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Abstract—An axisymmetric planar MEMS resonator is config-
ured such that the n = 2 elliptical pair of modes near 13.5 kHz,
and the n = 3 pair of modes near 23.8 kHz, are both degenerate,
that is, the frequency difference within a given pair of modes
is close to the resonance bandwidth. This configuration enables
not only the exploitation of the standard elliptical pair of modes
for angular rate sensing but also permits the operation of the
n = 3 pair of modes as a high-sensitivity Coriolis vibratory gyro.
The performance for each pair of modes separately acting as
a vibratory gyro is quantified, however, the control architecture
also facilitates the simultaneous operation of both pairs of modes.
In this scenario, two measurements of angular rate are extracted
from a single resonator and although the short-term rate noise
associated with the n = 3 pair is an order of magnitude larger
than the rate extracted from the n = 2 pair, the long-term drift
in the rate offsets are correlated. Thus, a filter architecture for
fusing the rate measurements is proposed and it is shown how
the derived rate estimate possesses superior offset stability but
also retains the low short-term noise associated with the rate
measurement from the n = 2 pair.

Index Terms—Gyroscopes, MEMS, inertial sensors, bias self
calibration

I. INTRODUCTION

Coriolis vibratory gyros created with planar MEM res-
onators have demonstrated high signal-to-noise ratios, espe-
cially in frequency-matched configurations. Planar frequency-
matched designs in which two modes possess nominally
degenerate natural frequencies are reported in [1–5]. The
frequency-matching boosts the SNR with respect to buffer
noise, however, the sensitivity of the zero rate bias (rate
offset) to subtle changes in the resonator dynamics, especially
changes in damping, is still a major issue. Anything that
changes the effective damping in the modes will create drift in
the rate offset and so compensating or reducing the offset drift
is of paramount importance in these sensors if the benefits of
the high SNR are to be fully realized. Thermal control and
isolation of the resonator is always employed when practical
because many sources of resonator damping perturbations,
whether induced by stresses or temperature dependence of the
dissipation of the resonator material, can ultimately be traced
to the temperature stability of the resonator and its package.
These techniques, though not reviewed here, are based on
creating a stable environment for the resonator and are often
used with the offset compensation approaches discussed below.

†Corresponding author, rtm@seas.ucla.edu. This work was partially sup-
ported by DARPA contract W31P4Q-11-1-0004.

A complimentary set of techniques have been developed to
compensate for drift in the rate offset of MEM gyros. These
techniques can be roughly categorized as extrinsic or intrinsic.
Extrinsic techniques employ additional hardware to provide
known stimuli to the gyro for calibration purposes. These
techniques can be very effective, but come with the added
complexity of mechanical design, integration and packaging.
For example, a rotary platform was used in [6] to AC-
couple low frequency rate inputs so that the offset can be
effectively removed by filtering. Intrinsic approaches don’t
rely on additional external stimuli but instead compensate the
offset drift by identifying additional measurements that are
correlated with the drift, eg. embedded strain gauges fabricated
with the resonator as recently reported in [7], or operating the
resonator in such a manner that certain errors are reduced by
averaging, eg. the periodic “mode switching” reported in [4, 8]
for disk resonators and in [9] for hemispherical resonators, or
the modal precession technique described in [10].

The resonators in the aforementioned references which
are ring/disk-type resonators all exploit the n = 2 pair
of modes for angular rate sensing. The terminology comes
from the fact that the mode shapes are dominated by 2θ
dependency on the sensor-fixed angular coordinate θ. It is
well-known that other pairs of nominally degenerate modes
in ring resonators are also coupled by Coriolis terms in the
sensor-fixed coordinate system and, thus, can also be used
for angular rate sensing [11]. Although diminishing returns
are obtained with the use of higher-order pairs due to their
reduced degree of Coriolis coupling compared to the n = 2
pair, one contribution of this paper is to provide a definitive
comparison between the frequency-matched operation of the
n = 3 pair to the operation of the n = 2 pair for the resonator
described in [12]. The frequency matching in this reference
was accomplished by applying mass-deposition techniques but
only considered the n = 2 pair. In the present paper the
n = 3 pair of modes is targeted as well and we show that
the square root of the power spectral density of the noise
associated with the n = 3-derived angular rate is about an
order of magnitude greater than the root-density associated
with the n = 2-derived rate. This large difference is primarily
due to the relative response amplitudes that can be developed
within each pair using comparable amplitudes of electrostatic
forcing –in other words, the weaker Coriolis coupling of the
n = 3 pair is not the dominant factor for the resonator under
consideration in this paper. The lower response amplitudes of
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the n = 3 pair are a consequence of their higher intrinsic
stiffnesses and lower time constants. Thus, as far as silicon
resonator considered in this paper is concerned, the n = 2
pair will always achieve a higher SNR than the n = 3 pair
under similar forcing conditions, electrode areas and so forth.
Resonators fabricated from other materials may not suffer from
this limitation since thermoelastic dissipation models of fused
silica rings, for example, suggest similar time constants for
both n = 2, 3 pairs when certain ring dimensions are used,
eg. the results in [13] can be adapted for fused silica rings.

The modal degeneracy of the n = 2 pair and the modal
degeneracy of the n = 3 pair are actually achieved within
the same resonator. Thus, the second contribution of the paper
demonstrates that both pairs of modes can be simultaneously
operated as high SNR Coriolis vibratory gyros. Thus, one
resonator yields two angular rate measurements. It is shown
that this “dual-pair” operation only slightly degrades the rate
noise spectra compared to single-pair operation. Finally, the
dual-pair operation also reveals strong correlation between the
two rate offsets. Perhaps this is not surprising considering
that what drives the offset drift in one pair will also have
some effect on the other pair. The coupling of the offsets
means appropriate filtering can be used to mitigate their drift.
Thus, the third contribution of the paper is a proposed filter
structure that fuses the two rate signals into a single rate
estimate with reduced offset drift. This alternative approach for
compensating long-term instability can be used in conjunction
with any of the other aforementioned techniques.

The paper is organized as follows. Sec. II describes the
resonator-level configuration of the electrodes in order to
support dual-pair operation. Sec. III describes the controller
architecture that enables both single- and dual-pair CVG
operation. Sec. IV presents experimental results for both
n = 2, 3 single-pair operation as well as their simultaneous
operation. Sec. V proposes a filtering scheme whereby the
rate measurements from the dual-pair operation are fused into
a single estimate of angular rate with improved offset stability.
Sec. VI concludes the paper.

II. RESONATOR CONFIGURATION

The resonator under consideration is described in [12]. The
reader is referred to this paper for details on its fabrication,
testing and modeling but, broadly speaking, the resonator
can be viewed as a ring in which modes corresponding to
eigenfunctions cos(nθ) and sin(nθ), n = 2, 3, . . . , appear in
degenerate pairs, where θ parameterizes the position on the
ring according to an angle coordinate. In physical devices,
though, there is some detuning of the resonant frequencies in
any given pair. Since the electronic buffer noise dominates
the pick-off noise spectrum for this design, detuning can
severely degrade the gyro performance [14]. Thus, reducing
the frequency mismatch within the n = 2 pair of modes and,
simultaneously, within the n = 3 pair of modes is necessary
for maximizing the signal-to-noise ratio of the angular rate
measurements extracted from each pair. Furthermore, reducing
the frequency mismatch also reduces the quadrature offset,
which is desirable since it avoids saturation of the high-gain

TABLE I
SUMMARY OF MODAL PROPERTIES

Pair Nominal ωn (kHz) Difference (Hz) Quality Factor (k)

n = 2 13.517 0.12 50.6/50.6
n = 3 23.753 0.10 35.5/35.8
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force-to-rebalance (FTR) loop and also minimizes coupling
into the rate offset when there are demodulation phase errors.

The n = 2 frequency mismatch can be reduced to about
50 mHz (out of a nominal modal frequency of approximately
13.5 kHz) via point-mass loading of the resonator as demon-
strated in [12], however, the effect of mass loading on the
n = 3 frequency mismatch was ignored. It is necessary to
simultaneously reduce the mismatch if low noise measure-
ments of angular rate are desired from each pair of modes
within the same resonator. Thus, the mass loading technique
was extended to reduce within the same resonator the n = 3
frequency mismatch in addition to the n = 2 mismatch [15].
The added complexity of reducing the mismatch in both pairs
of modes, though, means that it is typically not possible
to achieve the same level of mismatch reduction as in the
cases where the n = 2 pair or n = 3 pair are separately
considered because the mass loading technique discussed in
these references deposits quantized amounts of mass on to
the resonator, i.e. arbitrarily fine increments are not possible.
Recent work in [16] proposes mass removal via etching
of selected sites may mitigate this constraint, however, this
technique has not been applied to the dual pair tuning problem.
The resonator reported in [15] is used for the present work and
so only the final frequency mismatches and quality factors
are reported in Table I. The approximate mode shapes when
n = 2, 3 are also shown.

The antinodes associated with the n = 2 mode shapes
subtend 45 degrees, and the antinodes associated with the
n = 3 mode shapes subtend 30 degrees, so the electrode
arrangement is selected to optimally sense and excite these
pairs by selecting the forcer and pick-off electrodes to sub-
tend the same angles, however, since there is some freedom
in assigning the electrodes even with these constraints, the
final layout is chosen to minimize quadrature and capacitive
feedthrough. The electrode configuration, shown in Fig. 1, is
different from the configuration reported in [15]. The D1 and
D2 electrodes are for forcing the n = 2 modes, and the S1

and S2 electrodes are the n = 2 pick-offs. Similarly, the D+
3 ,

D−
3 , D+

4 and D−
4 electrodes are for forcing the n = 3 modes

and the S+
3 , S−

3 and S4 are the n = 3 pick-offs. The forcing
electrodes for the n = 3 modes are arranged as two differential
pairs, however, only the S3 pick-off is differential (S3 is the
force-to-rebalance pick-off –see Sec. III). It is desirable to
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Fig. 1. (top) Electrode layout on resonator. (Bottom) Functional block diagram
showing relationship between discrete-time signals and electrode signals.

arrange all electrodes/forcers into differential pairs to mitigate
capacitive coupling between electrodes, however, due to the
limited number of electrodes, differential sensing is allocated
to the paths where the coupling is most detrimental.

All pickoff electrode currents are buffered by transresis-
tance amplifiers with 10 MΩ feedback resistors. Since the
resonator is unpackaged, the buffer card is co-located with
the resonator in a vacuum chamber and all other electronics
are located outside the chamber. A digital signal processor
(DSP) executing at an 80 kHz sample rate interfaces to 16-
bit analog-to-digital convertors (ADCs) and digital-to-analog
convertors (DACs). The buffer card outputs are filtered by
anti-alias filters prior to sampling. The anti-alias filters are
denoted by the “AAF” blocks in Fig. 1. The block diagram
also shows how the electrode signals are consolidated and
sampled. The discrete-time signals manipulated by the DSP
are given the ˜ notation. The automatic gain control (AGC)
forcing signals issued by the DSP are denoted D̃1 and D̃3 for
the n = 2 and n = 3 pairs, respectively. The FTR forcing
signals are denoted D̃2 and D̃4 for the n = 2 and n = 3
pairs, respectively. The signals S̃1 and S̃3 are the AGC pick-
offs, and S̃2 and S̃4 are the force-to-rebalance pick-offs. The
frequency responses from the perspective of the DSP for all 16
channels are shown in Figs. 2 and 3 in a neighborhood of each
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Fig. 2. Frequency responses for electrode arrangement shown in Fig. 1. The
solid traces are used for designing the control filters for the n = 2 pair,
however, the dashed traces show how the forcers for the n = 3 pair couple
into the n = 2 pair.

modal pair. The frequency response magnitude of all channels
is shown to reveal the coupling that exists between the forcing
electrodes to both pairs of modes. The notation S̃q/D̃p denotes
the transfer function from forcing electrode D̃p to pick-off S̃q .
There is approximately a 10 kHz separation between the n = 2
and n = 3 modal frequencies and the control architecture
discussed in Sec. III effectively prevents interaction between
the n = 2 and n = 3 digital control filters. Thus, each
pair of modes can operate as an independent CVG, however,
broadband DAC noise is not influenced by the digital filtering
and directly drives all modes. For example, the frequency
responses from D̃3 and D̃4 in Fig. 2 show how n = 3 DAC
noise can corrupt the n = 2 pick-off measurements and for
this reason, a pair of high-pass filters are placed after DACs
in the D3 and D4 channels, and a pair of low-pass are place
after the DAC in the D1 and D2 channels.

III. CONTROL ARCHITECTURE

This section describes the filter architecture implemented by
the DSP. The n = 2 and n = 3 control loops are identical in
architecture and only differ only in the filter and compensator
parameters so the development is described in the context of
the n = 2 pair. The pair of modes is operated as a force-to-
rebalance (FTR) gyro, however, in contrast to previous work
by the authors in which the FTR controller was a high-gain
phase-shifting filter (eg. [17]), the signal processing is now
essentially that of a lock-in amplifier implemented by the DSP
(refer to Fig. 4). All signals in Fig. 4 are discrete-time although
this is not explicitly noted in the diagram. The demodulation
frequency ω0 is fixed in this implementation (it is not adjusted
by a phase-locked loop driving a voltage-controlled oscillator)
and is chosen to be near the nominal modal frequency of the
n = 2 modes, thus, the final transfer function of the lock-in
based controller can be mapped to the FTR filter in [17]. This
implementation creates a pass-band filter with center frequency
at ω0. The rationale for fixing ω0 is due to the fact that in this
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Fig. 3. Frequency responses for electrode arrangement shown in Fig. 1. The
solid traces are used for designing the control filters for the n = 3 pair,
however, the dashed traces show how the forcers for the n = 2 pair couple
into the n = 3 pair.

class of resonator there is typically some environmental control
so that the gyro operating frequency experiences little drift.
The lock-in architecture, however, affords some advantages
with regard to adjusting the loop phase. Specifically, the
change in the frequency response phase introduced by the
analog filtering requires that the phase of the loop must be
adjusted by the FTR controller in order to maintain closed-
loop stability and minimize peaking in the sensitivity function.
Since ω0 is chosen to be close to the operating frequency, the c
and d parameters mix the in-phase and quadrature components
of S̃2, denoted S2,i and S2,q , respectively, so that a phase offset
is created at the band-pass center frequency ω0. The phase
offset is − tan−1(d/c). In practice, the parameters c and d are
constrained so that c2+d2 = 1 and are selected so that the sum
of the phase offset with the phase of the analog elements (anti-
alias and smoothing filters, buffer board dynamics, resonator
dynamics) gives the desired loop phase of approximately zero
degrees at ω0 in the negative feedback configuration shown
in Fig. 4. The magnitude of the loop transfer function, which
determines the gyro bandwidth, is specified with the gain K.

The sensor excitation is achieved with an automatic gain
control (AGC) scheme. The AGC can also be implemented
using the lock-in architecture as shown in Fig. 4, where the
parameters a and b are used to tune the AGC loop phase at ω0

and also satisfy the constraint a2 + b2 = 1. The demodulating
sinusoids are the same as those used in the FTR loop, i.e. the
demodulation frequency is ω0. Typically, {a, b} are different
from {c, d} because of differences in the phases of the S̃1/D̃1

and S̃2/D̃2 channels. The proportional-integral compensation
in the AGC is standard and described elsewhere, eg. [18].

The angular rate and quadrature signals can be extracted by
manipulating the baseband signals S1,i, S1,q , S2,i, and S2,q .
For the analysis it can be assumed that the AGC establishes
a constant amplitude sinusoidal response for S̃1 and that the
rate and quadrature signals can be modeled as disturbances
reflected to the output of the FTR controller as shown in Fig. 4.
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Fig. 4. (Top) Force-to-rebalance controller with lock-in architecture and phase
adjustment. (Bottom) Automatic gain control for sensor excitation.

Thus, we assume S̃1 = VAGC sin(ωnt+ φA), where VAGC is the
amplitude of the steady-state pickoff voltage established by
the AGC loop, φA is the phase of the response and ωn is
the operating frequency of the gyro. Note that ωn is close to,
but generally not equal to, the demodulation frequency ω0,
thus, the frequency offset parameter δω is defined such that
ωn = ω0 + δω . The baseband components in the AGC are
given by

S1,i =
VAGC

2
cos(δωt) cosφA −

VAGC

2
sin(δωt) sinφA,

S1,q =
VAGC

2
sin(δωt) cosφA −

VAGC

2
cos(δωt) sinφA,

(1)

where it has been assumed that the low-pass filters, shown as
the LPF blocks in Fig. 4, pass only the baseband signals.

The signal introduced into the FTR loop by an angular
rate of rotation Ω and quadrature Q can be modeled as a
disturbance, denoted R, located at the output of the FTR
controller

R(t) = γΩ cos(ωnt+ φr) + γQ sin(ωnt+ φr),

where γ captures the degree of Coriolis coupling between
the modes and the fact that the disturbance, which can be
fundamentally understood as forces on the resonator, have
been expressed in terms of an equivalent voltage. Note that the
disturbance appears at the gyro operating frequency ωn, and
it also has an associated phase φr. In a high-gain FTR loop,
it can be assumed that the controller voltage issuing from the
K gain block completely cancels the Coriolis and quadrature
induced disturbance. In other words, the output of the K gain
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block is also R. Thus, it is possible to compute the baseband
signals in the FTR controller which produce this signal,[
− sin(δωt) − cos(δωt)
cos(δωt) − sin(δωt)

] [
cosφr sinφr
sinφr − cosφr

] [
Ω
Q

]
=
K

γ

[
c d
−d c

] [
S2,i

S2,q

] (2)

The slowly varying components at frequency δω can be
eliminated by substituting (1) into (2) and solving for Ω and
Q,[

Ω
Q

]
=

2K

VAGCγ

[
− cosφr − sinφr
− sinφr cosφr

] [
− sinφA cosφA
cosφA sinφA

]
×
[
c −d
d c

] [
S1,i S1,q

S1,q −S1,i

] [
S2,i

S2,q

]
=

2K

VAGCγ

[
cos θ sin θ
− sin θ cos θ

] [
S1,i S1,q

S1,q −S1,i

] [
S2,i

S2,q

]
.

(3)
Note that there is a product of three orthogonal matrices
in (3) which can be represented as a single orthogonal matrix
parameterized by angle θ as shown. Although, φA and φr can
be measured, it is not necessary to do so because θ can be
determined from a calibration experiment: a known angular
rate profile is applied to the sensor, the baseband signals are
mixed according to (3) and then θ is selected so that the
derived signal Q is uncorrelated with the known angular rate.
This also demonstrates that γ and VAGC need not be explicitly
determined (although the latter is known since is the reference
amplitude for the PI compensation in the AGC) because the
scaling 2K/VAGCγ can also be determined from the calibration
experiment.

IV. SINGLE- AND DUAL-PAIR GYRO OPERATION

A. Test environment and scale factor measurement

The unpackaged resonator and buffer board reside in a
vacuum chamber with additional electronics located outside
the chamber, thus, rigorous environmental testing of the sen-
sor is not possible and must be postponed until hermeti-
cally packaged resonators with compact buffer and control
electronics become available. Therefore, the objective of the
experiments is to demonstrate proofs-of-concept. Nevertheless,
the resonator temperature is unregulated so thermal transients
are experienced over the course of an experiment, albeit
with a range limited to a few degrees Celsius. The vacuum
chamber pressure is also allowed to reach 100µTorr before
commencing an experiment, however, because the ultimate
vacuum is 10µTorr, all experiments can be assumed to have
a vacuum level in the range 10-100µTorr. Thus, the effects
of vacuum and temperature transients are present in the data,
however, they are not quantified or used for compensation in
this paper.

The absence of environmental control, even in benign
laboratory conditions, exposes the resonator to enough of a
changing environment to induce significant drift in the angular
rate offsets derived from the n = 2 pair and n = 3 pair. It
will be shown that the drifting offsets are correlated when both
pairs modes are simultaneously operating in the resonator, a

configuration that is designated “dual-pair” operation. Thus,
the long-term drift in the offsets can be used to calibrate each
other to improve the overall stability of the “fused” angular
rate signal, i.e. the rate signal derived from processing both
basic angular rate measurements into a single signal.

The vacuum chamber is equipped with a rotary feedthrough
for scale factor estimation. It is necessary to estimate the scale
factors associated with the n = 2 and n = 3 modal pairs so
that the pick-off voltage noise spectrum can be converted into
an equivalent rate noise spectrum. Measurement of the scale
factors is accomplished using the rotary vacuum feedthrough
to turn the resonator through a known angle. The subsequent
response of the voltage signals proportional to Ω and Q in (3)
are integrated over the duration of the calibration experiment,
yielding quantities whose units are V-s. The known angle,
expressed in degrees, is normalized by the integrated voltages
so scale factors are estimated with units of (◦/s)/V. With
this definition, a lower scale factor indicates higher sensitivity.
This technique is suitable for estimating nominal scale factors,
however, it cannot be used to determine scale factor stability.

B. Single-pair baseline performance

The controller and filtering parameters are listed in Table II
for both pairs of modes. These controller parameters remain
the same for single- or dual-pair operation –it is simple a
matter of closing the relevant loops in order to operate the
pair(s) of interest. The angular rate extracted from n = 2
pair is denoted Ω2 and the angular rate extracted from
the n = 3 pair is denoted Ω3. The scale factors, defined
SF = 2K/VAGCγ, and bandwidths (denoted BW) associated
with each rate measurement are listed in Table III. As shown
in this table, the scale factor for the n = 2 pair of modes
is roughly one sixth of that of the n = 3 pair of modes.
This difference is primarily attributed to the difference in AGC
channel displacement associated with each pair of modes. The
AGC displacement is given by VAGC/ωnKcKT , where Kc is the
transduction gain of the capacitive pick off electrodes, which
can be calculated from the capacitance model of the resonator-
electrode geometry, and VAGC is the amplitude of the sinusoidal
voltage representing the AGC pick-off (this is the reference
amplitude in the AGC loop in Fig. 4). The transresistance gain
of the buffer electronics is 107 Ohm for both pairs of modes,
however, the n = 3 pair has an additional gain of 5 in the
AGC signal path, thus, KT = 107 Ohm for the n = 2 AGC
channel, and KT = 5×107 Ohm for the n = 3 AGC channel.
The resonator transduction parameters are also summarized in
Table II. As indicated in the table, the modal displacement
amplitude of the n = 2 mode is more than an order of
magnitude larger than that of the n = 3 mode, despite the
fact that the modes are driven by excitation sinusoids with
approximately the same amplitudes. This difference in modal
displacement can be attributed to a number of factors. For
example, ratio of the modal stiffness to modal mass is higher
for the n = 3 pair mode and the n = 3 quality factors are lower
than their n = 2 counterparts. Thus, for a given input force,
the displacement produced by the n = 3 modes is inherently
smaller.
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TABLE II
SUMMARY OF CONTROL FILTER AND TRANSDUCTION PARAMETERS

Parameter n = 2 pair n = 3 pair
ω0 (kHz) 13.520 23.750
VAGC (V) 1.0 0.5

LPF 4-pole, 100 Hz 4-pole, 100 Hz
K 44 95

AGC disp. (µm) 0.7 0.06
Kc (µA/m/s) 1.69 1.12

TABLE III
SINGLE- VS. DUAL-PAIR GYRO PERFORMANCE

Configuration SF ((◦/s)/V) BW (Hz) ARW (◦/
√

hr)

n = 2, single -19.9 10 0.025

n = 2, dual -20.2 10 0.031

n = 3, single 131 25 0.52

n = 3, dual 133 25 0.78

With the identified scale factors in hand, the statistics of the
noise and offset associated with Ω2 are first quantified when
the n = 3 pair is uncontrolled (D̃1 and D̃1 are grounded).
Then, the noise statistics of Ω3 are quantified when the
n = 2 pair is uncontrolled (D̃3 and D̃4 are grounded). The
Allan deviation and power spectral densities of the single-pair
angular rates are shown in Figs. 5 and 6, respectively. No
compensation strategies, such as temperature- or frequency-
based compensation or quadrature control, were employed for
mitigating rate offset drift. The angle random walk (ARW) can
be estimated from the low frequency asymptote in the spectral
density graphs but is more difficult to discern from the Allan
deviation charts. The ARW figures for single-pair operation
are also reported in Table III.

The noise spectra in Fig. 6 exhibit the typical sigmoid shape
with high-Q, mode-matched resonators [14], however, the total
noise powers associated with Ω2 and Ω3 are quite different. As
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Fig. 6. Spectral densities of Ω2 and Ω3 associated with single-pair (solid)
and dual-pair (dash) operation.

mentioned above, this is due to the different scale factors, but
also because the pick-off voltage noise spectrum is slightly
higher at the n = 3 frequency (37.5µV/

√
Hz for n = 2

versus 52.5µV/
√

Hz for n = 3). The low-frequency knee in
the spectral densities is located at approximately 1 HZ for Ω3

versus 0.5 Hz for Ω2. This is attributed to the lower quality
factor of the n = 3 modes.

C. Dual-pair performance

This section demonstrates that both pairs can be operated
simultaneously, thereby providing two angular rate measure-
ments from one resonator. The key ingredients are already in
place. The isolation of a given pair of modes from the other
pair due to the lock-in architecture implies that both pairs
can be operated simultaneously without risk of destabilization.
Furthermore, broadband disturbances created by the DAC
noise are diminished by appropriate analog filtering. The noise
spectra of Ω2 and Ω3 obtained from simultaneous operation
essentially achieves the performance corresponding single-pair
operation –only slight degradation in performance is measured
as shown in Figs. 5 and 6 and Table III. The marginal increase
in the Ω2 ARW is attributed to the n = 3 DAC noise which
is not completely eliminated by the analog filters.

Time domain angular rate measurements are shown in Fig. 7
when the rotary feedthrough is turned through 90 degrees.
This figure clearly demonstrates that the sensor yields two
simultaneous estimates of angular rate. Also of interest are
the long-term drifts in the rate offsets when the sensor is not
rotating. The offset drifts can be viewed by filtering the Ω2 and
Ω3 signals through a moving average filter whose averaging
interval is approximately equal to the integration time at which
the Allan deviation is minimum. The low-pass filtered signals
are denoted Ω2,lp and Ω3,lp. For example, a 10-second moving
average yields the Ω2 and Ω3 offsets shown in Fig. 8 for five
experiments ranging in duration of 6 hours to over 15 hours. It
is clear that for a given experiment the Ω2 and Ω3 offsets are
strongly correlated, however, the offsets appear uncorrelated
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Fig. 8. Low-pass filtered signals Ω2,lp (blue, solid) and Ω3,lp/10 (red) from
five dual-pair experiments (labeled “1” through “5”) exhibit strong correlation
within a given experiment. The derived rate Ω̃lp = λΩ2,lp + (1− λ)Ω3,lp

(blue, dash) is shown from experiment 1, where λ = 0.9192.

from one experiment to the next. In fact, if the rate signals
for the 15 hour experiment are combined to create the signal
Ω̃lp := λΩ2,lp + (1 − λ)Ω3,lp, where λ = 0.9192, then the
offset drift of Ω̃lp is drastically reduced as shown in Fig. 8.
This motivates the search for a filter structure that combines
both rate measurements into a low noise rate estimate with
reduced offset drift. This is the subject of the next section.

V. FILTER ARCHITECTURE FOR FUSION OF RATE SIGNALS

The fact that the long-term drift in the Ω2 and Ω3 offsets
are strongly correlated and can be combined into a signal with
lower drift suggests that it should be possible to combine Ω2

and Ω3 into a single estimate of the angular rate that also
retains the benefits of the lower noise associated with Ω2 at
shorter integration times. For example, simply combining the
rates into the signal Ω̃ = λΩ2 + (1−λ)Ω3 will produce a rate

Ω2

Ω3

λ

1 − λ

+

+ ĥlp

ĥ

1 − ĥ

1 − ĥlp
+

+

+

+ Ω̃

Fig. 9. Filter structure for fusing Ω2 and Ω3 into a single signal. The filter
blocks are specified in transfer function form.

estimate with reduced offset drift, however, at short integration
times the Allan variance of this signal is approximately

σ2
AV (Ω̃) ≈ λ2σ2

AV (Ω2) + (1− λ)2σ2
AV (Ω3),

where σ2
AV (Ω2) and σ2

AV (Ω3) are the Allan variances of Ω2

and Ω3, respectively. The large noise power in Ω3 relative to
Ω2 produces σ2

AV (Ω̃) > σ2
AV (Ω2) at short integration times,

which is undesirable. This is overcome by implementing the
filter structure shown in Fig. 9. As described above, λ is a
parameter that is related to the long-term correlation of Ω2 and
Ω3, hlp denotes the impulse response of a low-pass moving
average filter (the transfer function is denoted ĥlp), and h is the
impulse response of a second filter (transfer function ĥ) that
is designed to reduce the variance of Ω̃ at shorter integration
intervals. The process for designing λ, hlp and h is described
in the Appendix.

It is clear from Fig. 8 that the offset variation does not repeat
from experiment-to-experiment, however, the filter architecture
in Fig. 9 can be applied to dual-pair rates from the five
experiments in which the filters are populated by analyzing
the data from a single experiment. For example, assuming hlp
is a 10 second moving average low-pass filter –refer to (4)–
λ and h can be generated using the Ω2 and Ω3 data from the
experiment labeled “1” in Fig. 8. This yields λ = 0.9192
and h whose impulse response is shown in Fig. 11. Note
that h is very close to a unit impulse because the noise
power in Ω3,hp is much larger than the noise power in Ω2,hp

(the subscript notation is described in the Appendix). These
filters are fixed and then applied to the remaining dual-pair
test data. The Allan deviation of Ω̃ derived from each dual-
pair experiment is shown in Fig. 10. There is significant
improvement in long-term bias stability with short-term noise
essentially equal to that of Ω2. In fact, the stability of Ω̃
has improved to the point where the ARW trend is readily
identifiable in the Allan deviation, whereas it is obscured in
the single-pair Allan deviation. The fused rate signal has an
ARW figure of 0.027◦/

√
hr. The angle white noise (AWN)

asymptote is also shown in Fig. 10.
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VI. CONCLUSION

An axisymmetric resonator has been modified so that the
n = 2 elliptical pair of modes and the n = 3 pair of
modes are both degenerate. The angular rate extracted from
the n = 2 pair is contrasted to that of the n = 3 pair.
Although the n = 3 pair exhibits higher noise, the offsets
are correlated when both pairs are simultaneously operated as
CVGs. The correlation of the offsets allows the fusing of the
two angular rate measurements into a single rate estimate with
improved long-term stability and low short-term noise. In fact,
the integration interval over which the Allan deviation is less
than 1 ◦/hr was extend from 100 seconds to a minimum of
1000 seconds for the fused angular rate signal, thus, this is
a complementary technique for compensating offset drift and
can be used in conjunction with other environmental control
and self-calibration strategies. It is also possible to configure
each rate measurement for different sensing objectives. For
example, the n = 2 pair can be configured as a high-sensitivity,
low-dynamic range measurement whereas the n = 3 pair can
be configured for higher bandwidth and dynamic range.

The results can be improved by considering modifications
to the present resonator design. Whether one pair or both
pairs of modes are used for sensing, the design suffers from
relatively small electrode area compared to internal electrode
design, eg. [4]. The addition of internal electrodes arranged
for differential sensing and forcing, instead of just the exter-
nal perimeter electrodes in an unbalanced arrangement, can
significantly boost the electrode area, which will produce a
concomitant reduction in ARW. The internal electrodes would
also facilitate manipulating the modal frequencies by mass
perturbation since certain harmonics that are important in
the modes shapes are only prominent for the interior rings,
eg. [16].

The proposed control technique is analogous to a lock-
in amplifier applied to all measurement channels followed

by filtering and then remodulation of baseband signals to
produce the forcing signals. This approach achieves not only
exceptional isolation of each pair of modes and eliminates
interaction between the various channels but it also allows
facile adjustment of the loop phases, which is important for
achieving the best possible stability margins. One issue which
is not associated with the control technique but rather the
use of DACs, is the broadband noise created by the DACs
–the noise from the n = 3 DACs can disturb the n = 2
pair leading to increased angle random walk associated with
Ω2. Thus, analog filters are still required to remove these
disturbances, however, differential forcing with an expanded
set of electrodes would also mitigate the DAC disturbances
introduced across the pairs of modes.

APPENDIX
DERIVATION OF FILTERS FOR FUSING RATE SIGNALS

The filter structure for blending the two rate measurements
is shown in Fig. 9. It is assumed that angular rate estimates
Ω2 and Ω3 are produced with the same bandwidth. If this is
not the case, then the high bandwidth measurement can be
filtered so that its bandwidth is constrained to be equal to the
other measurement or, alternatively, the filter structure can be
modified to accommodate the different bandwidth signals. The
first requirement is that the scalar transfer functions in Fig. 9
sum to one

Ω̃/Ω2 + Ω̃/Ω3 = 1,

where Ω̃/Ω2 denotes the transfer function from Ω2 to Ω̃ and so
forth. This ensures in the noise free case that Ω̃ = Ω2 = Ω3.
This constrains the filter structure to that of a complementary
filter (eg. [19]) and it can be verified that the structure in Fig. 9
satisfies this criterion. The discrete-time data from zero-rate
input dual-pair “drift” tests are used in these calculations. It
is assumed that the data are associated with sample period ts
(ts = 0.01 second for the data reported in this paper). The
steps for determining hlp, λ, and h are as follows:

1) hlp is a moving average filter of length N and with
impulse response

hlp[k] =

{
1
N k ∈ [0, N − 1]

0 otherwise
, (4)

where k denotes the sample index. The averaging time
T = Nts is chosen so that when this filter is applied
to Ω2 and Ω3, the short-term noise is eliminated and
the long-term correlation between the filtered signals
is revealed. The filtered signals are denoted Ω2,lp and
Ω3,lp, where Ω2,lp = hlp ∗Ω2 and Ω3,lp = hlp ∗Ω3, and
where ∗ denotes convolution.

2) The parameter λ is chosen so that the long-term drift
of λΩ2,lp + (1− λ)Ω3,lp is minimized. It is determined
from a simple least-squares criterion

min
λ,c

M−1∑
k=0

(
λΩ2,lp[k] + (1− λ)Ω3,lp[k] + c

)2
, (5)

where c is a parameter that accounts for any residual rate
offset and where the data set is M samples in length and
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starts with index k = 0. It is assumed M >> N so that
the smoothed data is used in the minimization (5) and
that the filter transients can be removed.

3) The filter h is determined so that variance of the signal
e in the block diagram below is minimized,

Ω2

Ω3

e

Ω2,hp

Ω3,hp

1 − ĥlp

1 − ĥlp

ĥ

1 − ĥ

+

+

This diagram is functionally identical to the lower
section in Fig. 9, however, it shows how h is com-
puted: the rate measurements are high-pass filtered, i.e.
(δ−hlp) ∗Ω2 and (δ−hlp)∗Ω3, to produce the signals
Ω2,hp and Ω3,hp; h is designed so that the variance of
e = h ∗ Ω2,hp + (δ − h) ∗ Ω3,hp is minimized. In this
time-domain description, δ represents the discrete-time
unit pulse function.

The filter h can be determined once the auto- and cross-
correlations of Ω2,hp and Ω3,hp, are known. The cross-
correlation of Ω2,hp and Ω3,hp, the auto-correlation of Ω2,hp

and the auto-correlation of Ω3,hp are denoted R23, R22 and
R33, respectively. It can be assumed that h is a finite-impulse
response filter. Let ~h =

[
h[0], h[1], · · · , h[m − 1]

]T
, i.e. a

vector containing the m impulse response samples of the filter.
Then, the filter that minimizes the mean-square value of e is
determined from

P~h = ~q, (6)

where the positive definite m ×m matrix P , and m-element
vector ~q, are formed from the correlation samples. It can be
shown that for this specific filtering problem the (i, j) entry
of P , denoted Pi,j , i, j = 1, . . . ,m, and the ith entry of ~q,
denoted ~qi, are given by

Pi,j = R22[i− j] +R33[i− j]−R32[i− j]−R23[i− j]
~qi = R33[i]−R23[i],

(7)

where R22[l] represents the lth sample of the signal R22 and
so forth. Since R23[i] = −R32[−i], the cross-correlations need
only be computed for non-negative indices.

The computations in Steps 1, 2, and 3 are performed
with angular rate data from experiment “1,” whose offsets
are shown in Fig. 8. First, λ is computed to be 0.9192
when N = 1000 (corresponding to an averaging window of
10 seconds). The correlation functions for Ω2,hp and Ω3,hp

are shown in Fig. 11. The filter h is then computed using (6)
and (7) and is also shown in Fig. 11. The optimal filter for
this data is very nearly a unit impulse because the noise power
in Ω3,hp is much larger than the power in Ω2,hp (evident
in the autocorrelations where R22[0] < R33[0]/100). Thus,
Ω3,hp is deemphasized for this sensor when computing the
short-term angular rate. In general, a standard Wiener filter
problem cannot be formulated because the spectral density
of the angular rate is not known. Thus, this approach, in
the most ideal scenario in which the spectral densities of
Ω2,hp and Ω3,hp are equal, will only yield a reduction of

0 0.05 0.1 0.15 0.2 0.25
−0.0005

0

0.0005

0.001

0.0015

time (sec)

R22

0 0.05 0.1 0.15 0.2 0.25
−0.05

0

0.05

0.1

0.15

time (sec)

R33

0 0.05 0.1 0.15 0.2 0.25
−0.0005

0

0.0005

0.001

0.0015

time (sec)

R23

0 0.05 0.1 0.15 0.2 0.25

0

0.2

0.4

0.6

0.8

1

time (sec)

sa
m

pl
e 

va
lu

e

h

Fig. 11. Correlations functions R22, R23, and R33, and the impulse response
of filter h.

0.5 in the short-term noise power in the combined signal Ω̃.
Nevertheless, the filter architecture in Fig. 9 and the steps
outlined in this appendix provide a sensible and systematic
approach to providing a fused angular rate estimate using Ω2

and Ω3 with reduced offset drift and short-term noise that
does not exceed that of the lowest noise measurement during
dual-pair operation.
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