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to Pulsed Jet Injection
Modulated-demodulated control is an effective method for asymptotic disturbance rejec-
tion and reference tracking of periodic signals, however, conventional static phase com-
pensation often limits the loop gain in order to avoid sensitivity function peaking in a
neighborhood of the frequencies targeted for rejection or tracking. This paper introduces
dynamic phase compensation for modulated-demodulated control which improves dis-
turbance rejection characteristics by inverting the plant phase in a neighborhood of the
control frequency. Dynamic phase compensation is implemented at baseband which ena-
bles the use of low-bandwidth compensators to invert high frequency dynamics. Both
static and dynamic phase compensation methods are used to demonstrate a novel appli-
cation of repetitive control for pulsed jet injection. In this application pulsing an injectant
has been shown to produce advantageous effects such as increased mixing in many
energy generation and aerospace systems. The sharpness of the pulse can have a large
impact on the effectiveness of control. Modulated-demodulated control is used to maxi-
mize the sharpness of a pulsed jet of air using active forcing by tracking a square wave in
the jet’s temporal velocity profile. [DOI: 10.1115/1.4004768]

Keywords: modulated and demodulated systems, repetitive control, flow control, peri-
odic reference tracking

1 Introduction

The disturbance rejection and reference tracking problem of per-
iodic signals is encountered in many engineering systems. As such,
there has been extensive research on repetitive control documented
in the literature over a wide range of applications such as industrial
machinery [1], AC power supplies [2,3], computer disk drives
[4–6], and helicopter blade control [7,8]. All types of repetitive
control are united in their basis, directly or indirectly, by Francis
and Wonham’s internal model principle (IMP) which requires a
model of the disturbance or reference to be included in the feed-
back loop for perfect rejection or tracking [9]. One method of re-
petitive control is modulated-demodulated control, sometimes
referred to as adaptive feedforward control or adaptive feedforward
cancellation [10,11]. This approach shifts the spectrum of “high”
frequency oscillations down to baseband which includes DC, oper-
ates at baseband, then shifts the baseband spectrum back to high
frequency. Essentially, the plant output in a neighborhood of the
frequency to be controlled is estimated by demodulation and low-
pass filtering, then manipulated to form an input based on known
plant dynamics which will cancel the estimated disturbance or
track a reference signal.

Modulated-demodulated control is based indirectly on the IMP
as shown in Ref. [12], where Bodson et al. prove the equivalence
of a simple modulated-demodulated controller and a controller
based directly on the IMP, the basis of the latter being a harmonic
oscillator with transfer function

CimpðsÞ ¼
ks

s2 þ x2

Both methods can be extended to reject=track multiple sinusoidal
frequencies by placing copies of either controller in parallel.

Alternatively, the time delay repetitive controller, which has
transfer function based on a time delay, L

CtdðsÞ ¼
e�Ls

1� e�Ls

controls at multiple frequencies but is restricted to control har-
monics of the fundamental frequency 1=L. The modulated-
demodulated controller and IMP controller both offer selective
placement of poles; however, modulated-demodulated control can
be more advantageous in implementation because low-bandwidth
compensators are used to control high frequency oscillations.

Most modulated-demodulated control studies to date have
focused on disturbance rejection such as in Refs. [13] and [14]
where a modulated-demodulated controller is used for vibration
damping in flexible structures. Their design relies upon the fact that
vibration occurs at distinct modes dictated by the resonances of the
structure. The modulation frequencies of the controller are placed
at the resonances to provide damping. Analysis shows a linear
time-invariant (LTI) transfer function for this controller can be
derived from two different perspectives, either the high frequency
“control band” or the low frequency “baseband.” The control band
analysis provides information on performance while the baseband
analysis provides greater insight into the controller design.

The present paper expands upon the insight gained from the
baseband analysis of Ref. [14] and presents an improved method
of phase compensation for modulated-demodulated control.
Replacing conventional static phase compensation with dynamic
phase compensation improves disturbance rejection nearby the
specified rejection or tracking frequency. Additionally, static
phase and dynamic phase modulated-demodulated controllers are
used to demonstrate a novel application of repetitive control for
pulsed jet injection. Actively pulsing a jet can favorably influence
many aspects of a flowfield such as the spread and mixing of the
jet into its surroundings. It is hypothesized these parameters will
be maximized with the formation of strong, well spaced vortex
rings at the jet exit. Periodic square wave forcing is believed to be
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the most effective way to accomplish this but challenges are pre-
sented in forming square waves due to nonlinear dynamics identi-
fied in the actuation system. Repetitive control is necessary to
shape the jet’s measured temporal velocity waveform to track, as
closely as possible, a square wave.

2 Controller Architecture

The present strategy applies to single input, single output sys-
tems. A parallel set of individual control loops, each designed to
operate in a narrow band around a single frequency, are summed
together to achieve the overall goal of rejecting a disturbance and
its harmonics or tracking a periodic reference waveform. The oper-
ating frequencies are positioned at the fundamental frequency,
denoted xf, of the periodic disturbance or reference and a specified
number of its harmonics. Thus, the ideal measured waveform will
cancel the disturbance or match the Fourier series approximation
of the periodic reference truncated at the number of harmonics
tracked.

2.1 Control at a Single Frequency. Each individual control
loop demodulates the measurement y to shift the spectrum of y in
the neighborhood of the demodulation frequency down to a base-
band, operates at the baseband near DC, and then modulates the
signal back up to “high” frequency. This process is detailed in
Fig. 1 for control at a single frequency, denoted xo. The output of
the plant, P, is split into two branches by demodulation with 2
cos(xot) and 2 sin(xot) to produce yc and ys in Fig. 1. These sig-
nals are then low-pass filtered by HLP (unity gain at DC) and com-
pared to the constants C1 and C2 which represent the Fourier
series coefficients of the desired harmonic signal

C1 cosðxotÞ þ C2 sinðxotÞ (1)

The error signals are integrated and then compensated to imple-
ment an approximate phase inversion of P which produces favor-
able stability and sensitivity characteristics of the closed-loop
system. The method of phase compensation distinguishes the con-
trol strategies presented in this paper from one another. Phase
compensation is accomplished statically or dynamically (as shown
in Fig. 1) depending on the characteristics of P. Following this
stage, the signals are modulated back to the control band by
cos(xot) and sin(xot), summed, and scaled by K to produce the
control effort u. If control at multiple frequencies is desired, the
architecture is repeated for each frequency and the output of each
control loop is summed.

Under periodic reference tracking conditions the output has its
energy concentrated in narrow bands around the harmonics of the
fundamental forcing frequency. This is similar to the narrow-band
resonant structure sensor response used for feedback in the modu-
lated-demodulated controller of Ref. [14]. The response of y in a
neighborhood of xo is captured by the signals y1 and y2, i.e.

yðtÞ ¼ y1ðtÞ cosðxotÞ þ y2ðtÞ sinðxotÞ

in a neighborhood of xo because the low-pass filters, denoted HLP

in Fig. 1, band-limit y1 and y2 [15]. If the corner frequency of HLP

is denoted xc, then y1 and y2 can be used to reconstruct y in the
[xo�xc, xoþxc] band. When a periodic waveform is tracked,
multiple copies of Fig. 1 are summed with xo set to the fundamen-
tal frequency of the periodic waveform and a select number of its
harmonics. In this case, the corner frequencies associated with
each harmonic is limited to be xc<xf/2 so controllers at adjacent
harmonics do not interact.

The reference signal in this setup is injected into the baseband
via constants C1 and C2. These specify the plant output in the
form of Eq. (1). When C1 and C2 are set to 0, this type of control-
ler is often given the name adaptive feedforward cancellation due
to its effectiveness at canceling periodic output disturbances.
However, for the purposes of reference tracking, C1 and C2 are set
to the real and imaginary parts of the Fourier series coefficient at
frequency xo of a periodic reference waveform.

Phase compensation in modulated-demodulated control is
needed to invert the phase of P to reduce the classical sensitivity
function of the closed-loop system in a neighborhood of xo. This
has typically been accomplished using a phase advance parameter
given to the demodulators to adjust the controller’s phase by a
constant angle. In this study, we use an alternative implementation
for phase compensation which employs either a stage of constant
gains or a stage of compensators, respectively, to create a static or
dynamic phase characteristic in a neighborhood of xo. The static
phase compensation controller uses constant gains, denoted R and
I, in place of the dynamic compensators Hd and Hx of Fig. 1. The
static phase approach is an equivalent implementation of the
phase advance parameter [16]. The phase angle of the rotation,
denoted /, is defined by gains R and I through the rotation matrix

Q ¼ R I
�I R

� �

The phase rotation is set to cancel the phase delay of the plant fre-
quency response at xo to maximize phase margin of the system
[6]. The static phase compensation gains are defined as follows

R ¼ Rpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

p þ I2
p

q and I ¼ Ipffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

p þ I2
p

q (2)

where

Pð jxoÞ ¼ Rp þ jIp (3)

The structure of this implementation is advantageous for our pur-
poses as the extension from static to dynamic phase compensation
is easily accomplished by replacing the static phase compensation

Fig. 1 The “Dynamic phase” modulated-demodulated controller for asymptotic reference tracking of a single sinusoid at
frequency xo
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gains with dynamic compensators. Dynamic phase compensation
reduces the sensitivity function of the closed-loop system by
inverting the plant phase in a neighborhood of xo. This method is
most useful when P has rapidly changing phase nearby xo.
Expression for Hd and Hx are developed in Sec. 3.

3 Controller Analysis

The modulated-demodulated system presented above is split
into two distinct bands, the high frequency “control band” and the
low frequency baseband. As in Ref. [14], it is natural and useful to
analyze the system from both perspectives. An exact LTI transfer

function from y to u can be derived for the controller from the
control band perspective, however, from the baseband perspec-
tive, the controller can be represented by a two input, two output
(TITO) baseband controller, from [y1 y2]T to [u1 u2]T and a TITO
compensated plant.

3.1 Control Band Analysis. The fact the controller can be
represented as an LTI system is not straightforward. Using Lap-
lace transforms with an arbitrary phase c given to the modulating
and demodulating signals, cos(xotþ c) and sin(xotþ c), it can be
shown the transfer function for control at a single frequency using
dynamic phase compensation is given by

CdðsÞ ¼ K
HLPðs� jxoÞðHdðs� jxoÞ � jHxðs� jxoÞÞ

s� jxo

þ HLPðsþ jxoÞðHdðsþ jxoÞ þ jHxðsþ jxoÞÞ
sþ jxo

� �
(4)

This expression is independent of c and, thus, represents a time-
invariant compensator. Using integrators as the baseband control-
ler produces the required poles at 6jxo for perfect steady state
tracking of periodic references as dictated by the internal model
principle. The poles of HLP have also been shifted to 6jxo, creat-
ing a bandpass filter positioned around xo with corner frequencies
at xo 6 xc. With static phase compensation the transfer function
simplifies to

CsðsÞ ¼ K
HLPðs� jxoÞ

s� jxo

ðR� jIÞ þ HLPðsþ jxoÞ
sþ jxo

ðRþ jIÞ
� �

(5)

The subscripts d and s refer to the dynamic phase controller and
static phase controller, respectively. It is worth noting that without
HLP and phase compensation (R¼ 1 and I¼ 0), the modulated-
demodulated controller is equivalent to the internal model princi-
ple controller, Cimp, which was shown in Ref. [12].

The loop gain L¼PC closely resembles, for sufficiently small
gain K, the force-to-velocity harmonic oscillator transfer function
in a neighborhood of x0

LðsÞ � 2Ks

s2 þ x2
o

jPðjxoÞj (6)

The factor of 2 is needed to be consistent with the block diagram
of Fig. 1. This expression is used to approximate the rate of con-
vergence at each control frequency for both static and dynamic
phase compensators. Dynamic phase compensation permits the
use of larger values of K for which Eq. (6) is still a reasonable
approximation of L in a neighborhood of xo. When unity gain
negative feedback is closed around Eq. (6), the closed-loop system
has time constant s ¼ 1=KjPðjxoÞj.

One of the advantages of modulated-demodulated control is the
ability to independently specify the convergence rate at each fre-
quency of control. For example, the individual loop gains can be
set to be inversely proportional to the plant magnitude at xo to
equate the convergence rates at all frequencies. More precisely, K
can be chosen as

K ¼ 1

sjPðjxoÞj
(7)

in order to achieve the closed-loop time constant s at all control
frequencies. This choice is used for the application discussed in
Sec. 4 where the magnitude of the plant frequency response
decreases by almost 2 orders of magnitude within the actuation
bandwidth.

3.2 Baseband Analysis. The motivation for development of
dynamic phase compensation is best illustrated by analysis of the
static phase controller from the baseband perspective. A static
phase compensated plant, denoted Gs, is defined as the TITO sys-
tem from [u1 u2]T to [y1 y2]T in Fig. 1 (the loops are broken
between these signals and the 1

s compensators are removed). This
is a linear, time-periodic system that can be approximated by an
LTI system if

HLPðjxÞj j � 0 when x > xc (8)

If Eq. (8) is valid, the 2� 2 system of transfer functions for the
static phase compensated plant is given by

GsðsÞ ¼
YsdðsÞ YsxðsÞ
�YsxðsÞ YsdðsÞ

� �
(9)

where

YsdðsÞ ¼ K
1

2
Pðs� jxoÞðRþ jIÞ þ Pðsþ jxoÞðR� jIÞ½ �HLPðsÞ

YsxðsÞ ¼ K
j

2
�Pðs� jxoÞðRþ jIÞ þ Pðsþ jxoÞðR� jIÞ½ �HLPðsÞ

At s¼ 0, Ysx(0)¼ 0, provided Q exactly inverts the plant phase at
x0. Additionally, Ysd(0)¼ 1 provided both K and Q exactly invert
the magnitude and phase of the plant at xo, therefore

Gsð0Þ ¼ I2

The two branches of the baseband are decoupled at DC. This
effectively isolates control of the in-phase and quadrature terms of
the demodulated signal. With a nondiagonal Gs, the in-phase and
quadrature terms corrupt one another and reduce the phase margin
of Ls. In general, only at s¼ 0 will Gs be diagonal even with
/ ¼ �ffP jxoð Þ. It is likely any physical plant will have changing
phase in the neighborhood of xo and, therefore, the controller will
not exactly invert the plant phase except at xo. This has the poten-
tial to significantly degrade the performance of the controller due
to peaking in the sensitivity function close to the control fre-
quency. This can be avoided by reducing K at the expense of
smaller bandwidth and slower convergence rate. Alternatively,
dynamic phase compensation can improve the stability and sensi-
tivity characteristics of the closed-loop system, without reducing
K, by diagonalizing Gs over a range of s instead of only at s¼ 0.
The dynamic phase compensated plant, denoted Gd, is
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GdðsÞ ¼
YddðsÞ YdxðsÞ
�YdxðsÞ YddðsÞ

� �
(10)

where

YddðsÞ ¼ K
1

2
Pðs� jxoÞðHdðsÞ þ jHxðsÞÞ þ Pðsþ jxoÞ½

�ðHdðsÞ � jHxðsÞÞ�HLPðsÞ�HLPðsÞ

YdxðsÞ ¼ K
j

2
�Pðs� jxoÞðHdðsÞ þ jHxðsÞÞ þ Pðsþ jxoÞ½

�ðHdðsÞ � jHxðsÞÞ�HLPðsÞ

Setting

YddðsÞ ¼ 1 and YdxðsÞ ¼ 0

it can be shown the diagonal and off-diagonal compensators must
take the form

HdðsÞ ¼
Pðs� jxoÞ þ Pðsþ jxoÞ

2Pðs� jxoÞPðsþ jxoÞHLPðsÞ
(11)

HxðsÞ ¼ j
Pðs� jxoÞ � Pðsþ jxoÞ

2Pðs� jxoÞPðsþ jxoÞHLPðsÞ
(12)

By setting Ydd¼ 1, Hd and Hx invert both the magnitude and phase
of P. Therefore, each loop gain is set equal to match the conver-
gence rates at all frequencies. In practice, Hd and Hx are obtained
by fitting stable filters to the graphs of (11) and (12) where P is
given by empirical frequency response data.

3.3 Benefits of Controller Architecture In addition to inde-
pendent manipulation of the convergence rate, modulated-
demodulated control offers more flexibility than other repetitive
control techniques because of decoupling between each individual
rejection=tracking frequency of the controller. The frequency,
gain, reference, and phase compensation parameters can be inde-
pendently tuned within each frequency loop. Therefore, it is possi-
ble to target specific frequencies, even those which are not
harmonics of the fundamental. It can be used to track a desired
waveform as well as cancel periodic disturbances at unrelated
frequencies.

When implemented digitally, the modulated-demodulated con-
troller has an advantage over time delay repetitive controllers
because the sampling rate does not have to be an integer multiple
of the control frequency. Furthermore, this method of control is
desirable because it only requires knowledge of the plant in a
neighborhood of the fundamental and harmonics. In fact, identifi-
cation of the relevant parameters can be done in the baseband
“coordinates,” i.e., Ydd and Ydx can be identified when Hd¼ 1 and
Hx¼ 0.

4 Experimental Application to Pulsed Jet Injection

4.1 Experimental Setup The modulated-demodulated con-
trollers developed in this study are used to demonstrate possible
benefits of pulsed jet injection using the schematic shown in Fig.
2. The jet fluid, comprised of compressed air, is distributed into a
plexiglass plenum via a four way injection. The flow is regulated
to maintain an average jet velocity of 8 ms�1. The velocity is
measured using a hotwire anemometer placed at the exit of a con-
tracting nozzle. Active forcing is applied using a lightweight

Fig. 2 Pulsed jet injection experimental setup. A piston, actu-
ated by a modal shaker, is used to actively control the temporal
velocity profile of a jet at the nozzle exit.

Fig. 3 Actuation system frequency response. The magnitude roll-off after the plenum
mode at 1.7 kHz produces an actuator with an approximate bandwidth of 2 kHz. The
dashed line represents the bandwidth for control around a single frequency with xc 5 50
Hz. The linear phase delay represents a significant transport lag which makes high-gain,
wide bandwidth control impossible to achieve.

011024-4 / Vol. 134, JANUARY 2012 Transactions of the ASME

Downloaded From: http://dynamicsystems.asmedigitalcollection.asme.org/ on 08/20/2014 Terms of Use: http://asme.org/terms



piston positioned beneath the injection point within the plenum,
approximately 14 cm beneath the hotwire. The piston is actuated
using a Ling LVS-100 modal shaker which moves with one
degree of freedom, axially in line with the jet. The controllers are
implemented using MATLAB’s XPC Target application with a 25
kHz sampling rate. Anti-aliasing of the hotwire signal is accom-
plished using an 8-pole low-pass Chebyshev filter with a 10 kHz
corner frequency.

4.2 System Identification. The piston actuation system was
identified in a frequency band extending from 10 Hz to 5 kHz
using a band-limited white noise input whose intensity is adjusted
so that the RMS of the velocity perturbation is 0.2 ms�1. As shown
in Fig. 3, the frequency response rolls off after a mode at 1.7 kHz
(due to a resonance of the plenum). Above approximately 2 kHz it
becomes nearly impossible to influence the jet velocity. Such a li-
mitation on the actuation system’s bandwidth presents an obstacle
when attempting to achieve a desired waveform, particularly a
square wave. Due to the discontinuity in the waveform, the Fourier
series coefficients of a square wave decay at a slow rate as a func-
tion of frequency especially when the duty cycle is small (<20%).
Thus, given the limited actuation bandwidth, only a limited num-
ber of harmonics of the fundamental forcing frequency can be used
which produces a truncated version of an ideal square wave refer-
ence waveform. The truncated version of the square wave has
oscillations in velocity near the discontinuity and a gradual transi-
tion from low-to-high or high-to-low velocity. The speed of the
transition is dependent on the number of harmonics included in the
truncation, with the greater number or harmonics leading to a
faster transition. It is important to use as many harmonics as possi-
ble since a rapid transition is believed to produce strong vortex
rings which improve the spread and penetration of the jet.

In addition to the roll-off, the frequency response displays a
large amount of delay over the frequency band of interest. One
contribution to the delay is the transport lag created by the physi-
cal distance between the piston and hotwire. Such a large delay
makes high-gain control impossible across the entire usable band-
width of the actuator. Thus, instead of using a wideband approach,

Fig. 4 An example of dynamic phase compensators for plant
phase inversion in a neighborhood around the control fre-
quency (xo 5 100 Hz). Solid line—empirical, dashed line—
model fit. (a) Hd and (b) Hx. The empirical data are fit up to 42 Hz
using an eighth order and sixth order model for Hd and Hx,
respectively.

Fig. 5 Details of pulses produced with a repetition rate of 100
Hz and a 5 20% (case a), and a 5 40% (case b). One period of an
ideal square wave (dashed line) is compared to the ideal square
wave truncated at 20 sinusoids (thick solid line) and the empiri-
cal square wave (thin solid line).

Fig. 6 Square wave spectrum (a) a 5 20% and (b) a 5 40%. The
empirical square wave spectrum at each forcing frequency
(circles) is identical to the ideal square wave Fourier series
(Xs).
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our control problem will be broken down into multiple narrow-
band control problems using modulated-demodulated control with
each frequency band positioned around the fundamental fre-
quency and harmonics of the periodic reference waveform. The
dashed line in Fig. 3 is representative of the bandwidth used for
control at a single frequency using xc¼ 50 Hz. Control over the
entire usable bandwidth of the actuation system is achieved by
summing the control effort from similar narrow bands.

Another notable feature of the plant’s frequency response are
the “ripples” at frequencies below 400 Hz, which are caused by
dynamics associated with the injection tubing. In fact, the rapidly
varying plant phase in this frequency range motivates the develop-
ment of dynamic phase compensation because of the quantitative
improvement that it provides over static phase compensation in
terms of the system’s closed-loop sensitivity characteristics.

4.3 Controller Implementation. Implementation of the
static phase compensation controller only requires knowledge of
the plant at xo. For a single- or multi-frequency controller this is
rapidly accomplished on a sine-by-sine basis. Constants R and I
are calculated directly from the identification using Eq. (2). Imple-
mentation of the dynamic phase compensation controller requires
plant identification in a neighborhood of the forcing frequencies.
The dynamic compensators Hd and Hx are synthesized from a
model fit using the identified plant data and Eqs. (11) and (12).
The goal is to create compensator models which diagonalize Gs

for all s< jxx, where xx is some cutoff frequency. The cutoff fre-

quency defines the range, xo�xx � x � xoþxx over which the
plant phase will be inverted. A limited range is necessary to syn-
thesize stable, low-order compensator models. The cutoff fre-
quency and model order are chosen for each control loop based on
the dynamics of the plant near xo. The models are designed to
capture large magnitude and phase changes in the empirically
generated compensators over the widest frequency range possible
while retaining accuracy and stability. Integrators are used in the
baseband controller to ensure the Fourier series components of the
desired waveform are asymptotically tracked. Additionally, the
integrators make the baseband low-pass in nature; therefore, it is
more important to capture the dynamics closer to x¼ 0.

For example, Fig. 4 displays the empirical and fitted phase com-
pensators used for control at 100 Hz. The diagonal and off-diago-
nal analytical compensators have been fit up to a frequency of 42
Hz using an eighth and sixth order model, respectively. This lies
below the corner frequency of HLP which was set to 50 Hz for
these experiments. The model matches the analytical compensators
very well at low frequencies and the location of the two modes in
each compensator have been captured for both Hd and Hx.

4.4 Test Results. It is fairly commonplace to track or reject
sinusoidal references or disturbances at one or two frequencies
but for our application the task must be accomplished with a high

Fig. 7 Envelope of the response of a xo 5 100 Hz dynamic
phase controller to a 1.4 ms21 step input. The controller’s gain
is determined by a specified time constant of s 5 0.050 s to be
K ¼ 20=jPðjxoÞj.

Fig. 8 Loop transfer function comparison of static phase com-
pensation (solid) to dynamic phase compensation (dashed) for
control at xo 5 100 Hz with measured time constant s 5 0.045 s

Fig. 9 Nyquist plot comparison of static phase compensation
(thick solid line) to dynamic phase compensation (thin solid
line) for control at xo 5 100 Hz with measured time constant
s 5 0.045 s

Fig. 10 Sensitivity function comparison of static phase com-
pensation at 100 Hz (solid line), 200 Hz (dashed line), 300 Hz
(dot-dashed line), and 400 Hz (dotted line) with measured time
constant s 5 0.045 s
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number of frequencies in order to form a periodic square wave. In
the following experiments we use a 20-frequency modulated-
demodulated controller in which dynamic phase compensation
was required for [100, 200, 300, 400] Hz. The periodic waveform
has a fundamental frequency of 100 Hz. Thus, 20 harmonics fall
within the actuation system bandwidth.

The reference signal used for square wave forcing is derived
from the Fourier series coefficients of the square wave. The ideal
waveform has a frequency defined by the fundamental forcing fre-
quency but has a duty cycle a, the ratio of the temporal pulse
width, s to the waveform period, T, a ¼ s

T, which is dependent
upon user input. The duty cycle is varied to pinpoint the forcing
conditions which optimize important characteristics of the jet such
as penetration or spread. The desired Fourier series coefficients are
tracked using the closed-loop controller to produce waveforms like
the two shown with a¼ 20% and a¼ 40% in Figs. 5(a) and 5(b),
respectively. The measured waveforms in the thin solid line are
compared to the ideal square wave in the dashed line and the trun-
cated Fourier series in the thick solid line. In all cases, not just the
ones shown here, the measured waveforms match the ideal trun-
cated waveform very well. The small deviations that occur are due

to noise which falls outside the narrow-band regions around each
harmonic and, therefore, are uncompensated. Figure 6 shows the
measured square wave spectrum and the Fourier series spectrum at
each forcing frequency. At these points, the spectra are indistin-
guishable from one another.

These square waves were formed using a specified closed-loop
time constant of s¼ 0.050 s, which, using Eq. (7), puts the con-
troller gain at K ¼ 20=jPðjxoÞj. Figure 7 shows the envelope of
the response for a step input with amplitude 1.4 ms�1 given only
to the 100 Hz control loop. The empirical data are compared to
the analytical approximation based on the observation of Eq. (6).
The empirical time constant, measured to be s¼ 0.045 s, is
slightly faster than the specified time constant. As mentioned pre-
viously, the convergence rate of the multifrequency controller
matches the 100 Hz case presented here because the convergence
rates at each frequency of control are equated by adjusting the
gain of the individual control loops.

Figure 8 shows a direct comparison of the static and dynamic
phase compensation loop gains in the neighborhood of 100 Hz.
Both transfer functions move through 0 deg as their phase jumps
from 90 deg just below xo to�90 deg just after xo. However,
dynamic phase compensation is shown to reduce the slope of the
loop gain phase as compared to the static phase loop transfer
function.

A closer look in terms of the stability and sensitivity character-
istics of the 100 Hz control loop clearly illustrates the benefit of
using dynamic phase compensation over static phase compensa-
tion. The Nyquist plot of the 100 Hz static and dynamic phase
compensation controller loop gains, Ls and Ld, measured empiri-
cally using the s¼ 0.045 s controller, is shown in Fig. 9. The locus
of Ls moves closer to encircling�1 than Ld at frequencies less
than xo. This has a significant impact on the phase margin of the
controller which is 46.4 deg for static phase compensation but
79.1 deg for dynamic phase compensation.

The improvement in-phase margin from dynamic phase com-
pensation also reduces the maximum sensitivity function magni-
tude. Figure 10 shows the sensitivity function for 100 Hz as well
as 200 Hz, 300 Hz, and 400 Hz using the static phase compensa-
tion system with s¼ 0.045 s. For comparison, Fig. 11 shows the
sensitivity function for dynamic phase compensation at [100, 200,
300, 400] Hz with the same measured time constant, s¼ 0.045 s.
The 100 Hz static phase sensitivity function has a peak of 1.94 at
94.5 Hz which is reduced beneath 1.2 at all frequencies by

Fig. 11 Sensitivity function comparison of dynamic phase
compensation at 100 Hz (solid line), 200 Hz (dashed line), 300
Hz (dot-dashed line), and 400 Hz (dotted line) with measured
time constant s 5 0.045 s

Fig. 12 Hotwire noise spectrum for the open-loop (case a) and closed-loop (case b) sys-
tem when the reference signal coefficients are zero. Each controller creates a deep notch
in the noise spectrum in the closed-loop case. The mean jet velocity is 8 ms21.
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dynamic phase compensation. Additionally, the bandwidth of the
100 Hz loop is increased from 6.9 Hz to 10.5 Hz. Between 94.5 Hz
and 100 Hz, the plant phase decreases by 36.9 deg, from� 95.8
deg to� 132.7 deg. The rapidly changing plant phase near xo,
which can also be seen in the loop transfer function in Fig. 8, is the
cause of the peaking in the sensitivity function of the static phase
compensation system and makes such an improvement in the
dynamic phase compensation system possible. Dynamic phase
compensation inverts the plant dynamics at each frequency such
that the sensitivity functions at each frequency are almost indistin-
guishable from one another within the bandwidth of the model fit.

Another demonstration of the multi-frequency modulated-
demodulated control approach is presented in Fig. 12, where the
effect of closed-loop control on the hotwire noise spectrum is con-
sidered. The unforced, open-loop hotwire noise spectrum is shown
in Fig. 12(a), and the closed-loop hotwire noise spectrum is shown
in Fig. 12(b). At every frequency of control the closed-loop noise
spectrum is reduced well below the broadband noise floor.
Although the frequency response data were assumed to have been

generated by a linear plant, there are nonlinear features that can be
observed under certain test conditions. For example, the hotwire
spectrum exhibits harmonic distortion when the amplifier is driven
with a pure tone. The open-loop and closed-loop hotwire spectra
are compared again in Fig. 13; however, a single tone at 100 Hz
has been imposed which perturbs the mean jet flow by 5%. This
example demonstrates the difficulty of forming a square wave
through open-loop control because of the excitation of harmonics
in response to the forced tone. Perturbations at 200 Hz and many
higher frequencies can be seen in the open-loop spectrum of Fig.
13(a). These harmonics produce large asymmetries and ringing in
the jet’s temporal waveform if uncontrolled. The spectrum of the
response to the same amplitude input at 100 Hz in Fig. 13(b), this
time applied with closed-loop control, shows a complete reduction
in the harmonic production at all frequencies under control.

Figure 14(a) shows the open-loop hotwire spectrum in response
to dual tone inputs at 300 Hz and 400 Hz. In addition to harmonics
of each tone, subharmonics also appear in the jet response. The
production of subharmonics in this manner is similar to

Fig. 13 Suppression of harmonic distortion in response to a 100 Hz single tone input
((a) open-loop and (b) closed-loop)

Fig. 14 Elimination of intermodulation distortion in response to a 300 Hz and 400 Hz
dual tone input ((a) open-loop and (b) closed-loop)
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intermodulation distortion. Like the 100 Hz single tone case, Fig.
14(b) shows closed-loop forcing of these dual tones eliminates the
harmonics as well as the subharmonics. At each frequency of con-
trol, the spectrum has been reduced significantly beneath the
broadband noise floor. Even at harmonics of 300 Hz and 400 Hz
above 2000 Hz, the highest frequency of control, the velocity spec-
trum has been reduced indicating strong coupling between the
harmonics.

5 Conclusion

This paper has detailed a useful improvement upon conventional
phase compensation of a modulated-demodulated controller and
demonstrated an experimental implementation of such a controller
for the application of pulsed jet injection via temporal velocity
waveform tracking. The use of dynamic phase compensation
instead of constant or static phase compensation has reduced peak-
ing in the sensitivity function and increased the bandwidth of sys-
tems for control of plants with varying phase near the disturbance
or tracking frequency.

It was also shown this controller can be used to simultaneously
control a large number of frequencies to track a periodic square
wave. The well defined square waves formed in the jet’s velocity
profile presented in this paper have the potential to significantly
improve the spread and mixing of jets used in a variety of aero-
space applications.
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