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Abstract— This paper presents detailed noise analysis of
closed–loop MEMS vibratory gyros whose noise characteristics
are dominated by the mechanical–thermal noise of the sensor’s
vibrating structure as well as the electrical noise associated
with the pickoff signal conditioning electronics in the sense
channel. The mechanical–thermal noise and the electrical noise
are represented as uncorrelated additive wideband disturbances
dominant at the sensor’s input and output, respectively. A
comprehensive spectral density model of the closed–loop rate–
equivalent noise is derived to explain the effects of various
sensor parameters including the resonator quality factor, the
closed–loop bandwidth, and the modal frequency split. Experi-
mental results with a Disk Resonator Gyro (DRG) are presented
to support the analysis.

I. INTRODUCTION

Vibratory rate gyros detect angular rate of rotation by

exploiting two lightly damped Coriolis–coupled modes in

the sensor’s vibrating structure. Tuned, open–loop, vibra-

tory gyros yield the optimum noise performance, however,

the sensor’s bandwidth is limited in devices with high Q

resonators. Thus, closed–loop operation is an effective way

to extend the sensor bandwidth, and our book chapter [4]

provides extensive and detailed derivation of open– and

closed–loop gyro noise spectra with respect to electrical

noise introduced by the pickoff signal conditioning electron-

ics. The present paper extends the analysis of [4] to include

both signal conditioning noise and mechanical–thermal noise

of the resonator. The results are interesting for two reasons.

First, mechanical-thermal noise can often be measured in

vibratory gyros, especially those categorized as “MEMS”

devices, so this noise source should be included in any anal-

ysis. Second, from the perspective of modeling, mechanical–

thermal noise enters into the system in a different location

than the signal conditioning or “electronic” noise and, thus,

cannot be accounted for by simply perturbing the intensity of

the electronic noise. Analysis of the angular rate noise was

performed in [6] considering only mechanical-thermal noise,

however, a complete analysis must necessarily include both

noise sources. Indeed, both noise sources are quite evident

in the open-loop noise spectra associated with Boeing’s Disk

Resonator Gyro (DRG) discussed in Sec. III.

The paper is organized as follows. Section II presents

a detailed spectral density model of the closed–loop rate–

equivalent noise and discusses effects that various sensor
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parameters such as modal quality factor, bandwidth, and

modal frequency detuning, have on the rate–equivalent noise

as well as the angle random walk. Experimental results with

the Boeing DRG are provided in Section III and Section IV

concludes the paper.

II. NOISE ANALYSIS

The fundamental model of a vibratory gyro is two degree–

of–freedom resonator with a Coriolis coupling term modu-

lated by the sensor’s angular velocity. When the equations of

motion are written in the sensor fixed coordinates, denoted

x = [x1,x2]
T where x1 and x2 represent the generalized

coordinates of the resonator, the linear mechanics can be

described by the following two degree–of–freedom model,

Mẍ+Cẋ+αΩSẋ+Kx = f (1)

where f = [ fexc, freb]
T are generalized forces, M, C, and K are

real, positive definite 2–by–2 mass, damping, and stiffness

matrices, respectively. S is a skew–symmetric matrix

S =

[

0 −1

1 0

]

that couples the angular rate of rotation, Ω, between the two

vibratory modes with the coupling strength α . In closed–

loop operation, a feedback loop, called an excitation loop,

establishes a stable oscillation of the x1 degree–of–freedom

and a second feedback loop, called the force–to–rebalance

loop, nulls the x2 degree–of–freedom and rejects the distur-

bance injected by the Coriolis coupling. The angular rate

of rotation is then estimated by demodulating the rebalance

feedback signal with respect to a phase-shifted copy of the

excitation signal. Measurement of x1 is call the “drive”

signal, and measurement of x2 is called the “sense” signal.

Noise in the demodulated signals, whether running the sensor

open– or closed–loop, limits the accuracy of the estimated

angular rotation rate. For the noise analysis in this paper, the

following assumptions are made,

1) The open-loop dynamics of the sensor can be viewed

as a 2-input/2-output system, i.e. from f to x. Cross–

channel coupling between the excitation and sense

channels is ignored since the cross–channel peak gain

is typically a few orders of magnitude smaller than the

diagonal term when the sensor is effectively decoupled.

Furthermore, cross–channel coupling is more related

to longer–term trends in the zero–rate rate bias that is

not correlated with the noise. Thus, the x/ f transfer
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Fig. 1. Block diagram of closed–loop sense channel. Also shown is the demodulation which produces the estimated rate, denoted Ωest . The excitation
control loop (not shown here) establishes x1 (t) = acos(ω0t) [m]. The force–to–rebalance loop nulls the measurement of the x2 degree–of–freedom whether
produced by an angular rate “disturbance” (labeled Ω) or the noise sources (labeled as nd2

and ns2
). The fundamental sensor mechanics of the rebalance

channel is denoted H and the input and output signal conditioning dynamics are represented as simple conversion constants, Kd2
and Ks2

, respectively. The
rebalance control element is also represented as a simple constant Kreb for the noise analysis. The input noise, nd2

, whose intensity is ν [V/rt-Hz] represents
the voltage-equivalent mechanical–thermal noise, and the output noise, ns2

, whose intensity is µ [V/rt-Hz] represents the electrical noise associated with
the pickoff electronics. The estimated angular rate, denoted Ωest , is determined by demodulating d2 with respect to a phase-shifted copy of s1. Ks1

is the
conversion constant associated with the output signal conditioning dynamics in the excitation channel and φ , “LPF”, and γs f denote the phase shift, Low
Pass Filter, and scale factor, respectively.

function is assumed to be essentially diagonal. The

x1/ fexc diagonal term is called the drive channel and

x2/ freb transfer function is called the sense channel.

The drive and sense channel transfer function mag-

nitudes are much larger than the x1/ freb and x2/ fexc

transfer function magnitudes under our assumption.

2) The excitation feedback loop perfectly regulates the x1

degree–of–freedom to a constant amplitude sinusoidal

response x1 (t) = acos(ω0t), where a is the amplitude

and ω0 is the excitation frequency. The excitation

frequency, which is primarily dictated by the drive

channel transfer function, may be different from the

modal frequency associated with the sense channel, i.e.

the dominant mode in x2/ freb. Due to the relatively

large amplitude and stability of x1, the noise contribu-

tion of this excitation signal to the demodulated signal

is ignored and only the noise associated with the sense

channel signal is considered in the analysis.

3) Signal conditioning noise is represented as an additive

wideband disturbance at the sense channel output. For

sensors like the DRG, in which a transresistance am-

plifier is used to provide the buffering of the electrode

charge into a low impedance voltage, the electrical

noise is dominated by the Johnson noise [3] of the

feedback resistor across the op amp. The square root

spectral density of this source is given by
√

4kBT R [V/rt-Hz]

where kB is Boltzmann’s constant, T is the absolute

temperature in Kelvin, and R is resistor’s value in

ohms. We use µ , expressed in V/rt-Hz, to represent

this constant spectral density.

4) The spectral density of mechanical–thermal noise [2]

is given by
√

4kBT c [N/rt-Hz]

where c is the mechanical–resistance or damping as-

sociated with the sense channel mode, expressed in

N/m/s. This noise source can be viewed as a distur-

bance force located at the input to the resonator. Due

to the difficulty in predicting the damping in MEM

resonators, though, an empirical approach is adopted in

which the mechanical-thermal noise is represented as

a wideband, flat spectrum, disturbance voltage located

at the input of the measured sense channel’s transfer

function. The spectral density is denoted ν and is

expressed in V/rt-Hz. In practice, ν is calculated by

selecting its value so that |Hg|ν matches the measured

open-loop noise spectrum of the sense channel in a

neighborhood of the sense channel modal frequency

(see Fig. 1 for notation).

5) Our final assumption is that the input signal condition-

ing dynamics can be treated as simple noiseless conver-

sion constant. The output signal conditioning dynamics

contribute the Johnson noise mentioned above.

Fig. 1 shows the block diagram corresponding to the closed–

loop sense channel with the aforementioned assumptions. If

m, c, and k are the modal mass, damping, and stiffness

parameters associated with H in Fig. 1, then the sense

channel transfer function including the input and output

dynamics (the gains Ks2
and Kd2

), denoted Hg, is given by

Hg (s) =
Ks2

Kd2

m

s

s2 +2σs+ω2
n

(2)

93



where ωn =
√

k/m is the undamped natural frequency and

σ = c/(2m) = ωn/(2Q) is the resonator’s mechanical band-

width with the modal quality factor Q. The peak gain of (2)

at ω = ωn is defined as

h =
∣

∣Hg ( jωn)
∣

∣=
Ks2

Kd2

2σm
.

Before analyzing the rate–equivalent noise of the estimated

rate signal, it is useful to consider the noise associated with

the rebalance loop feedback signal, d2. The overall noise

density of d2 prior to demodulation, denoted Sd2
, is computed

to be

Sd2
(ω) =

∣

∣

∣

∣

Kreb

1+KrebHg ( jω)

∣

∣

∣

∣

×
√

µ2 + |Hg ( jω) |2ν2

[V/rt-Hz]. (3)

This spectrum displays a deep notch, whose minimum is

located at ωn, when the resonator quality factor is high.

The rate–equivalent noise is determined by demodulating

the noise spectrum of d2 with the phase-shifted copy of s1

and then normalizing by the scale factor. Note that in this

treatment, where the dynamics of input and output buffers

have been ignored, the ideal demodulation phase φ is zero.

As an intermediate step we scale the spectral density (3) by

the s1 amplitude and normalize by the scale factor to produce

Ks1
aω0

γs f (ω0)
Sd2

(ω) =
4σm

Ks2
αaω0

×

√

√

√

√

(

ω2
n−ω2

0
2ω0

)2

+σ2
cl p

σ2

×

√

√

√

√

√

√

(

ω2
n−ω2

2ω

)2

µ2 +σ2
(

µ2 +h2ν2
)

(

ω2
n−ω2

2ω

)2

+σ2
cl p

(4)

where the unit of this spectral density is deg/hr/rt–Hz.

The closed–loop scale factor, denoted γs f , is derived to be

(see [4])

1/γs f (ω0) =
4m

αKs1
a2ω2

0 Ks2
Kreb

√

(

ω2
n −ω2

0

2ω0

)2

+σ2
cl p

where σcl p is the closed–loop bandwidth,

σcl p = σ +Kreb

Ks2
Kd2

2m
.

The closed-loop bandwidth is adjusted by the rebalance loop

controller gain Kreb. Expression (4) is useful because it

expresses the spectral density of the sense channel noise with

units of angular rotation rate. Furthermore, the scale factor

is well approximated by

1/γs f (ω0)≈
2Kd2

Ks1
αa2ω2

0

assuming σcl p >> σ , i.e. the closed–loop bandwidth is

larger than the open–loop bandwidth, and σcl p > |ω0 −ωn|,
i.e. the closed-loop bandwidth is larger than the detuning

frequency ∆ := |ω0 − ωn|. Both of these assumptions are

quite reasonable in practice because the whole point of

using feedback around the sense channel is to achieve a

larger bandwidth than that provided by the open–loop sensor

dynamics, and the detuning frequency is typically small

relative to the σcl p because in “tuned” sensors the objective

is to make ∆ ≈ 0. With regard to the latter condition, high

performance vibratory gyros typically require ∆ < 1 Hz,

which is at least an order of magnitude smaller than σcl p.

Under these two conditions (4) is essentially independent of

ω0 and its minimum value is achieved at frequency ω = ωn

and is given by

4σm

Ks2
αaωn

√

µ2 +h2ν2. (5)

In other words, (5) is the value of (4), expressed in deg/hr/rt–

Hz, at deepest part of the notch (see Fig. 6(a)).

The noise spectrum of the estimated angular rate is ob-

tained by demodulating (4) with a unit amplitude sinusoid at

ω0. The low-pass filter, shown as the “LPF” block in Fig. 1,

limits the bandwidth of the demodulated signal. The equiva-

lent effect of the low-pass filter on the spectral density (4) is

to filter this spectrum with a bandpass filter possessing twice

the low-pass filter bandwidth and with center frequency at

ω0. Because ω0 is typically at least an order of magnitude

larger than the low-pass filter bandwidth, the filtered spec-

trum can be treated as a narrowband or quasimonochromatic

process. The demodulated signal’s spectrum is then a simple

function of the narrowband spectrum (see [7]),

SΩ (ω) =

Ks1
aω0√

2γs f (ω0)

√

S2
d2
(ω0 +ω)+S2

d2
(ω0 −ω) [deg/hr/rt–Hz]

(6)

where it is understood that the frequency variable ω is

constrained from DC to the bandwidth of the low-pass filter.

A further simplification can be made using the fact that ω0

is at least an order of magnitude larger than the low-pass

filter bandwidth,

SΩ (ω)≈ 4σmµ

Ks2
αaω0

√

∆
2 +σ2

cl p

σ2

×

√

√

√

√

√

(

∆
2 +ω2 +σ2

cl p

)(

∆
2 +ω2 +σ2

e f f

)

− (2∆ω)2

[

(∆−ω)2 +σ2
cl p

][

(∆+ω)2 +σ2
cl p

] (7)

where the effective bandwidth, denoted σe f f , is defined as

σe f f = σ

√

1+h2
ν2

µ2
. (8)

In the case when ω0 =ωn, i.e. the demodulation frequency

coincides with the notch in (4), the spectral density of the

closed–loop rate–equivalent noise reduces to

SΩ (ω) =
4σmµ

Ks2
αaωn

· σcl p

σ

√

√

√

√

ω2 +σ2
e f f

ω2 +σ2
cl p

(9)
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(a) ν = 0,µ 6= 0,∆ = 0Hz
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(b) ν 6= 0,µ = 0,∆ = 0Hz
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(c) ν 6= 0,µ 6= 0,∆ = 0Hz (black, solid), ∆ = 1Hz (green, dotted)

Fig. 2. (Left) Noise scaling for open–loop (dashed) and closed–loop rate–
equivalent noise (solid) prior to demodulation. (Right) Noise scaling for
post–demodulated closed–loop rate–equivalent noise with σcl p = 10Hz. The
model’s mechanical bandwidth is 0.15Hz with ωn = 15kHz and Q = 50K.

This spectral density possesses a high–pass filter charac-

teristic as long as the closed–loop bandwidth is larger

than the effective bandwidth, i.e., σcl p > σe f f . The low

frequency asymptote, (9) evaluated at ω = 0, matches the

lowest rate–equivalent noise density of the signal prior to

demodulation (5). The flat, low-frequency noise density,

indeed, corresponds to the angle random walk (ARW) of

the angle estimate [4], which is invariant with respect to

the closed–loop bandwidth. When the noise is dominated

by electrical noise, e.g., µ 6= 0 and ν = 0, the ARW is

inversely proportional to the modal quality factor Q, whereas

the ARW only reduces in proportion to
√

Q if mechanical–

thermal noise dominates, e.g., µ = 0 and ν 6= 0. Detuning has

a detrimental effect on the rate–equivalent noise by raising

the low frequency noise floor thereby degrading the sensor’s

ARW figure. When ∆ < σcl p, i.e. the degree of detuning is

less than the closed–loop bandwidth, the ARW is given by

4σm

Ks2
αaωn

√

(

∆
2

σ2
+1

)(

µ2 +
σ2

σ2 +∆2
h2ν2

)

, (10)

which is always larger than (5). Fig. 2 illustrates the individ-

ual and combined contributions of electrical and mechanical–

thermal noise to the rate–equivalent noise prior to demodu-

lation as well as post–demodulation by plotting the noise

scaling for different cases. The noise scaling is defined as

the noise density normalized by the reference case that is

corresponding to the tuned open–loop case with ν = 0 (noise

density of s2 in the absence of feedback signal, d2 = 0). The

reference case is one for all frequencies and plotted as a

dashed line in 2(a). When both electrical and mechanical–

thermal noise are present in 2(c), the open–loop noise scaling

prior to demodulation shows a flat spectrum with a peak at

the resonant frequency and the deep notch of the closed–loop

noise at the resonant frequency coincides with the peak as

expected. The low frequency floor of the post–demodulated

closed–loop noise scaling also matches the peak. For a 1Hz

detuned case in 2(c), the raised low frequency floor of the

post–demodulated closed–loop noise scaling well matches

the dot marked 1Hz away from the resonant frequency on

the closed–loop noise scaling prior to demodulation.

III. EXPERIMENTAL RESULTS

Boeing’s Disk Resonator Gyro (DRG) is a high–

performance MEMS vibratory gyro whose vibrating structure

has an 8mm diameter disc–shaped resonator that is composed

of a number of thin concentric rings connected by spokes.

The central post of the resonator is rigidly attached to

the baseplate so that the rings are free to vibrate in the

plane of the resonator and electrodes fixed to the baseplate

are embedded in the gaps between the rings for electrical

actuating, sensing, and biasing. A buffered input voltage

applied to an actuating or driving electrode generates a

radial electrostatic force to excite the resonator and a sensing

electrode employing a transresistance amplifier converts the

subsequent in–plane vibration into a buffered output voltage

that is proportional to a radial velocity of the ring. The

sensing and driving electrodes are configured in pairs so as to

exploit the resonator’s fundamental Coriolis–coupled modes.

More details on the DRG may be found in [8].

The ideal sensor is designed to operate in a degenerate

condition in which two Coriolis–coupled modes have equal

resonant frequencies, however, a modal frequency split in

the “native” resonator is unavoidable due to manufacturing

imperfections and process variations. For example, Fig. 3

shows empirical frequency response magnitudes of the two–

input/two–output open–loop sensor dynamics in a neighbor-

hood of the Coriolis–coupled modes for both the native

sensor dynamics and the “tuned” sensor dynamics. The

biasing electrodes are crucial in tuning the sensor dynamics

by providing constant potentials between the resonator and
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Fig. 3. Empirical frequency response of the DRG. Two–input/two–output
magnitude plots of the DRG in its “untuned” native state (black, thin) when
all the tuning bias potentials are equal to the resonator bias suggest that the
modal frequency split is 8.6Hz. The peak gains of diagonal channels are
different since the output signal conditioning dynamics’ gains are optimized
for each loop. When the sensor is electrostatically tuned (red, thick), only
a single peak is evident in each channel and cross–channel couplings are
significantly reduced. Note that the inputs (d1,d2) and outputs (s1,s2) are
in volts and only the magnitudes are plotted to keep the figures uncluttered.
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Fig. 4. Empirical frequency response of the DRG. Two–input/two–output
magnitude plots of the DRG when the sensor dynamics are detuned by 1Hz
(green, thick) and 5Hz (blue, thin) to demonstrate the effect of detuning on
the rate–equivalent noise. The modes are still decoupled even though they
are detuned.

the electrodes which electrostatically modifying the sensor’s

stiffness to yield degenerate modal frequencies. The electro-

static tuning algorithm based on parametric model estimation

reported in [5] is quite effective in tuning and decoupling the

sensor dynamics or even detuning the sensor dynamics to a

targeted split while maintaining decoupling. The empirical

frequency response magnitudes of the tuned sensor in Fig. 3

exhibit lower modal frequencies than the native modal fre-

13.869 13.874 13.879 13.884 13.889
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µ
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rm
s
/r
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H

z

Fig. 5. Measured open-loop voltage spectrum of the sense channel noise
(red) and the model fit to the data (black). The flat portion of the spectrum
is caused by thermal noise in the buffer amplifier resistor and yields µ =
11× 10−6 Vrms/rt-Hz. The sharp spike is mechanical–thermal noise in the
resonator and yields ν = 0.93×10−6 Vrms/rt-Hz. Computing ν requires the
frequency response data in Fig. 3

quencies because electrostatic biasing introduces a softening

spring effect. Fig. 4 shows two cases of detuned sensor

dynamics with target splits of ∆ = 1Hz and ∆ = 5Hz. These

cases will be used to demonstrate the effect of detuning on

the angular rate noise spectrum.

The decoupled sensor dynamics, whether tuned or de-

tuned, means the off–diagonal channels can be ignored in the

noise analysis and feedback compensators can be indepen-

dently synthesized for each diagonal channel. For the DRG,

a nonlinear automatic gain control (AGC) is implemented for

the excitation loop to maintain a stable harmonic oscillation

of the s1 signal. The oscillation frequency, which is the

demodulation frequency, is equal to the modal frequency in

the “s1/d1” channel in Fig. 3. This frequency was denoted

ω0 in the previous analysis. A high gain feedback filter is

used for the rebalance channel to regulate s2. The modal

frequency of the “s2/d2” channel in Fig. 3 was denoted ωn

in the previous analysis. The reader is referred to [1] for a

detailed analysis on the controller design. A PC-based DSP

board is used for the real–time filter implementation as well

as the signal processing for the angular rate estimation. These

details are secondary to the objectives of this paper and are

not presented.

The noise analysis requires the open–loop spectral density

of the sense channel noise (shown in Fig. 5) and the transfer

function of the sense channel. The noise spectrum yields

µ = 11×10−6 Vrms/rt-Hz,

ν = 0.93×10−6 Vrms/rt-Hz

ωn = 13879Hz

σ = 0.10Hz

The transfer function is obtained by fitting a model to the
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Fig. 6. (Left) Rate–equivalent noise densities of open–loop (red) and closed–loop (cyan) sense channel prior to demodulation. Model predictions are
plotted with solid and dashed traces for open–loop and closed–loop cases, respectively. (Right) The closed–loop rate–equivalent noise densities of the
estimated angular rate when the sensor is tuned (red), detuned by 1Hz (green), and detuned by 5Hz (blue). For each case, the low frequency noise floor
is very close to the value marked by its corresponding circle in (a). Model predictions are plotted with solid, dotted, and dashed traces for tuned, 1Hz
detuned, and 5Hz detuned cases, respectively.

“s2/d2” data associated with the tuned case in Fig. 3. This

model is given by

Hg(s) =
54.1s

s2 +2(2π ×0.1035)s+(2π ×13879)2
(11)

Scaling the open–loop voltage spectrum by the demodu-

lation amplitude and DRG scale factor (both are empirically

determined) yields the open–loop rate–equivalent spectral

density as well as the closed–loop rate–equivalent spectral

density that is given by (4). For the closed–loop case, Kreb =
7 yields σcl p = 30Hz. These spectra are shown in Fig. 6(a).

Small perturbations to ω0 do not change these spectra, while

small perturbations to ωn only shift the frequency where

the spike/notch occurs. Fig. 6(b) shows the corresponding

closed–loop rate–equivalent noise densities of the angular

rate estimate (post-demodulation) for the cases when ∆ =
{0,1,5}Hz (from Figs. 3 and 4). The important parameter

is ∆, which determines the demodulation frequency relative

to the notch in Fig. 6(a). When ∆ = 0 the demodulation

frequency coincides with the deepest part of the notch in

Fig. 6(a) –this imparts the lowest possible noise floor in the

angular rate spectrum at low frequencies. If the sensor modes

are detuned, however, the demodulation frequency moves to

a part of the spectrum in Fig. 6(a) where the spectral density

has a higher value thereby producing a higher noise floor

in the angular rate spectrum. These trends are evident in

Fig. 6(b). Note that these figures also show the prediction of

the model based on the values of µ , ν , Hg, Kreb and ∆. The

model agreement with the data is extremely good.

IV. CONCLUSIONS

We have presented a comprehensive spectral density model

of the closed–loop rate–equivalent noise for vibratory rate

gyro whose dominant noise sources are pick–off noise and

mechanical–thermal noise in the sense channel. The spectral

density approach is very useful in explaining the effects of

sensor parameters on the angular rate noise spectrum. This

paper focused on modal detuning, however, perturbations to

the resonator quality factor and closed-loop bandwidth can

also be explored with this noise model. Details of the impact

of the sigmoid-shaped angular rate noise spectrum on the

integrated angular rate noise spectrum, especially with regard

to the sensor’s angle random walk figure, will be reported in

future papers.
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