Burgers vector, and thus have the flexibility to translate along various crystallo-

graphic directions if their motion is not obstructed by internal strain fields. Since

MD simulations have shown that the majority of SIA clusters have the form of

mobile (glissile) perfect dislocation loops, we represent here SIA clusters as small

prismatic, rigid and circular dislocation loops. The relationship between radius of

the loop (R) and the number of defects (N) is N =
√

2πR2/a2. We approximate

vacancy clusters produced in cascades as small spherical voids, with an effective

radius of rv = 3
√

3NΩ/4π, where Ω is the atomic volume and N the number of

vacancies in the cluster. The total cluster activation energy for migration is then

given by:

Ei = Em + ∆Eint (5.1)

where Em is the activation energy in a perfect crystal, and ∆Eint the difference

in the interaction energy of a defect cluster placed at two neighboring equivalent

positions in the crystal.

The implementation can be demonstrated in detail through a cascade damage

flowchart shown in Fig. 5.1. With the initiation of dislocation distribution,

cascade damage rate and matrix temperature as well as the initial calculation and

summation of atomic jump rates, the key steps lie in the execution of the thermal

diffusion loop and can be described as follows: (1) Select a jump path at random

weighting by individual rate; (2) Make the jump; (3) Update and sum up jump

rates; (4) Turn ahead simulation clock by n-fold way algorithm; (5) Iterate step

1 through 4 until designated damage dose (in terms of the number of cascades) is

implanted. The above seemingly simple procedure may be readily programmed

and executed for ideal systems (no interactions involved) without much concern

for computation time. For bigger and complex systems, say thousands of atoms

with interactions, the step of generating the events table and selecting a jump
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Figure 5.1: Kinetic MC Implementation of the damage evolution of cas-

cade-induced defect clusters.

46



path from a large number of jump paths can be a daunting task and very careful

programming is needed to obtain efficient execution. Otherwise, intrinsically fast

MC method (compared to MD) can be unreasonably slow.

5.3 MAIN MODEL FEATURES

The cascade-induced defect distribution process consists of several distinct steps,

introduction of defects associated with one high-energy displacement cascade,

interaction between defects resulting in instant (intracascade) recombination of

defects of opposite types and agglomeration of defects of the same type, diffusion

incorporated with interactions between dislocations, impurities and point defects

leading to defect annihilation at a sink, trapping of defects by impurities, deco-

ration slip dislocations with defect clusters. To simulate the defect distribution

process, all of the process should be incorporated. Although interaction may

not be important at a dilute defect density or very large apart distance and can

be approximated accordingly using ALSOME [57, 58, 74, 80, 82] or BIGMAC

[26, 75] code, in most practical situations the interactions between dislocations

and point defects play a key role in determining the effects of radiation on me-

chanical properties. This interaction effects must therefore be taken into account.

The methodology should also address the many diffusional pathways available.

It should also connect with the temperature and damage rate these control the

available time for microstructure evolution processes before the defect densities

reach a dynamic equilibrium state (saturated densities).

In last section the main idea of KMC scheme has been described. We present

here a computer simulation method which explicitly incorporates the effects of

the elastic interactions between SIA and vacancy clusters themselves (cluster-

cluster type), and between defect clusters and dislocations (dislocation-cluster
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type). SIA clusters are directly produced on the periphery of neutron collision

cascades, and they may contain from a few atoms up to tens of atoms in the

near vicinity of the cascade [83]. Such clusters are extremely mobile, and migrate

predominantly along highly-packed crystallographic directions, with migration

energies of less than 0.1 eV [83, 26]. Small SIA clusters may also spontaneously

change their Burgers vector, and thus have the flexibility to translate along vari-

ous crystallographic directions if their motion is not obstructed by internal strain

fields. Since MD simulations have shown that the majority of SIA clusters have

the form of mobile (glissile) perfect dislocation loops, in this work, we represent

SIA clusters as small prismatic, rigid and circular dislocation loops. As for va-

cancies, small spherical voids are employed to approximate single vacancies and

vacancy clusters. The effective radius of void has been defined as

rv =
3

√

3NΩ

4π
(5.2)

where Ω is the atomic volume and N the number of defects in the cluster. The

temperature dependence of the jump frequency of defect clusters diffusion has

been given as 3.1. In our KMC simulation, the elastic interaction is incorpo-

rated. The influence of other defects and the external stress on one SIA or

vacancy cluster is given by the stress field σij. By applying the infinitesimal

dislocation loop approximation for SIA clusters , the work necessary to form the

loop characterized by normal n, Burgers vector b and area δA in the stress field

σij is SIA cluster interaction energy Eint, and is given by Eqn. 4.28. Similarly,

we have vacancy cluster interaction energy shown as Eqn. 4.30 where it need to

be noted that,

εjj =
q

K
=

GδV

πa3
0K

(5.3)

where 3K = 3λ + 2G called the volume modulus.
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The total cluster activation energy is then given by:

Ẽm = Em + ∆Eint (5.4)

where Em is the activation energy in a perfect crystal structure and can be ob-

tained by either experiments or MD simulations, and ∆Eint the difference in the

interaction energy of an defect cluster placed at two neighboring equivalent posi-

tion in the crystal. This includes the effects of forces and moments on the virtual

loop or microvoid motion.

5.3.1 Displacement Cascade Simulations

In this section, we study the evolution of cascade-induced defect clusters in BCC

Fe at 300 K using KMC simulations. The input data necessary for these sim-

ulations, namely defect migration energies and the initial defect configurations

produced by displacement cascades are all obtained by MD simulations. Based

on intensive MD simulations, Osetsky et al. [73] developed a generalized size de-

pendence of cluster jump frequency to describe the one-dimensional diffusional

transport behavior of SIA clusters

ωn = ω0n
−S exp

(

−〈Em〉
kBT

)

(5.5)

where 〈Em〉 is the averaged effective activation energy, n the number of SIAs in

the cluster, and ω0 is a new, size-independent, pre-exponential factor. The value

of 〈Em〉 is estimated from the MD simulations as 0.023 ± 0.003 eV for 1
2
〈111〉

clusters in BCC Fe. By fitting to the simulation results of various cases, the

values ω0 = 6.1 × 1012 s−1, S = 0.66 for Fe describe the MD data very well and

are used in our KMC simulations. There are also a large number of vacancies

produced in displacement cascade. The vacancies are allowed to execute random

3-D diffusion jumps with a probability proportional to their diffusivity. The
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temperature dependence of the defect diffusivity is written as [75]

D = D0 exp(− Em

kBT
) (5.6)

where D is the defect diffusivity, D0 the pre-exponential factor, Em the migration

energy of vacancy. The migration rates are defined as

r =
6D

δ2
(5.7)

where δ is the jump distance and equal to the magnitude of Burgers vector in

our simulations. Equation 5.7 has a similar form to Equation 3.1, and is used

in some other KMC simulations (e.g., [26, 75, 84]). The values of the migration

energy and prefactors obtained from MD simulations for vacancies are 0.87 eV and

1.15×10−2 cm2/s, respectively[26]. The jump rates of vacancies are almost 10˜12

orders of magnitude larger than that of SIAs in room temperature. Therefore,

vacancies can be treat as immobile when we consider the microstructure evolution

during the first few nanoseconds in cascade. By now, cascades of primary-knock-

on-atom (PKA) energy, EPKA, up to 100 keV have been simulated in BCC metals

over a wide temperature range[85, 15]. We present here the KMC simulations

using the initial defect configurations produced by cascade of 100 keV PKAs [85].

Figure 5.2 is a typical defect configuration resulting from a 100 keV cascade. The

size of the KMC computation box is 1 µm3. The starting defect microstructure

is introduced at a random position of the KMC simulation box according to

the spatial configuration obtained by the MD simulations of the corresponding

cascade. Then, the system runs for a certain time period at a given temperature

(T = 100 K), and a fixed boundary condition is employed (defects that are able

to reach the edge of the KMC simulation box are counted to escape away). MD

study of interactions between glissile interstitial clusters and small dislocation

loops in α-Fe and Cu has been carried out by Osetsky et al.[86]. As a result
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of the inter-cluster interactions both glissile and sessile clusters can be obtained

and this depends on the metal, reaction type and size of the clusters. In our

simulations, when two big clusters (> 37 SIAs) of differently oriented Burgers

vectors approach to each other, they keep their own orientations and the complex

formed becomes sessile. Otherwise, one cluster changes its Burgers vector to be

parallel to the other, so that a bigger glissile cluster is formed.

Figure 5.2: Primary damage state at 17 ps for a 100 KeV cascade: (©) intersti-

tials; (•) vacancies.

Our simulations show that a large portion of the interstitials and vacancies

are lost in a very short time (˜50 ps) by recombination. This is consistent with

the results of MD modeling in which an extensive amount of recombination of

SIAs and vacancies occurs during the cooling stage of HEDCs. Figure 5.3 shows

a close view of the microstructure at t = 94 ps. It can be seen that some SIAs

has coalescence into bigger clusters. The result is supported by MD simulations
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in which one of the most significant findings is the occurrence of intracascade

clustering. Most of the recombination and clustering take place within 10 ns.

Most of the glissile interstitials and interstitial clusters escape away from the

cascade center within around 60 ns. The value of freely migrating defects(FMDs)

production efficiency η obtained by our KMC simulation is η ≈ 0.1 (i.e. 10%).

The cases of incorporating with internal dislocations are also studied. Since the

density of glissile SIAs is rather low (˜1018 m−3), no visible dislocation decorations

have been observed.

Cell Size = 1 m, T = 100 K
282 SIA Clusters
607 Vacancy Clusters
Time = 94.37207 ps

m

Figure 5.3: A close view of the structure of one single cascade at t = 94 ps. Small

circular loops represent SIA clusters, and solid points represent vacancies.
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5.3.2 DISLOCATION DECORATION

Due to the significance of the effects of glissile SIA clusters on damage evolution,

we first establish the dynamics of their motion in the field of grown-in disloca-

tions. The value of the migration energy, diffusion pre-factors, and other input

parameters for SIA diffusion used in this work are listed in Table 1. A computa-

tional cell of 400a× 400a× 400a ( a = 0.2867 nm is the lattice constant) is used

with periodic boundary conditions. The ratio of the activation energy for Burgers

vector rotation to the 1-D migration energy is set to be eight. A slip dislocation

loop lying on the (101) plane, with Burgers vector b = a/2[1̄11] is introduced into

the simulation box. The dislocation loop consists of two curved segments and two

straight super-jog segments that are normal to the loop’s Burgers vector. A num-

ber of SIA clusters with the same size, R, were initially randomly distributed in

the simulation box, and their initial jump directions were also randomly specified.

The initial SIA cluster density was varied in the range 5 × 1022 − 2 × 1023 m−3.

When a cluster approaches the dislocation loop within a very short distance,

it oscillates back and forth due to its strong interaction with the dislocation.

To improve the computational efficiency of such ‘ fast ’ dynamics, we used an

‘adiabatic approximation’ by freezing trajectories of SIA clusters if a prescribed

displacement is too small (e.g. less than 1 nm) over an extended period of time

(e.g. greater than 104 time steps). Once a cluster is stopped, all events related

to it are removed from the event table. When two SIA clusters approach one

another within one atomic distance, they coalesce and make a larger cluster.

Table 1

Parameters used in the present simulations. Results for Em and ω0 are from [73]

and [84], respectively.

53



Em a R T ω0 G ν

(eV) (Å) (a) (K) (s−1) (GPa)

0.02 2.867 3.0 300.0 2.5 × 1013 81.8 0.29

One of the most striking features in the evolution of dislocation microstructure

under cascade damage conditions is most dislocations are observed to be heav-

ily decorated by small, immobilized interstitial clusters [12]. Figure 5.4 shows

a TEM micrograph of pure iron irradiated with fission neutrons at about 70

◦C. Grown-in (slip) dislocations are clearly decorated with small defect clusters,

and the formation of loop rafts is significant. To determine the influence of the

elastic field of dislocations on the motion of SIA clusters, cluster-cluster inter-

actions were first excluded. As can be seen in Figure 5.5, the overall mobility

and spatial distribution of SIA clusters were significantly changed as a result

of dislocation-cluster interactions. After 0.4 ns, the majority of initially glissile

clusters were attracted to the slip dislocation loop (near the edge components),

and became virtually immobile. In effect, these clusters re-oriented themselves

by rotation of their Burgers vectors to respond to the elastic field of dislocations.

Thus, their migration was forced towards the source of the internal stress field,

rather than being random. The high concentration of SIA clusters results in an

extremely inhomogeneous spatial distribution, as can be seen in Figure 5.5. For

the same initial configuration as shown in Figure 5.5(a) we also carried out KMC

simulations without involving any interaction between SIA clusters and the slip

dislocation loop. Figure 5.6 shows the final structure after running the same

number of time steps as in Figure 5.5. Even with introducing a standoff distance

(taken as 1.5 nm) along the slip dislocation loop, there is no sign of development

of dislocation decoration.
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Figure 5.4: TEM micrograph of pure Fe irradiated with fission neutrons at 70 oC

to a displacement dose level of 0.72 dpa.

55



x

y

z
z

x

x

y

y

y

x

z

z

115 nm

Figure 5.5: KMC simulation results of 200 SIA clusters in the stress field of a 3-D

dislocation loop. Burgers vector of the slip dislocation is along [1̄ 1 1] direction

and the temperature is 300 K. SIA clusters are clearly observed to accumulate

along the edge components of the loop. (a) 0 ns; (b) 0.1 ns; (3) 0.3 ns; (d) 0.4

ns.
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The comparison between Figures 5.5 (d) and 5.6 reveals that the elastic in-

teraction significantly changes the kinetics of SIA clusters and thereby the mi-

crostructure evolution. SIA clusters end up near the core of grown-in dislocations,

orienting their Burgers vector parallel to the grown-in dislocation. They form a

cluster atmosphere around the grown-in dislocation, similar to the Cottrell impu-

rity atmosphere in BCC metals [30]. The present simulations show clearly how

SIA clusters are attracted to dislocations, eventually decorating them, in good

qualitative agreement with experimental observations.

z

x

y

115 nm

Figure 5.6: KMC simulation results of 200 SIA clusters with no interaction be-

tween SIA clusters and the 3-D dislocation loop. Burgers vector of the slip

dislocation is along [1̄ 1 1] direction and the temperature is 300 K. Dislocation

decoration is not observed.
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5.3.3 PINNING AND SMALL RAFTS OF SMALL INTERSTITIAL

LOOPS

To investigate the influence of cluster-cluster interactions on their motion, the

grown-in dislocation was removed, and the elastic interaction between clusters

included in a new KMC simulation. Mutual elastic interactions in between clus-

ters was found to affect their distribution and motion drastically. Because of

mutual interaction, two clusters that are oriented along non-parallel crystallo-

graphic orientations will either coalesce forming a larger one, or rotate and pin

one another at a short distance and move jointly in the same direction. Once two

clusters are pinned together, they have less chance to change their orientation,

and therefore their motion becomes almost pure one-dimensional. As this pro-

cess proceeds, some additional clusters may be trapped into this pinned structure

by changing their Burgers vectors. This self-organizing mechanism eventually re-

sults in the occurrence of SIA rafts, which consist of small dislocation loops with

the same direction of motion. This feature has been experimentally observed for

some time [30].

It has to be noted that when the defect is big enough to behave as a perfect

dislocation loop it may not follow the mechanisms mentioned above. Instead,

dislocation loops may follow the rule of summation of Burgers vectors and form

sessile 〈100〉 loops. The formation and growth of 〈100〉 interstitial loops in bcc

iron have been confirmed by both experiments and MD simulations [?]. However,

the mechanism for the formation of 〈100〉 loops through interactions between

1/2〈111〉 loops seems more feasible at high temperature and high irradiation

dose. Considering the conditions for our simulations, namely low damage doses

and room temperature, the present investigation is focused on 〈111〉 interstitial

loops. The formation of 〈100〉 loops through the direct interaction of 1/2〈111〉
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loops, as well as the effects of 〈100〉 loops have been excluded.

A simulation of cluster motion integrating the influence of the internal stress

field created by grown-in dislocations, as well as the clusters themselves was also

performed. Figure 5.7 shows a typical defect evolution time sequence for 200

SIA clusters at 300 K. The effects of internal dislocation fields, aided by cluster

mutual elastic interactions, rendered most of the clusters virtually immobile in

the vicinity of the slip dislocation. Continuation of the decoration process results

in the initiation of a ‘dislocation wall’. Similar simulations were performed for a

smaller cluster density (50 SIA clusters), and also at a higher temperature (600

K). The results indicate that the SIA cluster density seems to have a greater

influence on the transient time for decoration than temperature. At high tem-

peratures, the kinetics of dislocation decorations is faster as a result of increased

cluster jump rates. The simulations also show that the rafting structure occurs

more readily at lower temperatures.

It should be noted that we excluded absorption reactions between grown-

in dislocations and SIA clusters, since our major concern in the present work

is the segregation and agglomeration of defect clusters, as supported by direct

experimental observations. Except for a direct encounter between a glissile loop

and a dislocation, absorption of a loop by the dislocation requires a change in the

direction of motion of the loop, either by a thermally activated Burgers vector

change or by self-climb. Using MD simulations, Rodney and Martin investigated

the mechanisms of the absorption of small interstitial loops by an edge dislocation

in fcc nickel [87, 88]. It was shown that small interstitial clusters participating in

absorption reactions represent rather weak dispersed barriers and do not have an

impact on the yield drop phenomenon observed experimentally. It was also shown

that small interstitial loops may find their stable positions a few lattice planes
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Figure 5.7: KMC simulation of 200 SIA clusters in the stress field of a 3-D

dislocation loop. Burgers vector of the slip dislocation is along [1̄ 1 1] direction

and the temperature is 300 K. Dislocation decoration and SIA cluster rafts are

clearly observed, as indicated by the arrows. (a) 0 ns; (b) 0.4 ns; (3) 0.7 ns; (d)

1.0 ns.
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away from the dislocation glide plane dislocation [87]. Decoration of dislocations

with small clusters may require that a single trapped loop is immobilized by other

loops before it is detrapped from or absorbed by the dislocation [30]. This is

shown in Figures 5.5 and 5.7, where the build-up of SIA cluster concentrations in

the neighborhood of the dislocation is clearly shown. The exclusion of absorption

in our simulations may affect the quantitative distribution of smaller interstitial

clusters. However, as the decoration and loop raft formation processes proceed,

the probability of interstitial clusters approaching dislocation cores decreases due

to the screening effects of existing loops. The exclusion of absorption of interstitial

loops by grown-in dislocation would not qualitatively affect the results of the

present simulations.

All these three types of interactions have been studied for cases of 50 SIA

clusters and 600 K as well to account for the variations of cluster densities and

temperatures. A comparison of the evolution time is given in Table 5.1. It can

be seen that SIA cluster density seems to have greater influence on reaction time

than temperature. Under higher temperature conditions it may took less time for

the occurrence of remarkable dislocation decoration phenomenon than in lower

temperature. The high temperature increases the thermal activities of clusters,

which makes clusters have more chance to approach to reaction range of internal

dislocations. The simulations also show that the rafting structure can be more

easily to appear in lower temperature and higher cluster density cases.

Table 5.1: Evolution time for Running 800,000 KMC Steps (in ns).

Number of SIA D-C Interactions D-C-C Interactions

Clusters 300 K 600 K 300 K 600 K

50 1.95 1.28 3.29 3.14

200 0.416 0.237 1.04 0.79
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5.4 VALIDITY OF ELASTIC APPROXIMATION- MD

SIMULATION VS ELASTICITY CALCULATION

The most significant feature of current KMC method, which makes it different

from other existing KMC simulations, is that elastic interactions between defects

are integrated. Therefore, it is imperative to examine the validity of the treat-

ment of the interactions between dislocations and clusters by elasticity theory,

especially at close ranges. Specifically, it is appreciated to determine whether

or not the dislocation-cluster interaction can be described accurately within the

framework of the isotropic continuum theory of dislocations using the infinites-

imal loop approximation, or on what extend the interaction can be calculated

with enough accuracy by elasticity. The present investigation intends to perform

comparative studies for the interaction energy between a perfect SIA cluster and

an edge dislocation in bcc iron by atomistic simulation and isotropic elasticity

theory. We studied interaction between dislocations and SIA clusters having the

same Burgers vector, as formed by a decoration microstructure in bcc iron.

Molecular statics was used to study the dislocation-cluster interaction energy

at a temperature of zero Kelvin in bcc structure. The simulation box was oriented

along [11̄0], [112̄] and [111] directions, and contained about 1.3 million atoms. The

size along the Burgers vector, b, was 185|b| and approximately 12 nm along the

dislocation line. Periodic boundary condition was applied along the dislocation

line, and boundaries along the other two directions were set to be rigid. The

atoms in rigid boundaries were displaced according to the elastic solution for the

dislocation. An isolated dislocation was first introduced into the simulation box

and relaxed. An SIA cluster consisting of 37 SIAs (of effective loop radii 0.75

nm) and with the same Burgers vector as that of the dislocation was then created

right at a certain distance, r, along [11̄0] below the dislocation slip plane, and
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the simulation box was relaxed again. The dislocation-cluster interaction energy

was calculated using the energies of a previously-relaxed isolated dislocation and

that of a cluster. The interatomic potential developed by Ackland et al.[89] for

α-Fe is employed.

The interaction energies obtained in the computer simulation was compared

with the results evaluated by infinitesimal loop approximation, which is given by

EI
INT = − µb2A

2π(1 − ν)

1

r
(5.8)

where A is the loop area and r is the distance between the cluster center and

dislocation line.

Simulation results for the interaction energy of a 37-SIA cluster with an edge

dislocation in bcc Fe as a function of the distance r is shown in Figure 5.8. The

estimation of the same energy by infinitesimal loop approximation is also shown.

It can be concluded that the agreement between the simulation results and the

ones estimated by the isotropic elasticity is quite satisfactory at distance r > 5a0.

At shorter distance, however, the results given by analytical solution overestimate

the interaction energy of the dislocation and cluster, which implies that short-

range effects cannot be treated within the framework of isotropic elasticity.
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Figure 5.8: Interaction energy between 1
2
[111] edge dislocation and 37-SIA pris-

matic cluster in bcc Fe as a function of distance along [11̄0] direction. Simulation

results are compared with the interaction energy evaluated by infinitesimal loop

approximation.
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CHAPTER 6

KINETIC MONTE CARLO SIMULATION OF

RADIATION DAMAGE EVOLUTION IN

α-IRON

6.1 INPUT PARAMETERS TO KINETIC MONTE CARLO

SIMULATION

Fitting MD-generated data for several metals, Bacon et al.[15] showed that the

number of Frenkel pairs (NF ) is given by: NF = A(EPKA)m, where A and m

are constants, and EPKA is the energy of the Primary Knock On Atom. On

the other hand, the number of displaced atoms can be written as: NF = PNt,

where P is the displacement dose (dpa), and Nt the total number of atoms in the

system. Therefore, the displacement dose level corresponding to one cascade can

be readily calculated as:

P =
NF

Nt

=
A(EPKA)m

Nt

(6.1)

With the relationship between the cascade energy and damage dose, we can

determine the number and frequency of cascades required for producing a desired

dose at a predetermined dose rate.

Point defect statistics for clusters generated by 40 KeV cascades in α-Fe (e.g.

number, size distribution, and mobility) were taken from the MD simulations of
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Bacon, Gao and Osetsky. [15] Soneda and Diaz de la Rubia [26] have shown

that two thirds of the defects that escape from the parent cascade region are

in the form of small SIA clusters, which migrate in one dimension. Therefore,

monodefects as well as relatively smaller clusters were ignored in the present

simulations. Room temperature neutron irradiation of iron was simulated with

a flux of 40 KeV cascades containing interstitial clusters of size ≥ 4 atoms.

It has been shown by MD simulations [90] that small loops consisting of

four, five and six atoms transform spontaneously from the faulted into the highly

glissile unfaulted configuration. In addition, the change in the Burgers vector

of a cluster consisting of four SIAs has been observed to occur in these studies.

From the lifetime of one configuration, a value of 0.4 eV is estimated for the

energy barrier against this transformation [90]. The height of the barrier for

orientation change is expected to increase significantly with increasing cluster

size. MD studies show that small, strongly bounded interstitial clusters (two

to about five-SIA clusters) exhibit long-range, three-dimensional (3D) diffusion,

which occurs by reorientation of constituent 〈111〉 dumbbells from one 〈111〉 to

another. [84] As the cluster size increases, thermally-activated reorientation from

one Burgers vector to another becomes increasingly more difficult to achieve,

no 3-D motion is observed even at very high temperatures. Osetsky et al. [73]

developed a generalized size dependence of cluster jump frequency to describe

the one-dimensional diffusional transport behavior of SIA clusters

ωn = ω0n
−S exp

(

−〈Em〉
kBT

)

(6.2)

where 〈Em〉 is the averaged effective activation energy, n the number of SIAs

in the cluster, and ω0 is a new, size-independent, pre-exponential factor. The

value of 〈Em〉 was found not depending on size and close to that of the individual

crowdion. It is estimated for clusters containing up to 91 SIAs in iron that
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〈Em〉 = 0.023 ± 0.003 eV for 1
2
〈111〉 clusters in bcc iron. By fitting to the

simulation results of various cases, the values ω0 = 6.1 × 1012 s−1, S = 0.66 for

Fe describe the MD data very well, and were used in our KMC simulations.

Soneda and Diaz de la Rubia [26] studied the direction change frequency of 2-

SIA and 3-SIA clusters in α-Fe using MD simulations and obtained the activation

energies of 0.09 eV and 0.27 eV for 2-SIA and 3-SIA clusters, respectively. Gao et

al. [91] investigated possible transition states of interstitials and small interstitial

clusters in SiC and α-Fe using the dimer method. The activation energies of

directional change were found to be 0.163, 0.133 and 0.342 eV for 1-, 2-, and 3-

SIA clusters, respectively. In our work, we assume that the relationship between

the activation energy of directional change for a interstitial cluster and the size

of the cluster is linear, and is equal to 0.05 eV per interstitial atom. In fact, MD

simulations have shown that the motion of small SIA clusters and loops is the

result of the motion of individual crowdions, [15, 73] and the reorientation may

occur in a one-by-one fashion. [86] The value of 0.05 eV/atom is probably an

underestimation for the energy barrier for direction change of a small cluster, say

size less than four, but for larger clusters, it reflects the preferential 1-D motion

of large interstitial clusters. Figure 6.1 show the trajectories of the centers of

mass of a 6-SIA cluster for diffusion at 300 K with respect to different energy

barriers for directional change. MD simulations revealed that defect structure of

a cascade is characterized by a vacancy-rich core surrounded by a shell of SIA

clusters. We represent this vacancy-rich core region as an immobile spherical

recombination center. The size of a recombination center or nano-void is given

by an equivalent diameter. The number of vacancies in the core of a cascade is

assumed to follow a Gaussian distribution with mean value of 100 and a standard

deviation of 8 vacancies.
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Figure 6.1: Centre-of-mass trajectories of a 6-SIA cluster migration for 10000

consecutive steps.
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6.2 DOSE DEPENDENCE OF DEFECT DENSITY

Doses up to 5.21 × 10−3 dpa were simulated at a displacement damage rate of

5 × 10−8 dpa/s, and damage accumulation was studied as a function of dose.

Figure 6.2 shows the interstitial cluster density as a function of dose, with and

without recombination between SIA clusters and nano-voids. In addition, SIA

clusters containing more than 100 interstitial atoms ( diameter > 2.5 nm) are

counted as ‘visible’ defects. The corresponding cluster density is calculated and

compared with experimental data for bcc Fe irradiated at ' 70 oC in the HFIR

reactor to displacement dose levels in the range of 10−4 to 0.72 dpa [9], and for

pure iron irradiated in the DR-3 reactor at Risø National Laboratory at 320 K as

shown in Figure 6.3. At low dose (dpa < 10−4 dpa), the cluster density increases

almost linearly with the dose. The increase in cluster density then slows down

when the dose level is higher than 10−4 dpa. The cluster density approaches a

saturated value and does not change much beyond a dose level of 3.5 × 10−3.

At the beginning of irradiation, cluster densities of both interstitials and va-

cancies are rather low, and the chance that one interstitial cluster can get close

enough to another interstitial or vacancy cluster is rather small as well. Because

of the 1-D motion of SIA clusters, the recombination cross section with vacancy

clusters produced in the cascade core and the agglomeration cross section with

other interstitial clusters are small. Theoretically, there are only two mechanisms

by which an SIA cluster could change its direction of motion: either thermal

activation or interaction with other defects. The effect of thermal activation can

be ruled out here because our simulations are carried out at low temperature

(i.e. room temperature). At low damage dose levels, the large distance between

clusters renders the interaction between them weak and can hardly affect their

migration, thus the density of clusters increases linearly with dose.
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Figure 6.2: Dose dependence of the total SIA cluster density in bcc Fe: -©-, no

recombination; -�- with recombination.
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Figure 6.3: Dose dependence of the total visible SIA cluster density in bcc Fe:

-©-, KMC simulation results; -4- experimental results of Eldrup et al. (2002);

-5- experimental results of Singh et al. (1999).
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When the damage builds up to an appreciable level, on the order of 10−4 dpa,

the simulation box becomes crowded with defects. The probability of mutual in-

teraction between clusters becomes appreciable, leading to more pronounced re-

combination and agglomeration events. Consequently, these non-linear reactions

slow down the increase in the density of SIA clusters. At higher accumulated

damage levels, on the order of 3.5 × 10−3 dpa in the present case, the number

of SIA clusters that recombine or coalesce reaches dynamic equilibrium with the

number of clusters produced by fresh cascades. Then, SIA cluster density in the

simulation box reaches a saturation level.

It is found that the presence of nano-voids has a significant effect on the

evolution dynamics of SIA clusters. As we can see in Figure 6.2, at a dose level

lower than 5 × 10−4 dpa, the difference between SIA cluster densities, with and

without nano-voids, is not large. However, when nano-voids are included in the

simulation, the surviving SIA cluster density deviates from the case when nano-

voids are not included. For example, the density of surviving SIA clusters is less

by a factor of 2 at 1.5 × 10−3 dpa, when nano-voids are included.

Although the density of SIA clusters reaches steady state after 3.5×10−3 dpa,

SIA cluster sizes continue to grow, and the density of visible clusters increases as

well. In order to compare the results from our simulations with experimentally

measured cluster densities, it is necessary to assume a minimum size that can be

resolved in experiments. A value between 1.5 and 2 nm in diameter is quoted

in the literature as the minimum size resolved by TEM [92]. In the present

simulations, we assume that SIA clusters containing more than 100 atoms are

visible. It is shown in Figure 6.3 that the density of visible SIA clusters obtained

in the simulations presented here is larger than the experimental measurement at

high dose levels. The high mobility of SIA clusters allows them to be absorbed
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on other sinks, such as grain boundaries or free surfaces. Hence we can consider

the agreement with the experimental conditions on the cluster density [9] as

qualitative.

Figure 6.4: Size distribution of SIA clusters at a dose level of 5.21 × 10−3 dpa.

The size distribution of SIA clusters at a dose of 5.2 × 10−3 dpa is shown in

Figure 6.4. More than half of the total interstitial clusters consist of more than 30

defects, though small clusters consisting of less than 10 SIAs still have the largest

concentration. It can be expected that the size distribution will continue to shift

to larger sizes as damage accumulates. It is found here that mobile SIA cluster

can be immobilized, either by getting trapped near a dislocation or by getting

locked with another large cluster (> 37 SIAs) of a different Burgers vector.
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6.3 CHARACTERISTICS OF DECORATION AND RAFT

FORMATION

The dislocation decoration process builds up quickly with dose, and at 3 × 10−4

dpa, grown-in dislocations attract SIA clusters. At higher doses, dislocation deco-

ration becomes very significant, as can be seen in Figure 6.5. When an extremely

mobile 1-D migrating interstitial cluster passes through the neighborhood of a

pre-existing dislocation, it will feel the influence of its strain field. As long as

the defect-dislocation interaction is attractive and the distance is small, the clus-

ter cannot escape from the attractive zone by thermally-activated random walk.

Once an SIA cluster is trapped into the strain field of a dislocation, it will ro-

tate its Burgers vector to accommodate to the strain field of the dislocation and

migrate along the direction of lowest energy barrier

It can be clearly seen in Figure 6.5(b) that the pure edge components of

the slip dislocation attract more SIA clusters in its vicinity. Trapped clusters

can still serve as sinks for the glissile clusters and increase their size before they

rotate their Burgers vectors and finally get absorbed by dislocations. With the

accumulation of clusters along the dislocation line, a repulsive force field is then

gradually built up against further cluster trapping. Figure 6.6(a) shows contours

of the interaction energy between an interstitial defect cluster of Burgers vector

a/2[1̄ 1 1] and an edge dislocation on the (1̄ 2̄ 1)-plane in bcc iron; and Figure

6.6(b) shows contours of the interaction energy between an interstitial defect

cluster of Burgers vector a/2[1̄ 1 1] and a pre-existing same-type cluster and an

edge dislocation on the (1̄ 2̄ 1)-plane.

When the attractive stress field of the dislocation is fully compensated for

by existing clusters, the SIA content in the primary trapping region achieves
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Figure 6.5: Spatial distribution of SIA clusters in bcc Fe at 300 K, (a) 1.3× 10−3

dpa, (b) 5.2 × 10−3.
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Figure 6.6: (a) Local iso-energy contours for the interaction energy of a SIA

cluster of Burgers vector a/2[1̄ 1 1] with an edge dislocation on the (1̄ 2̄ 1) -plane

in bcc iron; (b) local iso-energy contours of the interaction energy of an interstitial

defect clusters of Burgers vector a/2[1̄ 1 1] with a pre-existing same type cluster

and an edge dislocation on the (1̄ 2̄ 1) -plane. Contours are plotted at 0.02 (in

µδA/(1− ν), where µ is the shear modulus and δA is the surface area of the SIA

cluster) increment. The length on the axes is in units of lattice constant, a.
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saturation and the decoration process stops. Although dislocation decoration

saturates at a low dose, the primary region of cluster trapping shifts the stress

field of the dislocation, and cluster trapping occurs only ahead of the existing

dislocation/loop structure, where the interaction remains attractive [30]. For

increasing dose, cluster trapping continues away from the dislocation and results

in dislocation wall formation. As seen in Figure 5.7(d), our simulations have

already shown the extension of cluster trapping and the formation of dislocation

wall.

 

Figure 6.7: A close-up view of the configuration of a raft of interstitial clusters

formed at a dose level of 1.8 × 10−3 dpa. The raft is enclosed in a dotted circle.

In addition to dislocation decoration, another major striking feature of mi-

crostructure evolution is the formation of dislocation loop rafts. Figure 6.7 shows
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a configuration of SIA cluster raft formed at a dose level of 1.8 × 10−3 dpa. The

Burgers vectors of the clusters making up the raft are all parallel to one another,

which is in agreement with experimental observations [30]. If the interaction

between two close SIA clusters is attractive and strong enough to overcome the

energy barrier for directional change, they adjust their relative positions and ori-

entations. This scenario is similar to the pinning of clusters, which has been

demonstrated in the previous section.

To shed light on the nature of cluster-cluster self-trapping, we consider the

forces between two identical clusters. In Figure 6.8 a prismatic dislocation loop

is fixed at the origin, and another identical one is moved along its slip direction.

The glide force on the moving loop is plotted as a function of its relative position.

It is shown that 5 equilibrium positions (zero force) exist between the two parallel

clusters. However, only three of them are stable, at a relative angle of ±30.5o or

90o. When multiple clusters interact, this simple picture is somewhat disturbed.

Nevertheless, extended stable cluster complexes form by this self-trapping mech-

anism. Figure 6.9 shows the force field along the slip direction of an existing raft

obtained in our simulations. Two additional clusters that will join the raft in

the following time step are also shown in dotted lines. It can be seen that raft

formation is ‘autocatalytic’, since a raft nucleus is stable, but keeps expanding

through the association of other clusters on its periphery. As the number of clus-

ters within a raft increases, the mobility of the raft as a whole decreases. The

decrease in the mobility of individual clusters can be attributed to mutual elastic

interactions between clusters that are members of a raft.
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Figure 6.8: The glide force between two prismatic dislocation loops with parallel

Burgers vectors as a function of their relative positions. The force is scaled by

µb1b2A1A2/4π(1 − ν)d4, where bi and Ai (i = 1, 2) are the Burgers vectors and

surface areas of the two loops, respectively.
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Figure 6.9: Force field distribution along the glide direction of an existing raft

of SIA clusters (in solid lines). Two new SIA clusters (in dashed line) which will

join the raft are also shown.
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6.4 GENERAL CONDITIONS FOR DECORATION AND

RAFT FORMATION

Trinkaus et al. [30] have shown that a grown-in dislocation would have a large

drainage area for accumulating one-dimensionally migrating glissile loops in its

neighborhood. Our simulations also demonstrate that even at a fairly low dose

of 1.3×10−3 dpa, clear dislocation decoration is observed. The energy barrier for

directional change is a critical parameter in controlling when, how and to what

extent dislocation decoration and raft formation occur. The maximum range for

the elastic interaction that is strong enough to overcome the barrier and thereby

leads to a Burgers vector change is strongly dependent on this parameter. In

other words, the interaction between defects and the microstructure contributes

to dislocation decoration and the formation of rafts in terms of changing the dif-

fusivity and the characteristics of mixed 1D/3D migration. Brimhall and Mastel

[27] proposed that loops move through the lattice by a combination of prismatic

glide and self-climb to form rafts. Our present simulations, however, suggest that

raft formation could be achieved just by prismatic glide and rotation of glissile

SIA clusters. A necessary condition for pronounced formation of rafts is that the

group of clusters within a raft is large enough to trap a single glissile cluster in

the strain field formed by the group and prevent it from further Burgers vec-

tor rotation. Our simulations indicate that small rafts containing two or three

clusters are still mobile; more specifically, these small patches still perform 1-D

migration, although at reduced mobility. With the size of a patch increasing,

the overall mobility decreases, and a raft consisting of more than five clusters is

literally immobile. Due to thermal activation or interaction with other defects,

a SIA cluster trapped in the outer region of a raft may break away and detrap

from the raft.
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CHAPTER 7

EFFECTS OF NEUTRON IRRADIATION ON

DYNAMIC PROPERTIES OF EDGE

DISLOCATIONS

7.1 INTRODUCTION

Plastic deformation in crystalline metals is known as a collective consequence

of the motion of large number of dislocations. An enormous amount of inves-

tigations concerned with dislocation mechanics have been performed from both

atomistic and continuum perspectives. However, modeling the behavior of large

numbers of dislocations is a computationally intensive task. Only relatively re-

cently have computational models of the collective behavior of discrete disloca-

tions been developed. Large-scale Dislocation dynamics (DD) simulations, in

which the individual dislocations are described as straight or curved segments of

line defects in an elastic solid, have been successfully used to study characteristic

plastic deformations such as dislocation pattern formation and work-hardening

relations in macroscopically homogeneously deformed solid [93, 94, 95].

It is well established that a large number of point defects and point defect

clusters are created in high-energy displacement cascades in metals exposed to ir-

radiation by high-energy neutrons [22, 15]. Atomistic simulations have shown that

small SIA clusters can form perfect loops and perform fast thermally-activated
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one-dimensional motion in a variety of bcc, fcc and hcp metals [96, 84, 97]. The

motion and interaction of SIA clusters can lead to formation of rafts of small

dislocation loops and decoration of dislocation by loops [30, 98]. Analytical cal-

culations as well as KMC simulations have supported this conclusion. Based

on experimentally observed microstructure, the analytical CISH model [30, 12]

provides a rational explanation for the observed phenomena in post-irradiation

deformation experiments, namely, irradiation hardening and the occurrence of

yield drop. However, the materials tested in the post-irradiated state respond

to conditions that are fundamentally different from those that are likely to be

experienced by the materials subjected simultaneously to an flux of neutrons and

stresses in a real reactor environment. Under these conditions freshly generated

mobile dislocations are likely to interact with both glissile and sessile SIA clus-

ters, as well as vacancies produced continuously by cascades and it is therefore

relevant to investigate the influence of these interactions on dislocation motion.

In fact, in-reactor tensile tests have been carried out recently on both pure copper

and copper alloy in a fission reactor and results on the mechanical response and

concurrent microstructure evolution are now available [99]. In addition, atomistic

simulations of both α-iron and copper are performed to investigate interactions

between a gliding edge dislocation and decoration formed by a row of SIA loops

[100]. It is shown that SIA loops lying within a few nanometers of the dislocation

slip plane can be dragged at very high speed.

Large-scale three-dimensional DD simulations have been used to investigate

the relation between the irradiation field and mechanical behavior including ir-

radiation hardening and post-yield deformation[101]. The KMC simulations de-

scribed in previous chapters can provide valuable information on the spatial and

size distribution of defect clusters produced in displacement cascades. The mi-

crostructure predicted by KMC simulation can then be used to serve as input to

83

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil



DD simulation to investigate radiation effect on plastic deformation in a more

realistic way.

The main objective of this chapter is to study fundamental aspects of dynam-

ics of dislocation interaction with radiation-induced defect clusters, specifically

with both glissile and sessile SIA clusters in dislocation decorations, as well as

distributed nano-voids that resemble vacancy-rich cascade core regions. The in-

vestigation of the behavior of single gliding dislocations under irradiation can

characterize the effects of interaction with various microstructures and provide

guidance to ongoing large-scale simulations. In Section 7.2, the method used in

the context is described, which is a modified version of the parametric disloca-

tion dynamics method developed by Ghoniem et al.[102], with considering inertial

effects (i.e. the kinetic energy of moving dislocations). To describe the drag influ-

ence of SIA clusters on a gliding dislocation for the configurations generated by

KMC simulations, a model developed by Rong et al.[103] is incorporated into the

current simulation scheme in Section 7.3. The phenomenon of radiation-induced

increase in the yield stress is then discussed from two perspectives, specifically

for glide resistance to dislocation motion due to distributed vacancy clusters in

Section 7.4.1 and the pinning effect of SIA clusters to decorated dislocations in

Section 7.4, respectively. Finally, the dislocation glide affected by interaction of

dislocations with various obstacles to their glide is investigated in Section 7.5.

7.2 PARAMETRIC DISLOCATION DYNAMICS

Dislocations are line singularities in solid materials. A new parametric method

of dislocation dynamics has recently been developed and applied to study three-

dimensional problems of deformation in material deformation[77, 102, 104, 95].

The basic idea of parametric dislocation dynamics method is to represent dislo-
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cation line with a reduced set of degrees of freedom (DOF) and solve the cor-

responding equations of motion (EOM) of the DOF. By far, the discretization

of dislocation line into cubic spline curves has been proved to be satisfactory on

both computational efficiency and accuracy for most applications.

Figure 7.1: Parametric representation of a general curved dislocation segment,

with relevant vector defined (after [104]).

As shown in Figure 7.1, a general vector form of the dislocation line equation

for segment j can be expressed as

r(j)(ω) =
4∑

i=0

Ci(ω)Qi (7.1)

where r is the position vector of a point on dislocation segment, Ci(ω) are cubic

spline shape functions dependent on a parameter ω (0≤ω≤1), and Qi are a set

of generalized coordinates of the two dislocation end nodes. Specifically, Ci(ω)

are given by

C1(ω) = 2ω3 − 3ω2 + 1
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C2(ω) = −2ω3 + 3ω2

C3(ω) = ω3 − 2ω2 + ω

C4(ω) = ω3 − ω2 (7.2)

and Qi are:

Q1 = P(j)(0), Q2 = P(j)(1),

Q3 = T(j)(0), Q4 = T(j)(1) (7.3)

where P(j)(i) and T(j)(i) (i = 1, 2) are the position and tangent vectors of the

beginning and ending node of segment j, respectively.

7.2.1 THE EQUATION OF MOTION

Under most dynamic conditions, dislocations move so slowly that the dynamic

stresses and displacements are approximated quite accurately by the static so-

lutions. Therefore, in existing DD methodology the dynamic term has been

ignored for the sake of computational simplicity. However, dynamic effects are

thought to be important in some specific scenarios, for example, in the study

of dislocations being suddenly released from cluster atmospheres under high ap-

plied stresses. Here, by reinstating the kinetic energy which was ignored in the

derivation based on thermodynamics by Ghoniem et al.[102], we present a mod-

ified variational form for the equations of motion (EOM) for dislocation loops.

Following Ghoniem et al.[102], consider a body in thermodynamic equilibrium, of

volume Ω, and its boundary S, containing a dislocation loop in an initial position

(1), as shown in Figure 7.2. By the prescribed external mechanical forces, as well

as thermodynamic internal forces, the dislocation loop will experience transition

from the initial state to a new on designated as (2). According to the first law

of thermodynamics, the following condition of energy conservation must be met
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Figure 7.2: Representation of dislocation loop motion in an infinitesimal transi-

tion, illustrating thermodynamic variables (after [102]).

during this transition of states,

dU t + δEt = δQt + δCt + δW t (7.4)

where dU t is the change in internal energy, δEt the change in kinetic energy, δQt

the change in heat energy, δC t the change in chemical energy by atomic diffusion,

and δW t the change in its mechanical energy. The kinetic energy associated with

a moving dislocation is due to the fact that there is motion of material about a

dislocation. By analogy with the problem of the vibration of a string, we can

define an ‘effective mass’, m, per unit length of dislocation line. The dislocation

line vector is denoted by s = t|s|, where t is a unit tangent vector. The total

kinetic energy associated with a moving dislocation is then written as integration

along the dislocation line Γ

E =

∮

Γ

1

2
mṙ · ṙ|ds| (7.5)
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where r is the displacement vector of core atoms of the dislocation loop.

Consider an infinitesimal variation in the position of a dislocation loop in a

time interval δt. During loop motion from state (1) to state (2) in Figure 7.2,

the variation in kinetic energy over this period of time can be shown as

δEt =
d

dt

[∮

Γ

1

2
mṙ·ṙ|ds|

]

δt

=

∮

Γ

mṙ·̈rδt|ds|

=

∮

Γ

mr̈·δr|ds|

The variation in kinetic energy during time interval δt reads

δEt =

∮

Γ

mr̈·δr|ds|dt (7.6)

Following the treatments in Ref. [102] with including the kinetic energy term, it

can be shown that during the transition the total Gibbs energy change over δt,

δGt, is given by

δGt = −
∮

Γ

(
f t − mr̈

)
· δr|ds| ≤ 0 (7.7)

where f t = fs + fO + fPK is the total force. Here the following generalized thermo-

dynamic forces is defined similar to Ghoniem et al.[102]: fPK ≡ the Peach-Koehler

force per unit length, fS ≡ the self-force per unit length, and fO ≡ the totial os-

motic force[105] for point defect γ per unit length, where γ = (−1) for vacancies

and (+1) for interstitials.

In compact tensor form, Equation 7.8 can be written as

δGt = −
∮

Γ

(
f t

k − mr̈k

)
δrk|ds| ≤ 0 (7.8)

On the other hand, we can denote Bαk as a diagonal resistivity (inverse mo-

bility) matrix with respect to the drift velocity V, and follow the same procedure
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by Ghoniem et al.[102] to obtain the following equivalent form of Gibbs energy

variation:

δGt = −
∮

Γ

BαkVαδrk|ds|dt ≤ 0 (7.9)

The resistivity matrix can have three independent components (two for glide

and one for climb), depending on the crystal structure and temperature. It is

expressed as

Bαk =








B1 0 0

0 B2 0

0 0 B3








(7.10)

Combining Equation 7.8 with Equation 7.9, we have

∮

Γ

(
f t

k − mr̈k − BαkVα

)
δrk|ds|dt ≤ 0 (7.11)

The magnitude of the virtual displacement δdk and the the time interval [t1, t2]

are not specified, and hence ban be arbitrary. This implies that Equation 7.11

represents force balance on every atom of the dislocation core, where the acting

force component f t
k is balanced by the combination of viscous dissipation in the

crystal via the term BαkVα and inertial force mr̈k. However, it is the integral EOM

that has more sense in practical applications from the perspective of reducing the

independent DOF that describe loop motion.

Now we can take the general procedure of PDD method, and divide the dis-

location loop into Ns curved segments. The line integral in Equation 7.11 can be

written as a sum over each parametric segment j, i.e.,

Ns∑

j=1

∫

j

δri

(
f t

i − mr̈i − BikVk

)
|ds| = 0 (7.12)

In each segment j, we can choose a set of generalized coordinates qm at the two
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ends, thus allowing parametrization of the form:

ri(ω) =

NDF∑

i=0

Cim(ω)qm (7.13)

where Cim(ω) are shape functions, dependent on the parameter ω (0 ≤ ω ≤ 1),

and NDF is the number of total generalized coordinates at two ends of the loop

segment. The arc length differential for segment j is given by

|ds| = (rl,url,u) 1
2

dω =

(
NDF∑

p,s=1

qpClp,ωCls,ωqs

) 1
2

dω (7.14)

Substituting all these to the integral form of the governing EOM 7.12, we obtain:

Ns∑

j=1

∫ 1

0

NDF∑

m=1

δqmCim(ω)

[

f t
i − Bik

NDF∑

n=1

Cknqn,t − m

NDF∑

j=1

Cijqj,tt

]

×
(

NDF∑

p,s=1

qpClp,ωCls,ωqs

) 1
2

dω = 0. (7.15)

Let,

fm =

∫ 1

0

f t
i Cim(ω)

(
NDF∑

p,s=1

qpClp,ωCls,ωqs

) 1
2

dω, (7.16)

γmn =

∫ 1

0

Cim(ω)BikCkn(ω)

(
NDF∑

p,s=1

qpClp,ωCls,ωqs

) 1
2

dω, (7.17)

and

ηmn =

∫ 1

0

Cim(ω)mCin(ω)

(
NDF∑

p,s=1

qpClp,ωCls,ωqs

) 1
2

dω. (7.18)

For the entire dislocation loop, we map all local DOFs q
(j)
i of each segment j

onto a set of global coordinates, shuch that the global coordinates are equal to

the local coordinates at each beginning node of the segment:

{

q
(1)
1 , q

(1)
2 , q

(1)
3 , . . . , q

(2)
1 , q

(2)
2 , q

(2)
3 , . . .

}

= {Q1, Q2, Q3, . . . , QNtot
}T (7.19)
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Following a similar procedure to the FEM, we assemble the EOM for all contigu-

ous segments in global matrices and vectors, as:

[Fk] =
Ns∑

j=1

[fm](j), [Γkl] =
Ns∑

j=1

[γmn](j), [Mk] =
Ns∑

j=1

[ηmn](j) (7.20)

then, from Equation 7.15 we can get

Ntot∑

j=1

MklQl,tt +
Ntot∑

j=1

ΓklQl,t = Fk (7.21)

Equation 7.21 represents a set of time-dependent second-order ordinary dif-

ferential equations (ODEs), which describe the motion of ensemble of dislocation

loops as an evolutionary dynamic system. Comparing it with the EOM used in

already-existing PDD[102], the main difference is that inertial effect is included in

this modified version. The velocity of an edge dislocation under suddenly applied

Figure 7.3: Velocity of an edge dislocation as a function of time under suddenly

applied uniaxial tensile stress σ1 = 2 GPa.

uniaxial tensile stress σ11 = 2 GPa is shown in Figure 7.3, including the result
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with considering inertial effect as well as that without. The current EOM enables

the dislocation velocity to increase gradually from zero to a saturate value, and

the transverse sound velocity is the upper limit; while by the old EOM[102] the

velocity can abruptly jump to an unrealistic high value of more than 8000 m/s

without experiencing a course of increasing.

Observing the EOM 7.21, it can be seen that there are two material properties

that control the motion of dislocation: one is the mass matrix [Mkl] of a dislo-

cation in connection with the kinetic energy it carries while moving at constant

velocity; and the other is the resistivity matrix [Γkl] in connection with the dis-

sipation of energy while a dislocation moves at its steady-state velocity under an

essentially constant driving forces. A dynamic interaction between mass forces

and resistant forces comes into play when the driving forces varies abruptly: for

example, when the applied stress is suddenly dropped, or when the dislocation is

suddenly exposed to an increased or decreased glide resistance by, say, running

into an isolated barrier or being released from a pinning position. In principle,

the kinetic energy must then be dissipated before the dislocation comes to rest.

Under certain circumstances, inertial effects may assistant a dislocation to over-

come an obstacle: when the mass is large, the resistance is small, and the change

in net driving force is rapid.

Such inertial effects have, in the existing DD studies, been largely neglected:

dislocation have been considered to be overdamped [106], i.e. moving at their

resistivity-limited velocity, at all times. However, dislocation elements in real

materials experience rapidly changing driving forces, especially when interacting

with various obstacles, and the possibility of inertial effects must be taken into

account.
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7.2.2 THE MASS OF DISLOCATIONS

We have already defined m as the effective mass per unit length of the dislocation

in Section 7.2.1. By analogy with the formula for kinetic energy in mechanics, we

can calculate the value of m in terms of the kinetic energy of a straight dislocation

segment moving at uniform velocity. For a screw dislocation, it has been shown

that the sum of the kinetic energy Ek and the potential energy Ee of a unit length

of dislocation moving at a constant velocity v is given by[107, 108]

E = Ek + Ee = Es/(1 − v2/C2
t )

1
2 (7.22)

where Es is the self-energy per unit length of screw dislocation at rest, and Ct is

the transverse sound velocity and its value is obtained from Ct ≡
√

µ
ρ

in terms

of the shear modulus µ and the mass density of the materials ρ. The theory of

dislocation motion in isotropic media at uniform velocity concludes that dislo-

cation motion is quite analogous to the motion of particles in special relativity

theory[108]. The energy of the dislocation becomes infinite as the velocity of

transverse sound waves is approached. This sound speed, therefore, sets an up-

per limit for the speed of an ordinary dislocation.

At velocities small compared to the velocity of sound, i.e. v/Ct � 1, Equation

7.22 is expanded as

E = Es

(

1 +
1

2

v2

C2
t

+ · · ·
)

≈ Es +
1

2
Es

v2

C2
t

(7.23)

It indicates that at low velocities the elastic energy of a screw dislocation is not

changed and the kinetic energy is given by 1
2
Es

v2

C2
t

. Since the latter term has the

same velocity dependence as the energy of a moving mass, it is natural to derive

an expression for the mass mSCREW in terms of Es and Cr at a low velocity:

mSCREW =
Es

C2
t

(7.24)
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Rewriting Equation 7.24 as

Es = mSCREWC2
t (7.25)

it is Einstein’s equation relating energy with rest mass, except that here Ct is

the velocity of sound instead of light. At high velocities Equation 7.22 can be

written as

E = mSCREWC2
t /(1 − v2/C2

t )
1
2 = m?

SCREWC2
t (7.26)

where m?
SCREW = mSCREW/(1− v2/C2

t )
1
2 is the effective mass for a screw disloca-

tion moving at high velocities, which includes the relativistic effect of a factor of

1/(1 − v2/C2
t )

1
2 by analogy with Einstein’s equation for a moving particle.

The energy of a moving edge dislocation cannot be described by Equation

7.23[108], and it is, therefore, impossible to define a rest mass of an edge dislo-

cation in terms of the self-energy of the stationary dislocation. However, it has

been shown[108] that at low velocities potential energy does not contain terms in

v2 and the kinetic energy of an edge dislocation is equal to

Ek =
1

2
Es(v

2/C2
t )
[
1 + C4

t /C
4
λ

]
(7.27)

where Cλ =
√

(λ + 2µ)/ρ is the longitudinal sound velocity. The effective mass

mEDGE of a slow moving edge dislocation would be

mEDGE =
Es

C2
t

(
1 + C4

t /C
4
λ

)
= mSCREW

(
1 + C4

t /C
4
λ

)
(7.28)

At high velocities the kinetic energy of the moving edge dislocation is[108]

Ek = Es

[

1

2(1 − v2/C2
t )

3
2

− 7

2(1 − v2/C2
t )

1
2

]

= Es
7v2/C2

t − 6

2(1 − v2/C2
t )

3
2

(7.29)

The energy approaches infinity as (1 − v2/C2
t )−

3
2 rather than (1 − v2/C2

t )−
1
2 as

in the case of screw dislocations. Although the definition of the dislocation mass
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based on the equation analogous to Einstein’s equation cannot be applied to the

case of moving edge dislocation, it is still plausible to define a dislocation mass

in terms of kinetic energy as follows due to the dominance of (1 − v2/C2
t )

3
2 .

m?
EDGE =

Es

C2
t

1

(1 − v2/C2
t )

3
2

= mSCREW
1

(1 − v2/C2
t )

3
2

(7.30)

At low velocities, the mass for screw dislocations and that for edge ones are

very similar, since the transverse speed of sound Ct is usually about half the

longitudinal speed of sound Cλ. Therefore, we can use Equation 7.24 for the

mass of both kinds of dislocations. The general dislocation is neither pure screw

nor pure edge in character but is made up of a linear combination of both. The

energy of a moving dislocation of mixed character is simply the sum of the energy

of its edge component and of its screw component, and so is its mass. We can thus

use Equation 7.24 for any dislocations moving at low velocities. At high velocities

the behavior of a dislcation of mixed type will be approximately the same as that

of a pure edge dislocation, because the energy of the edge component approaches

infinity as (1 − v2/C2
t )−

3
2 while the screw component approaches infinity much

more slowly as (1 − v2/C2
t )−

1
2 . By a similar argument, the mass of a dislocation

of mixed character should be approximately the same as that of a pure edge

dislocation.

In Section 7.2.1, we have Equation 7.18 as the mass matrix of a dislocation

segment, which has the same form as the so-called consistent-mass matrix used in

finite element. In practice, a special form of mass matrix called ‘lumped’ matrices

are often employed due to their general economy and because they lead to some

especially attractive time-integration schemes. The simplest way to construct

lumped-mass matrices is to assume that the element’s mass is concentrated at

nodal points, and by doing that the mass matrices obtained are diagonal ones.

In our applications, we shall employ lumped-mass matrix.
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For cubic spline shape functions given in Equation 7.2, the lumped-mass ma-

trix can be readily shown to be

[M]e =
W

2
























1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
























(7.31)

where W = ml is the total mass of the dislocation element with a length of l.

7.3 THE DRAG COEFFICIENT OF INTERSTITIAL LOOP

DRAGGED BY A GLIDING DISLOCATION

Computer simulations and experiments have shown that, highly mobile inter-

stitial clusters that are directly produced in displacement cascades move one-

dimensionally with a very low activation energy of the order of 0.02 eV, and can

approach to decorate grow-in dislocations due to long-range interaction between

them. If the applied stress is high enough, the dislocations may be released from

this ‘atmospheres’ of small interstitial loops that decorate them. Due to the mu-

tual interaction between them the newly released dislocations may be able to

make the interstitial loops glide with them. This scenario was first put out by

Makin[44], who calculated the long-range elastic interaction between a dislocation

and loop and proposed that loops lying close to the glide plane of a dislocation

with the same Burgers vector, b, may be dragged along by it. Rodney and
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Marin[88, 109] were the first that reported loop drag effects in MD simulations

of small interstitial loops captured by a dissociated dislocation in Ni. Recently,

Rong et al.[103] have shown by MD simulations in bcc iron and fcc copper that

interstitial loops lying within a few nanometers of the dislocation slip plane can

be dragged at very high speed. The drag coefficient, B, associated with this pro-

cess has been determined as a function of metal, temperature, as well as loop size

and spacing. A model for loop drag, based on the diffusivity of interstitial loops,

has been developed[103] and is briefly reviewed in the following. At steady state

Figure 7.4: Drag coefficient versus applied resolved shear stress for single (grey

symbols) and decorated (open symbols) dislocations in Fe (circle) and Cu (trian-

gles) simulated at 300 K[103].

under a constant driving force bτ , a dislocation moves with a constant velocity.

Then, by assuming its velocity is sufficiently smaller than that of sound, say, less

than approximately half of the transverse sound speed, and omitting relativistic
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effects, the total drag coefficient per unit length is defined as

B =
τb

v
. (7.32)

In crystals with a peierls potential, the drag coefficient may depend on v. But in

close-packed crystals without an appreciable lattice friction, experiments indicate

that a dislocation moving through an obstacle free crystal experiences a linear-

viscous drag[106]. The values of B for iron and copper have been evaluated

utilizing the results of MD simulations[103], and are presented in Figure 7.4.

Figure 7.5: Schematic illustration of the investigated system.

When a row of loops is dragged by the gliding dislocation line with the same

Burger vector b, as shown in Figure 7.5, the force per unit length needed to

maintain the velocity v may be written

τb = (τdisl + τloop)b = (Bdisl + Bloop)v, (7.33)

where terms corresponding to the dislocation line on its own and those due to loop

drag are distinguished by subscript ‘disl’ and ‘loop’, respectively. The mobility
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of a loop is often defined as

mloop =
v

FL

=
v

τloopbLD

=
1

BloopLD

(7.34)

where FL is the force exerted by the dislocation line on the loop in the direction

of loop glide, and LD is the inter-loop spacing along the dislocation line. By the

Einstein mobility relation, the mobility of a diffusing loop can also be given by

mloop =
D

kT
(7.35)

where D is the diffusivity and k is the Boltzmann constant. For one-dimensional

diffusion, particularly, D may be written in terms of jump frequency, ωn, of a

loop of n interstitials (Equation 6.2), as[110]

D =
1

2
fb2ωn (7.36)

where f is the correlation factor. Hence

Bloop =
1

mloopLD

=
kT

DLD

=
2kT

fb2ωnLD

(7.37)

f indicates a preference for a jump to be in the same direction as the previous

one and its value decreases as temperature and size increases. According to MD

simulations, values that varies from 3 to 5 are reasonable choices for loops created

in our KMC simulations for iron at room temperature. Equation 7.37 was first

proposed by Rong et al.[103] to estimate the drag coefficient for a dislocation

gliding with a row of dragged loops in decoration.

A loop can be dragged along with the moving dislocation if the force required

does not exceed the maximum, Fmax, exerted on the loop by the dislocation. This

maximum force can be evaluated in terms of isotropic elasticity theory and the

infinitesimal loop approximation, similar to what has been implemented in the

KMC simulations. Therefore, the maximum velocity, vmax, at which one might
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expect the dislocation to break away from the ‘atmospheres’ of small loops, can

be estimated as follows

vmax =
Fmax

mloop

=
Fmax

BloopLD

(7.38)

For loops whose burgers vector is parallel to the glide plane of the dislocation

but not the same as the glide direction of the dislocation, for example, [1̄1̄1]

direction shown in Figure 7.5, they can still be dragged, but in a direction at an

angle theta to the glide direction of the dislocation, and result in a substantial

reduction in dislocation velocity at a given stress. Their contribution to B is

much greater than that of loops with the same glide direction as that of the

dislocation. Theoretically, in order to be dragged by the dislocation moving with

velocity v, the loop speed along its glide cylinder has to be v/cosθ. In addition,

the component of the driving force FL in the glide direction of the dislocation is

FLcosθ in the glide direction of the loop. Thus, FL for a given v has to be three

times larger than for a loop with the same size and distance to the dislocation

glide plane but with the same glide direction as the dislocation[103].

For the configuration shown in Figure 7.6, which is extracted from the result

of previous KMC simulations for bcc Fe irradiated to a dose level of 5.2 × 10−3

dpa at 300 K(Figure 6.5(b)), values of Bloop predicted by Equation 7.37, as well

as estimates of vmax obtained from Equation 7.38 for an edge dislocation to break

away from decorating loops are presented in Table 7.1. vmax that is higher than

the transverse sound velocity in bcc iron implies that the loop will be dragged

with the dislocation all the way and never be dumped.
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X
Y

Z

b=[-1 1 1 ]a/2

Figure 7.6: Spatial distribution obtained by KMC simulations for SIA loops that

can be dragged by the edge component of the dislocation loop in bcc Fe irradiated

to a dose of 5.2 × 10−3 dpa at 300 K.

7.4 IRRADIATION-INDUCED INCREASE IN THE YIELD

STRESS

The initiation of the plastic flow, commonly referred to as yielding, takes place

when a significant number of grow-in dislocations are set free (i.e., unlocked)

to move and act as dislocation sources. The multiplication and movement of

these free dislocations and the resulting dislocation-dislocation interactions leads

to work hardening as plastic deformation continuous. In unirradiated metals,

the ‘clean’ and ‘atmosphere’-free dislocations will start operating as Frank-Read

sources[111] when the applied stress is sufficient to overcome the restoring forces

on the dislocations due to their line tension. In irradiated materials, the presence

of irradiation-induced defects alters the plastic deformation behavior significantly

and the corresponding phenomena have been extensively studied since the 1950s.
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It is well recognized that the defects produced by neutron irradiation must

interact with the dislocations to produce the change in the mechanical properties

of metals and alloys. Two types of interaction are involved. Some of the radiation

induced SIA clusters that are produced directly in high energy displacement cas-

cade may approach to the grow-in dislocations (dislocation sources) by thermally

activated 1-D transport, be trapped in the strain field of the dislocations and

decorate them. These SIA clusters may form a Cottrell atmosphere, and act as

barriers to the generation of dislocations (source hardening). In addition to this

type of interaction, the radiation induced defects may act as distributed barriers

to impede the motion of the dislocation after it has been released from decora-

tion clusters (friction hardening). In the first part of this section, the effect of

distributed defects on dislocation motion will be investigated; and the influence

of decoration clusters will be studied in the second part.

7.4.1 THE PLANE GLIDE RESISTANCE (FRIEDEL STATISTICS)

DUE TO VACANCIES

An vacancy-rich zone will be created in the center of a displacement spike, as men-

tioned in Section 1.1. These zones are expected to collapse into vacancy loops or

stacking fault tetrahedra (SFTs) during the cooling down phase of the cascades.

Although production of large compact planar or three-dimensional vacancy clus-

ters directly in displacement cascades have not been observed through MD simula-

tions in bcc metals, very loose complexes of vacancies in second and higher order

neighbor shells have been reported[54, 112]. The possibility that these closely

correlated vacancies might collapse into clusters over somewhat longer times has

been investigated using MC simulations. The expectation of vacancy clustering

was confirmed in the MC simulations, where many of the isolated vacancies had
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clustered within 70 µs [113]. Once dislocation sources are unlocked from their

decoration atmosphere, they will then multiply and interact with the defect clus-

ters randomly distributed in the matrix of the crystal. Vacancy clusters in the

form of voids are much stronger obstacles to dislocation motion than precipitates

and interstitials[114]. In this regards, the contribution of vacancies would be our

main consideration for strengthening mechanism in terms of internal friction. We

investigate here the interaction between moving dislocations and nano-voids as a

possible mechanism of radiation hardening immediately beyond the yield point.

lw

φ

Figure 7.7: Schematic of shape of dislocation line near the Orowan-type obstacles.

We follow Friedel[48] (see also Kocks et al.[106]) in taking into account the

plane resistance due to a random distribution of point-like obstacles that interact

with a dislocation. The asymptotic maximum plane resistance is found by as-

suming steady-state propagation of quasi-straight dislocation lines. This means

that the area swept by the dislocation after release at one obstacle must, in the

average, be equal to the average area per particle. The average center-to-center

void spacing (l + w), as shown in Figure 7.7, is usually given geometrically in

terms of the volume fraction. In the preceding KMC simulations, vacancy clus-

ters are approximated as spherical nano-voids. For uniform spheres of radius r,

distributed randomly in three dimensions and taking up a volume fraction c, one
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has

(l + w)2 = r2 2π

3c
(7.39)

The average diameter of the circles formed by intersection of these spheres with

the slip plane of the dislocation is

w =
π

2
r (7.40)

The plane resistance in terms of resolved shear stress encountered by individual

dislocations that move long distances through a random dispersion of obstacles

is related to the relative strength f of the individual obstacles and their spacing

l by the Friedel relation[106]:

τc = f 3/2 b

w
µ
√

c (7.41)

In principle, f is determined by the angle between adjacent dislocation segments

at the point where the dislocation breaks free of the obstacle[106]. As shown in

Figure 7.7, if the critical angle is φ, f ≡ cos φ. The value of f is limited by the

possibility of ‘Orowan looping’ for impenetrable obstacles that are hard enough

that the dislocation is unable to cut through them and can only pass through the

field of obstacles by the bowing of dislocation segments around them. A dipole

is drawn out by the two dislocation arms surrounding a single obstacles. The

limiting effective resistance force of an impenetrable obstacle is the energy to

draw out the respective dipole[106]:

FSCREW−DIPOLE =
µb2

2π
ln

w

r0

FEDGE−DIPOLE =
µb2

2π(1 − ν)
ln

w

r0

(7.42)

where r0 is the effective dislocation core radius and we have used r0 = b for

metals. The value of f thus fulfills the condition

f ≤ fmax =
FDIPOLE

2E
(7.43)
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where E is the self-energy per unit length of a dislocation, or line energy. For

order-of-magnitude estimates, it is often to take ESCREW = 2µb2 for a screw

dislocation in isotropic materials. For an edge dislocation, we have the following

simply relationship:

EEDGE =
1

1 − ν
ESCREW (7.44)

In fact, most obstacles are not as strong as Orowan impenetrable obstacles

and may be partially cut or sheared by the dislocation as it bows out. This

reduces the amount of energy required for a dislocation to glide through the field

of obstacles, and correspondingly results in a lower f . For nano-voids, we choose

the value of f to be ∼ 0.8fmax.

Figure 7.8: The dependence of the plane glide resistance in terms of critical shear

stress on the volume fraction of nano-voids for an edge dislocation in neutron

irradiated bcc iron.

Figure 7.8 shows the dependence of the plane glide resistance in terms of

critical shear stress on the volume fraction of nano-voids for edge dislocation in

neutron irradiated bcc iron. The number of vacancies contained in one single

nano-void is specified to be fifteen, in view of MD[112] and MC[113] simulations

indicating that small vacancy cluster-complexes are highly mobile and only a
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small faction (about 10%) of the stable vacancies is distributed within the range

of a loose complex of vacancies in correlated neighboring locations that may

coalesces to form one relatively large three-dimensional vacancy cluster.

When it comes to compare the critical resolved shear stress value obtained

from Equation 7.41 with a measured uniaxial yield strength, a conversion factor,

namely Taylor factor, must be applied. The average value of Taylor factor is 3.06

for equiaxed bcc and fcc metals[115].

In an effort to interpret the observed increase in the critical shear stress for

plastic deformation due to neutron irradiation, two mechanisms were proposed.

contributions to the increase of strength of the irradiated material. On the one

hand, the original dislocation structure present in the crystal will be pinned down

by the defects produced during irradiation. A clear example in neutron-irradiated

Mo single crystal is shown in Fig. 8, where dislocations are locked by small clus-

ters with a very small separation. Notice also that there is a distribution of

loops in the rest of the crystal matrix, but at a lower density and larger spacing.

Trinkaus et al. [16] have lately reviewed the conditions for this dislocation deco-

ration and arrived at the conclusion that the direct clustering of SIAs or vacancies

in a region near the dislocation cannot be due to three-dimensional diffusion and

agglomeration of single SIAs, but rather that the decoration is produced by the

accumulation of one-dimensionally migrating glissile loops, that were produced

originally in the cascades. MD simulations [14,17,18] have actually demonstrated

this one-dimensional motion. The clusters remain in a metastable state near

to the dislocation and can only be absorbed by it after a thermally activated

[16,19,20] or elastic force field-induced [21] change in Burgers vector direction.

The second contribution will come from the unlocked source dislocation that

will then multiply and interact with the distribution of defect clusters present
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in the matrix of the crystal which are separated at a much larger distance: for

the crystal taken as an example in the above discussion the mean distance in the

matrix L = (Nd)−1/2 ∼ 280 nm, a factor of about one hundred times larger than

the value for dislocation locking. It has been shown [3,15] that the hardening

by this defect structure is well represented by the dispersed obstacle model [22],

where the increase of strength, beyond the upper yield point, compared to the

unirradiated state, is given by

∆τ = αµb(Nd)1/2, (7.45)

where α is a factor that accounts for the strength of the obstacle. It was found

[3] that in the irradiated Cu single crystals there is a linear relation between the

measured values of ∆τ and (Nd)1/2 with a resultant value of a α = 0.1−0.2, which

describes soft obstacles. It should be pointed out that these measurements were

performed in the yield region. Beyond it, as it is further discussed in Section 3.3,

the contribution from dislocation-dislocation interaction to the work hardening is

the main component of the flow stress. Furthermore, for higher dose levels, where

only a yield region at approximate constant stress level (see Fig. 7) is observed,

∆τ reflects the resistance to dislocation motion in the channels.

7.4.2 INTERACTION BETWEEN A STRAIGHT EDGE DISLO-

CATION AND SIA CLUSTER DECORATIONS

It has been shown by both experiments and computer simulations that the Frank-

Read sources are decorated by small SIA clusters during neutron irradiation.

These clusters are produced directly in the multi-displacement cascades and small

SIA clusters are extremely mobile, which have been demonstrated by MD simu-

lations (see the preceding chapters). Using PDD method, Ghoniem et al. inves-

tigated the dynamics of a expanding Frank-Read source dislocation interaction
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with sessile SIA clusters in dislocation decoration[116]. In the present study, the

same method is extended to a more realistic case where the spatial and dimen-

sional distribution of clusters that are trapped in the strain field of the dislocation

form dislocation decoration are obtained from KMC simulations.

X Y

Z

b = 1/2[-1 1 1]

Figure 7.9: Spatial distribution obtained by KMC simulations for SIA loops that

is in the region of decoration of the dislocation loop in bcc iron irradiated to a

dose of 5.2 × 10−3 dpa at 300 K.

The configurations obtained by KMC simulations at a variety of dose levels

are used as typical distributions of SIA clusters in decoration to consider the

interaction between an moving straight edge dislocation and the full field of mul-

tiple decoration clusters. For example, Figure 7.9 shows the spatial distribution

of SIA loops in the region of decoration, which is extracted from the result of

KMC simulations in Figure 6.5(b). It is noted that a number of the decorating

clusters have Burgers vectors different from that of the dislocation in Figure 7.9.

This deviation from a perfect dislocation decoration structure is attribute to the

event that a virtually immobile complex may be formed when two (or more) clus-

108

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil

Nasr Ghoniem
Pencil



ters of different oriented Burgers vectors join due to the mutual attraction[86].

The immobile complexes can grow further due to the interaction with other SIA

clusters. To determine the magnitude of collective resistance of clusters, system-

atic PDD simulations for the dynamics of interaction between SIA clusters and

the dislocation are performed. The clusters are assumed to be perfect prismatic

dislocation loops, same as what has been adopted in KMC simulations, and their

elastic field is calculated by using Kroupa’s [50] formulae for infinitesimal loops.

The edge dislocation with Burgers vector b = 1
2
[1̄11] is gliding on the (101)

plane. Uniaxial tensile stresses along [1000] of different magnitude are applied to

determine the value of σ11 required for the dislocation to overcome the barrier.

As the edge dislocation moves in the elastic field of SIA clusters, each point on

the dislocation line is subject to a resistive (or attractive) force. This means

that in order to move further, a higher stress will have to be applied, so that the

dislocation could be pulled out of this local environment. It also implies that

increase in the yield stress would be expected for the initiation of the plastic

flow. When the dislocation is locked in the distributed clusters, it has to adjust

its shape to accommodate to the strain filed of clusters. The particular section of

the dislocation in the vicinity of clusters acts like a vibrating string. Figure 7.10

shows a close view of the detailed dynamics of the collective cluster interaction

with a moving edge dislocation, where the configuration of cluster is transferred

from Figure 7.9. When the applied tensile stress reaches to a critical value, which

depends on the specific distribution of clusters at corresponding dose levels, with

the assistance of inertial effect as well as self-forces resulting from local curvatures,

the dislocation can finally break through the collective cluster field.

The results for the increase in yield stress ∆σ11 due to the interaction between

dislocation and clusters in decoration are shown in Figure 7.11 as a function of

dose level. The estimations of resistance imposed by the distributed vacancy clus-
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Figure 7.10: Dynamics of an edge dislocation interaction with a distribution of

SIA clusters in bcc iron. The Burgers vector of the dislocation is b = 1
2
[1̄11], and

the configuration of cluster is produced by KMC simulations, as in Figure 7.9.

ters (approximated as nano-voids) are provided as well. The combining effects

of both decoration clusters and nano-voids of current calculations are compared

with the experimental results for pure iron irradiated and test at 70 ◦C[9]. At a

dose level of 1 × 10−4 dpa, the current result shows a very good match the ex-

perimental datum. As radiation dose increases, the contribution from decoration

clusters and nano-voids both increase. This is consistent with the development of

microstructures, namely, that the density of nano-voids keeps increasing and the

decoration along the dislocation line continuously builds up. The present model

predicts a little larger ∆σ11 compared with the experimental results at a higher

dose level of 5.2 × 10−3. One possible cause could attribute to the coarseness of

the model that estimates the glide resistance of distributed vacancy clusters. In-

deed, the density of vacancy clusters are assumed to be a simple linear function

of irradiation dose rate in the current model. This assumption may be ratio-

nal at very low dose levels. As radiation damage proceeds, There are more and

more defects occurring in the unit volume of materials, which means that the

interaction and reaction between defects become stronger and more frequently.

Annihilation, absorption, and agglomeration of vacancy clusters change the spa-

tial and size distribution of them. To obtain accurate description regarding the
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distribution of vacancy clusters, detailed dynamic simulation may be preferred

to be carried out for the evolution of vacancies.

Figure 7.11: Dose dependence of the increase in yield stress due to the inter-

action with clusters in decoration as well as the distributed vacancy clusters

(nano-voids) in bcc iron irradiated at 300 K. Numerical results are compared

with the experimental data of pure iron irradiated and tested at 70 ◦C[9].

It is also noted that the interaction between dislocation and SIA clusters in

decoration contributes more to the increase of yield stress than the glide resistance

of nano-voids at low dose levels (< 10−3 dpa). At 1 × 10−4 dpa, the interaction

between dislocation and decoration SIA clusters makes up a major part the in-

crease of yield stress. Its contribution, however, decreases in proportion to that

of distributed nano-voids as the irradiation dose increases. At 5.2×10−3 dpa, the
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increase of yield stress due to the impediment of nano-voids to dislocation motion

has exceeded that due to the SIA clusters in decoration. It implies that at high

dose levels, plane glide resistance due to distributed vacancy clusters may play a

more significant role in modifying the plastic deformation behavior of irradiated

materials than the SIA clusters in decoration region.

7.5 VELOCITY OF EDGE DISLOCATIONS IN NEUTRON-

IRRADIATED BCC IRON

Interaction of dislocations with SIA clusters in decoration region, as well as in-

terstitial clusters dragged by moving dislocations, affects glide behavior of dislo-

cations dramatically, and thereby alter the microstructure evolution and micro-

scopical plastic deformation behavior of materials. As far as the dynamics of a

dislocation is concerned, it is not only the geometrical shape that is taken by a

dislocation interacting with other defects and microstructures, but also the mo-

bility of dislocation in different scenarios. Of particular interest in this context

are the dislocation interaction with SIA cluster, the mobility of clusters and the

influence of dragging effect on dislocation velocity. In this section we present

the result of PDD simulation of dislocation velocity with taking into account

interactions between a gliding edge dislocation and decoration formed by small

interstitial clusters. The settings for the moving edge dislocation and interstitial

clusters in the current simulation are the same as those employed in Section 7.4.2

for the case at a dose of 5.2 × 10−3 dpa, and the drag effect discussed in Section

7.3 is applied as well.

The applied external stress as a function of time is shown in Figure 7.12. Ini-

tially, a constant uniaxial tensile stress along [100] of σ11 = 30 MPa is suddenly
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Figure 7.12: Time dependence of dislocation velocity in bcc iron under applied

uniaxial tensile stress for an edge dislocation interacting with SIA clusters in

decoration, penetrating through decoration atmosphere and breaking away from

dragged interstitial clusters. Vertical arrows indicate velocities at which certain

dragged clusters detaches from the moving edge dislocation.
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applied and kept for 1.4 nanosecond. The stress σ11 is then gradually increased

at a constant rate of 0.5MPa/ps. The time dependence of the edge dislocation’s

velocity is presented in Figure 7.12 as well. As soon as the stress is applied, the

velocity of the edge dislocation increases from zero to a stable value of around

120 m/s within 30 ps. The dislocation motion is not affected by the strain field

of the interstitial clusters located ahead of its moving path when the distance

between them is still rather large. As the dislocation comes closer to the intersti-

tial clusters, the interaction between them keeps increasing and starts affecting

dislocation velocity. The fluctuation on the velocity-time line in Figure 7.12 indi-

cates that the interaction between the edge dislocation and the clusters is quite

intensive, and the edge dislocation vibrates back and forth like a string. Once the

dislocation line segment completely submerged into the atmosphere of interstitial

clusters, its velocity decreases to nearly zero and remains trapped by the force

field of clusters because the applied stress is not high enough to release it from

the atmosphere (see Figure 7.11 for the critical value of applied stress). When the

applied stress starts being increased and exceeds the critical value required to un-

lock the dislocation from the cluster atmosphere, velocity of the edge dislocation

begins to grow accordingly. The released dislocation is travelling with some of

the clusters in decoration, whose Burgers vectors are parallel the the glide plane

of the dislocation. When the dislocation velocity reaches a certain values vmax

presented in Table 7.1, the force exerted on the corresponding interstitial cluster

is no long able to provide the force required to make the cluster be dragged mov-

ing with the dislocation. As a result, the interstitial cluster is then discarded by

the moving dislocation. The breakaway of the dislocation from the dragged inter-

stitial clusters results in part of the resistance provided by the dragged clusters

to dislocation motion suddenly vanishing and a reduction in the effective drag

coefficient, and dislocation velocity therefore acquires a abrupt jump. The steps
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on the velocity-time line marked by vertical arrows in Figure 7.12 clearly shows

the abrupt increases in dislocation velocity as the dislocation breaks away from

the dragged clusters. The changes in slope at different stages in the velocity-time

plot indicate reflect the reduction of the resistance force to dislocation motion

due to dragged clusters.

It is worth being pointed out that the stress-time line in Figure 7.12 resembles

the time dependence of dislocation velocity if the dislocation and the matrix ma-

terial are perfectly clean, and inertial effect of moving dislocation is completely

ignored. The results of current simulations present a more accurate and realis-

tic consideration for motion of dislocation in irradiated materials. The dynamic

behavior associated with the drastic changes in dislocation velocity may be im-

portant in investigating the microstructure evolution and plastic deformation in

irradiated materials.

When the applied stress exceeds the average glide resistance in any slip plane

in which there are mobile dislocations, large-scale slip becomes possible. We

have split the influence of radiation-induced defects on dislocation motion into

two parts, namely that due to nano-voids and that resulting from dislocation

decoration, and investigated them respectively. The impediment of distributed

nano-voids to the motion of the gliding dislocation is taken into account in terms

of the plane glide resistance. Velocity of an edge dislocation as a function of time

under different applied uniaxial tensile stresses σ11 larger than the plane glide

resistance is presented in Figure 7.13 for bcc Fe irradiated to a dose of 5.2× 10−3

dpa, provided dislocation interaction with interstitial clusters in decoration is

ignored.
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Figure 7.13: Velocity of an edge dislocation as a function of time under different

applied uniaxial tensile stresses σ11 larger than the plane glide resistance due to

randomly distributed nano-voids in bcc Fe irradiated to a dose of 5.2× 10−3 dpa.
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Table 7.1: Values of Bloop predicted by Equation 7.37 and vmax obtained from

Equation 7.38 for an edge dislocation to break away from the dragged loops.

Loop size (number of SIAs) Bloop(µPa·s) vmax(m/s)

8 1.048 2120.902

5 0.7867 2744.461

180 7.001 8202.532

10 1.201 7211.216

47 3.086 5934.538

42 2.881 7353.640

9 3.378 1822.291

6 2.638 4581.404

4 0.6866 1547.468

9 1.126 6315.763

5 0.7867 2454.282

7 2.898 34856.379

34 2.533 6284.055

9 1.126 10577.672

9 1.126 3698.463

8 3.144 526.698

9 1.126 3879.120

28 2.250 10737.560

9 3.378 1891.479

9 3.378 782.097

8 1.048 1450.169

13 1.409 1830.918
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CHAPTER 8

CONCLUSIONS

Understanding and predicting mechanical performances of metals and alloys un-

der neutron irradiation conditions require a detailed understanding of both the

materials microstructure as it evolves during irradiation and the connection be-

tween microstructure features and mechanical properties. The motion of fast

thermally-activated, one-dimensionally migrating SIA clusters, and their interac-

tion with each other and dislocations result in a number of interesting microstruc-

ture features and consequently changes in mechanical behavior. An approach

to KMC simulations that incorporates the elastic interaction between various

components of the microstructure has been developed. The main purpose of

this approach is to investigate the evolution of spatial heterogeneities in the mi-

crostructure of irradiated materials. The model evolves atomic configurations by

identifying their thermally activated atomic jump events and implements a prob-

abilistic scheme for their subsequent execution. In applying the KMC method

to the investigation of radiation-induced microstructure evolution, the likelihood

that an SIA cluster migrates from one lattice site to another depends upon its lo-

cal atomic configuration which can be characterized by an activation energy and

a jump attempt frequency. The SIA cluster is approximated as an infinitesimal

prismatic dislocation loop and the interaction energy with all other neighboring

loops, vacancies and dislocations is calculated. The energy difference between

the current position and a tentative one is evaluated and utilized to modify the
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activation energy of the corresponding jump event. The simulation first deduces

the set of jump probabilities for every allowed jump event using precalculated

activation energies and then executes jumps according to their relative proba-

bilities. After a jump is executed, time is advanced by a computational time

step determined by the residence time of the system, i.e. the reciprocal of the

sum of the jump rates for all the allowed jump events of the system. This pro-

cess is then repeated until the time between designated displacement cascades

is exhausted. A new displacement cascade is then introduced and the algorithm

iterated. By using this new approach to KMC, the interaction among defect clus-

ters and microstructures that is crucial for studying microstructure evolution and

was absent from existing KMC simulations has been integrated. The parallelized

KMC enables a realistic simulation of the evolution of radiation-induced damage.

The KMC model has been applied to the investigation of point defect segrega-

tion and damage accumulation under cascade irradiation in bcc Fe. The following

features are in agreement with experimental observations: (1) the overall sessile

SIA cluster density, its dose dependence and eventual saturation, (2) the forma-

tion of dislocation decoration, (3) the “autocatalytic” formation of SIA cluster

rafts, their Burgers vector orientation and lower mobility.

The importance of glissile SIA clusters produced in displacement cascades has

been demonstrated to play a decisive role in the irradiation-induced microstruc-

tural evolution. The 1-D motion of glissile SIA clusters and the interaction be-

tween defects and the dislocation microstructure were shown to be the main cause

for the appearance and development of decorations and rafts. At a rather low

dose around 1.0 × 10−3 dpa, a large portion of the initially glissile clusters are

shown to be trapped around the slip dislocation loop ( the majority of them are

distributed near the edge component) and become virtually immobile. The high
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concentration of SIA loops around slip dislocations results in an extremely in-

homogeneous spatial distribution. the simulations quantitatively show how SIA

clusters are attracted to dislocations to decorate and lock them in place. The

present work suggests that raft formation can be achieved by prismatic glide of

glissile interstitial clusters and rotation of their Burgers vectors under the influ-

ence of internal strain fields (e.g. generated by dislocations).

The parametric dislocation dynamics method was modified by adding an ef-

fective mass term to the EOM of dislocation to take into account inertial effects

of moving dislocation, and used to investigated the increase in the yield stress due

to dislocations interaction with interstitial loops in dislocation decoration region

and distributed nanoscale voids. The mass of dislocation is evaluated in terms

of the kinetic energy of a dislocation moving at uniform velocity with analogy to

its counterpart in mechanics. Observed radiation-induced increase in the yield

stress in tensile test was investigated from two perspectives: (1) the plane glide

resistance due to distributed nano-voids, and (2) dislocation interaction with SIA

clusters in decoration region. The former effect was investigated by using Friedel

statistics for a random distribution of point-like obstacles, and the latter was

examined by performing parametric dislocation dynamics simulations. The com-

bination of the above two effects was compared with experimental measurements

and a reasonably good agreement was shown. The study in this thesis indicates

that at low damage dose levels dislocation interaction with radiation-induced in-

terstitial clusters in dislocation decoration region is the main mechanism for the

increase in yield strength, while at higher dose levels the impediment to dislo-

cation motion by randomly distributed obstacles seems to be in ascendant. The

influence of radiation-induced defect clusters on dislocation mobility has also been

investigated using dislocation dynamics simulations. Future work will focus on

the continued improvement of simulation methods and the coupling of the tech-
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niques and analysis present in this thesis with large scale computer simulations

to predict microstructure evolution in irradiated materials.
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