
Sensing and control interface for precision gap control

Michael Andonian, Robert T. M’Closkey∗

Mechanical and Aerospace Engineering Department, Samueli School of Engineering and Applied Science, 420 Westwood Plaza,
University of California, Los Angeles, CA 90095

Abstract

A one degree-of-freedom precision position control system using an electrostatically actuated and capaci-
tively sensed beam is reported. The beam is allowed to rock on a 10µm high fulcrum which is fabricated
from SU-8 deposited onto a glass substrate. The fulcrum establishes the nominal working gap between the
beam and two electrodes located on the substrate. The differential capacitance formed by the beam and elec-
trodes is sensed, however, the electrodes are also simultaneously used for applying controlled electrostatic
forces to the beam. The system is unstable so feedback control is necessary to establish a desired stable
gap but only after an appropriate feedforward filter that compensates for the forcer-to-pick-off coupling is
implemented. The RMS displacement noise from DC to 100 Hz is 7 nm, and the gap can be regulated from
DC to 600 Hz.
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1. Introduction

This paper describes the fabrication, analysis and testing of an unstable one degree-of-freedom (DOF)
system that is aiding in the development of a platform for the electrostatic levitation of planar resonators.
Electrostatically levitated microstructures have been demonstrated in the context of suspended proof masses
for accelerometers and gyroscopes, eg. [1, 2, 3, 4], however, the objectives of this research are to create a tool
for experimentally quantifying changes in the dynamics of planar resonators with regard to perturbations
of the resonators’ mass distribution and, in particular, how the motion at the stem, attachment point or
anchor changes as a function of these perturbations. The notion of an “electrostatic bearing” is appealing
because it represents a controllable and repeatable resonator boundary condition that does not introduce
thermally-generated stresses in the resonator such as hard-mounts with thermally mismatched materials.
An example of the sort of planar resonator that will be tested with such a platform is discussed in [5, 6].
This resonator was modified with post-fabrication techniques to drive two lightly damped modes to the
same frequency, however, it is also desirable to quantify how the reaction at the resonator stem-substrate
interface changes under such modifications. Measurements of this sort have not yet been demonstrated for
microscale resonators but the electrostatic levitation platform under development can be used to quantify
stem motion as a function of the perturbations made to the resonator. The levitation platform design will not
be further elaborated upon other than to note that like many of the aforementioned references, the electrodes
are situated in an antagonistic configuration for applying electrostatic forces to the suspended structure and
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for detecting differential capacitances to infer structure motion. The goal of the work presented in this
paper is to provide a limited degree-of-freedom structure for developing not only the forcing and pick-off
interface for the levitation platform, but also a modeling and analysis framework that accurately predicts the
dynamics of the 1-DOF structure so extrapolation to a multi-DOF configuration can be made with confidence
and, hence, also serve as a design tool.

One feature that is common to all electrostatically levitated proof masses is the instability of the system
and so a useful 1-DOF structure should preserve this property. An unstable plant is formed in the present
work by considering a silicon beam that rotates on a 10µm high fulcrum. A pair of electrodes are patterned
on a glass substrate and symmetrically situated on either side of the fulcrum and below beam. They are
used to apply electrostatic forces to create a net moment on the beam, but they are also designed such
that zero differential capacitance indicates that the there are uniform 10µm gaps between the beam and
electrodes (Figs. 2 and A.9 show schematics of the 1-DOF system). This system has the advantage of
presenting no unusual fabrication requirements, and is easy to assemble and test with different electrode
configurations. Since the differential capacitance transduction and electrostatic forcing are both achieved
using a single pair of electrodes, this work is closest in spirit to the scheme used by the North American
Aviation Electrostatically Levitated Gyro (ESG) dating from the 1960s [7, 8]. As would be expected from
an interface that uses the same electrodes as pick-offs and forcers, there is an issue of feedthrough coupling
in which a control command perturbs the pick-off signal irrespective of the motion of the proof mass. The
feedthrough was reduced in the ESG through the use of a model transformer, however, our approach shows
how a feedforward filter implemented in the DSP achieves the same result. Another contribution of the paper
is the rigorous stability analysis of the non-linear time-periodic equations of motion. In fact, the analysis
of the linearized time-periodic models show remarkable agreement with the measurements made from the
stabilized experimental system.

The paper is organized as follows: Sec. 2 discusses the fabrication of the beam and substrate and its
interface to the balanced transformer; Sec. 3 develops a basic beam-transformer model that reveals essential
features of the system dynamics but this model is further embellished to include the dynamics of all compo-
nents present in the experimental system; Sec. 4 discusses the stabilizing controller design and presents the
experimental results including a calibration test to determine the voltage-to-displacement scale factor from
which the displacement noise spectrum is derived; Sec. 5 concludes the paper.

2. System description

2.1. Fabrication

Curvature of the beam and substrate must be minimized in order to facilitate the creation of a uniform
10µm gap between the approximately 4 cm× 2.5 cm beam and the substrate. These tolerances are satisfied
by selecting a 1 mm thick glass substrate and a 500µm thick silicon wafer with minimal bow and warpage.
Although the surfaces are flat it is necessary to establish a nominal gap between the substrate and silicon
beam. The nominal gap, denoted d0, is specified by creating a fulcrum on which the beam will rest. The
fulcrum is fabricated by first spinning a 10µm thick layer of the epoxy-based photoresist SU-8 onto the
glass substrate. SU-8 is selected for its ability to create a well-defined thickness across the wafer by simply
adjusting the spin coater parameters. The SU-8 is subsequently patterned, developed, and cured to create a
fulcrum that is 10µm in height, 100µm in width and 30 mm in length. With the fulcrum in place, an image
reversal process is conducted to pattern the glass for the electrodes and their wire bonding pads. A 0.5µm
thick layer of gold is evaporated over a 30 nm thick Cr adhesion layer to form the electrodes on the substrate.
These steps are shown in Fig. 1.
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Figure 1: Processing steps for glass substrate.

The beam is diced out of a 500µm thick, single-side polished silicon wafer. The beam is coated with
a layer of aluminum ensuring excellent conductivity so the beam can be modeled as an equipotential body.
Lastly, a 500 nm thick layer Parylene-C is deposited onto the beam to increase the dielectric strength of the
insulating layer between the beam and the electrodes, which effectively increases the maximum possible
potential difference between the electrodes and beam that may be applied before breakdown occurs. The
electrodes are accessed via gold wire bond pads situated to the side of the beam. The beam also has an
attached wire bond to maintain the beam at ground potential. Alignment markers on the glass simplify cen-
tering the silicon beam on the SU-8 fulcrum. The assembled system is shown in Fig. 2 where the beam is
rendered semi-transparent in order to reveal the electrodes in relation to the fulcrum. The relevant dimen-
sions are given in Table A.1. The substrate is fabricated with two pairs of electrodes, each pair possessing
electrodes on opposite sides of the fulcrum. Only one pair is used in the present work as indicated in Fig. 2,
however, operation of two pairs would enable maintaining the beam at ground potential without the physical
ground used here.

2.2. Electronics interface

The beam-substrate geometry permits only small beam deflection angles so a simple parallel plate capac-
itor model adequately describes the relation between the capacitance and the beam-electrode gap. Specifi-
cally, this beam-electrode gap is the length of the normal vector that extends from the electrode geometric
center to beam undersurface. Due to the electrode symmetry about the fulcrum, any beam deflection results
in a deviation from the nominal 10µm beam-electrode gap by ±Lθ, where L is the moment arm defined
from electrodes’ geometric center to the fulcrum and θ represents the beam angle referenced to the substrate
parallel (see Fig. A.9). The transformer consists of two primary legs wound such that the two primary induc-
tances are equal and connected together via a center tap, shown in Fig. 2 and in greater detail in Fig. A.9. The
center tap is connected to a current source in which a sinusoidal current generates nominally equal charges
on the electrodes which, due to the large primary inductances, are essentially independent of the electrode-
beam capacitances. The beam is maintained at ground so an imbalance in the beam-electrode capacitances
imposes a voltage drop, denoted vs, across the secondary load. Thus, vs represents a measurement of the
beam orientation θ from its “balanced” configuration in which beam-electrode capacitances, and hence the
gaps, are equal, i.e. the beam and substrate have parallel surfaces.

In addition to operating as a displacement transducer, the transformer simultaneously provides a means
of exerting controlled electrostatic forces on the beam. By connecting resistor Rk in series with the trans-
former secondary, a potential vc induces a differential potential on each electrode. In other words, the
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Figure 2: Schematic showing substrate, beam, fulcrum and electrodes in relation to the transformer used for differential capacitance
transduction and electrostatic forcing.

electrode potentials invariably have a 180◦ phase difference due to the magnetic coupling between the trans-
former windings. As a result, if the phase of vc is properly chosen, an imbalance in the electrostatic forces
applied to the beam creates a net moment that can be exploited for control of the beam orientation. This
circuit configuration, however, creates “feedthrough” from vc to vs, because application of vc also devel-
ops a voltage drop across the secondary resistor. Identifying and removing this feedthrough is critical for
accurately measuring the orientation of the beam and is discussed in Sec. 3.2.

3. System models and their analysis

3.1. Coupled transformer-beam subsystem
The equations of motion governing transformer voltages and currents and the equations of motion for a

rigid beam constrained to rotate about the fulcrum are given in Appendix A. These equations are standard
but are included for completeness. The parameters in the equations are given in Table A.1 and are used
in the analysis of the models in this section. The beam and transformer equations are linked because the
potentials on the electrodes create electrostatic forces on the beam, and conversely, the beam angle changes
the capacitances created between the electrodes and beam. The analysis of the transformer-beam subsystem
is performed in this section. The full plant model, however, also includes a DAC smoothing filter, an anti-
alias filter, and a low-pass filter for recovering the baseband signal produced when the filtered vs voltage is
demodulated. Analysis of the full system is postponed until Sec. 3.2 because the proposed approach is most
easily illustrated using the transformer-beam subsystem and its extension to the full system would require
additional notation.

It is convenient to analyze the equations of motion using physical variables, however, for the transformer
equations (A.1) this leads to an over-determined set. Nevertheless, the equations can be written as follows,

M(θ)ẋ = Ax+B1ict +B2vc (1)

where the mass matrix M(θ) ∈ R23×23 is dependent on the beam angle θ and where x ∈ R23 is a vec-
tor whose elements are the currents and voltages shown in Fig. A.9, their ordering being unimportant for
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the present analysis. The matrices A, B1 and B2 are derived from the equations (A.1). It can be shown
rank(M) = 7, independent of θ, so, fundamentally, there are only 7 states required for describing the evolu-
tion of the transformer currents and voltages. The beam equations are represented as

d

dt

[
θ

θ̇

]
=

[
θ̇

f(θ;x)

]
(2)

where f is the moment applied to the beam normalized by the moment of inertia –see (A.2)
The sinusoidal center tap current, ict(t) = act cos(ω0t), is produced by a current source, where act

is the amplitude and ω0 is the carrier frequency. When the beam orientation is θ = 0, the capacitances
created between the electrodes and beam are equal in the beam model, i.e. Ctop = Cbtm. In this case ict
establishes steady-state sinusoids for all signals in the transformer as well as a master phase angle against
which all steady-state signals are referenced. The steady-state response of the currents and voltages in the
transformer, denoted x0, are computed from the frequency response of (1) with vc = 0

x0(t)
r
= (jω0M(0)−A)

−1
B1acte

jω0t. (3)

Despite the fact that M(0) is not invertible, the matrix jω0M(0) − A is invertible for any ω0 6= 0. For this
steady-state solution the electrode potentials are equal sinusoids, i.e. vtop(t) = vbtm(t), and so f(0;x0(t)) =

0 for all t. Thus, x0 along with θ(t) = 0 and θ̇(t) = 0 represent a periodic solution for the coupled
transformer-beam subsystem. The beam is in equilibrium because the net beam moment produced by the
electrostatic forces is zero and the beam center of mass is assumed to be located at the fulcrum. The stability
of this periodic solution can be studied by analyzing the linear variational equations of (1) and (2) –refer
to [9] for terminology.

The variational equations can be determined by introducing perturbation variables relative to their steady-
state values: x = x0 + δx, θ = 0 + δθ and θ̇ = 0 + δθ̇. The effect of the control voltage vc can also be
included in the analysis by setting vc = 0 + cos(ω0t + φvc)δvc . Since ict and vc have the same carrier
frequency, vtop and vbtm are sinusoidal with frequency ω0, however, the ict-induced components create in-
phase potentials on vtop and vbtm, while the vc-induced components have a 180◦ phase relationship with
each other. The phase of the control signal φvc , however, is selected so that the vc-induced component of vtop
is in-phase with the ict-induced sinusoid and, thus, the vc-induced component of vbtm is 180◦ out of phase
with the ict-induced component. Thus, when the center tap current is driving the transformer, changing the
vc amplitude, i.e. δvc , will create a differential change in the amplitudes of vtop and vbtm, and because the
electrostatic forces are proportional to the mean-square electrode voltages, this differential change in the
amplitudes creates the largest moment on the beam for a given value of δvc .

The mass matrix is continuously differentiable in a neighborhood of θ = 0 and so is represented as
M(θ) = M(0) + Mθδθ + · · · , where Mθ := ∂M

∂θ |θ=0. Substituting these expressions into (1) and (2) and
retaining only linear terms yields the following variational equations,

M(0)δ̇x = Aδx −Mθẋ0δθ +B2 cos(ω0t+ φvc)δvc

d

dt

[
δθ
δθ̇

]
=

[
δθ̇

fθδθ + fxδx

]
,

(4)

where fθ := ∂f
∂θ (0;x0) and fx := ∇xf(0;x0) are the gradients of f with respect to θ and x evaluated

on the periodic solution. These equations are time periodic with period τp = 2π/ω0. The algebraic con-
straints in (4) must be resolved and this is accomplished with a coordinate change. Let a singular value
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decomposition of M(0) be

M(0) =
[
U1 U2

]︸ ︷︷ ︸
U

[
Σ1 0
0 0

] [
V T1
V T2

]
︸ ︷︷ ︸
V T

where U and V are unitary, U1 ∈ R23×7, V1 ∈ R23×7, Σ1 ∈ R7×7 is positive definite, and so forth. New
perturbation variables are defined according to

δx =
[
V1 V2

] [δ1
δ2

]
where the dimensions of δ1 and δ2 are compatible with the partitioning of V . Substituting this relation into
the first expression in (4) yields the differential equation and a set of explicit algebraic constraints,

Σ1δ̇1 = UT1 AV1δ1 + UT1 AV2δ2 − UT1 Mθẋ0δθ + UT1 B2 cos(ω0t+ φvc)δvc

0 = UT2 AV1δ1 + UT2 AV2δ2 − UT2 Mθẋ0δθ + UT2 B2 cos(ω0t+ φvc)δvc
,

where UT2 AV2 is invertible so δ2 can be expressed in terms of δ1, δθ and δvc . The matrix P ∈ R23×23 is
defined to be V2

(
UT2 AV2

)−1
UT2 . Thus, the linear time-periodic differential equations are derived,

δ̇1 = Σ−1
1 UT1 (I −AP )

(
AV1δ1 −Mθẋ0δθ +B2 cos(ω0 + φvc)δvc

)
,

δ̇θ = δθ̇,

δ̇θ̇ = (fθ + fxPMθẋ0) δθ + fx (I − PA)V1δ1 − fxPB2 cos(ω0t+ φvc)δvc .

(5)

Collecting the variables δ1, δθ and δθ̇ into a single 9-element state vector denoted δ, produces the fol-
lowing compact representation of the linear variational equations,

δ̇ = Ã(t)δ + B̃(t)δvc , (6)

where Ã and B̃ can be determined from (5) and both are time-periodic with period τp. The state transition
matrix Φ(t, t0) for this periodic system must be numerically computed. The characteristic multipliers asso-
ciated with (5), which are the eigenvalues of Φ(τp, 0), determine the stability of the periodic solution derived
earlier. Although the experimental results are reported in Sec. 4, the analysis in this section uses transformer
parameter values obtained from tests performed with an impedance analyzer. The beam parameters, on the
other hand, are simply estimated from the material properties and dimensions of the beam, electrodes and
fulcrum. All parameters are reported in Table. A.1. Using these parameters, the characteristic multipliers
are shown in Fig. 3 for the case ω0 = 25 kHz and act = 4 mA. The period is τp = 1/ω0. There is one
unstable eigenvalue and one eigenvalue equal to 1. There are also four eigenvalues clustered near the origin.
The eigenvalue at 1 corresponds to an integrator in the transformer. In fact, A in (1) has one eigenvalue
equal to 0 which produces the characteristic multiplier equal to 1 in this analysis. The integrator corresponds
to a non-zero charge which can exist in the system even when ict = 0 and vc = 0. The charge creates
constant potentials vtop = vbtm = v1 = v2 = vct, with all other potentials and currents being zero. This
mode can be ignored, however, because the current source suppling ict controls this charge and, further-
more, any parasitic resistance between the center tap and ground, which exists in practice, will drain off
any DC charge and thereby perturb this characteristic multiplier to lie slightly inside the unit circle. When
deriving a transfer function model, it will be shown that the integrator is practically uncontrollable from vc
and hence a zero will be located at 1. Of greater interest are the pair of real characteristic multipliers located
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Figure 3: (Left) Characteristic multipliers of transformer-beam subsystem (×) and zeros of the approximate transfer function (◦)
associated with the measurement of θ for t0 = 0. (Right) Approximate transfer functions with beam angle θ output for t0/τp =
0, 0.1, 0.2, . . . , 0.8, 0.9.

near 1. Their continuous-time representation corresponds to real poles located at approximately ±280 Hz.
The beam dynamics in the absence of the electrode potentials is a double integrator so “connecting” the
beam to the transformer with the specified center tap current bifurcates the poles to ±280 Hz. Thus, wide
bandwidth control is required to stabilize the system.

The loop shaping controller design in Sec. 4.2 requires frequency response plots from the control input
to the pick-off signal. The full system dynamics are addressed in Sec. 3.2 but the approach for deriving
an approximate frequency response function is first demonstrated using (6), however, since (6) is time-
varying, a frequency response function does not exist for this system in a strict sense. Nevertheless, the beam
dynamics evolve on a slower time scale than the transformer states as suggested by the poles at ±280 Hz
compared to the carrier frequency of ω0 = 25 kHz for the transformer currents and potentials. The solution
to an initial value problem for (6) is

δ(t) = Φ(t, t0)δ(t0) +

∫ t

t0

Φ(t, τ)B̃(τ)δvc(τ)dτ, t ≥ t0,

where δ(t0) is the initial condition represented in the perturbation variables and δvc is the control voltage
input. An approximate time-invariant system can be derived by assuming the control variable is slowly
varying over one period of the carrier frequency. Under this assumption, δvc is pulled out of the integral so
the state can be estimated one period later,

δ(τp + t0) ≈ Φ(τp + t0, t0)δ(t0) +

(∫ τp+t0

t0

Φ(τp + t0, τ)B̃(τ)dτ

)
δvc(t0).

Thus, the evolution of the states can be approximated by a discrete time equation δ[k+1] = Γδ[k]+Ψδvc [k],
where

Γ := Φ(τp + t0, t0), Ψ :=

∫ τp+t0

t0

Φ(τp + t0, τ)B̃(τ)dτ
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Figure 4: Block diagram of plant, controller and feedforward filter.

The notation δ[k] refers to the value of the state δ at the kth sample instant. Note that the sample instants are
defined as integer multiples of τp relative to t0. Thus, the approximate models are developed for different
phases of the “master” reference signal cos(ω0t). Although Γ and Ψ depend on t0 (which may be restricted
to the interval [0, τp) without loss of generality) the eigenvalues of Γ are independent of t0, thus, the poles
of the discrete-time system are the characteristic multipliers of the linear variational equations. The zeros,
on the other hand, are dependent on the choice of t0, however, their effect is most easily understood by
comparing the frequency responses of the discrete-time systems obtained at different values of t0 –this
comparison is made in Figure 3 for a handful of t0 when the output variable is selected as θ. The Nyquist
frequency associated with these discrete-time models is 12.5 kHz so the frequency responses are computed
up to this limit. The family of frequency responses demonstrates that the t0 parameter only has an effect
on the high-frequency aspects of the discrete-time models and for this reason the nominal model when
t0 = 0 will be used for the controller design. The pole-zero plot in Fig. 3 also shows that the mode with
characteristic multiplier equal to 1 is cancelled by a zero. Further analysis of Γ and Ψ confirms that this
mode is uncontrollable from δvc .

3.2. Full plant model

The key aspects of the system have been analyzed in Sec. 3.1, however, the beam angle θ is not di-
rectly measured but instead inferred from measurements of vs. Indeed, the transformer is configured as a
differential capacitance transducer in which a change in the beam angle induces a differential change in the
nominal electrode capacitances which in turn produces an amplitude modulated sinusoid with frequency
ω0 at vs. Thus, a component missing from the analysis in Sec. 3.1 is the demodulation process for re-
covering the amplitude of vs. Furthermore, the DSP controller implementation requires the insertion of a
DAC analog smoothing filter and an anti-alias filter –the block diagram of the full plant model is shown
in Fig. 4. The analysis method introduced in Sec. 3.1 can be applied here, too, because there also exists a
periodic solution with θ(t) = 0 and θ̇(t) = 0 about which linear variational equations can be developed.
The DAC conversion process can be ignored in the analysis because the assumption of slow variation in
u essentially introduces zero-order-hold dynamics into the discrete-time equations derived from the linear
variational equations. Similarly, the band-limiting nature of the anti-alias filter ensures the spectrum of its
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Figure 5: (Left) Poles, displayed as ×, and zeros, displayed as ◦, for the 31-state discrete-time plant in Fig. 4. The zeros are computed
for t0 = 0. (Right) Frequency responses of discrete-time models y/u, ỹ/u and the feedthrough when t0 = 0. The “sample rate” for
the models is the frequency ω0.

analog output is equal to that of the sampled signal produced by the ADC. Computing the models, though,
requires specification of the modulation/demodulation phases φu and φy shown in Fig. 4. As described in
Sec. 3.1, φu is specified so that u produces amplitude modulated sinusoids at the electrodes that possess 0◦

or 180◦ phases with respect to the sinusoids produced by ict. Similarly, the demodulation phase φy is chosen
so that the amplitude modulated voltage created at vs due to θ 6= 0 is in-phase with cos(ω0t + φy). This
choice maximizes y for a given angle θ.

The full plant model is a 31-state system: 9 states are contributed by the coupled transformer-beam
subsystem, 8 states are each contributed by the analog anti-alias filter and discrete-time demodulator’s low-
pass filter, and 6 states are present in the DAC smoothing filter. The details of adding these components
and analyzing the subsequent linear variational equations are left to the reader, however, the characteristic
multipliers, estimated zeros (for t0 = 0), and transfer functions y/u are shown in Fig. 5 for the case ict =
act cos(ω0t), where act = 4 mA and ω0 = 25 kHz. One notable feature in the frequency response is
the presence of a flat pass-band above 1 kHz due to the coupling of vc to vs. This feedthrough coupling
obscures the beam response at higher frequencies and biases the measurement of the beam deflection at
low frequencies. It is also the source of the zeros near 1 in Fig. 5. Note that the unstable near pole-zero
cancellation has implications for the achievable minimum peak sensitivity function [10]. Fortunately, the
feedthrough can be identified and mitigated with an appropriate feedforward filter as described in Sec. 4.
For the model, however, the feedthrough can be determined from the full plant by constraining θ(t) = 0
which removes the beam dynamics from the analysis. The feedthrough frequency response is also shown in
Fig. 5 along with the frequency response ỹ/u which reveals the anticipated -40db/decade roll-off, cf. Fig. 3.
The additional filtering, however, also adds significant phase lag in the region where the loop gain is likely
to cross over. The model also yields a scale factor that converts y into an equivalent gap change at the center
of the electrodes (assuming parallel plate models for Ctop and Cbtm). The scale factor is estimated to be
10.9µm/V. The corresponding scale factor for converting y into the beam angle is 0.706 mrad/V.
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4. Experimental results and discussion

4.1. Test environment

The beam and glass substrate are placed in a vacuum chamber which typically pumps down to less than
10µTorr because when the beam is operated in air, the squeeze film damping between it and the substrate
vastly attenuates the response of the beam above 1 Hz. Thus, high-bandwidth control of the beam angle
and beam-electrode gap is only possible in vacuo. In fact, the beam equations ignore all damping and are
only appropriate for describing the beam in a vacuum. In any case, a levitated resonator would be operated
in a high vacuum, too. The transformer, on the other hand, is located outside of the vacuum chamber and
is interfaced to a DSP operating at a 75 kHz sample rate. The DSP generates the ω0 = 25 kHz reference
sinusoid for the center tap current ict and modulated signal that specifies vc. It is clear why the smoothing
filter is required since there are only three samples in one period of the carrier sinusoids. Furthermore, the
Nyquist frequency is only 12.5 kHz away from ω0 so this determines the corner frequency of the anti-alias
filter in Fig. 4.

4.2. Stabilized system

Based on the θ-output transfer function in Fig. 3, constant gain feedback of sufficient magnitude will
stabilize the system, but because vs, not θ, is used for feedback, the feedthrough coupling is an impediment
to stabilization due to its high gain at frequencies well beyond those at which the beam responds. Thus, the
severity of the feedthrough must be reduced. This was accomplished in [7, 8] through the use of a “model
transformer”, which is an analog implementation of a feedforward cancellation filter. The model transformer,
as the name suggests, requires additional hardware so the alternative approach used in this work employs
a discrete-time feedforward cancellation filter, denoted Hf , that is implemented in the DSP as shown in
Fig. 4. Although models of the feedthrough dynamics are available, the feedthrough is experimentally
identified in practice because it produces much better matching. The beam is not perfectly balanced so in
the absence of stabilizing feedback control it tilts to one side with one end resting on the glass substrate.
With no applied center tap current, u produces a small disturbance torque that will not move the beam from
its rest position. Thus, the resulting y signal is almost entirely produced by the feedthrough coupling. This
permits the identification of an appropriate model of the feedthrough. A 7-state discrete-time model of
the feedthrough is implemented as Hf in Fig. 4 and is effective in reducing the feedthrough by about an
order of magnitude. The beam is modeled as a rigid structure, however, there are flexural modes that can be
excited and measured by the electrical interface, but since these modes tend to be somewhat symmetric about
the fulcrum in mode shape, the differential sensing and forcing tends to weakly excite/sense these modes.
Nevertheless, the presence of flexural modes creates a potential source of instability for any controller design
since the flexural mode damping is extremely low in the vacuum.

The primary control design objective is stabilization of the unstable plant, and the analytical models
developed in Sec. 3.2 are useful for guiding the initial design process. Classical loop shaping controller
design is effective since the system is single-input/single-output. The plant has one unstable pole so the loop
gain must have one net counter-clockwise encirclement of−1+j0 in the Nyquist plot. This is achieved with
a mild phase-lead filter, however, a notch is also required to reduce the magnitude of a flexural mode that
exists when the beam is balanced on the fulcrum. Once the experimental system is stabilized it is possible
to identify improved models by testing the closed-loop system. The empirical open-loop plant frequency
response is shown in Fig. 6. Both the y/u and ỹ/u frequency responses have excellent agreement with the
analytical model frequency responses in Fig. 5. The feedthrough filter Hf cannot be expected to provide the
degree of feedthrough cancellation at high frequencies as in the case of the analytical model and, indeed,
an order of magnitude reduction in the feedthrough appears to be practical as shown in Fig. 6 (compare the
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Figure 6: (Left) Open-loop empirical plant frequency responses extracted from closed-loop data. (Right) Empirical loop gain L and
analytical controller frequency response (the controller magnitude is 10× that shown).

relative magnitudes at high frequencies). The closed-loop frequency responses are deduced from testing
the asymptotically stable closed-loop system by injecting a broadband signal where d enters the loop and
then computing the cross-spectra between d all signals of interest. Open-loop frequency responses are then
algebraically computed from the closed-loop frequency responses.

The presence of the residual feedthrough limits the amount of phase lead that can be added to the loop
by the controller because the low frequency gain of the loop must be large enough to achieve the requisite
encirclement for closed-loop stability. Also note that a notch filter is required to reduce the gain of the
flexural mode near 2 kHz. An integrator is also present in the controller but its closed-loop time constant
is approximately 1 second. The frequency response of the controller is shown in Fig. 6 along with the
empirically measured loop gain. The cross-over frequency is approximately 150 Hz. The Nyquist plot of the
experimentally measured loop gain is shown in Fig. 7 and gives more insight into the achievable stability
margin. Given the limits on the high-frequency gain in the controller, the phase lead cannot reduce the
sensitivity function magnitude over a large frequency band. In fact, the residual feedthrough coupled with
the significant phase lag introduced by the analog filtering, creates a scenario in which large sensitivity
magnitude is unavoidable over a significant frequency interval as shown in Fig. 7. Nevertheless, based on
the complementary sensitivity T , the beam can track reference commands up to 600 Hz. The disturbance
rejection properties of the controller, however, do suffer from the relatively large sensitivity. This raises
some interesting system design questions that will be addressed in future papers.

Careful contrast of the empirical frequency responses in Fig. 6 to the analytical model frequency re-
sponses in Fig. 5 show differences in the overall magnitudes by roughly a factor of two. This difference
can be attributed to how the lumped circuit parameters of the analytical model are measured and modeled.
Specifically, the numerical value of the parasitic winding-to-winding capacitance, Cw1 and Cw2 , substan-
tially effect the model frequency response magnitude and adjusting these values can show improved agree-
ment between the two frequency responses.

4.3. Pick-off calibration and displacement noise spectrum
The voltage measurement of the beam displacement is calibrated with a laser vibrometer by placing the

vibrometer spot at the center of an electrode. The vibrometer measures the velocity normal to the beam so the
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Figure 7: (Left) Nyquist plot of loop gain. (Right) Sensitivity function and complementary sensitivity function magnitudes.

closed-loop frequency response from d to the vibrometer output provides a direct measurement of the time-
rate-of-change of the beam-electrode gap at the electrode center. This frequency response is “integrated” into
an equivalent displacement as a function of the voltage d as shown in Fig. 8. This is compared to the closed-
loop frequency response from d to the electrical pick-off measurement of the beam displacement, i.e. ỹ/d.
As the input associated with both frequency responses is the same, the low-frequency ratio of the frequency
response magnitudes provides the “scale factor” associated with the electrical pick-off. This scale factor is
approximately 11.5µm/V and is nearly equal to the value derived from the model and reported in Sec. 3.2.
This conversion factor is accurate from DC to approximately 200 Hz, but beyond 200 Hz, the vibrometer
frequency response must be normalized by the electrical pick-off frequency response, ỹ/d. Despite the
deviation from a simple gain conversion at higher frequencies, the voltage noise spectrum of ỹ can be scaled
into an equivalent displacement noise spectrum that will be accurate for frequencies below 200 Hz. The
voltage noise spectrum of ỹ is measured when d = 0, however, as the feedback loop is closed, any electrical
noise will be shaped by the sensitivity function. Furthermore, any mechanical disturbances to the beam,
i.e. vibration transmitted through the vacuum chamber to the beam by pumps, floor motion, etc., will also
be included in the noise spectrum. The measured spectral density is shown in Fig. 8 and reveals that the
RMS displacement noise from DC to 100 Hz is approximately 7 nm. The largest contributions appear to be
from line noise near 50-60 Hz, and subharmonics. Discounting these components reveals a noise floor near
0.1 nm/

√
Hz. Thus, the beam motion can be measured with a high precision over broad frequency band.

There are other interesting features in the vibrometer data. For example, the lightly damped flexural
mode near 2 kHz is evident in the frequency and the noise spectrum, thus, as noted above, the displacement
noise spectrum also includes acceleration disturbances to the beam in addition to electrical noise. The
vibrometer also appears to detect additional flexural modes near 1.3 kHz and 9 kHz which are not detected
by the electrical pick-off. This is of interest because the pick-off and forcing is collocated at the same
electrode and so it should be possible to excite a flexural mode if only it can be sensed; the nature of these
flexural modes and why they are excited but not sensed has not been resolved.
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Figure 8: (Left) Vibrometer measurements for calibrating electrical pick-off. (Right) Displacement noise spectrum of ỹ using scale
factor obtained from the vibrometer data.

5. Conclusion

Modeling, analysis, and test results are reported for a precision gap control system using an electro-
statically actuated and capacitively sensed beam and represents a step towards the creation of a testbed for
fully levitated resonators. The model analysis technique generates state-space models of the plant whose
frequency responses show excellent agreement with the experimentally measured plant properties. The ex-
periments also reveal the practical limit of compensating the feedthrough with an fixed digital filter. Finally,
calibration of the beam motion with a vibrometer yields useful information on the displacement noise power
spectrum. These data are important for extending the 1-DOF model to the multi-DOF configuration that is
necessary for fully levitated structures.

The 1-DOF beam coupled to the transform is an unstable system when the transformer is driven by a si-
nusoidal center tap current and so the essential feature of the stabilizing controller is its phase-lead behavior
along with its sufficiently large low frequency gain. The residual feedthrough that remains after the feedfor-
ward cancellation, however, limits the amount of phase lead that can be developed which, coupled with the
significant plant phase lag, creates a situation in which the sensitivity function magnitude is close to 4 over a
broad frequency band. Thus, although the closed-loop system is stable, it generally has poor disturbance re-
jection properties. Future directions will investigate methods to reduce the plant phase lag including analog
modulation/demodulation in which the DSP is only used for baseband control. Furthermore, it may be possi-
ble to improve the level of feedthrough cancellation using an adaptive feedforward filter because injecting a
sinusoidal signal at u that is in quadrature with cos(ω0t+φu) will essentially perturb the phases of vtop and
vbtm but leave their amplitudes largely intact. Thus, this technique will minimally perturb the electrostatic
forces on the beam but create a coupling signal to y which can be used to quantify the feedthrough. These
results will be reported in future publications.
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Appendix A. Equations of motion

The equations relating the currents and potentials in the transformer shown in Fig. A.9 are

L1i̇L1
−Mpi̇L2

−Msi̇3 = vct − v1 id = iL1
+ iL2

Cw2
(v̇ct − v̇btm) = iw2

L2i̇L2
−Mpi̇L1

+Msi̇3 = vct − v2 itop = iw1
+ iR1

Ci1 (v̇1 − v̇3) = iC1

Lsi̇3 −Msi̇L1 +Msi̇L2
= v4 − v3 ibtm = iw2

+ iR2
Ci2 (v̇2 − v̇4) = iC2

Lx(i̇3 + i̇C1
) = v3 − vs ic = −(i3 + iC1

)− i4 iw1
+ iw2

+ id = ict

Ctopv̇top = itop − ip iL1
= iR1

+ iC1
R22(iC2

− i3) = v4

Cbtmv̇btm = ibtm + ip iL2
= iR2

+ iC2
Cp (v̇top − v̇btm) = ip

v1 − vtop = R11iR1
−R21i4 = vs Cw1

(v̇ct − v̇top) = iw1

vc − vs = Rkic v2 − vbtm = R12iR2
,

(A.1)

where the inductances, resistances and capacitances are given in Table A.1. The currents and potentials
in (A.1) are gathered into the vector x. The beam equations of motion are

d

dt

[
θ

θ̇

]
=

[
θ̇

f(θ;x)

]
, (A.2)
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Transformer Parameters
Parameter Value Parameter Value Parameter Value

L1 2.1 H Ctop variable Ci2 40 pF
L2 2.1 H Cbtm variable R11 504 Ω
Ls 1.53 mH Cp 17 pF R12 504 Ω
Lx 2.47µH Cw1

80 pF R22 0.54 Ω
Mp 2.1 H Cw2 80 pF R21 100 Ω
Ms 57.6 mH Ci1 40 pF Rk 100 Ω

Beam Parameters
Parameter Value
beam length 44 mm
beam width 25 mm

beam thickness 500µm
electrode area, A 1.21 cm2

dielectric constant, ε 8.85×10−12 F ·m−1

fulcrum/electrode distance, L 1.55 cm
nominal beam/electrode gap, d0 10µm

moment of inertia, J 0.207× 10−6 kg ·m2

Table A.1: Table of system parameter values

where θ represents the angle that the beam makes with respect to plane of the glass substrate on which the
electrodes are deposited, i.e. the beam is parallel to the baseplate when θ = 0◦, and where

f(θ;x) =
L

J

(
− εA

2

v2top
(d0 + Lθ)2︸ ︷︷ ︸
Ftop

+
εA

2

v2btm
(d0 − Lθ)2︸ ︷︷ ︸
Fbtm

)
.

Note that vtop and vbtm are elements of the vector x, and Ftop and Fbtm represent the electrostatic forces
exerted on the beam from their respective electrodes (see Fig. A.9). The beam is grounded and the electro-
static forces produced by each electrode create a moment on the beam. The beam moment of inertia is given
by J and the area of each electrode isA. The values of the beam parameters are also given in Table A.1. The
transformer capacitances, denoted Ctop and Cbtm, depend on the beam angle and provides the link from the
beam dynamics to the the transformer dynamics,

Ctop =
εA

d0 + Lθ
, Cbtm =

εA

d0 − Lθ
(A.3)

The parallel plate capacitance formula is used for computing these capacitances (and computing the elec-
trostatic forces in (A.2)) even when beam is deflected. The gap for the deflected beam is computed as the
product of the distance L from the fulcrum to the electrode centroid with the beam angle θ which is then
summed with, or subtracted from, the nominal gap d0. Since θ is very small even at full deflection it is not
necessary to use trigonometric functions to express the gap.
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