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AbstractThis dissertation lays the foundation for practical exponential stabilization ofdriftless control systems. Driftless systems have the form,_x = X1(x)u1 + � � �+Xm(x)um; x 2 Rn:Such systems arise when modeling mechanical systems with nonholonomic con-straints. In engineering applications it is often required to maintain the mechan-ical system around a desired con�guration. This task is treated as a stabilizationproblem where the desired con�guration is made an asymptotically stable equi-librium point. The control design is carried out on an approximate system.The approximation process yields a nilpotent set of input vector �elds which, ina special coordinate system, are homogeneous with respect to a non-standarddilation. Even though the approximation can be given a coordinate-free in-terpretation, the homogeneous structure is useful to exploit: the feedbacks arerequired to be homogeneous functions and thus preserve the homogeneous struc-ture in the closed-loop system. The stability achieved is called �-exponentialstability. The closed-loop system is stable and the equilibrium point is exponen-tially attractive. This extended notion of exponential stability is required sincethe feedback, and hence the closed-loop system, is not Lipschitz. However, itis shown that the convergence rate of a Lipschitz closed-loop driftless systemcannot be bounded by an exponential envelope.The synthesis methods generate feedbacks which are smooth on Rn n f0g.The solutions of the closed-loop system are proven to be unique in this case. Inaddition, the control inputs for many driftless systems are velocities. For thisclass of systems it is more appropriate for the control law to specify actuatorforces instead of velocities. We have extended the kinematic velocity controllersto controllers which command forces and still �-exponentially stabilize the sys-tem.Perhaps the ultimate justi�cation of the methods proposed in this thesisare the experimental results. The experiments demonstrate the superior con-vergence performance of the �-exponential stabilizers versus traditional smoothfeedbacks. The experiments also highlight the importance of transformationconditioning in the feedbacks. Other design issues, such as scaling the mea-sured states to eliminate hunting, are discussed. The methods in this thesisbring the practical control of strongly nonlinear systems one step closer.iii
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Chapter 1IntroductionThis thesis studies the problem of locally exponentially stabilizing analytic drift-less control systems. Driftless systems have the form_x = X1(x)u1 + � � �+Xm(x)um x 2 Rn; (1.1)where the control inputs ui are real valued and the Xi are analytic \input"vector �elds. A diverse set of mechanical systems may be modeled as driftlesscontrol systems. The special form of the model is often the result of nonholo-nomic constraints that the kinematic variables of the system must satisfy. Amobile robot with wheels that roll without slipping is an example of a systemwith nonholonomic constraints [24], [32]. Dextrous manipulation with multi-�ngered robotic hands is another application where driftless control systemsarise from nonholonomic constraints [27], [26], [35]. Reorientation of rigid bod-ies with zero angular momentum through internal motion may be studied as adriftless control system. In this case, the angular momentumconstraint enforcesa nonholonomic-like constraint on the system model [25], [21], [12]. Finally, non-holonomic actuators are studied in [5].A problem of practical interest is how to transfer the system to some desired�nal state. The change in state may be a�ected by two di�erent approaches. The�rst approach is an open-loop strategy. This involves de�ning the control inputsas functions of time so that the initial state of the model (1.1) is transferred tothe desired �nal state. Initial e�orts to control driftless systems were directedat open-loop path planning. The literature in this area is large. A recent papercontaining a comprehensive reference list is [32]. However, the limitations of anopen-loop methodology restrict its use in physical systems: without feedbackthe system performance is degraded by modeling errors and external distur-bances. In other words, small errors in the initial state measurement or themodel resulted in poor performance (the performance being measured by thedeviation from the desired �nal condition for the physical system). The secondstrategy then, is to feed back the state of system. Thus, feedback stabilizationis a process in which the desired �nal state is made an asymptotically stableequilibrium point by proper choice of the control inputs. The feedback should1



impart some measure of robustness to the modeling errors and measurementerrors noted above. This thesis concentrates solely on the feedback problemand assumes that the controller has access to the measured state in real-time.A well known result by Brockett [4] implies that driftless systems cannot beasymptotically stabilized about any desired point with continuous autonomousfeedback. Appendix A contains a precise statement of Brockett's theorem.Several research groups have derived discontinuous feedbacks. Brockett'scondition does not apply when the closed-loop system is not continuous. Blochet al. [3] derive piecewise analytic feedbacks to stabilize Chaplygin systems.Their controllers have the advantage of returning the system to the desiredstate in �nite time. However, the control action is of bang-bang type. Sincethe control inputs are velocities for many driftless systems, such a control is notphysically realizable. Canudas de Wit and S�rdalen develop piecewise smoothcontrollers for a set of low dimensional physical examples [9]. However in severalof their examples the desired equilibrium point is not stable even though it isattractive.The primary advantage of continuous control laws is the fact that problemsof chattering and in�nitely fast switching are not an issue. Samson demon-strated that continuous time-periodic feedbacks could stabilize a nonholonomiccart [40]. This result motivated much research into continuous time-varyingfeedbacks for stabilizing general driftless systems. Coron showed that for a largeclass of driftless systems there exists a smooth time-periodic feedback that ren-ders the desired equilibrium point globally asymptotically stable [7]. Coron'sresult is an existence result and does not provide a constructive procedure forobtaining the feedback. Pomet was able to adapt the ideas in Coron's proofto provide an algorithm for deriving time-periodic smooth feedbacks for a morerestrictive class of driftless systems [37]. Teel et al. [44] gave explicit expressionsfor time-peiodic smooth control laws which asymptotically stabilized the special\chained-form" driftless systems.While these algorithms are useful for understanding the structure of driftlesssystems, the rates of convergence cannot be bounded by an exponential enve-lope. The authors in [33] showed that slower than exponential rates are alwaysobtained with C1 feedbacks. This thesis extends this result to include all Lips-chitz feedbacks. Improvements in the convergence rates are desirable in order tomake the algorithms more practical and applicable to real world applications.S�rdalen [38] and Canudas de Wit and S�rdalen [10] consider the problem ofexponential stabilization with a slightly modi�ed notion of exponential stabil-ity. Their methods rely on piecewise analytic feedbacks and are not continuousfunctions of the state. Another existence result by Coron [8] states that con-trollable driftless systems may be stabilized to the origin in �nite time by acontinuous time-periodic feedback which is smooth on Rn n f0g. Coron's workis germane to the results in this dissertation and are reviewed more thoroughlyin Appendix A.The work of Hermes is perhaps closest in spirit to the approach presentedin this thesis. Hermes' paper [17] relies on homogeneous approximations of thecontrol system and generalizes the notion of the linear regulator to a homo-2



geneous nonlinear regulator for the approximate system. The systems he con-siders are two-dimensional small-time locally controllable systems and certainthree-dimensional systems. This class of two-dimensional systems automaticallysatisfy Brockett's condition as does the three-dimensional example. AlthoughBrockett's condition fails for driftless systems the homogeneous approximationsstill play a very important role.This thesis is concerned with the the exponential stabilization of driftless an-alytic control system with time-periodic continuous feedback. The contributionsare:i) Explicit construction of �-exponentially stabilizing feedbacks.Two methods are presented for deriving exponentially stabilizing feed-backs for a large class of driftless systems. One method is an extension ofPomet's algorithm to the framework presented in this thesis. The othermethod speci�es su�cient conditions for a smooth stabilizer to be rescaledinto an exponential stabilizer. The latter method is attractive from an im-plementation point of view since it requires only slightlymore computationthan the smooth control law from which it was derived.ii) Proof that non-Lipschitz feedback is necessary for exponentialstabilization. The stabilizing feedbacks are degree one homogeneousfunctions which are not Lipschitz since the dilation is a nonstandard one.The non-Lipschitz character of the feedbacks is shown to be a necessaryfeature of the control law if exponential stability of the driftless system isdesired.iii) Analysis results for homogeneous di�erential equations. Severalanalysis results are also proven for homogeneous systems. For example, thefeedbacks derived from the synthesis methods result in unique solutionsof the closed-loop system. This fact is not automatic since the closed-loopvector �eld is not Lipschitz. In addition, an averaging theorem for degreezero homogeneous systems is proven. This extends the usual stabilityresults for C2 systems to degree zero vector �elds.iv) Extension of kinematic controllers to allow torque inputs. Thecontrol outputs are often velocities in driftless models. It is shown thatservo motors may be used to command torques instead of velocities forthese systems while maintaining exponential rates of convergence. Fur-thermore, the sensitivity of the control signal to sensor noise is exacer-bated by the non-Lipschitz nature of the feedbacks. Low pass �ltering ofthe state variables may be used to smooth the input into the controller.The e�ect of inserting a low pass �lter into the loop is quanti�ed with asingular perturbation result for homogeneous degree zero systems.v) Experimental veri�cation. The theory is experimentally tested on amobile robot. Comparisons are made with controllers derived by othermeans. The superiority of the exponential stabilizers is clearly demon-strated.The thesis is organized as follows. Chapter 2 introduces the backgroundnecessary to understand the results in the thesis. In particular the de�nitions3



and properties of homogeneous functions and homogeneous vector �elds arereviewed. These concepts are central to understanding how the feedbacks ex-ponentially stabilize the system. Every set of controllable vector �elds may belocally approximated by a controllable nilpotent set of vector �elds. Further-more, in special local coordinates the approximating vector �elds are homoge-neous with respect to a dilation associated with the growth of the Lie algebraof the vector �elds. This approximation theory is also central to the exponen-tial stabilization problem and is brie
y covered. Chapter 2 ends with a reviewof converse Lyapunov results for homogeneous systems. Homogeneous degreezero systems are of particular interest and it is shown how the current converseresults which exist for autonomous homogeneous systems extend only to thetime-periodic homogeneous degree zero case, a counterexample being given forsituation when the degree of the vector �eld is di�erent from zero. The conversetheorems imply a simple stability result for perturbed systems.Chapter 3 opens with a proof of uniqueness of solutions of homogeneousdegree zero vector �elds which are locally Lipschitz on Rn n f0g (the origin isassumed to be an equilibriumpoint). The requirement that closed-loop solutionsof the control system be unique is of practical importance: numerical simulationsare often the only way to assess the performance of a nonlinear system anduniqueness of solutions guarantees continuity of the 
ow with respect to theinitial condition. Finally, an averaging theorem for homogeneous degree zerosystems is proven. The averaging result is not required for the subsequentanalysis however it is of interest in its own right since it extends the stabilityresults of C2 dynamical systems to a class of non-Lipschitz vector �elds.In Chapter 4 the formalism of Chapter 2 and the analysis results of Chap-ter 3 are combined to obtain time-periodic, continuous, exponentially stabilizingfeedbacks for a large class of analytic driftless systems. The non-Lipschitz prop-erty of the feedbacks is shown to be a necessary ingredient for the exponentialstabilization of driftless systems. Moreover the closed-loop system solutions areunique. The sensitivity of the closed loop system in the vicinity of the origin tosensor noise is mitigated by �ltering the measured state variables. The singularperturbation results are used to demonstrate that exponential stability is stillmaintained after the introduction of low-pass �ltering.The control inputs of driftless models often correspond to velocities in thephysical system. It is unreasonable to insist that the velocities may be speci�edexactly since the motion in a mechanical system is realized by application offorces and torques. With this in mind, the \kinematic" velocity controllers areextended to torque controllers for the system augmented with a set of integratorsto model the actuator dynamics.Chapter 5 presents the results obtained with the nonholomobile, an experi-mental mobile robot constructed at Caltech. The objective of the experimentsis to compare the performance of the exponential stabilizers derived using thetheory in this dissertation to the more traditional smooth feedbacks proposedby other researchers. The experiments also verify that torques may still be com-manded with a non-Lipschitz velocity controller and that the driftless kinematicmodels for robot systems are suitable for control design. Chapter 6 concludes4



with some open problems and other areas of importance for the stabilization ofdriftless control systems.Appendix A reviews the controllability properties of driftless systems andthe implications of Brockett's necessary condition for driftless systems.Appendix B presents an algorithm, implemented in Mathematica, for com-puting the local di�eomorphism necessary to place the driftless system into thecoordinates where the nilpotent homogeneous approximation are the leadingorder terms in the input vector �elds.Appendix C contains a proof that a control law used throughout the disser-tation to illustrate certain concepts is �-exponentially stabilizing.
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Chapter 2Introduction toHomogeneous SystemsThe approach to exponential stabilization in this thesis relies on the notion ofhomogeneous functions, homogeneous vector �elds and homogeneous approxi-mations of sets of vector �elds. The most familiar de�nition of the homoge-neous property scales each coordinate function by the same amount. However,nonisotropic scalings may also be de�ned. An expanded de�nition of homoge-neous functions and vector �elds, where the coordinates are scaled by di�erentfactors, is reviewed below. The usefulness of these de�nitions becomes appar-ent when it is recalled how a set of analytic vector �elds which generate afull rank Lie algebra (interpreted here to be the input vector �elds of a con-trollable driftless system) may be approximated by a nilpotent set which, inspecial coordinates, is homogeneous. A slightly modi�ed notion of exponen-tial stability, called �-exponential stability, is de�ned. This de�nition allows fornon-Lipschitz dependence on initial conditions in the case where the equilibriumpoint is exponentially attractive and uniformly stable and reduces to the usualde�nition of exponential stability when there exists a linearization at the equi-librium point. Homogeneous approximations of vector �elds are discussed inthe references [13, 18, 1, 42]. Applications which utilize the homogeneous formof the approximating control system may be found in [17, 20]. These papersconsider two-dimensional small time locally controllable systems and certainthree-dimensional systems.Finally, a converse Lyapunov theorem is reviewed for time-periodic homoge-neous vector �elds with asymptotically stable equilibrium point. The Lyapunovresults are used to show that higher-order perturbations (in the sense de�nedbelow) do not locally a�ect the stability of the equilibrium point. Stability the-orems for homogeneous systems where �rst proven by Hermes without the useof Lyapunov functions [16]. His results where extended by Rosier who proved ageneral converse Lyapunov for autonomous homogeneous systems [39].To establish some notation, functions will be denoted by lower case letters6



and vector �elds by capital letters. We will occasionally abuse notation andde�ne the di�erential equation _x = X(t; x) in local coordinates onRn associatedwith the vector �eld X (more properly the direction �eld in the nonautonomouscase). The 
ow of a di�erential equation is denoted  where  (t; t0; x0) is thesolution, at time t, which passes through the point x0 at time t0. When it isnecessary to distinguish between 
ows of vector �elds a subscript will be used;i.e.  X is the 
ow of X,  Y is the 
ow of Y , etc.2.1 De�nitions and Properties of HomogeneousSystems2.1.1 De�nitionsThis section reviews dilations and homogeneous vector �elds. A dilation ��r :Rn � R+ ! Rn is de�ned with respect to a �xed choice of coordinates x =(x1; x2; : : : ; xn) on Rn by assigning n positive rationals r = (r1 = 1 � r2 �� � � � rn) and positive real parameter � > 0 such that�r�x = (�r1x1; : : : ; �rnxn); � > 0:We usually write �� in place of �r�.De�nition 2.1 A continuous function f : R�Rn! R is homogeneous of degreel � 0 with respect to ��, denoted f 2 Hl, if f(t;��x) = �lf(t; x):De�nition 2.2 A continuous vector �eld X(t; x) =Pai(t; x)@=@xi on R�Rnis homogeneous of degree m � rn with respect to �� if ai 2 Hri�m.The variable t represents explicit time dependence and is never scaled in ourapplications.De�nition 2.3 A continuous map from Rn to R, x 7! �(x), is called a homo-geneous norm with respect to the dilation ��when1. �(x) � 0; �(x) = 0 () x = 0;2. �(��x) = ��(x) 8� > 0:For example, a homogeneous norm which is smooth on Rn n f0g may always bede�ned as, �(x) = jxc=r11 + xc=r22 + � � �+ xc=rnn j1=c; (2.1)where c is some positive integer evenly divisible by ri. We are primarily in-terested in the convergence of time dependent functions using a homogeneousnorm as a measure of their size. When a vector �eld is homogeneous it is mostnatural to use a corresponding homogeneous norm as the metric. The usualvector p-norms are homogeneous with respect to the standard dilation (ri = 1).7



2.1.2 Properties of homogeneous functionsIn the sequel we will de�ne continuous homogeneous functions which are dif-ferentiable everywhere except the origin. We state some properties of thesefunctions.Property 2.4 Suppose f : R�Rn ! R is continuous and di�erentiable withrespect to x on Rn n f0g, homogeneous of degree m with respect to the dilation��. Then @@xi (f) (t; x) is a homogeneous function of degree m� ri with respectto ��. If m � ri > 0 then we de�ne @@xi (f) (t; 0) = 0 in order to make the newfunction continuous with respect to x on Rn.The following property shows how the magnitude of homogeneous functions maybe estimated with the homogeneous norm.Property 2.5 If f(t; x) is degree m (possibly < 0) and continuous with respectto x on Rn n f0g and continuous with respect to t then there exists a continuousfunction M1 : R! R such thatjf(t; x)j �M1(t)�m(x):When f(x; t) is continuously di�erentiable with respect to x on Rn n f0g then���� @f@xi ���� �M2(t)�m�ri (x) i = 1; : : : ; n;where M2(�) is continuous. When M1 or M2 is bounded we de�ne M i =suptMi(t).Proof: De�ne M1(t) = max�(y)=1 jf(t; y)j and y = �1=�(x)x sojf(x; t)j = jf(t;��(x)y)j= �m(x)jf(t; y)j�M1(t)�m(x):If m < 0 then f is unbounded in every neighborhood of the origin. However M1is still de�ned since f is continuous on the homogeneous sphere �(x) = 1. Forthe di�erentials we de�ne M2(t) = maximax�(y)=1 j@f=@xi(t; y)j and apply thesame scaling as above. �Property 2.6 Let f : R� Rn ! R be homogeneous of degree m > 0 withrespect to �� and continuous in all arguments. Let g : R� Rn n 0 ! Rbe continuous and homogeneous of degree l > �m (in particular, g may beunbounded with respect to x in every neighborhood of the origin in Rn), thenthe function h de�ned by,h(t; x) = � f(t; x)g(t; x) x 2 Rn n f0g0 x = 0is homogeneous of degree m+ l and continuous on Rn�R.8



Proof: Set M (t) = max�(x)=1 j(fg)(t; x)j, where � is a homogeneous norm.Choose � > 0, �x t, and compute � > 0 such that �m+lM (t) = �. De�ne the setUt = fx 2 Rnj0 < �(x) � �g:For x 2 Ut, jf(t; x)g(t; x)j = ��(x)� �m+l jfg(t;� ��(x) x)j= ��(x)� �m+l �m+l jfg(t;� 1�� ��(x) x)j� ��(x)� �m+l �m+lM (t)= ��(x)� �m+l �< � since x 2 Ut:Thus limx!0 jfg(t; x)j = 0 for all t. �The preceding lemmas are useful when de�ning a new function as the Lie deriva-tive of a homogeneous function with respect to a homogeneous vector �eld. Sup-pose X : Rn ! Rn is a continuous homogeneous vector �eld of degree l and fis a continuous homogeneous function of degree m di�erentiable on Rn n f0g.LXf is a homogeneous function of degree m� l. If m is greater than l then thenew function is continuous on Rn if it is de�ned to be zero at the origin.Property 2.7 If f : Rn ! R is a continuous positive de�nite homogeneousdegree l function, di�erentiable on Rn n f0g, then rf 6= 0 for all x 6= 0.Proof: Suppose rf(x) = 0 for some x 6= 0. Let 
(t) = �1�tx, t 2 [0; 1), be aparameterized path with non-zero velocity. Thenddtf(
(t)) = rf(
(t)) � 
0(t)= rf(�1�tx) � 
0(t)= rf(x) � diag �(1� t)l�ri� � 
0(t)= 0 8 t 2 [0; 1):Thus f(
(t)) = 0, since f(0) = 0 and f is continuous, so f cannot be positivede�nite. �De�nition 2.8 The �-homogeneous unit (n� 1) sphere is de�ned as the setSn�1� = fxj�(x) = 1g;where � is a homogeneous norm. 9



De�nition 2.9 The Euler vector �eld corresponding to a dilation �� is de�nedas, XE (x) =X rixi @@xi :Thus the images of trajectories of the system _x = XE(x) are the �-homogeneousrays obtained by scaling the points on the sphere Sn�1� with the dilation.2.1.3 Stability de�nitionsThe fundamental de�nitions of stability are reviewed below. They are contrastedto a slightlymodi�ed de�nition of exponential stability. The point x = 0 is takento be an equilibrium point of the di�erential equation _x = X(t; x). The trajec-tory of this di�erential equation passing through (t0; x0) is denoted  (t; t0; x0).De�nition 2.10 The equilibrium point x = 0 is uniformly stable if for all� > 0 there exists a � > 0, which may be chosen independent of t0, such thatkx0k < � =) k (t; t0; x0)k < � for all t > t0.De�nition 2.11 The equilibrium point x = 0 is uniformly asymptotically stableif it is uniformly stable and in addition for all �; � > 0 there exists T � 0,independent of t0, such that kx0k < � =) k (t; t0; x0)k < � 8t > T + t0.The usual de�nition of exponential stability is recalled to contrast it with amodi�ed de�nition used in this dissertation.De�nition 2.12 The equilibrium point x = 0 is locally exponentially stable ifthere exist constants �; � > 0 and a neighborhood U of the origin such that thetrajectories of the system are bounded byk (t; t0; x0)k2 � �kx0k2e��(t�t0) 8t � t0; 8x0 2 U:k � k2 is the Euclidean norm.The Euclidean norm is not crucial: k �k2 may be replaced by any other vector p-norm. The concept of exponential stability of a vector �eld is now de�ned in thecontext of a homogeneous norm. This de�nition was introduced by Kawski [20].De�nition 2.13 The equilibrium point x = 0 is locally exponentially stablewith respect to the homogeneous norm �(�) if there exist two constants �; � > 0and a neighborhood of the origin U such that�( (t; t0; x0)) � ��(x0)e��(t�t0) 8t � t0; 8x0 2 U:This stability type is denoted �-exponential stability to distinguish it from theprior de�nition. 10



This notion of stability is important when considering vector �elds which arehomogeneous with respect to a dilation. The convergence of trajectories isnaturally studied using the corresponding homogeneous norm. This de�nitionis not equivalent to the usual de�nition of exponential stability except when thedilation is the standard dilation (ri = 1). This is evident from the followingbounds on the Euclidean norm in terms of the smooth homogeneous norm (2.1)on the unit cube C = fx : jxij < 1; i = 1; : : : ; ng (recall c � 2 in De�nition 2.1).The lower bound is,�c(x) =Xi xc=rii �Xi x2i = kxk22 x 2 C=) �c=2(x) � kxk2:An upper bound is computed to be,�c(x) =Xi xc=rii�Xi xc=r1i for x 2 C�Mkxkc=r12 where M = minkxk2=1Xi xc=r1i :Both bounds yield, �c=2(x) � kxk2 � 1M r1=c �r1 (x) x 2 C:Hence, the solutions of a �-exponentially stable system also satisfyk (t; t0; x0)k2 � �M r1=c kx0k 2r1c2 e�r1�(t�t0): (2.2)Thus, each state may be bounded by a decaying exponential envelope exceptthat the size of the envelope does not scale linearly in the initial condition as inthe usual de�nition of exponential stability. Furthermore, �-exponential stabil-ity allows for non-Lipschitz dependence on the initial conditions. To illustratehow this non-Lipschitz dependence on the initial condition is often necessary,consider the following two-dimensional system,_x1 = �x1 + 
pjx2j_x2 = �x2:The equations are degree zero with respect to the dilation ��(x) = (�x1; �2x2)and, by computing explicit solutions, the system is �-exponentially stable withthe homogeneous norm �(x) = jx41 + x22j1=4 i.e. c = 4 in equation 2.1. Inaddition, it can be shown that there exist initial conditions arbitrarily close tothe origin such that supt jx1(t)j � j
j2 pjx2(0)j:11



The bound in equation (2.2) re
ects this behavior since the exponent on theEuclidean norm of the initial condition is 2r1=c = 1=2. It is in this sense thatthe bound (2.2) is tight.2.1.4 Properties of homogeneous degree zero vector �elds.Some useful facts concerning degree zero vector �elds are reviewed in this sec-tion. The notion of a symmetry of a vector �eld is �rst introduced. The dif-ferential of a map f : M ! N , where M and N are manifolds, is denotedf�.De�nition 2.14 Suppose the map f : Rn! Rn is a di�eomorphism. A vector�eld X(t; x) is said to be invariant under f if f�X(t; x) = X(t; f(x)) for allx 2 Rn. f is called a symmetry of X.There is a more general de�nition which subsumes invariance as a special case.De�nition 2.15 Let XM and XN be vector �elds on smooth manifoldsM andN , respectively, with dimM > dimN . Suppose g : M ! N is a smooth map.The vector �elds are said to be g-related if they satisfyg�XM = XN � g:A vector �eld which is invariant with respect to a one-parameter group of sym-metries, denoted G, is often �-related to a vector �eld on the quotient manifoldN = M=G where � : M ! N is the projection operator de�ned by identifyingall points in M which di�er by an element of G. A homogeneous degree zerovector �eld X(t; x) is invariant with respect to the dilation,(��)�X(t; x) = X(t;��x) � > 0:If we set M = Rn n f0g then the quotient space M=�� becomes the homo-geneous sphere Sn�1� naturally embedded in Rn. The projection operator � :Rn n f0g ! Sn�1� is given by�(x) = � x1�r1 (x) ; : : : ; xn�rn (x)� :Explicit computations are carried out below to determine the components ofthe induced vector �eld on Sn�1� . The vector �eld X(t; x) may be written asX(t; x) = Pi ai(t; x)@=@xi, where ai(t;��x) = �riai(t; x) since X is degreezero. The corresponding di�erential equation is _xi = ai(t; x); i = 1; : : : ; n. Theinduced vector �eld, denoted ~X , is determined by di�erentiating the coordinate12



functions of the projection operator,ddt � xi�ri (x)� = _xi�ri (x) � xi nXk=1 rirkxc=rk�1k 1�ri+c(x)ak(t; x)= ai(t;�1=�(x)x)� xi�ri (x) nXk=1 rirk � xk�rk (x)�c=rk�1 ak(t;�1=�(x)x)= ai(t; �(x))� �i(x) nXk=1 rirk (�k(x))c=rk�1ak(t; �(x)); i = 1; : : : ; nwhere �i(x) denotes the ith component of �. The vector �eld~X(t; y) =Xi ~ai(t; y)@=@yileaves the sphere Sn�1� invariant since the Lie derivative of the function g :Sn�1� ! R : g(y) = �(y) with respect to ~X is zero. Thus, X and ~X are�-related, i.e., ��X(t; x) = ~X(t; �(x)). The 
ow of ~X may be computed bysolving the set of di�erential equations _yi = ~ai(t; y); i = 1; : : : ; n with initialconditions on Sn�1� . The solutions of the original vector �eld X are recoveredfrom xi(t) = �ri (t)y(t). Thus the di�erential equation specifying �(t) is required.This equation is obtained by di�erentiating �(x(t)) with respect to t,ddt�(x) = ddt  nXk=1xc=rkk !1=c (2.3)= 1c�c�1(x)  nXk=1 crkxc=rk�1k _xk! (2.4)= �(x) nXk=1 1rk (�k(x))c=rk�1ak(t; �(x)) (2.5)=  nXk=1 1rk yc=rk�1k ak(t; y)! �(x): (2.6)This scalar equation is linear in � with a time-varying coe�cient which dependsonly on the solution of the sphere equation i.e. _� = Q(t; y)�; where Q(t; y) =Pnk=1 1rk yc=rk�1k ak(t; y). Thus �(t) may be computed by quadratures after y(t)has been determined. The usefulness of this reduction procedure for degree zerosystems lies not in solving the equations but rather the connection it makesbetween uniform asymptotic stability and �-exponential stability.Lemma 2.16 If X(t; x) is a homogeneous degree zero vector �eld, then localuniform asymptotic stability is equivalent to global exponential stability with re-spect to the homogeneous norm �(x). 13



Proof: Hahn [14] deals with the case in which the dilation is the standarddilation. His proof extends to the case with the nonstandard dilation. The keyobservation is that uniform asymptotic stability implies that the integral of thecoe�cient in the _� equation (2.6) has the following boundZ tt0 Q(t; y(t)) � K1 �K2(t� t0) K1 2 R;K2 > 0;where K1 and K2 are independent of t0. This aspect of the proof is worked outin detail in Hahn [14]. The bound implies that � ! 0 exponentially. In otherwords, x = 0 is �-exponentially stable.Global stability follows from the fact that the equation is degree zero. Sup-pose  i represents the ith component of a solution  (t; t0; x0). A trajectoryscaled with �� satis�es the original di�erential equation,ddt�ri i(t; t0; x0) = �ri ddt i(t; t0; x0)= �riai(t;  (t; t0; x0)) i = 1; : : : ; n:Since the initial condition of the scaled solution is ��x0 then  (t; t0;��x0) =�� (t; t0; x0). Thus a trajectory with arbitrary initial condition has a \local"analog which may be obtained via the dilation. �The following example illustrates these properties on a linear system.Example 2.17 Consider the linear system _x = Ax, where A 2 Rn�n. Thissystem is invariant with respect to the standard dilation ��x = �x since(��)�Ax = �Ax = A�x = A��x. A convenient homogeneous norm to use isthe Euclidean norm k � k2. Hence, the quotient manifold is the sphere kxk2 = 1embedded in Rn. The projection onto the sphere is � : Rn! Sn�1; y = �(x) =x=kxk2. The vector �eld de�ned on the sphere is computed to be_y = Ay � hy;Ayiy; (2.7)where h; i is the standard inner product on Rn. The corresponding equationfor �(x(t)) is _� = hy;Ayi�. If v is an eigenvector of A corresponding to theeigenvalue �, then the point ~v = �(v) 2 Sn�1 is an equilibrium point of thesphere equations (2.7) since _y = A~v � h~v;A~vi~v= �~v � �h~v; ~vi~v= 0:The � equation becomes _� = �� with solution�(t) = exp(�t)�(0)= exp(�t)�(v)= exp(�t)kvk2:14



Reconstructing the full solution x(t) = �(t)y(t) where y(t) = v=kvk2 yieldsx(t) = exp(�t)v which is, of course, the correct answer. Finally, Lemma 2.16merely rea�rms the well known fact that uniform asymptotic stability andexponential stability are equivalent for linear systems.2.2 Homogeneous Approximations ofVector FieldsThis section discusses nilpotent homogeneous approximations of sets of vector�elds. The vector �elds are the input vector �elds of the controllable driftlesssystem, _x = X1(x)u1 + � � �+Xm(x)um: (2.8)The entire analysis is local so we assume that vector �elds are de�ned on Rn.Furthermore, the vector �elds are taken to be analytic. A brief review of Ap-pendix A may be helpful at this point to familiarize the reader with some termi-nology and de�nitions. We are interested in obtaining an approximation, in thesense described below, of the set of vector �elds fX1; : : : ; Xmg. The Lie bracketof vector �elds is [�; �].Let L(X1; : : : ; Xm) be the Lie algebra generated by the set fX1; : : : ; Xmg.Every element of L is a linear combination of repeated Lie brackets of the form,[X�k ; [X�k�1 ; [: : : [X�2 ; X�1 ] : : : ]]];where X�i is in the set X1; : : : ; Xm and k = 0; 1; 2 : : : [36].For any algebra A, a countable family of subspaces Fj is a �ltration of A iff0g = F0 � F1 � : : : ; A = [j�0Fj ; Fi � Fj � Fi+j :The following de�nition speci�es a special �ltration of the Lie algebra of a �niteset of generating vector �elds.De�nition 2.18 The control �ltration, FX , of L(X1; : : : ; Xm) is a sequence ofsubspaces de�ned as,FX0 = f0g;FX1 = spanfX1; : : : ; Xmg;FX2 = spanfX1; : : : ; Xm; [X1; X2]; : : : ; [X1; X2]; : : : ; [Xm�1; Xm]g;...FXk = spanfall products of i-tuples from fX1; : : : ; Xmg; for i � kg;... (2.9)and FX = fFXj gj�0. 15



From the characterization of elements of L and the de�nition of the �ltration itis easy to see that FXi � FXj = [FXi ;FXj ] � FXi+jL = [i�0FXi ;so that FX is indeed a �ltration.The set of vector �elds is approximated about a speci�c point, x0 2 Rn,which is a desired equilibrium point here. Now let Fi(x0) be the subspace ofRn (more precisely the tangent space, Tx0Rn, of Rn at x0) spanned by Z(x0)where Z 2 FXi . This yields an increasing sequence of vector subspaces,f0g = F0(x0) � F1(x0) � � � � � Fi(x0) � � � � � Rn:This sequence must be stationary after some integer since it is assumed thatthe Lie algebra has full rank at x0. In other words, since the system (2.8) iscontrollable dimFk(x0) = n for all k greater that some minimal integer N .Now we count the growth in the dimension of the subspaces and set n1 =dimF1(x0); n2 = dimF2(x0); : : : ; nN = n = dimFN (x0). The following dilationis de�ned,De�nition 2.19 The dilation adapted to the �ltration (at the point x0) is themap, �r�x = (�r1x1; : : : ; �rnxn);where the scalings satisfy ri = 1 for 1 � i � n1, ri = 2 for n1 + 1 � i � n2, etc.Henceforth, in order to simplify the notation in the expressions to follow it isassumed that x0 = 0. This is achieved with a translation of the origin of thecoordinate system.De�nition 2.20 The local coordinates adapted to the �ltration FX (denoted byy) are related to the original coordinates (denoted by x) by the local analyticdi�eomorphism derived from composing 
ows of vector �elds from the �ltration,x = �(y) =  y1X�1 �  y2X�2 � � � � �  ynX�n (0); (2.10)where  tX (x0) =  X (t; 0; x0) denotes the 
ow of the vector �eld X and,i) X�i 2 FXj for nj�1 + 1 � i � nj;ii) dimfX�1 ; : : : ; X�ng = n:A vector �eld written in a local coordinate system will explicitly show the de-pendence, i.e., X(x) is written in x-coordinates while X(y) is the same vector�eld written in y-coordinates. The importance of the local coordinates adaptedto FX is explained by the following theorem,16



Theorem 2.21 (Theorem 2.1, [18]) Let L be a Lie algebra of vector �elds onRn and F = fFjgj�0 an increasing �ltration of L at zero with �� the dilationadapted to F and y the local coordinates adapted to F . Then if X 2 Fl,X(y) = X l(y) +X l�1(y) +X l�2(y) + � � � ;where Xj(y) is a vector �eld homogeneous of degree j with respect to �r�.In other words, if X(y) 2 Fl is expanded in terms of vector �elds which arehomogeneous with respect to ��, X(y) = P�1j=rn Xj(y), then Xrn (y) = � � � =X l+1(y) = 0 and the \leading order" vector �eld, X l(y), is degree l with respectto ��. This leading order vector �eld is termed the F-approximation of X 2 Flin the F-adapted coordinates. An important property of the F-approximationis given by the following proposition,Proposition 2.22 (Corollary 2.2.1, [18]) Let F = fFXj g be the control �l-tration of L(X1; : : : ; Xm) and fFYj gj�0 be the equivalently de�ned �ltration ofL(Y1; : : : ; Ym) where Yi is the F-approximation of Xi; i = 1; : : : ;m. Further-more, let FXl and F Yl be the corresponding increasing sequence of vector sub-spaces of Rn. Then, FXl (0) = F Yl (0); l = 0; 1; : : : :Remark 2.23 Some readers may �nd it irksome that the approximation pro-cess relies on a special local coordinate system. In other words, the approxi-mation described above does not seem to have a coordinate free representation.This, however, is not the case. Bella��che et al. [1] have de�ned the notion of localorder which they use to give the approximation a more intrinsic meaning. Theirapproximation coincides with the F-approximation when the vector �elds arewritten in local coordinates adapted to F . In addition, the F-approximationof the generating set are homogeneous degree one vector �elds and generate anilpotent Lie algebra themselves [18, Proposition 2.3]. Nilpotency is a coordi-nate free property.When implementing a feedback law the equations must be written is some co-ordinate system. Coordinates adapted to F are chosen in this thesis since thehomogeneous nature of the F-approximation are exploited. A simple examplemay help to clarify some of these points.Example 2.24 Consider the two vector �elds on R3 given by,X1(x) = @=@x1 + @=@x2X2(x) = (a + x1)@=@x2 + (ab+ ax2 + bx1 + x1x2)@=@x3:An homogeneous approximation of fX1; X2g around x = 0 is desired for variousvalues of a and b. For a 6= 0 the dimension of F1 is 2. The Lie bracket of X1 andX2 at x = 0 evaluates to be [X1; X2](0) = �@=@x2�(a+b)@=@x3 so dimF2 = 3.17



The dilation scaling powers are r1 = r2 = 1 and r3 = 2. The coordinatesadapted to F may be computed using the formula in equation (2.10), howeverthe linear transformation x = A1y withA1 = 0@ 1 0 01 a 00 ab 1 1A ;su�ces in placing X1 and X2 into suitable coordinates since,X1(y) = @=@y1X2(y) = (1 + y1=a)@=@y2 + (ay1 + a2y2 + y21 + aY1y2)@=@y3:Thus the F-approximation of these vector �elds is,Y1(y) = @=@y1Y2(y) = @=@y2 + (ay1 + a2y2)@=@y3:These vector �elds are homogeneous degree one (since X1; X2 2 FX1 ) withrespect to the dilation ��y = (�y1; �y2; �2y3). The terms which are truncatedfrom X1(y) and X2(y) are higher order with respect to this dilation.When a = 0 and X2(0) = 0, more brackets are required since the dimensionsof F1 and F2 drop to 1 and 2 respectively. In particular [X1; [X1; X2]](0) =2@=@x3 su�ces since the set fX1(0); [X1; X2](0); [X1; [X1; X2]](0)g is linearlyindependent. In this case n1 = 1, n2 = 2 and n3 = 3 so the new dilation scalingpowers are r1 = 1, r2 = 2 and r3 = 3. The F-adapted local coordinates may beused to calculate the linear mapping x = A2y where,A2 = 0@ 1 0 01 �1 00 �b 2 1A ;which places X1 and X2 into the form,X1(y) = @=@y1X2(y) = y1@=@y2 + 12y1(y1 � y2)@=@y3:The F-approximation are the vector �elds,Y1(y) = @=@y1Y2(y) = y1@=@y2 + 12y21@=@y3:Both of these vector �elds are homogeneous degree one with respect to the newdilation. To conclude this example, the �ltration, dilation and F-approximationmay change from point to point, however the approximation is always de�nedat a particular point if the Lie algebra has full rank there.18



2.3 Lyapunov Functions for HomogeneousDegree Zero Vector FieldsThis section reviews converse Lyapunov stability theory for homogeneous sys-tems and gives an extension for degree zero periodic vector �elds. These resultsare important since the feedbacks derived in this dissertation exponentially sta-bilize an approximation of the driftless system and the higher order (with re-spect to a dilation) terms neglected in the approximation process are shown tonot locally change the stability of the system. The main theorem by Rosierin [39] states that given an autonomous continuous homogeneous (with respectto some dilation ��) vector �eld _x = f(x) with asymptotically stable equilib-rium point x = 0, there exists a ��-homogeneous Lyapunov function smoothon Rn n f0g and di�erentiable as many times as desired at the origin. Rosierde�nes the new homogeneous Lyapunov function asV (x) = � R10 1hk+1 (f � V )(hr1x1; : : : ; hrnxn)dh if x 2 Rn n f0g;0 if x = 0; (2.11)where V (x) is a smooth Lyapunov function whose existence is guaranteed bythe converse theorems in Kurzweil [22] and f : R! R is a smooth functionsatisfying f = � 0 on (�1; 1];1 on [2;1);with f 0 � 0. The integer k > 0 controls the degree of di�erentiability of V (x)at the origin.Rosier's converse theorem extends to the class of continuous, time-periodic,homogeneous degree zero systems, _x = X(t; x), with asymptotically stable equi-librium point x = 0. This fact is stated as a proposition. In coordinates X iswritten as X(t; x) =Pni=1 ai(t; x)@=@xi.Theorem 2.25 (extension of [39]) Suppose the di�erential equation _x = X(t; x)satis�es the following properties,i) X is continuous in t and x,ii) X(t; 0) = 0 8t,iii) X(t + T; x) = X(t; x) 8x,iv) X is homogeneous degree zero (in x) with respect to the dilation�� = (�r1x1; : : : ; �rnxn),v) the solution x(t) = 0 is asymptotically stable.Let p be a positive integer and k a real number larger than p �maxri. Then thereexists a function V : R�Rn! R such that,a) V (t; x) is smooth for x 2 Rn n f0g, and Cp at x = 0,b) V (t; 0) = 0; V (t; x) > 0 x 6= 0c) V is degree k with respect to �� i.e. V (t;��x) = �kV (t; x),19



d) V (t+ T; x) = V (t; x) 8x and smooth with respect to t,e) dVdt (t; x) = @V@t (t; x) +rV (t; x) �X(t; x) < 0 8x 6= 0.Proof: The Lyapunov function V is constructed from a smooth Lyapunovfunction ~V (t; x) which has the property that d~V =dt < 0 for all x 6= 0 and~V (t + T; x) = ~(t; x) 8x [22]. The construction of V is given by equation (2.11)with V (x) replaced by ~V (t; x). The proof of properties (a) to (c) are identical tothe proofs in [39]. The periodicity of V with respect to t is easily veri�ed fromthe de�nition. The jth partial of V with respect to t for x 6= 0 may be com-puted explicitly from the de�nition by di�erentiating under the integral sign.The important fact to note is that the integrand is a sum of products betweenf (i); i = 1; : : : ; k and @i ~V =@xi; i = 1; : : : ; k where f (i) is the ith derivative of f .Since the derivatives of f have compact support then the integral is well de-�ned. Smoothness follows since every term in the integrand is smooth. Finallythe derivative of V along solutions of X is,dVdt (x; t) = @V@t (x; t) + nXi=1 fi(x; t) @V@xi (x; t)= Z 10 1hk+1 f 0( ~V (t;�hx))@ ~V@t (t;�hx)dh+ nXi=1 Z 10 hrihk+1 f 0(V (t;�hx))ai(t; x) @ ~V@xi (t;�hx)dh= Z 10 1hk+1 f 0(V (t;�hx)) �"@ ~V@t + nXi=1  ai @ ~V@xi!# (t;�hx)dh: (2.12)The integrand is nonpositive since ~V (t; x) is a Lyapunov function for _x =X(t; x). Thus, the time derivative of V (t; x) is negative for all t,x 6= 0. �It is tempting to believe that this converse theorem holds for any continuous,time-periodic, homogeneous degree � � 0 vector �eld instead of the � = 0case which is studied here. However, as demonstrated above this constructionis guaranteed to yield a Lyapunov function for _x = X(t; x) only when it ishomogeneous degree zero. To see this, suppose X(t; x) is degree � > 0. Thetotal time derivative of V (t; x) along nonzero trajectories of _x = X(t; x) is,dVdt (t; x) = Z 10 1hk+1 f 0( ~V (t;�hx))"@ ~V@t + 1h� nXi=1  fi @ ~V@xi!# (t;�hx)dh:(2.13)The sign de�niteness of @ ~V =@t and Pi fi@ ~V =@xi as separate entities is notknown and when � 6= 0 the terms in the integrand of (2.13) are weighted bydi�erent amounts due to the presence of the 1=h� factor. Thus, even though20



V (x; t) is positive de�nite for any � � 0, the sign de�niteness of its total timederivative is not known in the � 6= 0 case. An example illustrating the failureof this construction in the case � 6= 0 is reviewed below.Example 2.26 The scalar system_x = (��+ cos t)x3 � > 1; (2.14)is globally uniformly asymptotically stable. The vector �eld de�ned by equa-tion (2.14) is also homogeneous degree �2 with respect to the standard dilation.Any autonomous positive de�nite function on R is a Lyapunov function for thissystem, however to demonstrate the precise failure of the algorithm a time-periodic Lyapunov function is required. This Lyapunov function is constructedin the standard manner: integrate a positive de�nite function along solutionsof (2.14) with the initial condition and starting time as parameters. These calcu-lations are carried out explicitly below. The general solution of (2.14), denoted (t; t0; x0), is given by the formula (t; t0; x0) = x0p(2�(t� t0) � 2 sin t+ 2 sin t0)x20 + 1 :De�ne the following functionV (t; x) = Z 1t j (�; t; x)j4d� (2.15)= Z 1t x4((2�(� � t)� 2 sin � + 2 sin t)x2 + 1)2 d� (2.16)= Z 10 x4((2�s � 2 sin(s + t) + 2 sin t)x2 + 1)2ds: (2.17)The 4th power is used in the integrand to ensure convergence. It is easily veri-�ed that this function is positive de�nite and 2�-periodic with total derivativedV=dt = �x4. Hence equation (2.17) de�nes a Lyapunov function for the systemin equation (2.14). The partial derivatives of V are required for the analysis tofollow and are given by,@V@t (t; x) = Z 10 �2x6(�2 cos(s + t) + 2 cos t)((2�s� 2 sin(s + t) + 2 sin t)x2 + 1)3ds;@V@x (t; x) = Z 10 " 4x3((2�s� 2 sin(s + t) + 2 sin t)x2 + 1)2� 4x5(2�s� 2 sin(s + t) + 2 sin t)((2�s� 2 sin(s + t) + 2 sin t)x2 + 1)3# ds: (2.18)V is clearly not homogeneous. In order to \homogenize" V , Rosier's algorithmis applied. This requires picking a smooth function f : R! R so that the new21



positive de�nite homogeneous function, denoted V (t; x), may be de�ned by theexpression given in equation (2.11). The candidatef(t) = 8<: 0 t 2 (�1; 1]t� 1 t 2 [1; 2]1 t 2 [2;1) (2.19)is not smooth at the points t = 1; 2. However it is possible to smooth fin a neighborhood of these points so that function given by (2.11) with the\smoothed" f approximates arbitrarily closely (2.11) de�ned with (2.19). Thusfor computations we may use (2.19) instead of a smoothed version. The newlyconstructed function V is positive de�nite and homogeneous. The partial deriva-tives are @V@t (t; x) = Z 10 1hk+1 f 0(V (t; hx)) � @V@t (t; hx)dh@V@x (t; x) = Z 10 1hk f 0(V (t; hx)) � @V@x (t; hx)dh: (2.20)As in the computation of V , the partials in these equations may be approximatedas closely as desired since f is modi�ed on a set of arbitrarily small measureand is smooth as required there. Since V is positive de�nite and nondecreasingfor every �xed t the set fx 2 R : V (t; x) = 1g consists of two points xa andxb for every t. Furthermore, V is symmetric so jxaj = jxbj. De�ne l(t) as themagnitude of the points which solve V (t; x) = 1 for every t 2 [0; 2�). Similarly,de�ne u(t) as the magnitude of points which solve V (t; x) = 2 for t 2 [0; 2�).The expressions for the partial derivatives of V reduce to@V@t (t; x) = Z u(t)jxjl(t)jxj 1hk+1 @V@t (t; hx)dh= jxjk Z u(t)l(t) 1sk+1 @V@t (t; s)ds= jxjkQ1(t) (2.21)@V@x (t; x) = Z u(t)jxjl(t)jxj 1hk @V@t (t; hx)dh= sgn(x)jxjk�1Z u(t)l(t) 1sk @V@t (t; s)ds= sgn(x)jxjk�1Q2(t) (2.22)where we have used the fact that @V=@t(t;�x) = @V=@t(t; x) and @V=@x(t;�x) =�@V=@x(t; x). The integrals in (2.21) and (2.22) are merely 2�-periodic func-tions of time, denoted by Q1 and Q2. Since @V =@x(t; x) _x is order k + 2 then22
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Figure 2.1: 2�-periodic coe�cient in @V@t .for some neighborhood of the origin the term @V =@t(t; x) = jxjkQ1(t) domi-nates the total derivative dV =dt. Thus, the sign of Q1 determines the sign ofthe derivative of V along trajectories of (2.14). Q1(t) is computed numericallyfrom the expressions in equations (2.21) and (2.18). The results are shown inFigure 2.1. � = 1:1 in this example. Note that Q1 changes sign so that dV =dtis not sign de�nite at the origin. Thus, even though V is a positive de�nitehomogeneous function it is not a Lyapunov function of the system (2.14).The most important case for the analysis in this thesis is the converse Lyapunovtheorem for degree zero systems.An important theorem concerning the stability of perturbed degree zerovector �elds wraps up this section.Proposition 2.27 Let x = 0 be an asymptotically stable equilibrium point ofthe T -periodic continuous homogeneous degree zero vector �eld _x = X(t; x).Consider the perturbed system_x = X(t; x) +R(t; x): (2.23)Assume each component of R(t; x) may be uniformly bounded by,jRi(t; x)j � m�ri+1(x) i = 1; : : : ; n; x 2 U;23



where U is an open neighborhood of the origin and �(�) is a homogeneous normcompatible with the dilation that leaves the unperturbed equation invariant. Thenx = 0 remains a locally exponentially stable equilibrium of the perturbed equa-tion (2.23).Proof: By Theorem 2.25, there exists a positive de�nite, decrescent, T -periodicin t, continuous homogeneous degree l > 0 function which is smooth on Rn n f0gwith a negative de�nite derivative along trajectories of the unperturbed equa-tion, dVdt (x; t) = @V@t (x; t) + nXi=1 fi(x; t)@V@xi < 0 8t; x 6= 0:Note that dV=dt is homogeneous degree l. SettingM = mint2[0;T );�(x)=1�dVdt (x; t) > 0;we obtain, dVdt � �M�l(x) 8t; x 6= 0:Evaluating V along trajectories of the perturbed equation (2.23),dVdt ����(2.23) � �M�l(x) + nXi=1 jRi(x; t)j ����@V@xi (x; t)����� �M�l(x) + nmm�l+1(x) 8t; 8x;where the bound j@V =@xij � m�l�ri (x) is derived from the fact that homo-geneous degree p functions, continuous on Rn n f0g, may be majorized by thehomogeneous norm raised to the power p. V has the bounds ��l(x) � V (t; x) ���l(x) for some �; � > 0. Choose c > 0 such that�Mc+ nmmc1+1=l < 0;and de�ne, U = fxj�l(x) < cg:Thus for x 2 U; t 2 [0; T ), V is decreasing along trajectories of (2.23). Startwith x0 2 fxj�l(x) < �� cg � U . The solution  (t; t0; x0) will remain in U onsome interval t 2 [t0; s] with s > 0. During this interval,�l( (t; t0; x0)) � 1�V (t;  (t; t0; x0))� 1�V (t0; x0)� ���l(x0)� c:24



However this implies that the solution remains in U for all t > t0. Since thefunction �Mz + nmmz1+1=l is majorized by (�M + nmmc1=l)z for z 2 [0; c]then the following bound holds for all t � t0 and for all x 2 U ,dVdt ����(2.23) � �L�l(x) whereL =M � nmmc1=l� �L� V=) V ( (�; x; t); � ) � V ( (t; x; t); t)e�L� (��t)=) �( (�; x; t)) � ����1=l �(x)e� Ll� (��t) x 2 S1: �

25



Chapter 3Analysis Results forHomogeneous SystemsThis chapter presents analysis results which are useful for establishing someproperties of the closed-loop systems derived in Chapter 4. The feedbacks inthis thesis are not Lipschitz functions. Hence, existence but not uniqueness ofthe system solutions is guaranteed. However, conditions on the feedbacks aregiven which are su�cient to ensure uniqueness.An averaging result for time-periodic homogeneous degree zero di�erentialequations is proven. The motivation for this theorem comes from the synthesisapproach which uses perturbation arguments to derive exponential stabilizersfor driftless systems. For example, a small parameter is introduced into thefeedbacks which allows the designer to approximate the system solutions. Aset of di�erential equations of lower dimension is obtained with the parameteras a scale factor multiplying the vector �eld. This new set of equations isnot Lipschitz but is still homogeneous. Since the equations exhibit explicittime dependence, they may be averaged to obtain a \simpler" system. Theaveraging theorem is applied to conclude asymptotic stability of the originalsystem given asymptotic stability of the averaged system for su�ciently smallparameter values.The synthesis approaches in this thesis rely on Lyapunov analysis rather thanapproximated solutions of the closed-loop equations so the averaging result isnot applied in latter chapters. However it is included because it is a generalresult for degree zero systems.3.1 Uniqueness of SolutionsUniqueness of solutions of ordinary di�erential equations is an important prop-erty for a mathematical model of any physical process. Uniqueness of solutionsgives a precise mathematical interpretation of the physical concept of determin-ism. The models of the driftless systems considered in this thesis are analytic so26



the only possible way for nonunique solutions to arise occurs when the controldesigner speci�es feedback functions which do not have su�cient regularity toguarantee uniqueness in the closed-loop model. Of course, the physical systemimplemented with these feedbacks will exhibit deterministic behavior. Thus, theproblem is with the mathematical model and its capacity to predict the futurebehavior of the physical system.Virtually the only way to analyze the performance of nonlinear control sys-tems is through extensive simulation. The simulations require a mathemat-ical model of the physical process. A numerical simulation of a model withnonunique solutions exhibits discontinuous dependence with respect to initialconditions on any �nite time interval. Thus, the numerical simulation may notgive a good indication of physical system response.Homogeneous degree zero systems are of primary interest to us. An exampleof a degree zero closed-loop driftless system with nonunique solutions is givenbelow but �rst the maximal and the minimal solutions of a scalar di�erentialequation are recalled.De�nition 3.1 Consider the scaler di�erential equation _y = f(t; y) where fis continuous in jt � aj � T; jy � cj � K. Then there exists a maximal and aminimal solution yM (t) and ym(t) such that ym(t) � y(t) � yM (t) for any othersolution y(t) such that y(a) = yM (a) = ym(a) [2].Example 3.2 Consider the three state driftless system_x1 = u1_x2 = u2_x3 = x2u1: (3.1)This system is the prototype driftless control system which will be used in nu-merous examples throughout the thesis. An asymptotically stabilizing feedbackis, u1 = �x1 + spx3 cos tu2 = �x2 +pjx3j sin t; (3.2)where sp� is the \signed" square root,spt = 8<: pt t > 00 t = 0�pjtj t < 0 :The closed-loop system is homogeneous degree zero with respect to the dilationwith the scalings r = (1; 1; 2). The system may be rigorously shown to be �-exponential stable. The feedbacks are continuous but not Lipschitz and it isshown below that there are solutions which are not unique. First consider thefollowing di�erential equation,_y = �1(t) + �2(t) spy; (3.3)27



where �i; i = 1; 2 are continuous functions. There are two cases to consider,i) Assume �1(0) � 0 and �2(0) > 0. Then there exists some c > 0 andT > 0 such that �2(t) � c for t 2 I = [0; T ]. The function c spy is alower bound for the right hand side of equation (3.3) for t 2 I and y � 0.Thus the maximal solution of (3.3) with yM (0) = 0 is an upper bound forall solutions of _x = c spx with x(0) = 0 for t 2 I [2, Chapter 6]. Sincex(t) = 14(ct)2 is one solution then yM (t) � 14 (ct)2.ii) Now assume �1(0) � 0 with the same assumptions and bounds for �2. Thefunction c spy is an upper bound for the right hand side of equation (3.3).Thus the minimal solution of (3.3) with ym(0) is a lower bound for allsolutions of _x = c spx with x(0) = 0 so ym(t) � �14 (ct)2 for t 2 I.To illustrate nonuniqueness of solutions of the original system (3.1) withfeedback (3.2) consider the initial conditions x1(0) = 0; x2(0) > 0 and x3(0) = 0.Let (x1(0); x2(t); x3(t)) be a solution with these initial conditions. Regardlessof the behavior of x1(t) and x2(t), the equation for x3, i.e., _x3 = x2(�x1 +spx3 cos t), may be viewed as the system (3.3) and falls into either case i) or ii).Hence, there must exist at least one solution of the system that satis�es x3(t) �14 (ct)2 or x3(t) � �14(ct)2 for some time interval and some c depending on x2(0).However, another solution with the same initial condition is (x1(t) � 0; x2(t) =x2(0) exp(�t); x3(t) � 0) (this may be veri�ed by direct substitution into theclosed-loop equations).Numerical simulations demonstrating the nonunique behavior are shown inFigure 3.2. The di�erence in initial conditions in these two simulations is 2e�20.The solutions do not approach one another even as the minute di�erence ininitial conditions is further decreased. Thus, the solutions do not exhibit con-tinuous dependence on the initial conditions.This situation is to be avoided and we would like to specify conditions on thevector �eld which guarantees uniqueness. A homogeneous vector �eld is com-pletely speci�ed by the values assumed on the set fx : �(x) = 1g so any smooth-ness imposed on the vector �eld here is automatically extended to Rn n f0g viathe dilation. In order to avoid the uniqueness problems demonstrated above wemay assume the vector �eld to be locally Lipschitz on Rn n f0g, i.e., for everyx 2 Rn n f0g there exists a neighborhood of x and some 0 < L < 1 such thatthe vector �eld satis�es kX(t; y) � X(t; z)k � Ljy � zj for all y and z in thisneighborhood. This does not imply that the vector �eld is Lipschitz in anyneighborhood of the origin. This is stated in the following lemma for degreezero vector �elds.Lemma 3.3 Let X(t,x) be a continuous homogeneous degree zero vector �eld,Lipschitz on Rn n f0g, with the dilation scalings r1 = 1 � � � � � rn. The vector�eld is not Lipschitz in any neighborhood of the origin if ri > 1 for some i.Proof: A vector �eld is Lipschitz if each component is Lipschitz. Denote the �rstcomponent as a(t; x). The function a is continuous and homogeneous degree28
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Figure 3.1: Nonunique solutions.29



one. Choose x0 2 Rn n f0g and suppose a has Lipschitz constant L in someneighborhood of x = (x1; : : : ; xn). De�ne the upper right Dini derivative [30],D+i a(x) = lim suph!0+ a(x1; : : : ; xi�1; h+ xi; xi+1; : : : ; xn) � a(x)h :Assume that D+i a(x) = c 6= 0. Note that jcj � L by virtue of the Lipschitzbound. Furthermore,D+i a(��x)= lim suph!0+ a(�r1x1; : : : ; �ri�1xi�1; h+ �rixi; �ri+1xi+1; : : : ; �rnxn) � a(��x)h= lim suph!0+ �1�ri a(x1; : : : ; xi�1; h=�ri + xi; xi+1; : : : ; xn)� a(x)h=�ri= �1�ric:If ri > 1 then lim�!0 jD+i a(��x0)j ! 1: Hence, a cannot be Lipschitz in anyneighborhood of zero. �Hence even with the assumption that the vector �eld is Lipschitz on Rn n f0g itis not necessarily Lipschitz at zero. It is still possible to conclude uniqueness ofsolutions in this case though. This is proven in the next lemma.Lemma 3.4 Suppose X(t; x) : R�Rn! Rn is an homogeneous vector �eld inx of order 0 with respect to a given dilation ��, uniformly bounded with respectto t and x = 0 an isolated equilibrium point. Furthermore suppose that X islocally Lipschitz everywhere except x = 0, where it is continuous. Then the 
owof X is unique.Proof: The point x = 0 is the only point where uniqueness may fail since Xis not necessarily Lipschitz there. However no solution through a point p 6= 0can reach the origin in �nite time because this implies that �( (t; t0; p)! 0 in�nite time. This is not possible since the equation describing the evolution of �is _� = Q(t; y)�, where Q is a continuous function of y and uniformly boundedin t. The point y evolves on a compact set so the there always exists a boundM := sup(t;y) jQ(t; y)j:The following inequalities on � hold as a result of the bound on Q,c1e�M(t�t0) � �(x(t � t0)) � c2eM(t�t0);where the ci's are positive constants. Similarly a solution cannot leave the originin �nite time. If this were possible then the time reversed vector �eld (which hasthe same bounds on �(x(t� t0)) as its forward time counter part) has a solutionwhich reaches the origin in �nite time. This contradicts the above result. Thussolutions cannot leave or reach the origin in �nite time. �30



3.2 Averaging ResultsIn this section we present an averaging result which will be useful for analyzingthe closed-loop equations. First we introduce the class of systems of interest.Consider the di�erential equation_x = �X(t; x; �); (3.4)where X is a continuous map from Rn � Rn� [0; e) into Rn, T -periodic withrespect to t and X(t; 0; �) = 0 for all t in (�1;1). Time is rescaled sothat the period is always 2�. We further restrict our attention to a classof homogeneous degree zero vector �elds (with respect to the dilation �� =(�r1x1; �r2x2; : : : ; �rnxn)). A solution of (3.4) through the point x0 at time t0is denoted  (t; t0; x0).In the averaging theorem we will infer stability (instability) of the zero so-lution of equation (3.4) from stability (instability) of the zero solution of theaveraged system, _x = �X0(x); (3.5)where X0(x) = limT!1 1T Z T0 X(t; x; 0)dt: (3.6)The vector �eld in (3.4) is 2�-periodic in t so the average in (3.6) is equivalentto X0(x) = 12� Z 2�0 X(t; x; 0)dt:Note that X0 is homogeneous of order zero with respect to the dilation ��.Before the averaging result is stated we prove a lemma.De�ne the one-parameter family of di�eomorphisms on the extended phasespace of equation (3.4) which leave it invariant,	� : S1 �Rn! S1 �Rn(t; x) 7! (t;��(x)) � > 0:We also de�ne three nested homogeneous balls in the extend phase spaceBci = f(t; x) 2 S1 �Rnj�(x) � cig i = 1; 2; 3;where c1 > c2 > c3 > 0 and � is a homogeneous norm compatible with ��.Lemma 3.5 (Scaling Lemma). For time periodic homogeneous order zerovector �elds (3.4) and given the Bci 's de�ned above, suppose we know the fol-lowing facts,1. (t0; x0) 2 Bc2 implies (t;  (t; t0; x0)) 2 Bc1 for all t > t0,31



homogeneous rayB1 B2 B3 x0 x2x1Figure 3.2: Homogeneous balls used in proof: use the dilation to map x2 to x1thus extending the trajectory starting at x0.2. there exists a T > 0 such that (t0; x0) 2 Bc2 implies (t;  (t; t0; x0)) 2Bc3 for all t > T ,3. the trajectories of the system (3.4) are unique.Then the zero solution of (3.4) is asymptotically stable.Proof: We �rst prove stability. Start the system (3.4) with initial conditionsin Bc2 . Then (t;  (t; t0; x0)) 2 Bc1 for all t > t0. In other words, �(x0) < c2implies �( (t; t0; x0)) < c1 for all t > t0. This condition may be extend to anyneighborhood using the mapping ��. Suppose the bound �( (t; t0; x0)) < e1for all t > t0 is desired, then restrict �(x0) < e1 c2c1 . This is demonstrated below,�( (t; t0; x0)) = � � (t; t0;�e1=c1(�c1=e1(x0)))�= � ��e1=c1 � (t; t0; (�c1=e1(x0)))��= e1c1 �( (t; t0;� c1e1 (x0)))� e1 since �(�c1=e1(x0)) = c1e1 �(x0) < c1e1 c2c1 e1 = c2: (3.7)This is stability of the zero solution. See Figure 3.2 for a picture.To demonstrate asymptotic stability we proceed in a similar manner. De�nethe annulus, A2 = Bc2 nBc3 :We know that solutions with initial conditions in A2 enter Bc3 in �nite time Tand remain there. Since the di�erential equation is invariant under 	 then wemay map the annulus A2 to another annulus that sits inside A2 and shares acommon boundary. This way solutions starting in A2 are extended into the newannulus (because of the invariance) and can only remain in the new annulusfor a �nite time. Since the system trajectories are unique then the extendedtrajectory must be the continuation of the initial trajectory.32



De�ne the sequence of nested annuli,Ai = 	c3=c2(Ai�1); i = 3; 4; : : : :Note that the outer boundary of Ai, denoted @oAi, is the inner boundary ofAi�1, denoted @iAi�1, because,@oAi = 	c3=c2(@0Ai�1)= 	(c3=c2)i�2 (@0A2)= 	(c3=c2)i�3 �	c3=c2(@oA2)�= 	(c3=c2)i�3 �@iA2�= @iAi�1:The properties of solutions with initial conditions in A2 are shared by the otherannuli. Hence, an initial condition in Ai must enter Ai+1 in time T . Extendingthis to the larger annulus de�ned by�N = [i=2;:::;NAi; N > 2implies that solutions with initial conditions here will enter the set AN+1 in atime no less that NT and can never reenter �N . Thus we pick � = c2 andfor � > 0 choose ~t = mT where m satis�es �c3c2�m < �. This is equivalent toasymptotic stability. �Remark 3.6 This lemma actually demonstrates exponential stability of thezero solution because the time taken to leave any given annulus is independentof the \size" of the annulus (this is a result of the vector �eld having degreezero with respect to the dilation ��). At time t > mT any solution may bebounded by a homogeneous ball with size proportional to � c3c2�m. Hence, thisbound plus stability of the solutions may be recast as an exponential stabilityresult with respect to the homogeneous norm �.Theorem 3.7 Assume that the solutions of the equation (3.4) are unique. Sup-pose y = 0 is an asymptotically stable �xed point of the associated averagedsystem _y = �X0(y). Then for � > 0 su�ciently small, the solution x = 0 isexponentially stable for the full equations (3.4).This result is already well known for C1 vector �elds where x = 0 is a hyper-bolic �xed point. Proving the theorem when the vector �eld is di�erentiable isstraightforward since the standard averaging change of coordinates places thevector �eld into a form where the time-varying part is bounded with an arbitrar-ily small Lipschitz constant (by making � su�ciently small). Hence, if x = 0 isa hyperbolic �xed point of X0 then the stability of the full system is determinedby the stability of X0 for � su�ciently small. Unfortunately this proof does not33



extend to our case since the averaging change of coordinates tends to \mix" thenew coordinates so that the transformed vector �eld is no longer homogeneous.However we may get a total stability result in the new coordinates which will im-ply certain strong behavior of the solutions of the original homogeneous system.The idea of the proof uses the fact that in the new coordinates we may choose� small enough so that we may make a ball about the origin attractive andinvariant. Mapping this ball back to the original coordinates implies the samefor solutions of equation (3.4). Now we may use the homogeneity of the vector�eld to extend the solutions to an arbitrarily small attractive neighborhood ofthe origin. The details are now presented.Proof: We �rst recall the usual averaging results. The reader is referred toHale [15] (Lemma V3.1, Lemma V3.2 and Lemma 5 of the appendix). For anycompact set 
 in Rn there exists an �0 and a function u(t; x; �) such that theaveraging transformation,x = y + �u(t; y; �) (t; y; �) 2 R�
� [0; �0); (3.8)applied to (3.4) yields the equation_y = �f0(y) + �F (t; y; �); (3.9)where X0 is the averaged vector �eld as de�ned above. F (t; y; �) is continuousfor (t; y; �) 2 R� 
 � [0; �0) and F (t; y; 0) = 0. The function u possesses thefollowing properties on R�
 � [0; �0):1. u(t; x; �) is periodic with period 2� (same period as the vector �eld),2. has continuous derivatives with respect to t and derivatives of anarbitrary speci�ed order with respect to x.3. �u and �@u@y approach 0 as �! 0 uniformly in t 2 Rn and y 2 
.The solution y = 0 of (3.5) is asymptotically stable so there exists a Lyapunovfunction V : Rn! Rwith the following properties [22],1. V is as smooth,2. V (0) = 0; V (y) > 0 for all y 6= 0, and V is radially unbounded,3. rV � f0(y) < 0 for all x 6= 0.Consider the compact sets de�ned byD� = fy 2 RnjV (y) � �g � > 0:The boundaries of these sets are denoted @D�. Given D�, de�ne constants�D� = maxy2@D� �(y) �D� = miny2@D� �(y):Choose c1 > 0 such that Dc1 � 
. Now �nd c2, and corresponding Dc2 , suchthat �Dc2 < �Dc1=2. This may always be done because V is positive de�nite and34



continuous. Evaluating V along solutions of the transformed vector �eld (3.9)yields dVdt = �rV �X0(x) + �rV � F (t; y; �):On the compact set Dc1 nDc2 calculate� = miny2Dc1 nDc2 �rV � f0(y);which is clearly greater than zero. We also de�ne M (�) asM (�) = maxy2Dc1 ; t2S1 jrV � F (t; y; �)j:M (�) is continuous because F is a continuous function of � and M (0) = 0since F (�; �; 0) = 0. The averaging transformation will not, in general, respectthe dilation scaling. Hence the vector �eld F (t; x; �) will not be homogeneous.For example we may be forced to bound F with homogeneous functions oflower order than X0 and hence asymptotic stability cannot be concluded withthis Lyapunov analysis. On the annulus Dc1 nDc2 the time derivative of V isbounded by dVdt � �(�� +M (�)):Now choose ~� 2 (0; �0) such that M (~�) � �2 : The choice of ~� renders Dc1 andDc2 invariant. Trajectories through points in Dc1 nDc2 will reach Dc2 in a �nitetime no greater than T = 2(c1 � c2)~�� ;because _V < ���=2 on Dc1 nDc2 . Choosing any � 2 (0;~�) does not change theinvariance or attractive nature of the sets. The only modi�cation in this caseis T . The functional relationship of T is exactly the one given above with ~�replaced by the new �. In the y-coordinates we can't say anything more aboutthe stability of the zero solution. However, we may map the Di's back to theextended phase space of (3.4) with the di�eomorphism (3.8). This will resultin a warped version of S1 � Di's. We would like to bound these warped setswith homogeneous balls and apply the scaling lemma to conclude asymptoticstability. This is worked out in detail below.Recall the map x = y+�u(t; y; �) is at least a C1 di�eomorphism for (t; y; �) 2S1 � 
 � [0; �0). As � ! 0 this map approaches the identity. Since u is 2�periodic in t it is useful to de�ne the following di�eomorphism between S1 �
and the extended phase space of the vector �eld in (3.4), S1 �Rn,'�(t; y) = (t; y + �u(t; y; �)):De�ne the compact sets in S1 �Rn,Ec1 = '�(t;Dc1) Ec2 = '�(t;Dc2):35



For �xed t, Ec1 ! (t;Dci) as � ! 0. The boundaries of Eci are denoted @Eci .As for the sets D�, we de�ne the quantities,�Eci = max(t;x)2@Eci �(x) �Eci = min(t;x)2@Eci �(x):Note that �Eci ! �Dci �Eci ! �Dci ; (3.10)as �! 0 since @Eci ! (t; @Dci) for each t 2 S1. It is possible for �Ec2 > �Ec1 forthe choice of ~� made above (at di�erent times of course). The relations in (3.10)imply � may be further decreased to ensure �Ec2 < �Ec1 since �Ec2 ! �Dc2 as�! 0 (recall �Dc2 < �Dc1 =2 from the choice of c1 and c2). Hence @Ec2\@Ec1 =;. Now we may de�ne homogeneous balls that are proper subsets of one another.De�ne the homogeneous balls in S1 �Rn,B�Ec1 = f(t; x) 2 S1 �Rnj�(x) � �Ec1 gB�Ec1 = f(t; x) 2 S1 �Rnj�(x) � �Ec1 gB�Ec2 = f(t; x) 2 S1 �Rnj�(x) � �Ec2 g:The previous choice of � leads to the following inclusions,Ec2 � B�Ec2 � B�Ec1 � Ec1 � B�Ec1 :Now we will say a few words about solutions with initial conditions in thesesets. Ec1 is invariant under (3.4) because Dc1 is invariant under (3.9) and thedi�eomorphism (3.8) takes Dc1 into Ec1. Furthermore, solutions of (3.4) withinitial conditions in Ec1 will reach the set Ec2 in no less than time T and remainthereafter because these corresponding facts hold for Dc1 and Dc2 and the (3.9)maps Dc2 to Ec2 . Hence, solutions through points in B�Ec1 are constrained toremain in B�Ec1 and furthermore must enter B�Ec2 in �nite time, T , and remainthere. Now apply Lemma 3.5 with Bc1 = B�Ec1 , Bc2 = B�Ec1 and Bc3 = B�Ec2to conclude asymptotic stability of the zero solution. �Remark 3.8 The same arguments may be used to show that trajectories mov-ing from B3 to the outer boundary of B2 imply the origin is unstable. Further-more this theorem is only su�cient to guarantee �-exponential stability of theoriginal system. For example, the homogeneous degree zero (with respect tor = (1; 1; 2)) system _x1 = �(�x1 + x3�(x) cos t)_x2 = �(�x2 � x23�3(x) sin t)_x3 = �x2(�x1 + x3�(x) cos t)�(x) = (x41 + x42 + x23)1=4;36



is �-exponentially stable for the choice of \+" in _x2 and unstable for the \�" caseeven though the averaged system for both cases is stable (but not asymptoticallystable), _x1 = ��x1_x2 = ��x2_x3 = ��x1x2:This is in contrast to the results for C2 systems where local exponential stabilityof the averaged system is necessary and su�cient for local exponential stabilityof the original system for � su�ciently small.The following example illustrates the application of the averaging theorem.Example 3.9 Consider the following ordinary di�erential equation� _x1_x2 � = � �13x1 + x2�(x) cos2 t�12 x21x2�(x) + x21 cos t+ x2 sin t ! � > 0; (3.11)where �(x) = (x41+x22)1=4. This system is homogeneous with respect the dilation��(x) = (�x1; �2x2), smooth on Rn n f0g, 2�-periodic with respect to t and notLipschitz in any neighborhood of the origin. Uniqueness of solutions follows fromLemma 3.4. The averaged system is� _x1_x2 � = � �13x1 + 12 x2��12 x21x2� ! : (3.12)A positive de�nite function and its derivative along solutions of the averagedsystem are, V = x41 + x22dVdt = ���43x41 + 2x31x2� � x21x22�2 � :Since both functions are homogeneous with respect to ��, each function isuniquely determined by its values on the homogeneous sphere S1�. A plot ofdV=dt on S1� (parametrized by the angle � from the positive x1 axis in a counter-clockwise direction) is shown in Figure 3.3 (� is taken to be 1 in this plot sinceit only scales the value of dV=dt). dV=dt is negative semide�nite so asymp-totic stability cannot be concluded without further analysis. However we showbelow that the system is asymptotically (and hence �-exponentially) stable byinvoking LaSalle's theorem. The set in Rn n f0g at which dV=dt = 0 are thepoints where dV=dt = 0 on S1� scaled with the dilation for all � > 0. Thisset is invariant if the vector �eld is tangent to this set. A necessary conditionfor this occurrence is that the inner product between a tangent vector to thisset and a normal vector to the vector �eld at this point be zero. A tangentvector to the set where dV=dt = 0 is just the Euler homogeneous vector �eldevaluated at the correct point: XE = x1@=@x1+2x2@=@x2. On the other hand,37
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0 1 2 3 4 5 6dV dt �Figure 3.3: Lyapunov function derivative on S1�.a normal vector to the vector �eld at the point where dV=dt = 0 is merely DxV .Since hXE ; DxV i(x) = 4V (x) then the vector �eld is always transverse to theset where dV=dt = 0 for all x 2 Rn n f0g. Hence the system is �-exponentiallystable. Thus we conclude that the original system is �-exponentially stable for �su�ciently small. Figure 3.4 compares the solutions of the original and averagedsystem for � = 0:1. The simulation in Figure 3.5 veri�es that the system (3.11)is unstable for � = 1.
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Figure 3.4: Simulation of averaged system (3.12) and original system (3.11) for� = 0:1.
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Chapter 4Applications to DriftlessControl SystemsThe objective of this chapter is to apply the material introduced in the previ-ous chapters to produce algorithms that yield �-exponential stabilizers for thedriftless control system, _x = X1(x)u1 + � � �+Xm(x)um: (4.1)However, before discussing the algorithms, Section 4.1 shows that the rateof convergence of an asymptotically stabilizing Lipschitz feedback cannot bebounded by a decaying exponential envelope. The algorithms rely on a localhomogeneous approximation of the input vector �elds. Section 4.2 applies theapproximation procedure reviewed in Section 2.2 to driftless systems. The �rstalgorithm discussed in Section 4.3 is an extension of a result by Pomet [37].The second algorithm gives su�cient conditions for a smooth stabilizer to bemodi�ed to a �-exponential stabilizer. Both algorithms yield functions whichare homogeneous degree one with respect to the dilation speci�ed during theapproximation process. The dilation must have some scaling power greater than1 since a least one level of Lie brackets are required for controllability. The feed-backs are not Lipschitz at the origin in this case. However, given the fact thatLipschitz feedback cannot exponentially stabilize a driftless system it is remark-able that the non-Lipschtiz nature of the �-exponential stabilizers is a result ofrequiring the functions to be degree one with respect to the dilation. Choosingthe feedbacks to be homogeneous is natural since it preserves the homogeneousstructure of the approximation.The chapter ends on a practical aspect of �-exponential stabilizer design.Many driftless systems are based on kinematic models of mechanical systems.The control inputs are velocities for these models. The velocities of mechanicalsystems cannot be exactly speci�ed since the control action is realized be theapplication of forces. Section 4.4.2 proves that �-exponential stabilizers maybe extended to systems with actuator dynamics modeled by integrators. The41



extended controllers command forces and still �-exponentially stabilize the sys-tem. This section also demonsrates that �ltering the state measurements do notdestabilize the system if the �lter bandwidth is su�ciently high.4.1 Limitations of Lipschitz FeedbackBefore discussing various synthesis methods a result on the regularity of expo-nentially stabilizing feedback functions is proven. In particular it is shown thatfeedbacks which are Lipschitz in the state cannot exponentially stabilize, in theusual sense, a controllable driftless system to a point. The following theorem isthe main result of this section.Theorem 4.1 Suppose the input vector �elds of the driftless system (4.1) areC1 and the feedbacks ui(t; x); i = 1; : : : ;m, which are measurable in t and Lips-chitz with respect to x, asymptotically stabilize the point x = 0. Then there doesnot exist an � > 0 and � > 0 such that,k (t; t0; x0)k2 � �kx0k2e��(t�t0):This theorem states that in order to achieve exponential stability the feedbackmust necessarily be non-Lipschitz.Before proving Theorem 4.1, some results from nonsmooth analysis will bereviewed [6].De�nition 4.2 The generalized Jacobian at x 2 Rn of a Lipschitz functionF : Rn! Rm is de�ned as the set:@F (x) := co flimDF (xi)jxi ! x; xi 62 
Fg;where 
F is the set of measure zero where the standard Jacobian of F , DF , isnot de�ned.In general, @F is a set valued map when F is Lipschitz but not C1. Set valuedmaps are also called multifunctions. Some useful properties of @F are:i) @F is upper semicontinuous andii) @F (x) is a convex compact subset of Rm for all x 2 Rn.Additional properties are given in [6].When X(t; x) is measurable in t and Lipschitz in x denote the 
ow of thecorresponding di�erential equation _x = X(t; x) as  (t; �; x). If X is not C1in x then there is no notion of the classical linearization about any solution.However using the de�nition of generalized Jacobian a natural extension of thelinearization is called a di�erential inclusion.De�nition 4.3 The linearization of X about the trajectory  (t; �; x) is repre-sented by the di�erential inclusion_y(s) 2 @xX(s;  (s; �; x))y(s); s 2 [�; t]:42



The right-hand side, @xX(s;  (s; �; x)), is a set valued map which depends onthe parameter s and as a consequence there is a set of \solutions" of the dif-ferential inclusion associated with any given trajectory  (t; �; x) of the originalsystem. The solutions of the di�erential inclusion are de�ned in the followingmanner. A measurable selection of @xX(s;  (s; �; x)) is a measurable function
 : [�; t]! Rn such that 
(s) 2 @xX(s;  (s; �; x)). The existence of such func-tions is guaranteed by the hypothesis on X. De�ne �(t; � ) as the set of all linearmatrix solutions to the system,_Y (s) = 
(s)Y (s); Y (� ) = I;for some measurable selection 
. The plenary hull of �(t; � ), denoted R(t; � ), isthe setR(t; � ) = fM jhv;Mwi � max[hv;NwijN 2 �(t; � )] 8v; w 2 Rng : (4.2)The utility of the preceding de�nitions becomes apparent in the following rela-tionship between the generalized Jacobian of the 
ow and the plenary hull,Theorem 4.4 ([6],Theorem 7.4.1) The map F (x) :=  (t; �; x) is Lipschitzfor all t; � and satis�es @F (x) � R(t; � ).The idea behind the proof of Theorem 4.1 is as follows. If the 
ow  satis�esan exponential stability criterion then there exist elements in @F that cannotbe in R since R has a special form for driftless systems with Lipschitz feedback.This contradicts the statement of Theorem 4.4. Theorem 4.1 is proven usingtwo propositions.Proposition 4.5 For the system (4.1) with Lipschitz feedback, there exists aset of coordinates such that all elements of R(t; � ) about the solution x(t) = 0have the form, � ? ?0(n�r)�r In�r � ; (4.3)where 0(n�r)�r is an (n� r)� r matrix of zeros, and In�r is an n� r identitymatrix.Proof: De�ne the matrix B 2 Rn�m,B = � X1(0) X2(0) : : : Xm(0) � ;and r = rank(B) � m. The closed-loop system is denoted _x = X(t; x). We �rstshow that the generalized Jacobian of f(t; x) with respect to x has the form,@X(t; 0) = B@U (t; 0);where @U (t; 0) is the generalized Jacobian (with respect to x) of the controlmap U (t; x) = (u1(t; x); : : : ; um(t; x)) :43



De�ne the C1 map, G : Rn�Rm! Rn(z; v) 7! X1(z)v1 + � � �+Xm(z)vm;and the Lipschitz map with parameter t,Et : Rn! Rn�Rmy 7! (y; U (t; y)):Et(0) = 0 since x = 0 is an equilibrium point of the closed-loop system. Apply-ing the generalized Jacobian chain rule to,X(t; x) = G �Et(x);results in @X(t; 0) = DG(Et(0))@Et(0) [6, Theorem 2.6.6]. G is continuouslydi�erentiable so DG(Et(0)) = (0n�njB) : Using the de�nition of generalizedJacobian, @Et(0) = co flimDEt(xi) jxi ! 0; xi 62 
Ug= co �lim� In�nDxU (t; xi) � jxi ! 0; xi 62 
U�= � In�nco flimDxU (t; xi) jxi ! 0; xi 62 
Ug �= � In�n@U (t; 0) � :The set 
U is a set of measure zero where the derivative of U with respect tox is not de�ned. Hence,@X(t; 0) = [0n�n jB] � In�n@U (t; 0) �= B � @U (0; t):Thus, the di�erential inclusion of equation (4.1) about the solution x(t) = 0 isthe system, _y(s) 2 B � @U (s; 0)y(s):B is a rank r matrix and may be expressed in suitable coordinates as,B = � ?0(n�r)�m � :Thus, any measurable selection of B@U (0; t) is a function of the form,
(t) = � ?0(n�r)�n � ;44



and all so elements of �(t; � ) must �x the last n� r coordinates directions,� ? ?0(n�r)�r In�r � :Let M represent an element of the plenary hull of �(t; � ). Partition M asM = � M11 M12M21 M22 � ;where M11 2 Rr�r, M12 2 Rr�(n�r), M21 2 R(n�r)�r, M22 2 Rr�r. Choosingthe vectors v and w in de�nition (4.2) asv = � 0~v � ; ~v 2 Rn�r w = � ~w0 � ; ~w 2 Rr;implies h~v;M21 ~wi � 0)M12 = 0(n�r)�r:Similarly, h~v;M22 ~wi � h~v; ~wi 8~v 2 Rn�r; ~w 2 Rn�r )M22 = In�r:Thus any element of R(t; � ) must have the form� ? ?0 In�r � : �The last proposition required for the proof of Theorem 4.1 is established next.Assuming that the closed-loop system (4.1) with Lipschitz feedback is exponen-tially stable then there exists the following bound on the solutions,k (t; �; x)k � �kxke��(t��);where � > 0 and � > 0. The di�erence t � � may be chosen large enough sothat the constant �e�(t��) � 1=2. The map F (x) :=  (t; �; x) then satis�es,kF (x)k � 12kxk: (4.4)This bound leads to the last proposition.Proposition 4.6 Suppose a Lipschitz map F : Rn! Rn satis�es the bound (4.4).Then for any v 2 Rn there exists Z 2 @F (0) such that jjZvjj � 1=2jjvjj:The proof of this proposition uses a mean value theorem for set valued maps,45



Theorem 4.7 ([6],Proposition 2.6.5) Suppose F : Rn ! Rm is a Lipschitzmap then, F (y) � F (x) 2 co @F ([x; y])(y � x);where the set co @F ([x; y]) is the convex hull of all points in @F (z) with z onthe straight line segment joining x and y.Proof of Proposition 4.6: We �rst show that given � > 0, there exists a � > 0such that co @F ([y; x]) � @F (0) + �B; 8jxj < �; jyj < �;where B is the unit ball of n � n matrices. From the upper semicontinuity ofthe generalized Jacobian, given � > 0 there exists � > 0 such that,@F (x) � @F (0) + �B; 8jxj < �:Pick x and y with norm less than � and choose arbitrary elementsX 2 @F (x); Y 2@F (y). Combining the following relationships,tX 2 t(@F (0) + �B)(1� t)Y 2 (1 � t)(@F (0) + �B);yields with t 2 [0; 1], tX + (1� t)Y 2 co f@F (0) + �Bg:However, the set f@F (0)+�Bg is convex since @F (0) is convex. Thus the convexcombination of any matrices in @F (x) and @F (y) is also in the set @F (0)+ �B.Since co @F ([y; x]) = co24 [z2[x;y] @F (z)35 ;then co @F ([x; y]) � @F (0) + �B; 8jxj < �; jyj < �:An arbitrary vector v 2 Rn may be scaled by � > 0 so that ~v := �v has normj~vj < �. Since F (~v) 2 co @F ([0; ~v])~v;then there exists Z 2 co@F ([0; ~v]) such that F (~v) = Z~v. However, the map Zis �-close to @F (0) and the bound (4.4) implies that jZ~vj � 1=2j~vj or, what isthe same, jZvj � 1=2jvj. By shrinking � to zero and scaling the point v to be inthe corresponding �-ball, we obtain a sequence of matrices fZig which contractv by at least a factor of 1=2 and satisfyZj 2 co @F (0) + �B; 8� > 0; j > N (�);for some integer N (�). The sequence fZig is bounded so there exists a convergentsubsequence fZ�ig which must converge to a member of @F (0) since @F (0) iscompact, limi!1Z�i = Z 2 @F (0):46



Finally, jZvj � jZ�ivj+ j(Z � Z�i )vj� 12 jvj+ �; i > N (�)=) jZvj � 12 jvj: �Theorem 4.1 is proven with Propositions 4.5 and 4.6.Proof of Theorem 4.1: Proposition 4.5 implies that every element of R(t; � )must �x n� r directions for all t; � . However, assuming exponential stability ofthe 
ow implies, for su�ciently large t� � , that there exist a matrix Z 2 @F (0)which contracts an arbitrary vector v 2 Rn (Proposition 4.6). This contradictsthe statement of Theorem 4.4 when v is chosen as a vector �xed by R(t; � ) sincethe matrix Z 2 @F (0) which contracts v cannot be in R(t; � ). �4.2 Homogeneous Approximations of DriftlessControl SystemsInstead of working with the original set of input vector �elds of the controlsystem (4.1), an approximation that makes sense in terms of stabilization abouta desired point x0 is desired. The Jacobian linearization of this system about anypoint is not useful in any control theoretic context since the linearized systemis not controllable. For example, the linearization of equation (4.1) about thepoint x0 is _� = X1(x0)u1 + � � �+Xm(x0)um; (4.5)where x = �+x0. Since the number of inputs m is less than the state dimensionn then, rank[X1(x0) � � �Xm(x0)] � m;and so the linearized system (4.5) is not controllable. However if the Lie algebraof the set of analytic input vector �elds has rank n at x0 then the results reviewedin Section 2.2 show that there exists a homogeneous degree one approximatesystem written in the (new) coordinates as_y = X11 (y)u1 + � � �+X1m(y)um: (4.6)Furthermore dimF ~X(x0) = dimFX (x0) so that controllability of (4.1) is trans-ferred to the approximating driftless system (4.6). The natural dilation associ-ated with the system depends only on the dimension of the span of the subspacesof the �ltration. Thus, the scaling powers in the dilation depend only on the47



point about which the approximation is made and not on any particular coordi-nate representation (although the homogeneous structure is evident only in thecoordinates adapted to the �ltration).The use of homogeneous feedback is strongly motivated by the existenceof a controllable homogeneous approximating system (4.6). If homogeneousdegree one control functions ui(t; y) can be found such that y = 0 is a uniformlyasymptotically stable equilibrium point of the closed-loop system then y = 0 isexponentially stable with respect to the homogeneous norm � since the closed-loop vector �eld is degree zero (Property 2.16). Thus, the stability type is notthe familiar exponential stability de�nition but rather �-exponential stability.As pointed out in Section 2.1.3, �-exponential stability can be locally recast intothe bound,k (t; t0; x0)k2 �Mkx0k1=�2 e��(t�t0) for some M > 0; � > 0; � > 1;where  represents the 
ow of the system. Thus each state is bounded bya decaying exponential envelope but the dependence on the initial conditionis allowed to be more general than that in the usual de�nition of exponentialstability. The higher order perturbing terms, present when one considers thefull set of equations in y-coordinates, do not locally change the stability type ofthe origin. In other words the original control system with feedback,_y = (X11 (y) +X01 (y) + � � � )u1(t; y) + � � �+ (X1m(y) +X0m(y) + � � � )um(t; y);is still locally �-exponentially stable. This is a consequence of the converse Lya-punov theorem for homogeneous vector �elds (Proposition 2.27) and is provenin Proposition 4.10. The standing assumption in the remainder of the thesis isthat the system (4.1) has been transformed to the adapted coordinates and thata degree one homogeneous approximation has been computed. This approxi-mation will be used exclusively in the sequel. An example of the approximationprocess is given in Appendix B.The quest for (locally) �-exponentially stabilizing feedback has been reducedto the search for time-periodic asymptotically stabilizing degree one functionsfor the approximate system. The dilation associated with the input vector �eldapproximations and feedbacks will always have rn > 1 since at least one levelof Lie brackets is required to achieve controllability of the system. Thus thedegree one feedbacks are not Lipschitz at the origin even though they may belocally Lipschitz on Rn n f0g. The proof of this fact is essentially the same asthe proof of Lemma 3.4. The non-Lipschitz feedbacks seem more reasonable inlight of the facts established in Section 4.1. Since the closed-loop system is notLipschitz it becomes apparent why a broader notion of exponential stability,namely �-exponential stability, is required for the systems.The coordinates adapted to the �ltration are found by composing the 
owsof n nonlinear di�erential equations. The calculations may be performed byhand for any given system. For large systems this can be an arduous task andso automated computation with a computer is desirable. An algorithm whichperforms this task is given in Appendix B.48



Finally, certain systems may be transformed exactly into a nilpotent homo-geneous form. In other words, there exists a di�eomorphism of the state andinput such that the new system representation is its own nilpotent homogeneousapproximation. In this situation no approximation is involved and the modelis valid up to the boundary where the di�eomorphisms are no longer de�ned.In [31], necessary and su�cient conditions are given for the transformation oftwo-input driftless systems into \chained" (or equivalently \power") form.4.3 Synthesis MethodsThis section presents two methods for synthesizing �-exponential stabilizers. Inother words, given the driftless system (4.1), under what conditions can feed-backs be constructed so that the closed-loop system is locally �-exponentiallystable? The algorithms do not cover every analytic driftless system, howevermany practical physical examples satisfy the condition in the theorems. Theprevious section outlined the objective of the algorithms: generate uniformlyasymptotically stabilizing homogeneous degree one feedbacks for the homoge-neous approximate driftless system (4.6). Lyapunov analysis is useful for provingasymptotic stability while the requirement that the closed-loop system is degreezero enforces �-exponential stability.Driftless systems fail Brockett's necessary condition so no continuous time-invariant feedback can stabilize the system to a point. However Coron's Theo-rem A.10 in Appendix A proves that time-periodic continuous feedback is suf-�cient to stabilize the system to a point. The proof of Theorem A.10 is notconstructive in any practical sense so algorithms are still required. The proto-type three-dimensional system (3.1) is used to illustrate how time periodicityovercomes the topological obstruction of Brockett's condition. The system isrepeated here for convenience,0@ _x1_x2_x3 1A = 0@ 10x2 1A u1 +0@ 010 1A u2: (4.7)The x1 and x2 variables may be directly manipulated since the control in-puts are equal to the time derivatives of these variables. It is not obvious howto manipulate x3 by changing the inputs. The Lie bracket of X1 and X2 is[X1; X2] = �@=@x3. The motion in Lie bracket vector �eld is modeled by thein�nitesimal loop where, u1(t) = 1u2(t) = 0 � t 2 [0; �)u1(t) = 0u2(t) = 1 � t 2 [�; 2�)u1(t) = �1u2(t) = 0 � t 2 [2�; 3�)49



u1(t) = 0u2(t) = �1 � t 2 [3�; 4�):In the limit as � ! 0 the initial point has moved an in�nitesimal amount inthe [X1; X2] direction. An asymptotically stabilizing feedback is derived belowbased on this property. A continuous �nite time analog of this input sequenceis u1(t) = a cos t and u2(t) = b sin t where a and b are coe�cients which arechosen later. After one period, the initial point (x1(0); x2(0); x3(0)) has movedto (x1(0); x2(0); x3(0) � ab�). Thus, x1 and x2 have returned to their initialstates and x3 has moved on amount proportional to �ab. Now choose a = x3and b = x23 so that u1 = x3 cos t and u2 = x23 sin t. This choice will \push"x3(t) to zero given any initial condition x3(0). The x1 and x2 variables are alsorequired to go to zero for stabilization. One way to enforce this is to add aterm to each of the control functions which has a stabilizing e�ect. One way toaccomplish this is to modify the feedbacks tou1 = �x1 + x3 cos tu2 = �x2 + x23 sin t: (4.8)Although these feedbacks where derived heuristically, the system (4.7) withfeedback (4.8) is locally asymptotically stable. Rigorous proof of this fact usescenter manifold analysis of the closed-loop system. This is sketched below.The time-periodic terms in the feedback in equations (4.8) may be replacedby the variables of an appended harmonic oscillator. The closed-loop systembecomes, _x1 = �x1 + x3z1_x2 = �x2 + x23z2_x3 = x2(�x1 + x3z1)_z1 = z2_z2 = �z1:The center manifold variables are (x3; z1; z2). Representing x1 and x2 as a graphover the center manifold variables yields,x1 = 12x3z1 + 12x3z2 +O(3)x2 = �12x23z1 + 12x23z2 +O(4):Substituting these expressions into the _x3 equation yields,_x3 = �14 (z1 � z2)2 x33 + O(6): (4.9)Since z1 = cos(t+ �0) and z2 = sin(t+ �0) for some �0, then the center manifoldsystem (4.9) is locally uniformly asymptotically stable and so x1 ! 0 and x2 ! 0too. Note that the rate of convergence cannot be bounded by an exponentialenvelope. This is due to the fact that the feedback is Lipschitz.50



Now suppose the frequency of the oscillator variables is set to zero (so theclosed-loop system is time-invariant now) and the variables are frozen at z1(t) =cos �0 and z2(t) = sin �0. In this case the following two manifolds of equilibriumpoints passing through (x1; x2; x3) = 0 appears,(
1 cos �0; 0; 
1) 
1 2 R(
2 cos �0; 
22 sin �0; 
2) 
2 2 R:Obviously the origin cannot be asymptotically stable. Thus the time-periodiccomponents in the feedback provide a time-periodic sign change similar to theLie bracket calculation. Destroying the periodic sign change apparently leads tothe formation of equilibriumpoints arbitrarily close to the origin as shown above.Brockett's condition is not applicable when the system is time-periodic sincethe closed-loop system may always be interpreted as an autonomous systemwith a series of oscillator appended to the states. The oscillator states are notrequired to converge to the origin and so the origin is not an asymptoticallystable equilibrium point.The �rst algorithm is an extension of the algorithm in [37]. The time period-icity is explicitly introduced into the system by a function which, in the absenceof any other feedback, renders every solution of the system time-periodic. Itis then a matter of perturbing these trajectories so the state converges to theorigin. The details of this procedure are discussed in the next section. The sec-ond algorithm assumes the existence of a smooth time-periodic asymptoticallystabilizing feedback and sets forth su�cient conditions under which the smoothfeedback can be converted into a �-exponential stabilizer.4.3.1 Extension of Pomet's algorithm.An algorithm for the construction of local �-exponentially stabilizing feedbacksis described in this section. It is based on an extension of Pomet's algorithm [37].Using the approximation in Section 4.2, which was based on the analysis fromSection 2.2, the following truncated driftless control system is associated withthe original control system: _x = mXi=1X1i (x)ui: (4.10)The X1i are analytic vector �elds, homogeneous degree 1 with respect to thedilation, ��, de�ned in the approximation process. The algorithm in [37] maybe modi�ed to provide stabilizers for (4.10) when the input vector �elds ofequation (4.10) satisfy the following condition,rank�X11 ; X12 ; : : : ; X1m;[X11 ; X12 ]; : : : ; [X11 ; X1m]; : : : ;adjX11X12 ; : : : ; adjX11X1m; : : :o (x0) = n: (4.11)51



The point x0 is the desired equilibrium point. The superscript \1" will bedropped for the remainder of this section but it is understood that the inputvector �elds are degree one.A heuristic overview of how the algorithmworks is presented before embark-ing on the construction of the feedbacks and proofs. Supposing the input vector�elds satisfy (4.11), a 2�-periodic function of time, �(t; x), is chosen so that allnonzero solutions of �(t; x)X1(x) are 2�-periodic and x = 0 is an equilibriumpoint. In order to de�ne a positive de�nite function on the phase space, eachclosed periodic \loop" is assigned a positive number. This is accomplished byde�ning a positive de�nite function on a Poincar�e map associated with the 
owof �X1. In other words, the 
ow is sampled at t0 2 [0; 2�) and then a positivede�nite function is applied to the value of the 
ow at this time. This resultingnumber is denoted V (t; x). The feedback u1 is de�ned to be the open looppart, �, minus the Lie derivative of V (x; t) with respect to the vector �eld X1.The remaining inputs ui; i = 1; : : : ;m; are de�ned to be the negative of the Liederivative of V (x; t) with respect to Xi. This choice of feedbacks guarantee thatx = 0 is stable. Under some extra conditions the feedback can be shown to beuniformly asymptotically stabilizing.The extension of Pomet's algorithm to �-exponentially stabilize systems ofthe form (4.10) is now developed. The following modi�cation of Proposition 1in [37] is made (as in [37], the vector �eld X1 plays a particular role),Proposition 4.8 Let � : R�Rn! Rbe a time-periodic, smooth on R�Rnnf0g,homogeneous degree one function with respect to ��. Assume � also satis�esthe following conditions, �(t+ 2�; x) = �(t; x) 8t; x�(�t; x) = ��(t; x) 8t; x�(t; 0) = 0 8t: (4.12)Let V : R�Rn! R be a function de�ned as,V (t; x) = %( (0; t; x));where % : Rn ! R is any positive de�nite homogeneous degree 2 function thatis smooth on Rn n f0g. Here  (t; t0; x0) represents the 
ow of the vector �eld�(t; x)X1(x) evaluated at time t and passing through x0 at time t0. The functionV has the following properties,1. V is smooth on R�Rn n f0g,2. V is homogeneous degree 2 with respect to ��,3. V is 2�-periodic with respect to t: V (t+ 2�; x) = V (t; x),4. V (t; x) = 0 () x = 0,5. @@xV (t; x) 6= 0 8x 6= 0 (the gradient at 0 may not be de�ned),6. V (t; x) is a proper map 8t 2 [0; 2�).52



Proof: The product of the scalar degree one function �(t; x) with the degreeone vector �eld X1(x) de�nes a degree zero vector �eld (�X1)(t; x), by theconvention established in De�nition 2.1. This new vector �eld is smooth onRn n f0g and its 
ow is complete. Completeness follows from the dilation scalingproperty enjoyed by solutions of degree zero vector �elds and the exponentialupper bound on the growth of solutions, i.e., the bound established in the proofof Lemma 3.4. Hence,  (t; t0; x) is a homeomorphism 8t; t0; x and a smoothdi�eomorphism 8t; t0 and x 6= 0. Item (1) is obvious since V is the compositionof functions which are smooth on Rn n f0g. Also note that the 
ow satis�es�� (t; t0; x0) =  (t; t0;��x0) since the vector �eld is degree zero with respectto ��. Item (2) follows from V (t;��x) = %( (0; t;��x)) = %(�� (0; t; x)) =�2V (t; x). The periodicity of  with respect to t and t0 must �rst be establishedbefore proving Item (3). The �rst fact to show is that  (�t; 0; x) =  (t; 0; x).This is accomplished by showing that  (�t; t0; x) also satis�es the equation_x = �X1. Let s = �t then,d ds (s; t0; x) = �d dt (s; t0; x)= ��(s;  (s; t0; x))X1( (s; t0; x))=) d dt (�t; t0; x) = �(t;  (�t; t0; x))X1( (�t; t0; x)):When t0 = 0 then  (�t; 0; x) =  (t; 0; x) since initial conditions match. In par-ticular  (�;��; x) = x. The di�erential equation is periodic so time translatedsolutions must also satisfy the equation:  (t+n2�; t0+n2�; x) =  (t; t0; x) forall (t; t0; x). These facts show that for any t the following is true, (t + 2�; t; x) =  (t + 2�; �;  (�; t0; x))=  (t + 2�; �;  (�;��;  (��; t; x)))=  (t + 2�; �;  (��; t; x))=  (t;��;  (��; t; x))= x:Generalizing to an arbitrary 2� time shift, (t + n2�; t; x) =  (t + n2�; t+ (n� 1)2�;  (t+ (n � 1)2�; t; x))=  (t + (n� 1)2�; t+ (n� 2)2�;  (t + (n� 2)2�; t; x))...=  (t + 2�; t; x)= x:Lastly, the starting time is arbitrary since, (t + n2�; t0; x) =  (t + n2�;  (t; t0; x))=  (t; t0; x):53



Thus the 
ow is 2�-periodic with respect to its �rst argument. The 
ow is also2�-periodic with respect to its second argument, (t; t0; x) =  (t + n2�; t0 + n2�; x)=  (t; t0 + n2�; x):Item (3) is easily shown now sinceV (t+ n2�; x) = %( (0; t + n2�; x)) = %( (0; t; x)) = V (t; x):Item (4) follows from the fact % is positive de�nite and the origin and anynonzero x cannot lie on the same trajectory. Item (5) may be written for x 6= 0,@@xV (t; x) = r%(0; t; x) �Dx (0; t; x):r%(y) 6= 0 for y 6= 0 from Property 2.7 and Dx is full rank for nonzerox. Lastly, V (t; x) is proper for any t 2 [0; 2�) since it satis�es the boundsc1�2(x) < V (t; x) < c2�2(x). �The following choice of inputs ui render (4.10) stable,u1(t; x) = �(t; x)� LX1V (x; t)u2(t; x) = �LX2V (x; t)...um(t; x) = �LXmV (x; t): (4.13)Note that these control functions are smooth functions of t and x 2 Rn n f0g.Under additional assumptions x = 0 is exponentially stable with respect thehomogeneous norm.Theorem 4.9 Suppose the approximate system satis�es (4.11) and an � satis-fying Proposition 4.8 is chosen. If the following conditions are satis�ed,LX1V (t; x) = : : : = LXmV (t; x) = 0�(t; x) = @�@t (t; x) = @2�@t2 (t; x) = : : : = 0 �) x = 0; (4.14)then x = 0 is a globally �-exponentially stable equilibrium point of (4.10) withrespect to the dilation when the feedback (4.13) is applied.The proof of the theorem is very similar to the one given by Pomet howeveran outline is given for the sake of completeness. Most of the modi�cations ofhis proof are in establishing that certain functions and 
ows have the prop-erties speci�ed in his paper. The majority of this extra work was shown inProposition 4.8. The conditions of the theorem guarantee uniform asymptoticconvergence of the trajectories to the origin. The fact that the closed-loop sys-tem is degree zero with respect to ��implies that the system is �-exponentiallystable. 54



Proof: The closed-loop system, that is system (4.10) with the feedback (4.13),is degree zero with respect to ��. This is evident from the fact that the Liederivatives of the degree two function V with respect to the degree one vector�elds Xi is a degree one function. This implies that the control functions aredegree one since u1 = � � LX1V and uj = �LXjV; j = 2; : : : ;m. Scaling adegree one vector �eld by a degree function yields a degree zero vector �eldso the closed-loop system must be degree zero. Thus �-exponential stability isequivalent to uniform asymptotic stability by Lemma 2.16.The proof that feedback (4.13) is uniformly asymptotically stabilizing isshown below. First note that the derivative of V along solutions of the system_x = �X1 is zero since the value of V on a trajectory of this system is constant,V (t;  (t; t0; x)) = %( (0; t;  (t; t0; x)))= %( (0; t0; x));where  is the 
ow of _x = �X1. The derivative of V along trajectories of theclosed-loop system isdVdt = @V@t +rV � �X1 � (LX1V )X1 � mXi=2(LXiV )Xi!= � mXi=1(LXiV )2:The time derivative is negative semide�nite and since V is a proper functionwith respect to x then all solutions are bounded. For notational simplicity thesuperscript \1" will be omitted from the vector �elds X1i in the remainder ofthe proof.LaSalle's theorem is used to show asymptotic stability. LaSalle's theoremis applicable in this case because the system is time-periodic. It is su�cient toshow, for asymptotic stability, that no nontrivial trajectories of the closed-loopsystem are contained in the set where _V = 0. The time is identi�ed with thecircle S1 since the system is time-periodic. The set where the time derivativeof V is zero is,A = f(t; x) j _V (t; x) = 0g = f(t; x) 2 S1 �Rn j LXiV (t; x) = 0; i = 1; : : : ;mg:The closed-loop system restricts to the vector �eld �X1 on the set A. Thetime derivative of the functions LXiV with respect to solutions passing throughpoints in A is,ddt (LXiV )(t; x) = @@t (LXiV )(t; x) + (rLXiV �X1)(t; x)= @@t (LXiV ) + LadX1XiV + LXiL�X1V= LXi(@V@t + L�X1V )(t; x) + LXiL�X1V= LXiL�X1V 8(t; x) 2 A:55



Induction may be used to show that,djdtj (LXiV ) = Ladj�X1XiV 8(t; x) 2 A; j � 0:Since the functions LXiV are zero on trajectories which stay in A then,Ladj�X1XiV (t; x) = 0 8(t; x) 2 A; j � 0: (4.15)Now assume that �(t; x) 6= 0 at some point (~t; ~x 6= 0) 2 A. The Lie bracketidentity, [fX; gY ] = fg[X;Y ] + f � LXg � Y � g � LY f �X;where f and g are functions may used to show that,rank�adjX1Xi k = 1; : : : ;mj � 0 � = rank�adj�X1Xi k = 1; : : : ;mj � 0 � ;(4.16)when �(~t; ~x) 6= 0. However the condition in equation (4.11) shows that therank of the set in equation (4.16) must be equal to n. The only way for theexpressions in equation (4.15) to be satis�ed is for rV (~t; ~x) = 0 when � 6= 0.However from Item 5 in Proposition 4.8, V (t; x) 6= 0 for all x 6= 0. Thus therank of equation (4.16) must be less than n which implies that �(t; x) (and allof its time derivatives) must be zero on this trajectory in A. The hypothesisof the theorem may be used to conclude that x = 0 is the only solution in Awhich is consistent with the analysis given above. Thus the origin is uniformlyasymptotically stable. The fact that the closed-loop system is degree zero withrespect to �� implies that the origin is �-exponentially stable where � is anyhomogeneous norm compatible with the dilation. �In practice it may be di�cult to verify the conditions in the theorem to con-clude asymptotic stability. It is useful to choose � such that �(t; x) = 0, x = 0.For example, �(x; t) = �(x) sin t, where � is any smooth homogeneous norm, sat-is�es the hypothesis of the theorem. The feedback is smooth on Rn n f0g andso the solutions of the closed-loop system are unique by Lemma 3.4.The proposition below demonstrates that the feedbacks locally �-exponentiallystabilize the full system. In other words, the terms neglected in the truncatedsystem do not locally change the stability of the equilibrium point.Proposition 4.10 Suppose the conditions of Theorem 4.9 hold. Then the feed-back (4.13) locally �-exponentially stabilizes the original system (4.1).Proof: Consider the feedback (4.13) applied to the system in equations (4.1)written in the special local coordinates, _x =Pni=1X1i (x)ui(x; t)+R(x; t); whereR(x; t) =Pni=1 �P1j=1X1�ji (x)�ui(x; t):Them vector �eldsP1j=1X1�ji (x); i =1; : : : ;m, are analytic and the kth component is a sum of homogeneous poly-nomials of degree greater than or equal to rk so that the absolute value of kth56



component is bounded by ci�rk (x) in a su�ciently small neighborhood of theorigin. Since the ui are homogeneous degree one functions then the absolutevalue of the kth component of R(x; t) may be bounded by a scalar times �rk+1 ina neighborhood of the origin. The local stability result follows from applicationof Proposition 2.27. �Certain driftless control systems may be transformed to exactly a nilpo-tent homogeneous form. Examples are the \chained form" or \power form"systems [32, 44]. In this case Theorem 4.9 provides a globally �-exponentiallystabilizing feedback since there are no \higher order" perturbing terms.Finally the algorithm may be summarized as,1. Compute the local coordinate change which places the input vector�elds in form_x = mXi=1 �X1i (x) +X0i (x) +X�1i (x) + � � ��ui:2. If the relationrank�X11 ; X12 ; : : : ; X1m;[X11 ; X12 ]; : : : ; [X11 ; X1m]; : : : ;adjX11X12 ; : : : ; adjX11X1m; : : :o (0) = nis satis�ed then continue with the procedure.3. Construct homogeneous degree one feedbacks, using the approximatecontrol system, _x = X11 (x)u1 + � � �+X1m(x)um;according to Proposition 4.8 and equation (4.13).4. These feedback applied to the original system are still locally�-exponentially stabilizing by Proposition 4.10.The following example applies this algorithm to the prototype three-dimensionalexample given by equations (4.7).Example 4.11 The input vector �elds in the system given by equation (4.7)are degree one with respect the dilation �� = (�x1; �x2; �2x3). The set of inputvector �elds are their own nilpotent homogeneous approximation with respectto this dilation. The X11 vector �eld is chosen to be X11 = @=@x2 and X12 isX12 = @=@x1+x2@=@x3. A smooth homogeneous norm which is compatible withthis dilation is, �(x) = (x41 + x42 + x23) 14 :57



The open loop input is de�ned as �(t; x) = �(x) sin t. The conditions of The-orem 4.9 are satis�ed with this choice. Let  (t; t0; x0) denote the 
ow of thevector �eld, _x = �(t; x)X11 (x)= �(x) sin t0@ 010 1A :One choice for the positive de�nite degree 2 function % is%(p) = 12 �p21 + p22 + p23�2(p)� :Hence, the Lyapunov function V is de�ned as V (t; x) = %( (0; t; x)). Thisfunction cannot be computed explicitly so numerical computation is required.The feedbacks are de�ned asu1 = �(t; x)� LX11V (t; x)u2 = �LX12V (t; x): (4.17)The Lie derivatives of V with respect to the input vector �elds must also becalculated numerically. A numerical simulation of the system with the feed-back (4.17) is shown in Figure 4.1. The exponential decay of the states isevident from the log plot in Figure 4.24.3.2 Modi�cation of smooth controllers into �-exponentialstabilizersThis section discusses a very useful method to modifymany uniformly asymptot-ically stabilizing feedbacks into exponential stabilizers. Our primary motivationin this section is in providing feedbacks which are easy to implement. Smoothasymptotically stabilizing controllers are often written in terms of elementaryfunctions and operations and are straightforward to implement but su�er fromslow convergence rates. We now pose the question: when can a uniformlyasymptotically stabilizing controller be modi�ed into an exponential stabilizer?If the modi�cations can be performed in real-time then the method would showpromise as a way of implementing exponential stabilizers with slightly morecomputation than required by the smooth stabilizers.We assume that the input vector �elds are already in \homogeneous" coordi-nates. In other words, the controller asymptotically stabilizes the homogeneousapproximation discussed in Section 4.2. The dilation associated with the ap-proximation is denoted ��. Recall the Euler vector �eld, XE (x), correspondingto this dilation is represented by the equations _xi = rixi, i = 1; : : : ; n. Thefollowing proposition speci�es the condition under which an asymptotic stabi-lizer can be modi�ed into an exponential stabilizer. The closed-loop system isdenoted _x = X(t; x) with the feedback functions ui(t; x); i = 1; : : : ;m. Most58
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smooth stabilizing controllers are time-periodic so we restrict ourselves to thiscase.Theorem 4.12 Suppose there exists a T -periodic Lyapunov function, V (t; x),for the T -periodic smooth vector �eld _x = X(t; x) such that for some constantC > 0 the family of level sets parametrized by t,GCt = fxjV (t; x) = Cg;are transversal to the Euler vector �eld for all t 2 [0; T ). Under this hypothesis,the original feedbacks may be modi�ed to the following T -periodic �-exponentiallystabilizing feedbacks,~ui(t; x) = ~�(t; x)ui(t; 
t(x)) i = 1; : : : ;m:~� : R� Rn ! R+ is a uniquely de�ned homogeneous degree one function suchthat, ~�(t; x)jx2GCt = 1:The map 
t : Rn n f0g ! GCt returns the point on the set GCt which lies on thesame homogeneous ray as x, i.e. 
t(x) = ��x = x 2 GCt for some scaling � > 0.Remark 4.13 In many cases the stabilizing feedback is derived from Lyapunovanalysis and so the closed-loop system has a function which may be tested forthe properties given in the proposition.Proof: We �rst show that ~� and 
t are well de�ned quantities. We assumethat the Lyapunov function is smooth in all of its arguments and that theoriginal feedback functions, ui, are smooth. We de�ne the value of the functiong : R�Rn n f0g ! R+ to be the � 2 R+ which solves,F (�; t; x) := V (t; ��x) �C = 0:In other words, g(t; x) : Rn n f0g ! R+ returns the dilation scaling factor re-quired to map the point x 6= 0 to the point x 2 Gt on the same homogeneousray at time t. x is unique since the transversality condition implies that the pro-jection �jGCt : GCT ! Sn�1� is a local di�eomorphism. Furthermore, since GCt iscompact and connected [46, Theorem 3.7] there is only one point in the preim-age of (�jGCt )�1(y); y 2 Sn�1� . Hence the projection is a global di�eomorphismbetween GCt and Sn�1� for each �xed t. The map from x to x is (�jGCt )�1 � �and g(t; x) = �(x)=�(x). The smoothness of g is determined with the implicitfunction theorem as shown below. Suppose that (�; t; x) satis�es (4.3.2), thenwe compute, @g@t (t; x) = �� 1@F=@� @F@t � (t;��x)= �� 1@F=@� @V@t � (t;��x):61



The quantity @F=@�(t;��x) is nonzero since,@F@� (t;��x) = @V@� (t;��x)= nXi=1 @V@xi (t;��x)ri�ri�1xi= 1� nXi=1 @V@xi (t;��x)ri�rixi= 1�LXEV (t;��x):This last condition is precisely the transversality condition on the set GCt . Thus,@F=@�(t;��x) 6= 0 and the implicit function theorem states that@g@t (t; x) = �� �LXEV @V@t � (t;��x):Similarly, @g@xi (t; x) = �� �ri+1LXEV @V@xi� (t;��x):Note that � = g(t; x) in these computations. We show that g is degree -1.Suppose g(t; x) = �, then g(t; ��x) is the �0 that solves V (t; ��0��x) � C = 0.Since ��0��x = ��0�x then � = �0� so g(t; ��x) = �=� = g(t; x)=�.The function 
 : R�Rn n f0g ! Gt is,
(t; x) := �g(t;x)x:Note that 
(t;��x) = 
(t; x); 8� > 0. ~� : R�Rn! R+ is de�ned as,~�(t; x) := � 1g(t;x) x 6= 00 x = 0 :Furthermore, for any x 2 Gt, ~�(t; x) = 1 since 
(t; x) = x. The de�nitions maybe used to show that 
(t; �) is smooth on Rn n f0gand ~�(t; �) is continuous on Rnand smooth Rn n f0g. Furthermore, ~� is homogeneous degree 1. T -periodicityof ~� and 
 is evident from the fact that V is T -periodic.The modi�ed feedbacks are de�ned as,~ui(t; x) := ~�(t; x)ui(t; 
(t; x)):These functions are degree one since,~ui(t;��x) = ~�(t;��x)ui(t; 
(t;��x))= �~�(t; x)ui(t; 
(t; x))= �~ui(t; x):62



These functions agree with the original feedbacks on GCt i.e. for x 2 GCt ,~ui(t; x) = ui(t; x). We assume that the input vector �elds are already in ho-mogeneous form and that the ui are uniformly asymptotically stabilizing. Wenow show that the closed-loop system, denoted _x = ~X(t; x), with the modi�edfeedback is exponentially stable. The closed-loop systems is degree zero sincethe feedback is degree one and the input vector �elds are degree one. Hence, allwe need to show is uniform asymptotic stability with the modi�ed feedbacks.This is accomplished with the following degree k positive de�nite function,~V : R�Rn! R+(t; x)! ~�k(t; x);where k is any positive integer. The time derivative of ~V for x 6= 0 is,d~Vdt (t; x) = � ddt 1g� (t; x)= � kgk+1(t; x) �@g@t (t; x) +Dxg(t; x)( ~X)� (t; x)= � kgk+1(t; x) �� g(t; x)LXEV (t; x) @V@t (t; x)� 1LXEV (t; x) nXi=1 gri+1(t; x)@V@xi (t; x) ~Xi(t; x)! x = �g(t;x)x 2 Gt= kgk(t; x)LXEV (t; x)  @V@t (t; x) + nXi=1 @V@xi (t; x) ~Xi(t; �g(t;x)x)!= kgk(t; x)LXEV (t; x)  @V@t (t; x) + nXi=1 @V@xi (t; x)Xi(t; x)!= k~�k(t; x)LXEV (t; x) dVdt (t; x):= � kLXEV dVdt � (t; x) � ~V (t; x):The only remaining fact to show is that LXEV (t; x) > 0. LXEV (t; x) is constantsign from transversity so initially assume that this quantity is negative. For �su�ciently small the points in the sets GC+�t and GC��t also satisfy LXEV < 0.As shown above, these sets are di�eomorphic to spheres (for t �xed) and soseparate Rn into an exterior and interior domain. Fix an arbitrary t0 2 [0; T ).The trajectory of XE pierces each set only once and since LXEV < 0 then weconclude that GC+�t0 sits inside the interior domain of GCt0 which sits inside theinterior domain of GC��t0 . This holds for all t since t0 is arbitrary. If we startthe system _x = X(t; x) with an initial condition (�; x) in the set GC��� thenat some time later the trajectory enters the ball radius of mint2[0;t);x2GC+�t kxkby asymptotic stability. Thus at some � 0 > � the trajectory crosses GC+�� 0 but63



V (� 0; x(� 0)) = C + � > V (�; x(� )) = C � � which contradicts the fact that_V < 0. Hence, LXEV (t; x) > 0 and the system with modi�ed feedbacks isasymptotically stabile. �-exponential stability follows from the fact that theclosed-loop system is degree zero. �The new feedback is as smooth onRn n f0g as the original feedback restrictedto the level set of the Lyapunov function in the proof of Theorem 4.12. Theoriginal feedback is assumed to be at least Lipschitz and so solutions of theclosed-loop system with the modi�ed feedback are unique by Lemma 3.4.The following example demonstrates the algorithm on the prototype driftlesssystem (4.7).Example 4.14 This example uses the three-dimensional two input driftlesssystem (4.7) to illustrate the algorithm. A smooth asymptotically stabilizingfeedback for the system are the functionsu1(t; x) = �x1 + x3 cos t;u2(t; x) = �x2 + x23 sin t:Asymptotic stability of the closed-loop system can be shown using the followingLyapunov function,V (t; x) = �x1 � x32 (cos t+ sin t)�2 + �x2 � x232 (sin t� cos t)�2 + x23:Thus we need to check the transversality condition with a level of the Lyapunovfunction. V may be approximated by the quadratic form ~V = hx;Bxi for Csu�ciently small, whereB = 0@ 1 0 �12�0 1 0�12� 0 1 + 14�2 1A ;and � = cos t + sin t 2 [�p2;p2]. The inner product between the level sets of~V and the Euler vector �eld isLXE ~V = hx; diag[ri]Bxi= hx; ~Bxi;where ~B is the symmetric matrix~B = 0@ 1 0 �34�0 1 0�34� 0 2 + 12�2 1A :Since ~B is positive de�nite for all � 2 [�p2;p2] the Euler vector �eld is trans-verse to any level set of ~V and hence any level set of V for C su�ciently small.64



Experimentation reveals that value of C = 1 works well. The modi�cation ofthe feedbacks is carried out as speci�ed in the proof. What makes this methodattractive from an implementation point of view is the fact that the functiong(t; x) is easily computed by searching over a single scalar parameter � suchthat V (t;��x) = C. In addition V (t;��x) is a monotone increasing function of� in a neighborhood of the � which satis�es this expression. This search may beperformed e�ciently in real-time. Once the value of � has been computed whichsatis�es V (t;��x) = 1 then we set ~�(t; x) = 1=� and x = 
(t; x) = ��x. Themodi�ed feedbacks are~u1(t; x) = 1� (�x1 + x3 cos t) ;= 1� ���x1 + �2x3 cos t� ;= �x1 + �x3 cos t;~u2(t; x) = 1� ��x2 + x23 sin t� ;= 1� ���x2 + �4x23 sin t� ;= �x2 + �3x23 sin t:Simulations comparing the performance of these feedbacks with the originalsmooth feedbacks are shown in Figure 4.3. The �-exponential stabilizer returnsthe system to a small neighborhood of the origin much faster than the smoothcontroller from which it was derived. The energy in the control signalsET (u) = Z T0 (u21(t) + u22(t))dt;is shown in Figure 4.4. Note that the �-exponential stabilizer requires boundedenergy to return the system to the origin. Center manifold analysis may beused to show that the rate of decay of the closed-loop system with the smoothcontroller is bounded by a constant times 1=pt for large t. Hence, the smoothcontrol law consumes an unbounded amount of energy to return the system tothe origin. Another important fact is that the smooth and modi�ed controllaws match on the set where V (t; x) = C so the maximum controller e�ortcommanded by the exponential stabilizer does not exceed that of the smoothcontrol law for all initial conditions satisfying V (t; x(0)) � C.Note that the system is robust to any higher order perturbing terms which wereneglected in the approximation process. This is consequence of Proposition 4.10.4.4 Practical ConsiderationsThe previous sections presented several methods for obtaining local �-exponentiallystabilizing feedbacks. This section presents several results of practical signi�-cance for degree zero systems. 65
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Since a linearization of the closed-loop system does not exist we must becertain that standard control practices, such as �ltering the measurements, donot destabilize the system. Lowpass �lters are often used to smooth sensormeasurements to avoid aliasing during digital sampling. We show below thatthe inclusion of lowpass �lters in the loop do not change the �-exponentiallyproperty of solutions provided the �lter bandwidth is su�ciently high. Thisresult is reminiscent of the stability theory for singularly perturbed systems.However, since the linearization is not de�ned, the usual singular perturbationresults are not applicable.Many driftless control systems represent kinematic models in which the con-trol inputs are velocities. A simple model for including actuator dynamics isto extend the kinematic model to a system with a set of integrators preceedingeach input. The inputs into the integrators represent the control commands inthis case. This section demonstrates how a �-exponentially stabilizing controllercan be converted to a controller which stabilizes the system with integrators.Another concern is the increased sensitivity to noise around the equilib-rium point due to the non-Lipschitz nature of the feedback. The bene�t ofnon-Lipschitz feedback is an increased rate of convergence. However the non-Lipschitz feedbacks can present some additional complications. In particular,if the output of the controller is speci�ed directly by non-Lipschitz functionsthen any disturbance in the signals processed through these functions can leadto large control rates. This is mitigated by �ltering the output of the non-Lipschitz functions. The framework established for studying actuator dynamicsmay be applied to this problem as well except that the additional integratorsnow become states of the controller. Several examples illustrate the applicationsof these results.4.4.1 Filtering of measurementsEvery system with a digital controller must include some form of measurement�ltering to avoid aliasing. In linear systems, or nonlinear systems with wellde�ned linearization, the \dynamics" often dictate the �lter bandwidth: thecuto� frequency of the �lter is chosen to be higher that the frequency band whereactive control is desired. Driftless systems have no intrinsic time scale associatedwith them because turning o� the control inputs freezes the state. Lowpass�ltering of the state measurements is still required though to prevent aliasing.This section proves that including a simple lowpass �lter of the form 1s=!c+1 inthe loop does not destabilize a uniformly asmptotically stable degree zero systemprovided the cuto� frequency is su�ciently high. This fact is not immediatelyobvious especially for some of the planar systems studied by Kawski [19]. Forexample, Kawski has shown that the system,_x1 = u (4.18)_x2 = x2 � x31;68



may be asymptotically stabilized with the feedback,u = �kx1 + kx 132 ;for k su�ciently large. This system is homogeneous degree zero with respect tothe dilation ��x = (�x1; �3x2). The interesting point is that the linearization ofequation (4.19) has an uncontrollable unstable mode. Hence, in this example thenon-Lipschitz feedback succeeds in stabilizing the system where a C1 feedbackcannot. It is not unreasonable to think that placing a lowpass �lter in the loopmay destroy the asymptotic stability of the closed-loop system because of thephase lag of the �ltered signal. However, this is not the case as shown in thefollowing specialized singular perturbation result for degree zero systems.Proposition 4.15 Suppose the system_x = X(t; x) x 2 Rn; (4.19)is continuous,time-periodic and degree zero with respect to the dilation ��. Letx = 0 be an asymptotically (and hence �-exponentially) stable equilibrium point.Then for k > 0 su�ciently large, the �ltered system,_x = X(t; y)_y = �kIn(y � x) (x; y) 2 R2n; (4.20)is also �-exponentially stable with respect to the new dilation ~��(x; y) = (��x;��y).Proof: The �ltered system (4.20) is degree zero with respect to ~�� so asymptoticstability need only be shown. Suppose a homogeneous norm associated with ��is �(x) = (xc=r11 + � � �+ xc=rnn ) 1c where c is evenly divisible by ri; i = 1; : : : ; n.A smooth homogeneous norm for the �ltered system is,~�(x; y) = �xc=r11 + � � �+ xc=rnn + yc=r11 + � � �+ yc=rnn �1c :The compatible projection is ~� : R2n n f0g ! S~� where,~�(x; y) = � x1~�r1 (x; y) ; : : : ; xn~�rn (x; y) ; y1~�r1 (x; y) ; : : : ; yn~�rn (x; y)� ;and the sphere is S~� = f(x; y) 2 R2nj~�(x; y) = 1g.Since x = 0 is a �-exponentially stable equilibrium point of the original sys-tem there exists a Lyapunov function V (t; x), which is smooth on Rn n f0g anddegree c with respect ��, such thatdVdt (t; x)j(4.19) = @V@t (t; x) + (rV �X)(t; x)� �b1�c(x);69



for some b1 > 0. Note that the @V=@xi is degree c � ri > 0; for i = 1; : : : ; nand so must be continuous. Now consider the new positive de�nite function~V (t; x; y) for the �ltered system,~V (t; x; y) = V (t; x) + nXi=1 ric (yi � xi) cri :The derivative of ~V along solutions of the �ltered system isd~Vdt (t; x; y)j(4.20) = @V@t (t; x; y) +rV (t; x) �X(t; y) � nXi=1(yi � xi) cri�1Xi(t; y)� k nXi=1(yi � xi) cri ;where Xi denotes the ith component of the vector �eld X. The time derivatived~V =dt is homogeneous degree c with respect to ~�� and is continuous in all of itsarguments. The objective is to show that d~V =dt is negative de�nite for k > 0su�ciently large. If (x; y) denotes a point on S~� then the time derivative of ~Valong solutions of equation (4.20) is,d~Vdt (t; x; y) = ~�c(x; y)"@V@t (t; x) +rV (t; x) �X(t; y)� nXi=1(yi � xi) cri�1Xi(t; y)�k nXi=1(yi � xi) cri # :The terms in the square brackets are continuous on S~� since they are the re-striction continuous functions. De�ne the set G = f(x; y) 2 S~�j x = yg. For all(x; y) in G the following bound holds,@V@t (t; x) +rV (t; x) �X(t; y)� nXi=1(yi � xi) cri�1Xi(t; y)= @V@t (t; x) +rV (t; x) �X(t; x)� �b1�(x)= �b1 �(x)~�(x; x)= �b1�12�1c :By continuity there must exist an open neighborhood U � S~� of G such that@V@t (t; x) +rV (t; x) �X(t; y)� nXi=1(yi � xi) cri�1Xi(t; y) < �b1�12�1c+1 :70



Now de�ne the constants,M = max(x;y)2S~�nU @V@t (t; x) +rV (t; x) �X(t; y) � nXi=1(yi � xi) cri�1Xi(t; y)m = min(x;y)2S~�nU nXi=1(yi � xi) cri :Note that m must be greater than zero.Back to evaluating the time derivative of ~V ,d~Vdt (t; x; y) � ( �b1 �12� 1c+1 ~�(x; y) (�(x); �(y)) 2 U(M �mk)~�(x; y) (�(x); �(y)) 2 S~� n U :Choosing k > 0 such that M �mk < 0 makes the time derivative of ~V negativede�nite. Thus the �ltered system (4.20) is �-exponentially stable with respectto ~��. �Remark 4.16 The proposition may be applied \recursively" to show that low-pass �lters with faster rollo� also preserve stability for su�ciently high band-width.Lowpass �ltering of the state measurements may also attenuate the e�ect ofnoise on the size of the ball of convergence versus the bound on the noise. Ifthere is some persistently acting noise disturbance, the state will not convergeto zero but will be con�ned to some ball around the origin. If most of thenoise spectrum is above the cuto� frequency of the lowpass �lter then the ballsize will shrink. However, introducing a �lter reduces the rate of convergenceof the states since the �ltered state lags in phase behind the actual state. Thequantitative aspects of the trade-o� between choosing a �lter cuto� frequency tomaximize the attenuation of sensor noise versus closed-loop rate of convergenceis not explored here except in the following example.Example 4.17 The system in equations (4.7) will be used to illustrate thereduction in the size of the ball of convergence when noise is present in the mea-surement and the measurements are �ltered. As noted in previous examples thesystem in equation (4.7) is homogeneous degree one with respect to the dilation��(z) = (�x1; �x2; �2x3). A (globally) �-exponentially stabilizing controller isgiven by u1(t; x) = �x1 + x3�(x) cos tu2(t; x) = �x2 + x23�3(x) sin t; (4.21)where � is de�ned as �(x) = (x41 + x42 + x23)(1=4). A rigorous proof that thiscontroller �-exponentially stabilizes the system may be found in Appendix C.71



This controller is chosen since it is easy to manipulate. The closed-loop systemwith lowpass �lter is model as,_x1 = �y1 + y3�(y) cos t_x2 = �y2 + y23�3(y) sin t_x3 = x2(�y1 + y3�(y) cos t)_y1 = �k(y1 � x1)_y2 = �k(y2 � x2)_y3 = �k(y3 � x3):The �ltered system is �-exponentially stable for k su�ciently large. The systemis most sensitive to noise introduced in the x3 variable. The argument for thisis simple. Suppose noise is introduced into the x3 variable and the maximumamplitude of the states is measured. Now reduce the noise until the amplitudeof x3 is some factor 
 of its original value. Since the system is homogeneous,the homogeneous ball which bounds the trajectories of the system will have thex1 and x2 amplitudes scaled by p
.A sinusoid of constant amplitude, n(t) = d sin!t, is added to x3 to modelnoise. Figure 4.5 shows a numerical simulation of the system with and withoutthe lowpass �lter. The parameters for the simulation are k = 3, d = 0:2 and! = 10. The size of the ball that the trajectories are con�ned to is decreasedwith the addition of the �lter. Figure 4.6 points out another issue of importance:the control rate is very high even in the system with the �lter implemented. Thereason the rate is large is due to the fact that the control functions given byequations (4.21) are not Lipschitz at the origin. Thus a smooth signal passedthrough these functions in a neighborhood of the origin can have an arbitrarilylarge time derivative. This situation is highly undesirable since control ratelimits often exist in practice. The next section on dynamic extension shows howthe controller output can be smoothed and still preserve �-exponential stability.4.4.2 Torque inputs and dynamic extensionTraditionally, stabilization of driftless systems has concentrated on the use ofkinematic models of the system for control design. That is, the velocity of thesystem is assumed to be a direct input which can be manipulated. Based onthese kinematic models, a number of researcher have developed control strategieswhich result in asymptotic or exponential stabilization of the system aroundan equilibrium point. In the exponential case, structural limitations requirethat the control laws be nondi�erentiable at the equilibrium point. This raisesquestions about the applicability of such controls to physical systems in whichthe torques, and not the velocities, are the control inputs to the system.72
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This section develops some tools for synthesizing control laws for mobilerobots and other driftless systems that are controlled by input torques. Themain result gives a set of conditions under which a kinematic controller (i.e.,one which assumes the velocities are the inputs) can be converted to a dynamiccontroller (one which uses the torques as the inputs).We concentrate on the class of control systems of the form_x = X1(x)u1 + � � �+Xm(x)um x 2 Rn_u = v u; v 2 Rm: (4.22)The system _x = X1(x)u1 + � � �+Xm(x)um (4.23)describes the \kinematic portion" of the system and, for mobile robots, is de-rived from the Pfa�an constraints which describe the condition that the wheelsroll but not slide. We model the dynamic portion of the system via a simple setof integrators. For many, but not all, systems, more complicated dynamic be-havior can be converted to this form using a state-feedback control law. We callequation (4.22) the dynamic system and equation (4.23) the kinematic system.The blanket hypothesis for the systems in this section are:Assumption 4.181. the vector �elds Xi are degree one with respect to a given dilation��,2. the controls ui = �i; i = 1; : : : ;m are uniformly asymptotically sta-bilizing feedbacks (for the kinematic system) which are degree one inx with respect to ��, smooth and time-periodic in t and smooth onx 2 Rn n f0g,3. rank[X1(0) � � �Xm(0)] = m.For smooth controllers, extending kinematic controllers to dynamic con-trollers is straightforward and has been explored, for example, by Walsh andBushnell [45]. However, due to the nondi�erentiable nature of exponential sta-bilizers we consider here, the usual control Lyapunov approach does not directlyapply and must be modi�ed to verify that the extended controller is well-de�nedand continuous. The use of continuous functions is important in applicationssince discontinuous control inputs usually are smoothed by the control elec-tronics and/or the system dynamics and hence cannot be applied in practice,possibly resulting in loss of exponential rate of convergence. The main result ofthis section is stated in the proposition below.Proposition 4.19 Let u = �(t; x) be a feedback satisfying the conditions ofAssumption 4.18. Then the feedbackvi = L�X�i + @�i@t + k(�i � ui); i = 1; : : : ;m (4.24)74



globally exponentially stabilizes the dynamic system (4.22) for k > 0 su�cientlylarge.The notation �X is used to denote the vector �eld Pi �iXi. Controller (4.24)is continuous for all (t; x; u) and smooth for all x 6= 0. Furthermore, the controllaw is homogeneous of degree one with respect to the extended dilation,~��(x; u) = (�r1x1; : : : ; �rnxn; �u1; : : : ; �um): (4.25)Thus the closed-loop system remains degree zero with this feedback.Proof: The closed-loop kinematic system is time-periodic, degree zero andasymptotically stable. This implies that there exists a time-periodic homo-geneous Lyapunov function V (t; x) such that V (t; x) > 0 for all x 6= 0 and allt which is strictly decreasing when u = �(t; x). This requires the extension ofRosier's converse Lyapunov theorem to time-periodic homogeneous degree zerosystems developed in Section 2.3. The Lyapunov function may be chosen to bedegree two with respect to ��. Thus the following bounds exist:c1�2(x) � V (t; x) � c2�2(x)dVdt j _x=�X (t; x) � �c3�2(x); (4.26)for some ci > 0 and where � is a homogeneous norm with respect to ��.For the dynamic system with feedback (4.24) we use the following function,W (t; x; u) = V (t; x) + 12 mXi=1(�i(t; x)� ui)2: (4.27)This function is positive de�nite on the extended phase space (x; u) and so isa candidate for a Lyapunov function. W is also degree two with respect to theextended dilation ~� de�ned in (4.25). Continuous partials of W with respectto x do not necessarily exist when x = 0, however when x 6= 0 the derivativeof (4.27) along the trajectories of the system (4.22) with feedback (4.24) is,_W = _V + mXi=10@ mXl=1 0@ nXj=1 @�i@xjX(j)l 1Aul + @�i@t � vi1A (�i � ui); x 6= 0where X(j)l represents the jth component of the lth input vector �eld. Substi-tuting the expression for vi and writingLX��i = mXl=1 0@ nXj=1 @�i@xjX(j)l 1A�l;the time derivative of W when x 6= 0 becomes,_W = _V + mXi=10@ mXl=1 0@ nXj=1 @�i@xjX(j)l 1A (ul � �l) � k(�i � ui)1A (�i � ui)75



= _V + (�� u)T (�kIm +Q(t; x))(�� u):Im denotes the m � m identity matrix and Q(t; x) is an m � m matrix withijth component given by,[Q]ij = �12(LXi�j + LXj�i): (4.28)LXi�j is a degree zero function and so is not necessarily de�ned at x = 0.A useful observation is that _V is a continuous function of x,_V = @V@t + mXl=1 ulLXlV; (4.29)since @V=@t is degree two and the LXlV; l = 1; : : : ;m; are degree one functions.The condition in Assumption 4.18 that rank[X1(0) � � �Xm(0)] = m guaran-tees that no non-trivial trajectory of the closed-loop system is contained in theset Z = f(x; u) : x = 0; u 6= 0g. This is shown by considering the set of vectors[In 0n�m]T which are orthogonal to the set Z. The dot product of these vectorswith the closed-loop vector �eld is� In0m�n � � � _x_u � (0; u) = mXi=1Xi(0)ui= 0, u = 0:Thus, if a trajectory passes through the set Z at time t� then dWdt (t�) may notbe de�ned however dWdt (t� � �) is de�ned for all � > 0 su�ciently small. Thusthe upper right Dini derivative of W (t),D+W (t�) := lim sup�!0+ W (t� + �)�W (t�)� ;is equal to the right-hand derivative of dW=dt(t�) since dW=dt is continuous att� + � for � > 0 su�ciently small:D+W (t�) = lim�!0+ dWdt (t� + �):Substituting the original expression for _W when x 6= 0 into the expression forD+W yields and recalling that _V is continuous in all arguments,D+W (t�) = lim�!0+ �dVdt + (�� u)T (�kIm + Q)(�� u)�t=t�+�=dVdt (t�; x(t�)) � kk�(t�; x(t�)) � u(t�)k2+ lim�!0+ �(�� u)TQ(�� u)�t�+��dVdt (t�; x(t�)) + (�k + q)k�(t�; x(t�))� u(t�)k276



where k � k is the Euclidean norm andq = supt2[0;2�);x6=0 kQ(t; x)kF : (4.30)k � kF denotes the Frobenius norm. q is well de�ned since Q is degree zero andassumes all of its values when restricted to the homogeneous sphere fx : �(x) =1g. The above bound is also valid for _W when x 6= 0 so,D+W (t) � dVdt + (�k + q)k�� uk2 8t; x; u:Substituting the expression for _V from (4.29) yields,D+W � @V@t + mXk=1�kLXkV + mXk=1(uk � �k)LXkV + (�k + q)k�� uk2 8t; x; u:(4.31)The �rst two terms on the right side of the inequality are the time derivativeof V along trajectories of the system when u = �(t; x) and may be bounded by�c3�2(x) from equation (4.26). The third term to the right of the inequalitymay be bounded by c4�(x)ku � �k for some c4 > 0. Substituting these boundsinto equation (4.31) yields,D+W � �c3�2(x) + c4�(x)ku� �k+ (�k + q)k�� uk2= (�(x) ku� �(t; x)k)� �c3 12c412c4 �k + q �� �(x)ku� �(t; x)k � :This bound is negative de�nite when k > k� := q+ 14 c22c1 . Furthermore the boundis degree two with respect to the dilation ~�� so,D+W � �~kW;for some ~k > 0 whenever k > k�. The di�erential inequality from [23, Theorem1.4.1] implies, W (t) � W (0)e�~kt:Hence, the system is asymptotically stable. Exponential stability follows fromthe fact that the closed-loop system is degree zero with respect to the extendeddilation ~�� de�ned in equation (4.25). This completes the proof. �The states u also approach �(t; x) exponentially since the time derivative ofku� �k2 may be written as,ddtku� �k2 = (u � �)T (�kIm + Q)(u� �)� (�k + q)ku� �k2;where Q and q are de�ned in equations (4.28) and (4.30).77
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x1x2x3x 1;x 2;x 3 Figure 4.7: Kinematic state response.In many situations one is forced to rely on a local homogeneous approxima-tion of the kinematic system and the closed system is only locally exponentiallystable. In this case, the construction in the proof of the proposition can still beused but gives only a local exponentially stabilizing controller for the dynamicsystem. The region of convergence may be smaller for the dynamic system thanfor the original kinematic system since we require that while u is convergingto �(x; t), the state must remain within the region of attraction of the originalcontroller. The region of attraction can be enlarged by increasing the rate ofconvergence of u to � (up to the limits of the actuators).The form of the control law shows that it can be regarded as a combinedcontrol law consisting of a feedforward portion, which drives the system alongthe desired trajectory when u = �(x; t), and a feedback portion, which stabilizesthe the (extended) state space equation u = �(x; t). The following exampleillustrates the procedure.Example 4.20 We illustrate the dynamic extension procedure with system (4.7)and the feedback in equation (4.21) This feedback is extended to the systemwith integrators, _x1 = u1 _u1 = v1_x2 = u2 _u2 = v2_x3 = x2u1; (4.32)78
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where the new feedback functions vi are computed to bevi = LX��i + @�i@t + k(�i � ui): (4.33)The terms LX��i areLX��1 =�1(x; t)��1� x31x3�5 cos t�+ �2(x; t)��x32x3�5 cos t�+ x2�1(x; t)�cos t� � 12 x23�5 cos t�LX��2 =�1(x; t)��3x31x23�7 sin t�+ �2(x; t)��1 � 3x32x23�7 sin t�+ x2�1(x; t)�2x3�3 sin t � 32 x33�7 sin t� :The remaining terms in (4.33) are easily computed from the de�nitions of�i. Note that the new system (4.32) is invariant with respect to the extendeddilation ~��(x; u) = (�x1; �x2; �2x3; �u1; �u2):Hence, uniform asymptotic stability is equivalent to exponential stability withrespect to a homogeneous norm compatible with ~��. Simulations of the ex-tended system and control inputs are shown in Figures 4.7, 4.8, and 4.9 with avalue of k = 5.An experimental version of the system, with optional trailers attached tothe robot, is described in Chapter 5. The wheels are driven by stepper motorsand hence the torque controller is embedded in the dynamics of the motors.However, the results presented show that there are no discontinuities in thetime trajectories of the velocity inputs, and hence controlling the torques (viaa set of integrators) is feasible.The driftless system extended with integrators in equation (4.22) was usedabove to demonstrate how controllers can be derived for systems in which theintegrators represent simple inertial or actuator dynamics. In this case the con-troller outputs are the \v" variables in equation (4.22). The simulations inExample 4.17 point out the disadvantages of having the control output spec-i�ed directly from non-Lipschitz functions: noisy measurements can saturatethe control output rate. This saturation is evident in Figure 4.6 and would alsoplague the extended system when the control output is the v variables. To ame-liorate this condition, the controller output must be �ltered to remove the highfrequencies. However instead of passing the control output through lowpass �l-ters the system setup in equation (4.22) which we have already explored may be80
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Figure 4.10: Norm of control output.used. In this case the states u do not represent actuator dynamics but are statesof the controller itself. The control output u is guaranteed to be continuouslydi�erential (assuming the noise added to the state measurements is continuous)since it satis�es a di�erential equation with continuous right hand side. Thusthe controller is dynamic now and �-exponential stability is maintained. Theexample below illustrates the smoothing of the control output when noise ispresent.Example 4.21 The numerical simulations use the extended model in equa-tion (4.32) with the feedback (4.33) derived from equations (4.21). Figure 4.10is a plot of the norm of the control output where the extended system is inter-preted as a dynamic controller now. The measurement noise was modeled as thesinusoid 0:2 sin10t added to the x3 variable as in Example 4.17. The controllerparameters and gains where chosen to be those in Example 4.20. The �gure alsocontains the results of a simulation in which a pre�lter for the measurements isincluded. The pre�lter parameters are the same as those in Example 4.17. Bothgraphs of the dynamic controller output show considerable smoothing comparedto their counterparts in Figure 4.6. The pre�ltering reduces the size of the ballthat bounds the states and the dynamic extension smooths the control outputto avoid actuator saturation. 82



Chapter 5Experimental Validation5.1 Description of ExperimentThis chapter presents experimental results on the use of time-varying feedbackcontrollers for stabilizing mechanical systems with nonholonomic constraints.In particular, the system to be controlled is a two-wheeled mobile robot towinga trailer. The experiments demonstrate point stabilization using the methodsdeveloped in the previous chapters. Many of the techniques and experimentalresults described here are also applicable to more practical problems such asparallel parking and backing into a loading dock. A picture of the experimentalapparatus is shown in Figure 5.1.The fundamental assumption in modeling the kinematics and dynamics of amobile robot is that the wheels of the robot roll without slipping. This meansthat each wheel (or pair of wheels connected by an axle) is free to roll in thedirection that it is pointing and spin around the vertical axis. This is clearlyan idealization and one of the questions which we hope to answer is to whatextent this model is accurate enough for use in control design. This problemnaturally leads to driftless control systems since the state represents by the carand trailer con�guration and the inputs are the forward and angular velocitiesof the front wheels. Even for the simple kinematic wheel, the number of statesis three and the number of inputs is two. No inertial e�ects are involved, i.e.the standing assumption is that the motors of the physical system provide therequired forces and torques to e�ect the velocities speci�ed by the controller.The driftless models for many di�erent con�gurations of car and trailer may befound in S�rdalen [38]. These experiments use two speci�c models describedlater.For most of the controllers which are implemented, the kinematic equationsare converted into a special normal form, called \chained form" [32]. A system83



Figure 5.1: The nonholomobile mobile robot.
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Figure 5.2: Experimental apparatus.in chained form is written as _x1 = u1_x2 = u2_x3 = x2u1_x4 = x3u1..._xn = xn�1u1: (5.1)Necessary and su�cient conditions for feedback transforming a system intochained form are given in [31].The object of the experiments is to stabilize the system about a given posi-tion and orientation using feedback. The car is a two-wheeled device with eachwheel driven separately by a stepper motor. The position and orientation ofthe system are sensed using a passive two link manipulator with the base �xedto the 
oor and the distal end attached to the car. Optical encoders at themanipulator joints and on the car return angle information. Refer to Figure 5.2for the locations of the encoders and kinematics of the arm.Once coordinate frames for the car and manipulator are chosen, the forwardkinematics of the manipulator is computed to locate the position and orientationof the car. The orientation of the trailers is provided by encoders mounted85



Parameter Length(cm)l1 88.9l2 84.6d1 19.0d2 19.0car wheelbase 10.0wheel radii 4.0Table 5.1: Kinematic parameters.on the car and �rst trailer. The orientations of the car and trailers may bereferenced with respect to a �xed horizontal or given relative to the precedingcar or trailer. The map from one convention to the other is a simple kinematicchange of coordinates and so is not presented here. Similarly, it may be desirableto reference the position of the system with respect to the rear trailer insteadof the car. Again, since the transformation is straightforward it is not included.When discussing a particular kinematic model of the system it is assumed thatany preliminary computations have been performed so that the position andorientation information provided by the encoders is compatible with the model.The important kinematic parameters of the aggregate system are listed inTable 1. The link lengths of the manipulator are denoted l1 and l2. The trailerlengths are denoted d1 and d2.The optical encoders are quadrature encoders providing 2000 counts per rev-olution or an accuracy of 0.18 degrees. They provide about 1 mm of resolutionwhen the manipulator is fully extended. This was judged satisfactory for thekind of positioning experiment performed here. Each encoder signal is decodedwith a quadrature decoder. These decoders keep a running pulse count of theencoder output. The real time software checks the bu�er of the individual de-coders to determine the angle that the encoder has turned with respect to itsinitial reset position. The decoders reside on a prototype card attached to anIBM PC.The car is powered by two 4-phase permanent magnet stepper motors. Themotors are con�gured so that a single step is 0:9 degrees. The motors can handlea maximum step rate of approximately 500 steps per second and still providesu�cient torque to accelerate the vehicle. Saturation of the motors occurs atabout 600 steps per second. A parallel port chip enables/disables the motorsand speci�es the direction of rotation. The step rate is set by the output of aprogrammable interval timer. The step rates of the motors can be varied frommore than 400 steps/sec to less than 1 step/sec in increments of less than 1step/sec. This resolution was deemed su�cient for this experiment. When thestepper motors are used in this con�guration they are controlled in an open-loopmanner. For example, the control laws compute desired velocities based on theposition and orientation of the system. The velocities are then converted into86



the equivalent \steps per second." The implicit assumption with this methodis that the motors can apply the torque required to overcome inertial e�ects tomaintain the proper speed. There is no direct way to verify that the desiredvelocity is actually achieved. However, since the control laws are continuousthe input to the motors is naturally ramped. An alternative is to use DC servomotors but this requires more hardware. The experimental results demonstratethat the stepper motors perform quite well.Real-time control was implemented in software using the Sparrow real-timecontrol kernel [34]. This package controls servo loop execution, provides a sim-pli�ed interface to sensor and actuator hardware, and allows data capture anddumping. Using the Sparrow software, a 200 Hz servo loop was used to im-plement a 5th order digital Butterworth �lter with 10 Hz cut-o� frequency forsmoothing all sensor inputs. The sample rate for the feedback control law was 20Hz. This was implemented by computing the control action every 10th iterationof the servo loop. Data was captured at the 20 Hz sample rate.The kinematic models are presented below. The car with no trailer is rep-resented by the following set of equations:_x = cos �0v_y = sin �0v_�0 = !: (5.2)The scalar v is the forward velocity of the car and ! is its angular velocity.These are inputs determined by the control law. The Cartesian position of thecar is denoted (x; y). The car with a single trailer represents a 4-dimensionalnonholonomic system with the model,_x = cos �1v_y = sin �1v_�0 = w_�1 = 1d1 tan(�0 � �1)v: (5.3)With this particular model x and y are the position of the trailer. The forwardvelocity of the trailer is denoted v and ! is the angular velocity of the car. Theforward velocity of the car is computed as vcar = cos(�0 � �1)v. The controllaw computes v and ! and then the car velocity, vcar, is determined using theprevious expression. Finally, the software determines the appropriate step ratefor each motor. Figure 5.3 shows the coordinate system used for each model.5.2 Control LawsWe now discuss application of these ideas to the stabilization of the car-trailersystem. Consider the situation in which the input vector �elds of the nonholo-nomic system are homogeneous of degree one with respect to some dilation. A87



coordinate system for car(x; y) �0 �0coordinate system for car and trailer(x; y) �1Figure 5.3: Coordinate systems.feedback that is a homogeneous function of degree one makes the closed-loopvector �eld homogeneous of order zero (using the convention described above).If this feedback is uniformly stabilizing in time then each state may be boundedby a decaying exponential envelope. For a car and trailer system the so-calledchained form coordinates of the input vector �elds are homogeneous of degreeone with respect to a dilation with powers assigned to a particular state cor-responding to the number of Lie brackets of the input vector �elds required tospan that state direction.The stabilizing feedbacks for the systems in power form are motivated fromthe discussions in [28] and [29]. The actual feedbacks are derived from optimiz-ing the rate of convergence as observed in numerical simulations. There doesnot yet exist a computational method for generating Lyapunov functions thatmay be used for analysis of asymptotically stable homogeneous vector �elds.Converse theorems do exist, however they are not useful for speci�c examplessince knowledge of the 
ow is assumed in constructing the Lyapunov function.Recall the kinematic model of the car and no trailers. A transformation thatconverts equation (5.2) into a set of \almost" homogeneous vector �elds is givenby z1 = �0z2 = x cos �0 + y sin �0z3 = x sin �0 � y cos �0: (5.4)This particular change of coordinates has the advantage of being a global dif-feomorphism. One can con�rm that the vector �elds in these coordinates havethe form _z1 = u1_z2 = u2 � z3u2_z3 = z1u2; (5.5)where u1 = ! and u2 = v. This system is nilpotent but not homogeneousbecause of the z3u2 present in the �rst equation. This term actually improves88



the convergence properties of the system with the feedbacks given below. Onemay verify this by using center manifold analysis on the system with the smoothfeedback. Hence, we essentially ignore this term when designing the feedbacks.The dilation that corresponds to these vector �elds is��(z1; z2; z3) = (�z1; �z2; �2z3) � > 0; (5.6)and the homogeneous norm�(z) = (z41 + z42 + z23) 14 : (5.7)A control law motivated by [29] isu1 = �c11z1 + c12 z3�(z) cos
tu2 = �c21z2 + c22 z23�3(z) sin
t; (5.8)where the cij are positive real parameters which may be adjusted to modifythe system response. 
 is the frequency of the time periodic component of thecontrol. A proof that this control law is asymptotically stabilizing is given inAppendix C. These are homogeneous functions of order 1 with respect to (5.7),are smooth on Rnnf0g and continuous at the origin. If the closed-loop systemis asymptotically stable then it is actually exponentially stable with respect tothe homogeneous norm (5.7).If one is interested in globally smooth feedback there are a number of resultsavailable. We compare our homogeneous feedback to two smooth controllersderived by signi�cantly di�erent methods. The �rst smooth controller is just asmooth version of (5.8), u1 = �c11z1 + c12z3 cos
tu2 = �c21z2 + c22z3 sin
t; (5.9)where the cij are parameters. More details on the properties of this feed-back may be found in [28, 44]. The control law is written for the system inchained form so the preliminary coordinate transformation (5.4) is required.This smooth feedback is contrasted to a controller derived fromPomet's method [37],v = �cv(x cos �0 + (y(1 + 1
2 sin2
t) � 1
�0 sin
t) sin �0)w = y cos 
t� cw(�0 � 1
y sin
t); (5.10)where cv and cw are positive parameters. Note that the control law is given inthe original coordinates. Pomet's method may be used to generate a feedbackfor the system written in chained form, however one could argue that an intrinsicadvantage to this method is the fact that special coordinates are not required.89



We adopt this interpretation and so derive the feedback based on (5.2). Thisfeedback was generated from choosing�(t; x) = y cos 
tV (t; x) = 12 �x2 + y2 + (�0 � 1
y sin
t)2� :Refer to [37] for the notation.The system with one trailer is now discussed. Recall the 4-dimensional setof kinematic equations describing the system (5.3). The di�eomorphism andinput transformation that places the model into chained form isz1 = xz2 = 1d1 sec3 �1 tan(�0 � �1)z3 = tan �1z4 = y; (5.11)and the inputs are computed fromu1 = cos �1vu2 = sec3 �1 tan(�0 � �1)( 3d21 tan �1 tan(�0 � �1)� 1d21 sec(�0 � �1))v +1d1 sec3 �1 sec2(�0 � �1)!: (5.12)The expression of the vector �elds in these coordinates is_z1 = u1_z2 = u2_z3 = z2u1_z4 = z3u1: (5.13)This system is homogeneous of degree 1 with respect to the dilation��(z) = (�z1; �z2; �2z3; �3z4): (5.14)A particular choice of homogeneous norm is�(z) = (z121 + z122 + z63 + z44) 112 : (5.15)The feedback that is implemented has the formu1 = �c11z1 + c12�z23�3 + z24�5� (cos 
t� sin
t);u2 = �c21z2 + c22 z3� cos 2
t+ c23 z4�2 cos 3
t; (5.16)90



where the cij are positive parameters. This feedback is homogeneous of degree1 and so the closed-loop vector �eld is homogeneous of degree 0 with respectto (5.14). Numerical simulations of these models will be compared to actualdata in the next section. A stabilizing feedback will necessarily stabilize at anexponential rate.The smooth controller for the 4-dimensional system that is implemented isfrom [28, 44]. The system is written in chained form and the feedback takes theform, u1 = �c11z1 + c12 �z23 + z3� (cos
t� sin
t);u2 = �c121z2 + c22z3 cos 2
t+ c23z4 cos 3
t; (5.17)5.3 Experimental ResultsThe experimental results are presented in this section. The �rst part comparesopen loop trajectories generated by a nonholonomic path planning algorithmto numerical simulations of the equations. These results motivate the need forfeedback. The physical parameters in Table 5.1 were measured with a metaltape measure and so the accuracy of these measurements is limited to severalmillimeters. This will lead to errors in the computation of the position of thesystem. The most compelling reason to employ feedback is to make the systeminsensitive to such errors and so approximate measurement of the system posi-tion should be adequate if the feedback is \good." It is di�cult to perform adetailed robustness analysis on these systems but the fact that the closed-loopsystems perform quite well is testimony to some degree of robustness possessedby the feedback.The results with feedback are presented following the open-loop experiments.Some thought must be given to the interpretation of the results if a compari-son between several types of controllers is made on the same system. The rateat which the system approaches its equilibrium position from di�erent initialpositions is a reasonable criterion to assess the controller performance. In anyapplication the control e�ort is a real limitation on the achievable performance.This limitation is embodied in the fact that the stepper motors saturate atabout 500 steps/sec. Therefore it is reasonable to choose, as a means of com-parison between di�erent controllers, a �xed neighborhood of the equilibriumpoint where it is desired that each control law stabilize the system with initialconditions in this neighborhood, but at the same time not saturate the motors.The individual control laws may be \tuned" to take full advantage of the actu-ator in this neighborhood. We compare the controllers in this manner. Outsidethe neighborhood, where the motors saturate, saturation functions may be usedto increase the domain of attraction [43]. However, since we are interested inthe long term behavior of the system, we need only consider initial conditionsinside the neighborhood where the saturation function have no a�ect.91



5.3.1 Open loop inputsWe now present some experimental results using open-loop inputs to the car(no trailers). The velocity inputs are computed by representing the velocitiesas the sum of harmonic components with unknown amplitudes. The system isconverted to chained formand integrated with the desired initial conditions. The�nal position is enforced resulting in a set of polynomials with the amplitudesof the harmonic functions as the indeterminates. The actual system trajectoriesare shown is Figure 5.4. The numerical simulation demonstrating that theopen loop inputs steer the mathematical model to the origin is also shown inFigure 5.4.The inputs where chosen to returns the car to the origin with zero attitude.The initial conditions where chosen so as to match those of a feedback experi-ment presented in the next subsection. The initial conditions for computing thevelocity inputs and the numerical simulation arex = �0:5945m y = 0:3299m �0 = 0:8262rad:The initial conditions of the experimental apparatus arex = �0:5923m y = 0:3296m �0 = 0:8294rad:The responses are qualitatively very similar however disturbances and modelingerror contribute to the large discrepancy between the actual and desired �nalposition of the car (20 cm in the y position and 9 degrees in orientation).The careful designer could probably do better than this at the expense ofmore detailed models for the system. However, the objective of this experimentis not to perform such an analysis of open-loop control schemes but rathermotivate the use of feedback.5.3.2 Stabilization of the carExperimental results with feedback are now presented for the car. Figure 5.5compares the exponentially stabilizing homogeneous controller (5.8) and thesmooth asymptotic controller (5.9), both of which use the coordinate change (5.4).The �gure compares the time response of the the system with both controllersto a set of initial conditions very close to those used with the open-loop ex-periment. Figure 5.6 contains a step rate comparison of both controllers. Thecar uses two motors and the step rate input into one motor is plotted for bothexperiments. Note that the peak step rate amplitude of the smooth asymptoticcontroller is higher than the peak amplitude of the exponential homogeneouscontrol law. Figure 5.6 also contains a log plot of the y-variable. The exponen-tial convergence of the homogeneous controller is evident.Figure 5.7 presents experimental results with the Pomet feedback (5.10).The controller exhibits large e�ort during the initial transient period of thesystem response. Figure 5.8 shows numerical simulations of the homogeneouscontrol law and Pomet's smooth control law with the initial conditions of the92
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Homogeneous (5.8) Smooth (5.9) Pomet (5.10)c11 0.3 0.3 �c12 0.4 0.4 �c21 1.0 1.0 �c22 3.0 5.0 �cv � � 1.0c! � � 1.0
 2.0 2.0 2.0Table 5.2: Control law parameters for the car with no trailers.simulation set to the initial data of the experiments in Figures 5.5 and 5.7.The simulations are very close to the actual response. Simulations for all ofthe other cases (smooth controller and the controllers for the car and trailer)are not shown since the results are qualitatively similar to the experimentaldata. The simulations are used to adjust the parameters of the controllers,the �nal tuning being performed on the actual system after the simulationsyield the desired response. Note that the smooth controllers are asymptoticallystabilizing the system but the rate is very slow. The control parameters used inthese experiments are found in Table 5.2.5.3.3 Stabilization of the car and one trailerThe stabilization results for the car and one trailer are discussed below. Partic-ular attention should be paid to the behavior of the y-variable. Figure 5.9 com-pares closed-loop behavior of the exponentially stabilizing homogeneous controllaw (5.16) and the smooth asymptotic control law (5.17) with the same initialconditions. No speci�c initial condition was chosen to make one controller per-form \better" than another. The step-rates generated by each control law areshown in Figure 5.10. The peak step rate for both controllers is approximately300 steps/sec. The log(jyj) plot is useful for assessing the convergence rate ofthe system. This will be discussed in more detail in the next section. Theparameters used in the experiments with one trailer are given in Table 5.3.5.3.4 DiscussionThe �rst aspect of the experimental results to note is the rate at which y ap-proaches zero. For the controllers which rely on chained form, the y variableis identi�ed with the \slowest" state. Thus the rate at which this state decaysis of practical interest. It is useful to plot log(jyj) to study this behavior. Thefact that y in the homogeneous controllers' response may be bounded aboveby a straight line (see the log plots in Figures 5.6 and 5.10) indicates that yis approaching zero at an exponential rate. The average rate of convergence94
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Homogeneous (5.16) Smooth (5.17)c1u1 0.5 0.5c2u1 0.6 0.6c1u2 0.5 0.5c2u2 0.5 0.5c3u2 0.5 0.5
 0.5 0.5Table 5.3: Control law parameters for the car and one trailer.is equal to the average slope on the plots. The smooth controller in chainedform decays at an algebraic rate. This is also evident from the log plots. ThePomet controller is written in the original physical coordinates so there is nodistinguished \slow" state. However center manifold analysis may be used toshow that the rate of decay of y determines the rate of convergence for the entiresystem. The discrete nature of the motors places a lower bound on how closethe system can come to the origin. This may cause hunting. However this isa shortcoming of the hardware, not a limitation of the controller, and may bedealt with by ad hoc means (such as switching the controller o� in some smallneighborhood of the equilibrium point).A few words should be said concerning the choice of fundamental period ofthe control laws and the digital �ltering. First, the period, 
, was chosen inorder to maximize the rate of convergence but at the same time not saturatethe motors. Analysis of the systems in chained form clearly demonstrates thatshorter periods result in faster convergence times but at the expense of increasedmotor speed. Second, the bandwidth of the digital �lter was chosen to behigh enough to guarantee asymptotic stability. This is basically the specialperturbation result proven in Proposition 4.15. The bandwidth was determinedexperimentally by balancing the tradeo� between measurement smoothing andconvergence rate.We now discuss control design related aspects for the individual problems.The controllers used in these experiments do not di�erentiate between lengthscales. For example, the (x; y) position of the car may be expressed in cm, mor even km. Hence as long as the actuators don't saturate, the region of con-vergence in terms of the linear variables is rather arbitrary. The response of thesystem depends critically on the length scale chosen though. For the homoge-neous systems this is embodied by the shape of the corresponding homogeneousball: homogeneous balls when the lengths are measured in kilometers and theangles in radians look much di�erent than the balls with the lengths measuredin meters. The length scale must be chosen so that the system response is sat-isfactory. The de�nition of \satisfactory" depends on the particular application. The three-dimensional system (car and no trailers) uses a length scale of 1101



meter and angle scale of 1 radian. However the length scale for the system withthe car and one trailer is the length of the trailer itself, i.e. one \unit" of lengthis 19 cm. A length scale of one meter leads to undesirable behavior because,for example, the homogeneous ball with y = 1 mm on its boundary also hasx = 10 cm on its boundary! The �nite precision of the actuators and sensors willinvariably cause hunting in a neighborhood of the origin. This neighborhood isactually a homogeneous ball, for homogeneous closed-loop vector �elds, and ifthe length scale is not chosen carefully can lead to large excursions of x withrespect to small changes in y. This type of behavior is characteristic of anyhomogeneous vector �eld. Our selection of the trailer length as the length scalemitigates this undesirable behavior for the homogeneous feedback.The hunting behavior is demonstrated for the car and trailer in Figure 5.11when the characteristic length is taken as 1 m. The second �gure shows thatthe hunting occurs in a homogeneous ball with � � 0:2. The arguments forpicking a good length scale to eliminate hunting are not as compelling for smoothfeedbacks since all of the analysis may be performed with any of the usual p-norms.Lastly, we discuss a very important concept that is germane to any controlsystems design requiring a di�eomorphism to place the model into a desiredcoordinate representation. The singular values of the linearization of the dif-feomorphism (5.11), at various points in the phase space, indicates the amountof \stretching" performed on the variables by the transformation. A controllerthat depends on an ill-conditioned transformation may exhibit extreme sensitiv-ity to small changes in certain state variables. This is exempli�ed in Figure 5.12where a poor length scale was chosen for the transformation. Numerical simula-tions of the system imply closed-loop stability but the actual response does notlook stable. Plotting the chained form variables shows that the z2 variable isdominant and is quite noisy. This results in very poor performance of the sys-tem. The length scale chosen for this experiment is 5 meters and the controlleris the homogeneous controller which uses transformation (5.11). However, thisbehavior is caused by the transformation and is observed with any controllerimplementation. The trailer length is actually d1 = 0:19=5 � 0:038 as far asthe di�eomorphism is concerned. The condition number of the di�eomorphismevaluated at the origin is 52.7. This is due primarily to a singular value withmagnitude 37.2. The ampli�cation of the physical data occurs in the �0 � �1\input" direction to the z2 \output" direction. This is illustrated by performinga singular value decomposition on the linearization of the transformation at theorigin,0BB@ z1z2z2z2 1CCA = 0BB@ 0 1 0 01 0 0 00 0 0 �10 0 1 0 1CCA0BB@ p2d1 0 00 1 0 00 0 1 00 0 0 1p2 1CCA0BB@ 0 0 1p2 � 1p21 0 0 00 1 0 00 0 � 1p2 � 1p2 1CCA0BB@ xy�0�1 1CCA :Thus, when �0 � �1 crosses zero the same occurs to the z2 variable except it isampli�ed by an order magnitude. 102
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We overcome the ill-conditioning by scaling the linear measurements with re-spect to the trailer length. Even for wheeled systems judicious choice of lengthscale may not solve the ill-conditioning problem. For example, consider thesituation in which the ratio of two kinematic parameters is large: a lengthscale cannot be chosen to normalize both parameters to one. Finally, an im-portant point to note is that the 3-dimensional system has no characteristiclength associated with the kinematic model and the transformation speci�ed byequations (5.4) has condition number 1 at all points in the phase space for anydesired length scale.The issue of transformation conditioning has not been addressed in the non-linear systems literature but, as illustrated here, has a large impact on theperformance. Control practitioners are well aware of the potential dangers ofmodel inversion for linear systems. Our transformation may be interpretated asa kinematic inversion as opposed to the dynamic inversion often used in linearsynthesis. One should expect the same problems to arise in the nonlinear settingas well.
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Chapter 6ConclusionThis thesis has presented an approach to obtain explicit �-exponentially stabi-lizing control laws for a large class of driftless systems. The feedbacks rely on afundamental approximation of the system and they preserve the structure of thisapproximation. This leads to a slightly modi�ed notion of exponential stability.Although the synthesis methods in this thesis do not cover all controllable ana-lytic driftless systems, many application areas satisfy the conditions required bythe methods. The feedbacks are necessarily non-Lipschitz for exponential sta-bilization and this property naturally arises from the synthesis procedure. Byrequiring the feedbacks to be smooth everywhere except the desired equilibriumpoint the closed-loop solutions are guaranteed to be unique.A specialized singular perturbation result for degree zero systems provesthat lowpass �lters in the loop do not change the �-exponential stability of thesystem. This fact is not obvious since the system linearization is not de�ned. Ofcourse, lowpass �ltering of measurements is always used in applications wherethe controller is implemented digitally. Another aspect of practical signi�canceis the fact that the control variables are often velocities in the driftless models.The extension of kinematic controllers to controllers which stabilize the driftlesssystem plus a set of integrators is given. This framework is also used to showhow dynamic controllers, which include the integrators as states, may be used tosmooth the control rate commanded by the controller. In this case the controlaction is continuously di�erentiable.This entire paradigm was put to the experimental test with the nonholo-mobile. The experiments demonstrated the superior performance of the �-exponential stabilizers as opposed to traditional smooth feedbacks. The ex-periments also revealed the importance of di�eomorphism condition number fornonlinear control systems. 106



6.1 Future DirectionsEven though the synthesis methods in this dissertation do not cover the mostgeneral class of driftless systems there are other issues which deserve just asmuch attention. Several research areas, pertaining to driftless systems and tononlinear systems in general, are given below.Quantitative Analysis. Many of the results proven here are of a perturbativenature. In other words, a given property manifests itself for \� su�cientlysmall" or \k su�ciently large." This is certainly true of the averaging theorem,lowpass �ltering and dynamic extension results. These results are qualitativein the sense that they do not actually exhibit an � or k for which the resultshold but merely imply the existence of such numbers. Results of this natureare usually the �rst ones to be proven in analysis because they are the easiestto formulate and solve. This does not diminish their importance in systemstheory but somewhat limits their usefulness in practical applications. A usefulset of design tools would assign values to � and k and show the tradeo� betweendomain of attraction, convergence rate, and the e�ects of noise on control e�ortand control rate. Another useful tool would explore methods to optimize theconvergence rate of the closed-loop system. Many of these issues can be partiallysolved with the use of a Lyapunov function. However, there is currently no wayto choose or construct the Lyapunov function which gives the least conservativeestimates of the quantities of interest.Robustness. The converse Lyapunov theorems used in this thesis were used toshow that terms neglected in the approximation of the model do not a�ect thestability of the system. Perturbations of the model itself were not considered.When the model is written in the coordinates adapted to its �ltration it is asimple matter to characterize the perturbations which do not a�ect the stability.These results are still of a quantitative nature though. A more useful result isthe characterization of the perturbations in the original coordinates which donot change the stability of the system. For example, the kinematic wheel givenby the model, _x = cos �v_y = sin �v_� = !;is locally asymptotically stabilized by the feedback,v = �z2 + z23�3(z) sin t! = �z1 + z3�(z) cos t�(z) = (z41 + z42 + z23) 14 ;107
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Figure 6.1: Unstable equilibrium.where z1 = �z2 = x cos � + y sin �z3 = x sin � � y cos �:The convergence rate is exponential in the sense of equation (2.2) for the (x; y; �)variables. A small perturbation of the _y equation to _y = (� + sin �)v destabi-lizes the origin as shown in Figure 6.1 (� = 0:1 and the initial conditions are(0; 0:01; 0)). This perturbation is actually degree two compared to the degreeone approximations of the vector �elds in the coordinates adapted the �ltra-tion. Unlike linear input-output models, the states of many nonlinear modelsrepresent physical quantities. In this case, the class of physically meaningfulperturbations must be considered. In the kinematic wheel example, the pertur-bation used in the _y equation is not justi�ed from a physical basis and so weexpect our controller to perform well even though an arbitrarily small pertur-bation in the model can destabilize the desired equilibrium point.Systems with Drift Vector Fields. Control systems with drift vector �eldshave the form, _x = X0(t; x) + MXi=1Xi(t; x)ui:108



Homogeneous approximations and feedbacks have been applied to these systemsin certain low dimensional cases by Hermes [17, 18] and Kawski [20, 19]. A sys-tem with drift vector �eld is more di�cult to analyze when the linearization isnot controllable. In fact no necessary and su�cient conditions have been foundfor STLC [41]. Thus systems with drift are a more challenging class to control.Egeland in [11] has recently proposed a model for an underwater vehicle whichhas homogeneous strucure. The drift vector �eld is due to the intertial e�ects ofthe vehicle and does not �t within the framework of equations (4.22). The modelalso fails Brockett's condition for continuous time-invariant stabilization. How-ever, an asymptotically stabilizing controller was derived by further developingideas from the methods used by S�rdalen [38] who stabilized driftless systems inchained form. These references demonstrate that homogeneous approximationsand feedbacks have an important and fundamental role to play in systems withdrift vector �elds.

109



Appendix AReview of Controllabilityand Stabilization Resultsfor Driftless ControlSystemsThis appendix reviews the basic local controllability properties of nonlineara�ne control systems. A necessary condition for continuous stabilization ofdriftless systems and related results are also covered. An excellent reference forthe controllability results reviewed in this appendix is Nijmeijer and van derSchaft's book [36].A.1 ControllabilityControllability for nonlinear systems is developed for general a�ne systems ofthe form _x = X0(x) + mXi=1Xi(x)ui; u 2 U � Rm; x 2 V � Rn (A.1)where V is an open subset of Rn, the Xj are smooth vector �elds de�ned on V ,and the ui are real valued functions of time. The following assumption is madeconcerning the type of control input that is admissible:Assumption A.1 An admissible input u satis�es the following two conditions,i) the input space U is such that the set of associated vector �elds of thesystem (A.1) F = fX0 + mXi=1Xiuij(u1; : : : ; um) 2 Ug110



contains the vector �elds X0; X1; : : : ; Xm and,ii) an admissible control is a piecewise constant function which is piecewisecontinuous from the right.See Sontag [41] for an explanation as to why the set of control inputs may berestricted to those satisfying the assumption instead of a more general class offunctions. The trajectory of the system through the point x with admissibleinput u is denoted  (t; 0; x;u). The de�nition of controllability isDe�nition A.2 The nonlinear control system (A.1) is called controllable if forany two points x1; x2 2 V there exists an admissible control of �nite durationu : [0; T ]! U such that  (T; 0; x1; u) = x2.An object of fundamental importance for controllability is the so called acces-sibility algebra of the system (A.1).De�nition A.3 The accessibility algebra C of the system (A.1) is the small-est subalgebra of the Lie algebra of smooth vector �elds on V that containsX0; X1; : : : ; Xm.The accessibility distribution C is the distributionC(x) = spanfX(x)jX a vector �eld in Cg; x 2 V: (A.2)Let RW (x; T ) denote the set of reachable points from x at time T > 0 fol-lowing trajectories which remain in the neighborhood W of x for all t < T .Furthermore, de�ne RWT (x) = [��T RW (x; T ):The following theorem states that an open neighborhood of points may be reachfrom x if the accessibility distribution has rank n at x,Theorem A.4 Assume that dimC(x) = n;for the system (A.1). Then for any neighborhood W of x and T > 0 the setRWT (x) contains a non-empty open set of V.This theorem does not imply the system (A.1) is controllable about a givenpoint. However, for driftless systems, i.e. X0 = 0, a full rank accessibilitydistribution does imply local controllability,Proposition A.5 Suppose X0 = 0 in (A.1) then if dimC(x) = n then RWTcontains a neighborhood of x for all neighborhoods W of x and T > 0.111



Finally, another stronger de�nition of controllability is the notion of smalltime local controllability, abbreviated STLC. The de�nition is reviewed belowsince several references in the introduction assume the STLC property. Anotherimportant property of driftless systems on Rn is that controllability and STLCare equivalent.De�nition A.6 The system (A.1) is STLC (at zero) if for any t1, � > 0 theset of all points which can be reached at time t1 via solutions, initiating fromzero, by using measurable controls t ! u(t) = (u1(t); : : : ; um(t)) satisfyingjui(t)j � �, contains a neighborhood of zero.A.2 StabilizationThe following necessary condition for continuous autonomous stabilization was�rst brought to the attention of the controls community by Brockett [4]. Theclass of systems are ordinary di�erential equations which are continuous in thestate and parameter u (to be thought of as a control variable),_x = f(x; u): (A.3)Theorem A.7 (Brockett) Assume that (A.3) admits a continuous stabilizingfeedback u(x). Then for each � > 0 there is a positive number � such that, foreach y with kyk < �, the equation y = f(x; u)is solvable on the set kxk < �; ku� u(0)k < �.Thus the image of f : Rn�Rm ! Rn must cover a neighborhood of the origin.The driftless system _x = X1(x)u1 + � � �+Xm(x)um; (A.4)where the rank the input vector �elds [X1j � � � jXm] is less than n (the statedimension) always fails this condition. Hence there does not exist a continuousautonomous feedback which renders any point asymptotically stable. HoweverCoron [7] showed that controllable driftless systems may be asymptotically sta-bilized with a smooth time-periodic feedback,Theorem A.8 (Coron) Consider the driftless system given by equation (A.4)with smooth input vector �elds. Assume that for all x in Rn n f0g there arevector �elds Y1; : : : ; Yr in the Lie algebra generated by fX1; : : : ; Xmg such thatfY1(x); : : : ; Yr(x)g span Rn. Then x = 0 can be globally asymptotically stabilizedby means of a smooth time-periodic feedback law ui = ui(t; x).112



Thus even though Brockett's condition precludes an autonomous continuousstabilizing feedback, Coron's result demonstrates that an explicitly time varyingcontinuous feedback can asymptotically stabilize the driftless system.The limitations of smooth feedback were discussed in Chapter 4. It is ofinterest to know whether faster rates of convergence can be achieved for driftlesssystems. Another existence result by Coron states that controllable driftlesssystems may be stabilized to the origin in �nite time with continuous time-periodic feedback. The de�nitions and results below are taken from [8].De�nition A.9 The continuous system satisfying the small time local control-lability condition given in De�nition A.6 is locally asymptotically stabilizable bymeans of a T -periodic feedback law if there exists u : Rn�R! Rm such thatu 2 C1(Rn n f0g �R;Rm) \C0(Rn�R;Rm);u(0; t) = 0 8t 2 R;u(x; t+ T ) = u(x; t) 8(x; t) 2 Rn�R;andi) 9� > 0 such that for jx0j < �; t0 � t1 there exists one and only one solutionon [to; t1] of _x = f(x; u(t; x)); x(t0) = x0,ii) 0 2 Rn is a locally asymptotically stable point of _x = f(x; u(t; x)).If such a u exists the the system is said to be T -LAS. If, moreover, for all smallenough x0, _x = f(x; u(t; x)) and x(0) = x0 =) x(T ) = 0;then the system is termed T -Locally Stabilizable (T -LS).As mention above, for driftless systems the STLC condition is equivalent tocontrollability. The result of primary interest from Coron's paper isTheorem A.10 (Coron) Assume f(x; u) =Pi=1Xi(x)ui. Then _x = f(x; u)is T -LS for all positive T .The feedbacks presented in this thesis do not stabilize the equilibrium point in�nite time however they are continuous and smooth on Rn n f0g as is requiredby exponential rates of stabilization.
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Appendix BComputation ofCoordinates Adapted to aFiltrationThis appendix introduces a simple algorithm for computing coordinates adaptedto a �ltration. We are interested in approximating a set fX1; : : : ; Xmg of in-put vector �elds which generate a full-rank Lie algebra by a set of controllablenilpotent vector �elds. The coordinate change is polynomial with order equalto the degree of nonholonomy of the vector �elds. The algorithm has the ad-vantage of being simple in concept and easily implementable with a symbolicmanipulation package. Even though the algorithm is developed in the contextof driftless control systems, it may be made more broadly applicable with someminor modi�cations. More motivation may be found in [18].B.1 Background and MotivationFor notation and basic de�nitions the reader is referred to Chapter 2. Relatedcomputational results may be found in [42]. This algorithm is developed forapproximating the vector �elds of the following nonholonomic control system,_x = X1(x)u1 + � � �+Xm(x)um; x 2 Rn; (B.1)where Xi : Rn ! Rn is an analytic, nonzero vector �eld in a neighborhoodof, without loss of generality, the origin. We assume n > m. The coordinatesadapted to the �ltration described in Chapter 2 are generated by the followinglocal di�eomorphism x- and z-coordinates,x = �(z) =  z1X�1 �  z2X�2 � � � � �  znX�n (0); (B.2)where  tX denotes the 
ow of X for time t and the vector �elds X�i are selectedfrom the �ltration according to equation (2.9). The usual notation for 
ows is114



 (t; t0; x). The new notation is used to simplify the writing of the composed
ows and to denote the vector �eld with which 
ow is associated. The construc-tion of this transformation does require solving di�erential equations which canbe an arduous task. The physical response of the system with the stabilizingfeedback will depend on which vector �elds from the �ltration are chosen tocompute the transformation. However this is not explored in this appendix.Finally, we must distinguish between \degree with respect to a dilation" and\degree in a Taylor series expansion" (which is actually degree with respect tothe standard dilation). It should be clear which de�nition is intended from thecontext.B.2 ResultsThis section describes the algorithm and its application for the approximationproblem discussed above. The di�eomorphism (B.2) can certainly be computedby hand for low dimensional problems. However, this is undesirable if a numberof transformations are desired by picking di�erent vector �elds from the �ltra-tion. For higher dimensional systems the computations become pedantic and asymbolic manipulator \solution" is desired.The vector �elds of the �ltration are analytic so the transformation (B.2) isanalytic in a neighborhood of the origin. It is intuitive that a su�ciently highdegree Taylor approximation of (B.2) should su�ce to place the Xi 2 F1 intoproper form. Recall that Xi = X1i + X0i + X�1i + � � � , where the superscriptdenotes the degree with respect to the dilation, in the coordinates adapted to the�ltration. Thus, computing (B.2) does not eliminate the \higher" order termsin the new coordinates. Given this fact it is less compelling to compute (B.2)exactly. We should be satis�ed with an approximation of (B.2) as long asXi = X1i + ~X0i + ~X�1i + : : : in the approximated coordinates (ie. the \degreeone" part of Xi remains unchanged).The main obstruction to implementing (B.2) on a computer is the fact thatsymbolic manipulators are unable to integrate general nonlinear vector �eldssymbolically. The idea behind the algorithm is to perform preliminary coor-dinate changes so that the vector �elds are trivial to integrate. The X�i maybe \straightened out" since they are nonzero in a neighborhood of the origin.Integrating the straightened out system is trivial. Unfortunately, this coordi-nate change requires knowledge of the 
ow  tX�i . However, we may perform asequence of transformations on each X�i that successively removes higher orderterms up to some prespeci�ed order. The 
ow of  tXi may be approximatedaccurately by a simple symbolic integration in these coordinates.We now show that if the degree of nonholonomy of the set fX1; : : : ; Xmgis p then it is su�cient to compute (B.2) to order p to get the correct degreeone (with respect to the dilation) approximation, X1i , of Xi. Suppose we havethe full di�eomorphism x = �(z) given by (B.2). Then Xi(x) given in the115



coordinates adapted to the �ltration isXi(z) = ���1��Xi(�(z))= X1i (z) +X0i (z) + : : : : (B.3)The degree of nonholonomy p implies that the variable zn has a weight p in thedilation. Variables z1 through zm have weight 1 since each Xi 2 F1, i�1; : : : ;m.Thus, the highest order Taylor series terms inX1i are monomials of z1; z2; : : : ; zmwith degree p � 1 appearing in the expression for _zn. Hence terms of degreep�1 must be preserved by the approximation of �. To compute X1i (z) throughdegree p� 1 we compute each of the terms in (B.3) through degree p� 1. Thisimplies that we must at least retain terms through degree p � 1 in Xi(x) and�(z). Now suppose ��(z) = A+ R(z); (B.4)where A 2 Rn�n is nonsingular and R(0) = 0. The Jacobian of the inverse mapmay be computed as,���1�� (z) = (��(z))�1= (A+ R(z))�1= A�1(I + R(z)A�1)�1= A�1 �I �R(z)A�1 + �R(z)A�1�2 + : : :�= A�1 �I �R(z)A�1 + �R(z)A�1�2 + � � �+ �R(z)A�1�p�1�+ O(p):(B.5)In practice, R(z) is truncated at order p so that the computation of ���1�� iscorrect to order p. Thus an approximation of �(z) through degree p terms issu�cient to calculate X1i (z) in the new coordinates.Computing each of the di�eomorphisms,  ziX�i , in equation (B.2) throughorder pwill ensure that � is approximated through order p. Now we demonstratehow to approximate the 
ow  tX�i for i = 1; : : : ; n. Suppose that an initial linearchange of coordinates has been performed so that X�i (0) = ei. To remove thelinear terms in the vector �eld X�i apply a change of coordinates as follows,x = y + h2(y); (B.6)where h2 is composed of degree 2 monomials in yi and is yet undetermined.Changing to y-coordinates yields,X�i (y) = (I +Dyh2(y))�1X�i (y + h2(y))= (I �Dyh2(y) + (Dyh2(y))2 � : : : )X�i (y + h2(y))= X�i (0) +X(1)�i (y) �Dyh2(y)X�i (0) + O(y2); (B.7)where X(1)�i denotes Taylor terms of degree one of the vector �eld and Dyh2 isthe Jacobian of h2. To eliminate the linear terms we choose h2 such that the116



following is satis�ed, Dyh2(y)X�i (0) = X(1)�i (y): (B.8)One way to select h2 is to seth2(y) = Z X(1)�i (y)dyi: (B.9)This choice guarantees that relation (B.8) is always true. The kernel of thisoperation is all degree 2 monomials which do not contain yi. Even thoughthese terms allow extra degrees of freedom in the coordinate transformation, weshow below that the choice given by equation (B.9) is the most desirable forour algorithm. Once h2 is determined we can formally change the vector �eldinto the y-coordinates retaining all terms of degree p or smaller. It should beobvious that one can proceed in an analogous manner to eliminate the degree kterms, X(k)�i , by specifying a transformation x = y + hk+1(y) wherehk+1(y) = Z X(k)�i (y)dyi (B.10)consists of degree k + 1 monomials in y. Thus, successive near-identity trans-formations are used place X�i into the following formX�i = ei +O(p + 1): (B.11)This process is analogous to the normal form computations for �xed points ofvector �elds with the important distinction that the operationDyhk+1X�i (0)is always a surjection from vector valued monomials of degree k + 1 to vectorvalued monomials of degree k. Thus we are able to remove terms of arbitrarydegree unlike the normal form case around a degenerate �xed point. Further-more, we are not concerned if this process converges for in�nite sequences oftransformations since the computations are terminated at some �xed order.Approximate integration of the vector �eld (B.11) can now be accomplished.Now we approximate the solution of equation (B.11). Suppose the initialcondition is xi(0) = (t1; : : : ; ti�1; 0; ti+1; : : : ; tn). Then the trajectory of equa-tion (B.11) through this initial condition is �X�i (x(0)) = (t1; : : : ; ti�1; �; ti+1; : : : ; tn) + O(~tp+1); (B.12)where ~t = (t1; : : : ; ti�1; �; ti+1; : : : ; tn). This is easily shown by expanding thesolution of (B.11) in a multiple power series in the time parameter � and theinitial condition x(0) = (t1; : : : ; ti�1; 0; ti+1; : : : ; tn). The existence of this powerseries is guaranteed by the analyticity of the vector �eld.Now we have enough background to summarize the algorithm:117



i) Begin with a preliminary linear change of coordinates y = A�1x whereA = Dz�(0)= (X�1 (0); X�2(0); : : : ; X�n (0)) :A is nonsingular by assumption. We abuse notation by writing the vector�elds in these new coordinates as X�i (x) except now X�i (0) = ei.ii) Now we successively straighten out each vector �eld in equation (B.2)and approximate its 
ow starting with X�n . Perform the sequence oftransformations described above to \straighten out" X�n through order pto yield X�n = en + O(p+1). Approximate the solution from the initialcondition x(0) = 0, znX�n (x(0)) = (0; : : : ; 0; zn) + O(zp+1n );where z = (z1; z2; : : : ; zn). However at this stage only zn is present.iii) Compose these intermediate transformations into one transformation andtruncate any terms with degree p+ 1 or greater. Denote this polynomialchange of coordinates as x =  n(y). The construction is such that xrepresents the original coordinates and y represents the new coordinatesystem.iv) Now transform the remaining vector �elds X�i , i = 1; : : : ; n� 1, with  n:� �1n ��X�i ( n(y)):Abusing notation once more, denote the vector �elds in these coordinatesas X�i (x), i = 1; : : : ; n � 1. Note that � �1n �� may be approximatedthrough order p using the computation from equation (B.5) (in this caseA = I so some symbolic operations are saved).v) Now straighten out X�n�1 (x) through order p so that in the new coordi-nates X�n�1 = en�1+O(p+1). Denote the order p transformation whichaccomplishes this  n�1. Before the approximate solution ofX�n�1 is calcu-lated, the initial condition x(0) = (0; : : : ; 0; zn) must be transformed intothe new coordinate representation. In other words the following equationmust be solved for y(0),(0; : : : ; 0; zn) =  n�1(y1(0); : : : ; yn(0)): (B.13)If we make the speci�c choice of the hi given by equation (B.10) whenconstructing  n�1 then every term in  n�1 of degree greater than one hasa yn�1 factor. Thus the unique solution of (B.13) in a neighborhood ofthe origin is easily veri�ed to be yi(0) = xi(0), i = 1; : : : ; n i.e. yi(0) = 0for i = 1; : : : ; n� 1 and y(n) = zn. Had we decided to exercise the extradegrees of freedom in computing  n�1 then the inversion of (B.13) wouldhave been much more involved. 118



vi) The 
ow of X�n�1 from the initial condition x(0) = (0; : : : ; 0; zn) is ap-proximated as zn�1X�n�1 (x(0)) = (0; : : : ; 0; zn�1; zn) + O(zp+1):Transform X�i , i = 1; : : : ; n� 2, into the new coordinates using  n�1 andproceed to straighten out X�n�2 . Once again, special choice of the hi'sensures that the initial condition in the new coordinates is the same asthe initial condition in the old coordinates.vii) Proceeding in this manner we �nally straighten out X�1 with  1 and the
ow is given by z1X�1 (0; z2; z3; : : : ; zn) = (z1; z2; : : : ; zn) + O(zp+1)= F (z) + O(zp+1): (B.14)viii) The local di�eomorphisms i, i = 1; : : : ; n are polynomial of order p. Theyrelate the new z-coordinates to the original x-coordinates by followingtransformation, x =  n �  n�1 � � � � �  1(F (z)): (B.15)By virtue of our choices for hi, F (z) = (z1; z2; : : : ; zn) although in themore general case F would be a local di�eomorphism itself. 	(z) denotesthe order p truncation of (B.15) and has the property that,�(z) = 	(z) +O(zp+1) (B.16)by the construction above.The original vector �eldsXi, i = 1; : : : ;m, may be expressed in the z-coordinatesto yield the decomposition Xi = X1i +X0i +X�1i + : : : .This algorithm is rather involved for hand computations. However, its sim-plicity and the fact that the 
ows of the vector �elds are trivial in the correctcoordinate system makes the algorithm amenable to symbolic programming.B.3 Improvements to the AlgorithmAn improvement quali�es as any modi�cation that reduces the number of sym-bolic manipulations yet still produces a correct homogeneous degree one approx-imation of Xi. There are several potential improvements which may acceleratethe execution time of the program. The �rst improvement is to note that 	need only be computed through order p� 1 (i.e., all terms of degree p or higherare neglected) because the degree p terms remaining in the transformed vector�elds will either be components of a degree 1 vector �eld or higher with respectto the dilation. For example, if X�1 is chosen to be X1 2 F1 then X11 = e1if 	 is computed through order p as opposed to X11 = e1+ rp�1, where rp�1 aredegree p�1 monomials, in the situation when 	 is computed through order p�1.119



A second improvement may be realized by computing the  i to variousorders of accuracy depending on i. For example, because we are interested inthe approximation of vector �elds X 2 F1, the zn variable, which has weight pwith respect to the dilation, appears nowhere in X1 in the coordinates adaptedto the �ltration. Thus the 
ow  znX�n (0) need not be calculated through orderp,as it is above, to achieve the same approximation of X1i . This implies thatthe order of  n may be lowered from p. Similarly, z1 has weight 1 in thedilation so that we would always want to compute the 
ow of X�1 to order p (ororder p�1 given the argument in the �rst paragraph of this section) to preserveterms like zp�11 which may appear in the _zn component of X�i (z).The results of a Mathematica program which implements the algorithm onan example are shown below.Example B.1 Consider the four-dimensional two input driftless control systemwith input vector �eldsX1(x) = @@x1 + x2 @@x2 + (x1 + x2) @@x3 + (x1 + 12x21 + x2) @@x4 (B.17)X2(x) = x1 @@x1 + @@x2 + (x1 + x3) @@x3 + x1 @@x4 : (B.18)The set fX1; X2g is controllable sincerank[X1; X2; ad2X1X2; ad3X1X2](0) = 4:We wish to approximate the set (B.18) by homogeneous degree one vector �elds.Choosing the X�i vector �elds in the algorithm as X�1 = X1; X�2 = X2; X�3 =ad2X1X2; X�4 = ad3X1X2 results in the following approximate systemX11 (y) = 0BB@ 10012y21y2 1CCA X12 (y) = 0BB@ 0112y21 + y1y212y21y2 1CCA :These vector �elds are degree one with respect to the dilationwith scaling powersr = (1; 1; 3; 4). The (local) di�eomorphism between the x- and y-coordinates isx = T � f(y);where T is T (z) = 0BB@ 1 0 0 00 1 1 10 0 0 10 0 �1 4 1CCA0BB@ z1z2z3z4 1CCA ;and f(y) isz1 = y1 120



z2 = �2y21 + 16y31 + y2 � 3y1y2 � 32y21y2 � 3y1y3 � 32y21y3 � 52y23 � 52y2y23� 3y1y4 � 32y21y4 � 5y2y4 � 52y22y4 � 5y3y4 � 5y2y3y4 + 52y24 + 52y2y24z3 = 32y21 � 16y31 + 3y1y2 + 32y21y2 + y3 + 3y1y3 + 32y21y3 + 2y23 + 2y2y23 + 3y1y4 +32y21y4 + 4y2y4 + 2y22y4 + 4y3y4 + 4y2y3y4 � 2y24 � 2y2y24z4 = 12y21 + y1y2 + 12y21y2 + y1y3 + 12y21y3 + 12y23 + 12y2y23 + y4 + y1y4 + 12y21y4+ y2y4 + 12y22y4 + y3y4 + y2y3y4 � 12y24 � 12y2y24 :
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Appendix CStability Proof forThree-Dimensional SystemThere is often a trade-o� between the complexity of a controller derived throughan algorithmic process versus the simplicity of a controller derived throughmore hueristic means. The extension of Pomet's algorithm and the modi�cationof smooth controllers to �-exponential stabilizers yield controllers for whichasymptotic stability is automatic since construction of an appropriate Lyapunovfunction is part of the process. In the �rst case, the controller is determinednumerically in all but some special situations. In the second case, the controlleris a scaled version of an explicit smooth control law except that the scaling mustbe determined numerically. Hence, controllers derived by these methods cannot,in general, be written down explicitly. However a simple explicit control law isoften desirable in real-time applications.This appendix contains a proof of asymptotic stability for the prototypethree-dimensional two input driftless system (3.1) with the following feedback,u1 = � x1 + x3�(x) cos tu2 = � x2 + x23�3(x) sin t�(x) =(x41 + x42 + x23)1=4: (C.1)The system (3.1) is its own nilpotent homogeneous degree one approximationwith respect to the dilation��(x) = (�x1; �x2; �2x3): (C.2)The closed-loop system is degree zero since the feedback functions (C.1) aredegree one with respect to the dilation.122



The feedback (C.1) is a hueristic modi�cation of the smooth feedback,u1 =� x1 + x3 cos tu2 =� x2 + x23 sin t: (C.3)Center manifold analysis proves that this feedback is locally uniformly asymp-totically stabilizing (see the introduction to Section 4.3). The smooth feedbackfunctions may be made degree one by rescaling each term by a power of �(x)in order to make that term degree one. This results in the feedback given byequations (C.1). There is no guarantee that the new feedback is stabilizing.However, we show below that the feedback (C.1) is asymptotically stabilizing.The function,V (t; x) = (x1 � x32 (cos t+ sin t))2 + (x2 � x232 (sin t� cos t) + x23; (C.4)is a Lyapunov function for system (3.1) with feedback (C.3). A numerical calcu-lation will reveal that the time derivative of (C.4) along the closed-loop systemwith (C.1) is inde�nite. However, the \whole" function V is not required. Asin the proof of Theorem 4.12, if we can identify a level set of V which maybe de�ned as the level set of a homogeneous function and the time derivativeof V , evaluated at all points on the level set, is negative then the system isasymptotically stable. Denote the family of level sets of V (t; x) (parametrizedby t) for some constant C as,GCt = fxjV (t; x) = C > 0g:Suppose there exists a C such that the level set GCt , for each �xed t, is transverseto the Euler vector �eld corresponding to the dilation (C.2), XE = x1@=@x1 +x2@=@x2 + 2x3@=@x3. This conditions guarantees that the level sets may bede�ned as the level sets of a homogeneous function (homogeneous with respectto (C.2)). Furthermore, if the time derivative of V evaluated at all (t; x) withx 2 GCt along the closed-loop system with (C.1) is negative, then closed-loopsystem is asymptotically stable. The arguments to show this are essentially theproof of Theorem 4.12.The proof relies on brute force numerical computations. Figure C.1 is a plotof minx2G0:85t LXEV;versus t 2 [0; 2�). The function is always positive so the level sets G0:85t aretransverse to the Euler vector �eld. Figure C.2 plots the function,maxx2G0:85t @V@t + LXV;versus t where X denotes the closed-loop system with feedback (C.1). Thetime derivative of V is negative on the set G0:85t since the function is nega-tive. Thus the closed-loop system is �-exponentially stable with respect to thedilation (C.2). 123
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Figure C.1: Level sets of V (t; x) = 0:85 are transverse to XE .
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Figure C.2: Closed-loop system is asymptotically stable.
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