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This paper describes an approach to periodic reference tracking in a pulsed-jet-injection experimental study. The

objective was to match the jet’s temporal velocity profile to a periodic reference. The challenge lies in controlling the

highly nonlinear and poorly understood dynamics associated with the jet velocity. Although the actuator maintains

good authority over the jet velocity, the nonlinear jet dynamics creates a high degree of coupling among neighboring

harmonics that depends on the forcing level and the desired waveform. The coupling is quantified by demodulating

the jet-velocity measurement into baseband components centered at the harmonic frequencies represented in the

desired waveform. An empirical input–output relationship is developed by perturbing the baseband components

and measuring their effect on neighboring harmonics, and it is shown that this relationship can be modeled as a

linear multi-input/multi-output system. This knowledge is exploited to create stabilizing feedback controls that

asymptotically drive the jet velocity to the desired waveforms over a wide range of forcing conditions.

Nomenclature

ak, bk = Fourier coefficients of desired waveform
~Cp = pressure-loop controller, demodulated coordinates
~Cv = velocity-loop controller, demodulated coordinates
~ev = velocity tracking error, demodulated coordinates
gp, gv = pressure- and velocity-loop scalar gains
H = Laplace transform of h
~H = H with quadrature input columns removed
Hlp = single-input/single-output low-pass filter

following demodulation blocks
H�0� = dc component of H
h = matrix impulse response from δp to δv
j =

������
−1
p

Kv = velocity-controller-gain matrix
Lp = scalar loop gain of pressure-feedback loop
ne = number of samples used for identifying H�0�
nh = number of modulation/demodulation blocks

(number of controlled harmonics)
np = number of operating points used in

controller synthesis
~Pp = demodulated plant with pressure output
~Pv = demodulated plant with velocity output
Pd, Px = scalar transfer functions associated with ~Pp
Rm×n = m × n matrices with real elements
Rk, Ik = pressure-controller compensation constants

at frequency kω0

~rp = pressure reference
�rp = constant portion of pressure reference
�rv = constant portion of velocity reference
t = time
ts = sample period
~u = input vector for demodulated plants ~Pp and ~Pv
uin, u

q
n = in-phase and quadrature elements of ~u

Vrms = velocity rms amplitude
x = state vector of h
xv = velocity-controller-state vector

yp, yv = pressure and velocity outputs, scalar valued
~yp, ~yv = demodulated pressure and velocity signals,

vector valued
yip;k, y

q
p;k = in-phase and quadrature components of ~yp at

frequency kω0, scalar valued
yref = velocity-reference waveform, scalar valued
�yv = mean value of ~yv
yiv;n, y

q
v;n = in-phase and quadrature components

of ~yv at frequency kω0, scalar valued
α = maximum-singular-value limit for Kv
βk = constraint matrices in controller synthesis
γ = generalized eigenvalue
γ� = minimum achievable generalized eigenvalue
Δp, Δv = vector-valued time series of δp and δv for

identification of H�0�
δp = perturbation summed with pressure reference �rp
δv = time-varying portion of ~yv
δiv;k∕δip;l = transfer function relating the in-phase

components of lth input channel and
kth output channel of H

λcl = closed-loop eigenvalues
�σ�·� = maximum singular value
ωc = Hlp corner frequency
ω0 = fundamental frequency of yref
j · j = absolute value
k · k2 = Euclidean norm
�·�T = matrix transpose

I. Introduction

U NDERSTANDING the dynamics of jets injected into quiescent
surroundings or into crossflows is a fundamental problem with

application to awide range of engineering systems, particularly those
for propulsion and energy generation [1,2]. Transverse jets appear in
airbreathing turbine engines as dilution air jets, which reduce the
temperature pattern factor downstream of combustion, and for
turbine-blade cooling, in which air injected from the leading edge
insulates the turbine blade from the hot surrounding combustion
gases. The active control of jet injection has been shown to improve
the important characteristics of each flowfield such as spread and
penetration of the jet into the crossflow for dilution jet injection [3]
and boundary-layer attachment at low turbine inlet Reynolds
numbers for turbine-blade cooling [4]. The control of the jet in the
crossflow is typically accomplished through temporal excitation of
the jet fluid using flow-rate modulation or acoustic forcing [5–8].
The excitation is periodic, usually with the goal of forming either
sinusoidal or pulselike jet-velocity profiles. Pulsed jets have been
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noted to form strong vortex rings that penetrate greatly into the
crossflow, leading to enhanced mixing [9].
Feedback control is required to shape the jet velocity because

open-loop methods are subject to errors as a result of flow
disturbances and uncertainty associated with the system dynamics
[7,8]. The field of repetitive control, which addresses the asymptotic
disturbance rejection and reference tracking of periodic signals,
provides a framework for pulsed-jet reference tracking. All forms of
repetitive control are based on the internal model principle, which
requires a model of the disturbance or reference to be included in the
feedback loop for perfect rejection or tracking [10]. Systems based on
repetitive control commonly use a time delay in the feedback loop to
place an infinite number of poles on the imaginary axis at the
fundamental frequency and harmonics of the periodic disturbance or
reference [11–13]. In practice, the plant has finite bandwidth and the
controller is implemented with a digital signal processor; therefore,
only a finite number of internal models can be created for asymptotic
tracking. In this case, modulated–demodulated control can be used
as an alternative to time-delay repetitive control [14,15]. The
modulated–demodulated control, also referred to as adaptive
feedforward control or adaptive feedforward cancellation [16,17],
demodulates the spectrum of a wideband signal into a family of
baseband signals, operates at baseband, and then modulates the
baseband spectra back to higher frequency.
The plant represents the dynamic system from the actuator

command to the hot-wire-anemometer measurement taken at the jet
exit, and “baseband” refers to a narrow frequency band, typically 10–
50 Hz, centered at 0 Hz that represents the jet-velocity behavior in a
neighborhood of each of the demodulation frequencies. The periodic
jet-velocity waveforms at amplitudes exceeding 0.5 ms−1 rms
exhibit nontrivial coupling among the harmonics that can destabilize
the closed-loop system employing a controller designed for more
moderate forcing amplitudes. The authors’ past research addressed
lower-amplitude forcing, in which linear models of the jet velocity
were adequate for control design [18]. Research works on pulsed
jets using primarily open-loop control schemes are presented in
[5–8]. In the present study, we show that identification of the plant
dynamics in the baseband coordinate system provides key insight
into the nonlinearity that couples adjacent frequency bins under
strong forcing conditions. The baseband coordinates also provide a
convenient framework for compensating the harmonic coupling.
In fact, the nonlinear coupling can be modeled in the baseband
coordinates as a multi-input/multi-output (MIMO) constant gain.
This control strategy achieves asymptotic tracking of the desired jet-
velocity waveform within the bandwidth of the actuation system. An
inner equalizing control loop that feeds back the plenum-pressure
measurement is also employed to equalize the magnitude of the jet-
velocity response and to reduce the condition number of the jet-
velocity gain matrix. The identification and control strategy detailed
here provides a framework to explore how precise jet-velocity
waveforms improve mixedness, penetration, and spread compared to
open-loop control schemes; however, these studies are not yet
complete, and will be reported elsewhere.

II. Pulsed-Jet Experiment

A. Actuation System

A schematic of the experimental pulsed-jet-injection apparatus is
shown in Fig. 1. Compressed air, regulated to maintain a constant
mean jet velocity of 8 ms−1, flows into a plenum, and then through a
smoothly contracted nozzle into quiescent surroundings. The nozzle
is brought to an approximately 4 mm exit diameter by a fifth-order
polynomial contraction, resulting in a nearly top-hat spatial velocity
profile with a measured scaled moment thicknessD∕θ � 26. The jet
Reynolds number, based on the mean jet velocity, is held constant at
2000. The jet velocity is perturbed about its 8 ms−1 mean value by a
lightweight piston positioned at the bottom of the plenum. The piston
is driven in-linewith the jet by amodal shaker (LingElectronics LVS-
100). The shaker voice-coil current is proportional to the shaker
amplifier-input signal, the latter being the plant input. The jet velocity
is measured using a hot-wire anemometer (Dantec 54T30) placed in

the center of the jet at the nozzle exit. Additionally, the apparatus
is equipped with a microphone (PCB Piezotronics 378C01) that
measures the pressure at the top of the plenum. Controllers are
implemented in MATLAB’s xPC Target application with a 25 kHz
sampling rate [19]. Eight-pole, low-pass Chebyshev filters with
10 kHz corner frequencies are used as antialias filters for filtering the
microphone and hot-wire signals before sampling. The entire system
can be placed beneath a wind tunnel with the nozzle-exit flush with
the test-section floor if a crossflow is desired. An industrial blower
driven by an adjustable-speed electric motor introduces the crossflow,
and several screens and a honeycomb flow-straightener section
condition the crossflow before entering the test section, which is
12 × 12 cm in cross section and 30 cm in length. This apparatus has
been employed in a wide range of unforced [20,21] and forced
experimental studies [6–8,18,22], in which the jet-to-crossflow
velocity ratio varies between 1.15 and 10, and the jet-to-crossflow
density ratio varies between 0.14 (pure helium) and 1.00 (pure air). In
the present study, the control technique is demonstrated without a
crossflow.

B. Motivation: Nonlinear Coupling Between Harmonics

Linear models of the pulsed jet can be developed from data
generated with low-amplitude test inputs. Controllers developed
using the models are then adequate for low-amplitude reference
tracking [18,22]. At forcing amplitudes exceeding 0.5 ms−1 rms
though, the nonlinear response of the velocity measurement (the
regulated variable) can destabilize the closed-loop system. The
desired velocity perturbation is periodic, and so the nonlinear
response can be studied from the point of view of coupling among
harmonics in the periodic waveform. Themagnitude and character of
the harmonic coupling are dependent upon the desired velocity
reference and the rms forcing level.
In general, the nonlinear dynamics alter the estimated velocity

frequency response according to the system’s particular identi-
fication input. For example, the velocity frequency response, shown
in Fig. 2, is measured using band-limited white-noise inputs with
amplitudes set to perturb the jet velocity by 0.15 ms−1 rms (solid line)
and 0.80 ms−1 rms (dashed line). The frequency response is
determined by averaging the cross spectra of the input–output data,
and then normalizing by the input power spectrum [23]. It is evident
that the frequency response derived from the casewith harder forcing
deviates from the low-amplitude frequency response. Additionally,
the jet-velocity coherence, shown in Fig. 3, decreaseswith the higher-
amplitude forcing compared to the nominal case. The coherence is
reduced because a greater portion of the velocity output is determined
by nonlinear dynamics at higher forcing amplitudes. In contrast, the
frequency responses with the pressure measurement are nearly
identical for both test amplitudes and, furthermore, Fig. 3 shows the
pressure coherence increases with harder forcing (the expected
response of a linear plant with an additive fixed disturbance/noise
spectrum).
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Fig. 1 Pulsed-jet injection experimental setup.
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The jet response to dual-tone forcing clearly demonstrates jet-
velocity nonlinearity and the difficulty it presents for periodic
reference tracking. Figure 4 shows the velocity spectra in response to
dual-tone forcing at 1800 and 1900 Hz with an amplitude that
perturbs the jet velocity byVrms � 0.50 ms−1. The inputs at 1800 and
1900Hz produce strong super- and subharmonics occuring at integer
multiples of 100 Hz, which is the difference between the two input
tones. The figure also shows the pressure spectrum in response to the
same dual-tone input — the pressure measurement is dominated by
tones at 1800 and 1900 Hz, which supports the hypothesis that the
pressure responds in an essentially linear manner to the input.
The harmonics generated under periodic forcing make it difficult

to determine the open-loop forcing conditionswhichwill produce the
desired periodic velocity waveform. This motivates using hot-wire
feedback; however, the controllers must explicitly account for the
coupling between harmonics. This paper introduces an approach for
identifying the coupling and a feedback-compensation strategy that
permits asymptotic tracking of the reference waveform for very large
perturbations relative to the mean velocity.

III. Identification of Harmonic Coupling

The frequency responses in Fig. 2 show that the magnitudes roll
off after a plenum mode near 1.8 kHz. This limits the actuation
bandwidth to approximately 2.0 kHz. As such, we specify the
periodic reference to be truncated at or below 2.0 kHz to avoid
saturation of the actuator amplifier. Throughout this paper, the
reference waveforms have a fundamental frequency ω0 � 100 Hz,
and so modulation/demodulation is centered in narrow bands
around the frequencies kω0, k � 1; 2; : : : ; nh, within the actuation
bandwidth. The integer nh denotes the number of frequency bands,
and in this study, nh � 20. Although the disturbance spectrum will
only be attenuated in a neighborhood of each harmonic, the primary

reason for using hot-wire-anemometer feedback to shape the jet
velocity is the uncertainty associatedwith the plant dynamics. It is not
possible to identify a plant model of sufficiently high fidelity that its
inverse provides the correct open-loop forcing conditions; thus,
feedback is used to force the jet velocity to asymptotically track the
periodic reference within the actuator bandwidth, even in the
presence of the significant coupling noted in Fig. 4.
The physical mechanisms causing the nonlinear harmonic coupl-

ing are not well understood; however, empirical models can
be identified that are quite suitable for synthesizing stabilizing
controllers. We identify models which characterize the harmonic
coupling in a neighborhood of a particular periodic jet-velocity
operating point that is close to the desired periodic waveform. As the
character of the harmonic coupling depends upon the reference
waveform, multiple models must be identified for controller
synthesis when tracking references at operating points that are
sufficiently far from one another.

A. Modulated–Demodulated Control

At a given operating point, the main challenge in modeling the
system is quantifying the nonlinear coupling that occurs between the
nh frequency bins of the hot-wire signal and the nh frequency bins of
the input signal. The identification is facilitated by shifting the
spectrum of the plant’s input and output in the neighborhood of each
harmonic to baseband via modulation and demodulation. Figure 5
shows the block diagrams of both of these processes. Themodulation
block has 2nh baseband inputs, the low-bandwidth in-phase and
quadrature signals, denoted uik�t� and uqk�t� (k � 1; 2; : : : ; nh).
These scalar signals are assembled into the vector ~u and ordered
according to Fig. 5. The baseband inputs are modulated by cosines
and sines at nh harmonics of the periodic reference, and summed
to form the wideband control effort u. The demodulation block
demodulates thewideband signal ywith cosines and sines at the same
frequencies. The demodulated signals are low-pass filtered byHlp to
form the low-bandwidth in-phase and quadrature signals yik�t� and
yqk�t� (n � 1; 2; : : : ; nh). These signals are assembled into the vector
~y. In the sequel, subscripts on the vectors or their elements denote
the associated measurement. The variable v denotes the velocity
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measurement from the hot-wire anemometer, and p denotes the
pressure measurement from the microphone. The low-pass-filter
corner frequency is chosen ωc < ω0∕2 because this prevents any
direct overlap of, and interaction between, adjacent frequency
channels as a consequence of the signal processing. Coupling is
present, however, due to the dynamics of the jet.
The modulation and demodulation blocks transform the pressure

and velocity plants into 2nh-input/2nh-output systems as shown in
Fig. 6 for the pressure plant. The systems from ~u to ~yp and from ~u to
~yv are denoted ~Pp, the pressure plant, and ~Pv, the velocity plant,
respectively. Note that, because Pp is well modeled as a linear
system, ~Pp is block diagonal in the sense that all transfer functions
relating the input–output pairs for differing frequencies are
essentially zero and can be neglected in the analysis [18]. Nonzero
transfer functions relating the input–output pairs at the same
frequency are arranged in 2 × 2 blocks on the diagonal of ~Pp.
Provided

jHlp�jω�j ≈ 0 for ω > ωc

the kth 2 × 2 block on the diagonal can be represented by a two-input/
two-output linear time-invariant system with the transfer function
possessing the following structure:

P
∼
p;k�s� �

�
Pd�s� Px�s�
−Px�s� Pd�s�

�
; k � 1; : : : ; nh (1)

in which the scalar transfer functions are

Pd�s� �
1

2
Hlp�s��Pp�s� jkω0� � Pp�s − jkω0��

Px�s� �
j

2
Hlp�s��Pp�s� jkω0� � Pp�s − jkω0��

In other words, in modulated–demodulated coordinates, the transfer
function with the pressure-measurement output is

~Pp �

2
666664

~Pp;1 0 : : : 0

0 ~Pp;2
..
.

..

. . .
.

0

0 : : : 0 ~Pp;nh

3
777775

(2)

In contrast, ~Pv is nonlinear and dependent upon the operating
point. We will demonstrate, however, that in a neighborhood of an
operating point, ~Pv can be modeled as an affine function of the
input. The transformation to baseband coordinates permits the
characterization of the nonlinear harmonic-coupling phenomenon in
a linear framework, which simplifies identification and control.

B. Inner Loop with Pressure Feedback

The pressure signal is essentially independent of the operating
point, and it is convenient to close an inner loop using this
measurement for two reasons. First, a stable operating condition
can be established by specifying the reference values for the
demodulated-pressure signal components. The pressure-reference
values can be chosen to produce the jet-velocity components that are
close to the desired periodic jet-velocity components. Indeed, if the
pressure references could be chosen to exactly produce the desired jet
velocity, then feedback of the hot-wire-anemometer signal would not
be necessary; however, due to imprecise knowledge of the jet-
velocity plant, it is not possible to choose the references in an open-
loop manner so as to produce the desired jet-velocity waveform.
Nevertheless, the operating point created using the plenum-pressure
feedback provides a useful steady-state periodic velocity signal,
which is close to the desired waveform and about which a small-
signal model of the jet velocity can be developed. The second reason
for using an inner pressure-feedback loop is the equalizing effect it
has on the demodulated components of the jet velocity relative to the
pressure-reference values. The equalization is useful because it vastly
reduces the condition number of the empirically derived map from
the pressure reference to the demodulated components of the jet
velocity. The reduced condition number makes the control schemes
described in Sec. IV more robust to errors in the identified model
when the hot-wire measurement is used for feedback.
The inner loop is closed around Pp using the modulated–

demodulated control method described in [18], and the inner-loop
controller has the same block-diagonal structure as ~Pp:

~Cp �

2
6666664

~Cp;1 0 : : : 0

0 ~Cp;2
..
.

..

. . .
.

0

0 : : : 0 ~Cp;nh

3
7777775

The closed-loop block diagram is shown in Fig. 7. The reference for
this loop is ~rp:

~rp � �rip;1; r
q
p;1; : : : r

i
p;nh ; r

q
p;nh �T

in which the superscripts i and q denote the in-phase component and
quadrature component, respectively. Figure 8 shows the kth 2 × 2
block on the diagonal of ~Cp. The integrators provide zero steady-state
tracking error for constant references, and thus, the transfer function
from ~rp to ~u inverts ~Pp at ω � 0. When this inverse is cascaded with
~Pv, the relationship between ~yv and ~rp does not suffer from the large
gain variations in the block-diagonal terms.
The fixed gains Rk and Ik invert the phase of Pp at frequency

kω0 for phase compensation; specifically, Rk and Ik are defined
according to

Rk � jIk �
Pp�jkω0�
jPp�jkω0�j

(3)
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2nh u
P

y~
Mod Demod

yu~
Pp
~

1 1 2nhpp

p

Fig. 6 Diagram of MIMO pressure system.

HENDRICKSON AND M’CLOSKEY 2603

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

C
A

L
IF

O
R

N
IA

 L
O

S 
A

N
G

E
L

E
S 

on
 A

pr
il 

8,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

22
41

 



If the loop is broken at yp in Fig. 7, the scalar loop gain can be
represented as a set of nh linear time-invariant subsystems in parallel
connection, each with loop gain:

Lp;k�s� � gp;kPp�s�

×
�
Hlp�s − jkω0��Rk − jIk�

s − jkω0

�
Hlp�s� jkω0��Rk � jIk�

s� jkω0

�
;

k � 1; : : : ; nh (4)

in which gp;k is an adjustable scalar gain that controls the time
constant of the kth frequency channel. Poles at �jkω0 provide
asymptotic tracking of a periodic signal at kω0. An additional
analysis of the dynamics of the inner loop from both themeasurement
and baseband perspectives is given in [18,22].
Measurement of the inner-loop complementary sensitivity func-

tion (Fig. 9, top plot) demonstrates that asymptotic tracking is
achieved at the 20 harmonics of 100 Hz targeted for control. The
phase is not shown; however, the phases at the frequencies kω0,
k � 1; : : : ; 20, are zero. The data are produced using broadband

white noise injected at utest in Fig. 7, with the test-input amplitude
adjusted to perturb the jet velocity by 0.15 ms−1 rms (~rp � 0). In
addition to the pressure measurement, the velocity measurement is
recorded and used to calculate the transfer function from utest to yv
(Fig. 9, bottom plot). The pressure loop’s equalizing effect on the jet-
velocity magnitude is evident by the similar magnitude responses at
each frequency of control. Additionally, although the velocity-
perturbation amplitude is small, the nonlinear effects of the velocity
system appear in the transfer function at harmonics of 100Hz that fall
beyond 2 kHz. These peaks result from nonlinear harmonic coupling,
and grow stronger with increased forcing amplitude.

C. Harmonic-Coupling-Identification Results

The coupling between channels in ~Pv is a function of the operating
point, and so it is necessary to specify a constant pressure-reference
vector �rp such that the elements of ~yv are close to the values
associated with the Fourier series of the desired periodic jet-velocity
waveform. The coupling is identified at the operating condition by
adding a time-varying perturbation to the constant reference. In other
words, the reference input in Fig. 7 is specified to be ~rp � �rp � δp, in
which δp is the perturbation employed for identification in a
neighborhood of the operating condition established by �rp. The
appropriate values for �rp must be specified though. Let the desired
periodic jet-velocity waveform yref with fundamental frequency ω0

possess the following Fourier series:

ω0

2π

X∞
k�0

ak cos�kω0t� � bk sin�kω0t�;

ak � jbk �
Z 2π

ω0

0

yref�t�e−jkω0t dt (5)

The constant reference vector �rp should be chosen, so that �yv satisfies

� �yiv;1; �yqv;1; �yiv;2; : : : ; �yiv;nh ; �yqv;nh �
� �a1; b1; a2; : : : ; anh ; bnh � (6)

If we treat Pv as a linear system with frequency-response function
Pv�jω�, then the in-phase and quadrature components of �rp
associated with the kth frequency would be chosen such that

�rip;k � j�r
q
p;k � Pp�jkω0�P−1

v �jkω0��ak � jbk�; k � 1; : : : ; nh

(7)

In practice, the values ofPv�jkω0� are selected based on the linear jet-
velocity model from Fig. 2. This method does not compensate for the
nonlinear dynamics of Pv or for identification errors in Pp, and as a
consequence equality in Eq. (6) does not hold and yv does not track
yref . The outer loop using the velocity measurement for feedback,
however, will use the right-hand side of Eq. (6) as the reference input
�rv. Some examples of the jet-velocity waveformwhen �rp is chosen in
this manner are shown in Fig. 10, in which the measured jet-velocity
waveforms (solid lines) are compared to their respective reference
waveforms (dashed lines). The references are 20%duty-cycle tapered
square pulses with amplitudes ranging from Vrms � 0.3 ms−1 to
Vrms � 1.2 ms−1. The asymmetry and oscillation seen in the
empirical waveform grow with amplitude due to increased harmonic
coupling at higher rms forcing amplitudes. While these waveforms
do not match the desired periodic waveform, they are adequate to
identify a model of the harmonic coupling in a neighborhood of the
operating point, which is then employed to design the stabilizing
outer loop.
The small signal behavior of the jet velocity in a neighborhood of

the operating point will be modeled as a linear time-invariant system.
In response to the pressure reference ~rp � �rp � δp, in which �rp
establishes the jet-velocity operating point �yv, the demodulated
velocity components are ~yv � �yv � δv, in which δv is the time-
varying portion of ~yv. For a sufficiently small δp, we model
δv � h � δp, in which h is a 2nh-input/2nh-output linear system, and
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� is the convolution operator. Note thath is a function of the operating
point established by �rp, but this dependency is suppressed for the sake
of streamlined notation. The elements of the perturbation variables
follow the conventions established for ~rp and ~yp, namely

δp � � δip;1; δqp;1; δip;2; : : : ; δip;nh ; δqp;nh �T

δv � � δiv;1; δqv;1; δiv;2; : : : ; δiv;nh ; δqv;nh �T

Although the model is developed about a periodic operating point, in
the demodulated signal space, the periodicity is manifested by
constant signal values so that h can be treated as a time-invariant
system, too. We consider in detail a few channels of h in a
neighborhood of two operating points.
An empirical frequency response associated with the lth input

channel to the kth output channel of h is identified by adding low-
bandwidth zero-mean random perturbations to the constant in-phase
term �rp;l. The low-bandwidth random input signal represents δip;l.
The in-phase and quadrature responses to this input are measured for
the kth output channel, and the mean values are removed to yield the
signals δiv;k and δqv;k. The experiment is repeated, but now using the
quadrature input δqp;l. A traditional cross-spectral estimation is
employed to develop empirical frequency responses between these
input and output pairs. For example, Fig. 11 presents the frequency-
response estimates from in-phase inputs δip;15 and δip;16 to outputs
δiv;15, δ

q
v;15, δ

i
v;16, δ

q
v;16 δ

i
v;17, and δ

q
v;17 at the unforced operating point

Vrms � 0.0 ms−1. Figure 12 shows the frequency-response estimates
using the channels 15 and 16 quadrature inputs to the same output
variables. These figures demonstrate how perturbations to the 15th
and 16th channels (corresponding to frequency bins centered at 1.5
and 1.6 kHz) couple to signals in the 15th, 16th, and 17th channels
(corresponding to frequency bins centered at 1.5, 1.6, and 1.7 kHz).
Note that the off-diagonal transfer functions can be modeled as
zero. Further testing of all channels leads to the conclusion that all
off-diagonal channels are zerowhenVrms � 0 ms−1 (i.e., δiv;k∕δ

q
p;l �

0 when k ≠ l).
In marked contrast is the system behavior in the presence of

periodic forcing at a 20% duty cycle with Vrms � 0.9 ms−1

(corresponding to the operating point in Fig. 10c) shown in Figs. 13
and 14. These figures demonstrate that not only have the diagonal
frequency responses changed from the Vrms � 0 ms−1 case, but that
the off-diagonal magnitudes are now nonzero, and in some cases, are
as large as the diagonal magnitudes. This cross-channel coupling
clearly reveals the nonlinear behavior of the jet velocity. The figures
also reveal additional structure in h. Comparing Fig. 11 to 12, and
Fig. 13 to 14, it is evident that, for a given channel, the in-phase-to-in-
phase frequency response is close in magnitude and phase to the
quadrature-to-quadrature frequency response. Furthermore, the
cross-element magnitudes are similar, and the phases differ by about
180 deg. Despite the differences (some of which can be attributed to
slow drift of the test conditions primarily caused by changes in the
mean jet velocity), we will assume for the purpose of identification:

δiv;k∕δip;l � δqv;k∕δ
q
p;l

δiv;k∕δ
q
p;l � −δqv;k∕δip;l

l; k � 1; : : : ; nh (8)

This structure can be proven for the diagonal blocks of a linear system
such as the demodulated model associated with Pp; however, for a
nonlinear system such as Pv, we currently have no general proof that
its demodulated model should possess this structure. Nevertheless,
the experimental data (including the other channels not shown here)
support the assumption (8).
The high channel count associated with the linearizations requires

an efficient method for determining a suitable model for controller
design. It is much too labor intensive to perform the sort of
experiments that produce the frequency-response estimates of
Figs. 11–14, and, in fact, such detailed models are not necessary for
controller synthesis. Let H�s� represent the Laplace transform of h.
We will show that the dc gain of the frequency response, in other
words, H�0�, is adequate for the successful synthesis of low-
bandwidth jet-velocity compensators. In other words, at a given
operating point, we identify a model of the form

δv�t� � H�0�δp�t� (9)

in which H�0� ∈ R2nh×2nh is the dc-gain matrix to be determined.
Because of the assumed structure of h though, only nh inputs are
required to identifyH�0�, and so the quadrature components of δp are
held at zero while the in-phase components are (simultaneously)
specified to be low-bandwidth (0.2 Hz) uncorrelated random zero-
mean sequences. The new vector δip�t� ∈ Rnh is obtained from δp by
eliminating the quadrature components. The input–output data are
collected and assembled as follows:

Δv � f δv�0� δv�ts� δv�2ts� : : : δv��ne − 1�ts� g ∈ R2nh×ne

Δp � f δip�0� δip�ts� δip�2ts� : : : δip��ne − 1�ts� g ∈ Rnh×ne

in which δv�kts� and δip�kts� are the output and input data at time
t � kts, k � 0; 1; : : : ; ne − 1, and in which ne is the number of
collected time samples. The matrix ~H ∈ R2nh×nh is obtained from
H�0� by deleting the columns corresponding to the quadrature inputs.
Once ~H is determined though,H�0� can be constructed from Eq. (8).
A standard least-squares problem is solved to minimize the norm of
the prediction error:

~Hls � arg min
~H

�σ�Δv − ~HΔp� (10)

The uncorrelated inputs ensure that Δp is full rank, and so a unique
minimizing solution exists.
The quality of the fit can be quantified by comparing Δv obtained

from another data set to what is predicted using the least-squares
solution ~HlsΔp. For example, when Vrms � 0.9 ms−1 with a 20%
duty cycle, the normalized prediction error on a new data set is
�σ�Δv − ~HlsΔp�∕�σ�Δv� ≈ 0.2. Time sequences can also be compared,
and Fig. 15 shows the measured and predicted in-phase and
quadrature velocity signals for the 15th, 16th, and 17th output
channels. The prediction error is small, andH�0� accurately captures
the low-frequency linearized dynamics of the harmonic coupling.
Thus, this technique is used to rapidly determine the low-frequency
system dynamics at all operating points.
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Fig. 10 Operating points established for identication (solid) compared to the jet velocity reference (dash) at a) Vrms � 0.3 ms−1 b) Vrms � 0.6 ms−1

c) Vrms � 0.9 ms−1 and d) Vrms � 1.2 ms−1.
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Agraphical representation ofH�0� is also possible and is useful for
viewing changes inH�0� as the operating point is modified. Because
there are 20 frequency bins associated with the demodulated input
and output signals, the norm of a given channel can be represented as
a grayscale shade in a figure with 20 × 20 cells. The norm of the lth
input channel to the kth output channel is

�σ

��
δiv;k∕δiv;l δiv;k∕δ

q
v;l

−δiv;k∕δ
q
v;l δiv;k∕δiv;l

��
�

���������������������������������������������������
�δiv;k∕δiv;l�2 � �δiv;k∕δ

q
v;l�2

q

in which only the dc values of the transfer functions are used in the
calculation. Figure 16 provides three such graphical representations:
one at the unforced operating point (Fig. 16a); another at the 20%
duty cycle, Vrms � 0.45 ms−1 operating point (Fig. 16b); and the
third at the 20% duty cycle, Vrms � 0.9 ms−1 operating point
(Fig. 16c). At the unforced operating point,H�0� is essentially block
diagonal, which indicates little-to-no harmonic coupling. At higher
forcing amplitudes, however, the figures reveal strong harmonic
coupling, especially between frequencies above 800 Hz.
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Fig. 11 System identification at the unforced operating point using in-phase inputs yields the frequency responses a) δiv;15∕δip;15 and δqv;15∕δ
i
p;15,

b) δiv;15∕δip;16 and δqv;15∕δ
i
p;16, c) δ

i
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i
p;15, d) δ

i
v;16∕δip;16 and δqv;16∕δ

i
p;16, e) δ

i
v;17∕δip;15 and δqv;17∕δ

i
p;15, and f) δiv;17∕δip;16 and δqv;17∕δ

i
p;16.
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IV. Compensation of Harmonic Coupling

Two compensation strategies are implemented for the asymptotic
tracking of the periodic jet-velocity-reference waveform within
the system’s 2 kHz bandwidth: regulation about a single operating
point and regulation about multiple operating points with a single
controller. In both cases, the demodulated hot-wire signal ~yv is
subtracted from the constant reference �rv, which contains the
Fourier coefficients of the reference waveform. The resulting
tracking error drives the velocity controller ~Cv, as shown in the

block diagram of Fig. 17. The reference for the velocity control
loop is

�rv � �a1; b1; a2; : : : ; anh ; bnh �T

in which the elements are the Fourier coefficients from Eq. (5).
The objective of this section is not to present an exhaustive
investigation into the various synthesis methods that can be applied
to this problem, but to demonstrate that the linearized models
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Fig. 12 System identification at the unforced operating point using quadrature inputs yields the frequency responses a) δiv;15∕δ
q
p;15 and δqv;15∕δ

q
p;15,

b) δiv;15∕δ
q
p;16 and δqv;15∕δ

q
p;16, c) δ

i
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q
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q
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i
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q
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q
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i
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q
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q
p;15, and f) δiv;17∕δ

q
p;16 and δqv;17∕δ

q
p;16.
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created from the demodulated variables are quite useful for
understanding and compensating the strongly nonlinear behavior of
the jet. We focus on the case of the 20% duty cycle forcing with
ω0 � 100 Hz and desired forcing strengths ranging from Vrms �
0 ms−1 to 1.05 ms−2.

A. Regulation at a Single Operating Point

Stabilization is rarely the sole objective of feedback control;
however, in this application, we are interested in a controller that can
generate a suitable low-frequency plant inverse so that the desired
periodic jet-velocity waveform is asymptotically tracked. With the
pressure reference �rp in Fig. 17 establishing a periodic jet velocity

close to the desired waveform, the controller is required to issue
perturbations to the reference values such that the demodulated jet-
velocity components asymptotically converge to �rv. This suggests the
use of integral control in all channels to asymptotically drive the
tracking error ~ev to zero:

~Cv�s� � gvKv
1

s
(11)

in which Kv ∈ R2nh×2nh is a constant real matrix, and gv is a real
positive scalar gain that sets the outer-loop convergence rate. The
continuous-time controller realization is
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Fig. 13 Same as Fig. 11, but the operating point is now a 20% duty cycle square wave with Vrms � 0.9 ms−1.
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_xv � ~ev; δp � Kvxv (12)

in which xv�t� ∈ R2nh is the controller state. The closed-loop system
with the simplified plant model is simply _xv � −gvH�0�Kvxv.
Because the velocity control loop is implemented at a 2.5 kHz sample
rate (the microphone and hot-wire signals are sampled at 25 kHz,
demodulated, and then downsampled to 2.5 kHz), the computational
power of the computer enables the use of a fully populated Kv, in
which every element may be nonzero. Thus, Kv is chosen as the
inverse of H�0� identified in Sec. III.C [i.e., Kv � H−1�0�]. This
approach yields a robust closed-loop system because the condition

number of H�0� is relatively low at all operating points due to the
equalizing effect of the inner feedback loop illustrated in Fig. 9
(see [24]). The equalizing effect lowers the condition number κ of
H�0� at the unforced operating point to κ�H�0�� � 2.7 from its
open-loop value of κ � 706. At higher forcing amplitudes, the
harmonic coupling increases the condition number. For example, at
Vrms � 0.45 ms−1, the condition number of H�0� is κ � 4.0, and at
Vrms � 0.9 ms−1, the condition number increases to κ � 8.3. In all
cases, however, the inverse of the plant’s dc-gain matrix can be safely
used. All (continuous-time) closed-loop eigenvalues are located at
−gv, inwhichgv is selected so that the closed-loop time constant is 1 s.
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Fig. 14 Same as Fig. 12, but the operating point is now a 20% duty cycle square wave with Vrms � 0.9 ms−1.
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There is one technical detail to be addressed, and that is to show
there is no possibility of cancellation between a controller pole at
s � 0 with a transmission zero of H�s�. This is easily demonstrated
by assuming a minimal realization for H to be _x � Ax� Bδp,
δv � Cx in which x�t� ∈ Rm, m is the state dimension of H,
A ∈ Rm×m, B ∈ Rm×2nh , and C ∈ R2nh×m. We may assume H is
strictly proper becauseHlp rolls off all channels. Transmission zeros
at s � 0 require det Q � 0, in which Q is defined as

�
−A −B
C 0

�
∈ R�m�2nh�×�m�2nh�

and in which 0 denotes a 2nh × 2nh matrix of zeros [25]. The
asymptotic stability of H means det A ≠ 0, and so det Q �
det A det�CA−1B�. Note though,H�0� � −CA−1B is invertible, and
it follows that det Q ≠ 0 so thatH cannot have transmission zeros at
s � 0. The implication is that the controller ~Cv � gvH−1�0��1∕s�
internally stabilizes the plant H�s� if gv is sufficiently small.
The steady-state closed-loop jet-velocity waveforms with the

outer-loop controller designed according to this prescription are
shown in Fig. 18. In all four cases, the velocity-loop controllers
asymptotically drive the demodulated hot-wire signals to the Fourier
coefficients of the reference waveforms at the 20 frequencies of
control. The measured jet-velocity waveforms (solid lines) closely
match the references (dashed lines). Note that the jet-velocity
references are identical to those in Fig. 10 for pressure-only feedback.
At each reference amplitude, a unique ~Cv is synthesized using H�0�
identified at the operating points shown in Fig. 10. The spectra of the
Vrms � 0.9 ms−1 jet-velocity waveform, yv, and the reference
coefficients, �rv (expressed in polar form), shown in Fig. 19, verify
that the Fourier coefficients of yv match the reference coefficients at

all frequencies of control. Small periodic errors are evident in the
high-amplitude time series, and are the result of harmonics excited
beyond 2.0 kHz. As these harmonics lie beyond the bandwidth of the
actuation system, they are uncompensated.
The controllers effectively regulate the jet velocity in a neighbor-

hood of an operating point; however, instability may occur if the
velocity reference �rv moves sufficiently far from the operating point
about which the controller design was based. For example, a 20%
duty-cycle square wave is tracked using the controller synthesized
from the identification of H�0� at the unforced operating point
(Fig. 16a). With the outer loop closed, the velocity reference is
increased from zero until instability occurs. Note that increasing the
pulse height with fixed duty cycle (as is done here) just requires a real
scaling of �rv. Figure 20 shows the norm of the velocity-loop tracking
error k ~ev�t�k2 � k �rv − ~yv�t�k2 as the jet-velocity rms amplitude is
increased from 0 to 0.6 ms−1 in steps of 0.15 ms−1, occurring every
30 s. The error is regulated to zero after each step until t � 120 s, in
which, at Vrms � 0.6 ms−1, the closed-loop system is unstable.
The instability can be predicted by analyzing the eigenvalues λcl
of −gvH�0�Kv, in which Kv is based on the identification at
Vrms � 0 ms−1, and H�0� is changed according to the Vrms implied
by the velocity reference. Table 1 lists the predicted maximum real
part of λcl for the four Vrms cases, and shows that instability occurs
somewhere between Vrms � 0.45 ms−1 and Vrms � 0.6 ms−1 as is
experimentally observed (gv � 1 in this experiment).

B. Regulation at Multiple Operating Points

It may be possible to synthesize a single controller that stabilizes
the system at multiple operating conditions. The previous section
demonstrated that a controller designed at a given operating point
may, indeed, also stabilize the closed-loop system at other operating
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Fig. 15 Response of the demodulated hot-wire signal ~yv (solid) compared to the model prediction (dash).
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points; however, the objective of this section is to show that, if
multiple operating points are a priori considered in the controller
design, a larger range of operating conditions can be stabilized with a
single controller. A single controller is desired for ease of
implementation. The controller remains an integrator for which the
gainmatrixKv is to be designed. The synthesis problem is established
by considering the backward-difference discrete-time approximation
of Eq. (12):

xv��k� 1�ts� � xv�kts� � ts ~ev�kts�; δp�kts� � Kvxv�kts�

in which ts is the sample period, k is an integer denoting the sample
index, and gv � 1. The closed-loop system at an operating point with
dc gain H�0� is

xv��k� 1�ts� � �I − tsH�0�Kv�xv�kts�

A sufficient condition for closed-loop asymptotic stability is
�σ�I − tsH�0�Kv� < 1, and so if there are np operating points with dc-
gain matricesHk�0�, k � 1; : : : ; np, then a search can be performed
for a single Kv such that �σ�I − tsHk�0�Kv� < 1, k � 1; : : : ; np. The
synthesis of Kv can be (conservatively) formulated as

min
Kv

max
k

�σ�I − tsHk�0�Kv�

which can be expressed as a generalized-eigenvalue-minimization
problem

minimize γ
subject to 0 < Σ�Kv�

βk < γI; k � 1; : : : ; np

(13)

The matrix Σ�Kv� is defined

Σ�Kv� �
�
αI Kv
KTv αI

�
(14)

in which α is a positive real constant that enforces σ�Kv� < α. The
matrices βk are defined

βk �
�

0 I − tsHk�0�Kv
�I − tsHk�0�Kv�T 0

�
; k � 1; : : : ; np

(15)

Setting γ > 1 andKv � 0 yields a feasible starting point, and, if in the
course of the optimization γ < 1, the associated Kv asymptotically
stabilizes the system at all np operating points. With multiple
operating points though, there is no guarantee of finding a single
stabilizing gainKv. In fact, it is straightforward to construct examples
for which there does not exist a stabilizing solution. Furthermore, the
conservatism introduced by using �σ means that, even if a stabilizing
solution exists, it does not imply γ� < 1. Nevertheless, this approach
has been useful in generating controllers that successfully stabilize a
range of operating points that cannot be stabilized by a controller
designed for a single operating point. The closed-loop convergence
rate cannot be specified with this approach; however, if γ� < 1, then
the closed-loop time constant is no larger than −ts∕ log γ�. If the
adjustable gain parameter gv is introduced in the controller, then the
eigenvalues of I − gvtsHk�0�Kv are affine functions of gv, and all
closed-loop eigenvalues converge to 1 as gv → 0. Thus, if the
eigenvalues of I − tsHk�0�Kv are stable, then so are the eigenvalues
of I − gvtsHk�0�Kv for gv ∈ �0; 1�; this provides a means of
adjusting the convergence rate. The bound on the maximum singular
value of the controller gain α is often an inactive constraint in the
optimization; however, it can be included to limit the maximum
controller gain.
This synthesis approach is used to generate a single controller that

can track a 20%duty-cycle squarewave over awide amplitude range.
The optimization is executed with α � 5, and a set of np � 4 gain
matrices identified at Vrms � f0; 0.6; 0.9; 1.05g ms−1 operating
points. MATLAB’s linear-matrix-inequality solvers were used to
generate solutions to Eq. (13) [26]. The optimization yields a
controller that stabilizes all operating points, and γ� � 0.999982
guarantees time constants smaller than 20 s (ts � 0.0004). The range
of amplitudes stabilized with this controller is more than double the
range stabilized with the Vrms � 0 ms−1 model inverse controller
presented in Fig. 20. Figure 21 shows k ~evk2 as the reference
amplitude is stepped from Vrms � 0 to 1.05 ms−1. The amplitude is
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incrementally increased in steps of 0.15 ms−1 every 20 s, and the
error asymptotically converges to zero after every step change in
amplitude. Increasing Vrms beyond 1.05 ms−1 is not possible due to
saturation of the amplifier input. Note that the closed-loop time
constants are considerably smaller than the upper bound derived
from γ�.
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Table 1 Predicted maximum
closed-loop eigenvalue

Vrms, ms−1 Max�real�λcl��
0.00 −1.00
0.15 –0.93
0.30 −0.69
0.45 −0.16
0.60 0.39
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Fig. 21 Error-signal norm,k ~evk2, using controllerdesigned formultiple
operating points.
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Fig. 22 Example a) sawtooth waveform and b) doublet waveform.
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C. Alternative Waveforms

Alternatives to pulsed-jet injection may be explored with the
harmonic-coupling control system. For example, Fig. 22 shows the
ability to track sawtooth and doublet waveforms at an amplitude of
Vrms � 1.0 ms−1 andω0 � 100 Hz. The doublet waveform contains
two successive pulses: one above the mean and one below the mean.
The properties of these waveforms may be better suited for specific
applications of pulsed-jet injection when compared to periodic
square pulses. For example, the doublet waveform may perturb the
flowfield to adhere, on average, closer to the injection wall, a benefit
for film-cooling applications [27].

V. Conclusions

This paper presents the identification and control strategies for
periodic waveform tracking in an experimental pulsed-jet-injection
system. The main contribution is the introduction of demodulated
signal components, in which scalar signals — the system input and
output— are demodulated at the harmonic frequencies present in the
Fourier series of the periodic reference waveform. The demodulated
signals are low bandwidth and can be viewed as slowly varying
amplitude variables for sinusoids at the harmonic frequencies. This
change of coordinates, however, converts a single-input/single-
output system into a MIMO system in which the off-diagonal
elements reveal the coupling between different frequency bins. This
point of view is uniquely suited to quantifying the nonlinear coupling
between harmonics in the pulsed-jet experiment. It was demonstrated
that the dc-gain matrices associated with linearizations performed in
the demodulated coordinates at various operating points can be used
for synthesizing stabilizing controllers that drive the jet velocity to
asymptotically track the velocity-reference waveform within the
bandwidth of the actuator and over a wide range of amplitudes up to
incipient saturation of the actuator. Feedback of the jet velocity was
facilitated by an inner loop, which acted on a pressure measurement
taken from the plenum. Feedback of the pressure signalwas useful for
establishing operating points close to the desired periodic jet-velocity
waveform. The inner loop also has an equalizing effect on the jet-
velocity components, which produces lower condition numbers of
the dc-gain matrices.
There is no doubt as to the utility of this approach for nonlinear

plants, but future research can put the modulation–demodulation
control approach on a more firm theoretical foundation where
nonlinear plants are concerned. Proofs that go beyond local stability
in a neighborhood of an operating point are still lacking and would
require global models of the system, which is an additional challenge
in itself. Furthermore, it is also not known under what conditions the
structure (8) of the linearizations conforms to what was empirically
noted. This structure was only exploited for identification of the dc-
gain matrices, but not for controller synthesis. With regard to
controller synthesis, the authors only touched on a few of many
potentially viable approaches. For example, the conservatism of the
authors’ synthesis formulation can be reduced by introducing
additional decision variables that correspond to similarity transforms
of the closed-loop-dynamics matrix that also attempt to reduce its
maximum singular value, although in this case the problem becomes
nonconvex. It is also possible to embed the identified plants in amore
general uncertainty description for which many analysis and
synthesis tools exist [26]. Finally, the authors noted in their
experiments the presence of significant out-of-band harmonics that
cannot be directly regulated by the controller due to the fact that they
lie beyond the actuator bandwidth. Nevertheless, these harmonics are
a consequence of the in-band forcing, and so another direction to
pursue is a means of adjusting the reference waveform so as to
manipulate the out-of-band harmonics to enhance the features of the
waveform that are critical for the flow-control study. Future
publications will address these challenges.
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