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Decoupling of a Disk Resonator
From Linear Acceleration Via
Mass Matrix Perturbation
Axisymmetric microelectromechanical (MEM) vibratory rate gyroscopes are designed so
the central post which attaches the resonator to the sensor case is a nodal point of the
two Coriolis-coupled modes that are exploited for angular rate sensing. This configura-
tion eliminates any coupling of linear acceleration to these modes. When the gyro resona-
tors are fabricated, however, small mass and stiffness asymmetries cause coupling of
these modes to linear acceleration of the sensor case. In a resonator postfabrication step,
this coupling can be reduced by altering the mass distribution on the resonator so that its
center of mass is stationary while the operational modes vibrate. In this paper, a scale
model of the disk resonator gyroscope (DRG) is used to develop and test methods that
significantly reduce linear acceleration coupling. [DOI: 10.1115/1.4005275]

1 Introduction

High performance axisymmetric vibratory angular rate sensors
have become a topic of great interest because of their potential to
perform as well as ring laser gyroscopes while requiring much
less power. The silicon disk resonator gyroscope (SiDRG), whose
resonator is shown in Fig. 1, is being developed for tactical navi-
gation applications (0.1 deg/h minimum bias instability) and moti-
vates the study in this paper. These gyroscopes operate by
utilizing the Coriolis coupling of in-plane modes to angular
motion [1]. This paper focuses on the two elliptical Coriolis-
coupled modes, also called the n¼ 2 modes, which are the pair of
modes most widely used for angular rate sensing. Ideally, these
Coriolis-coupled modes cannot be excited through linear accelera-
tion of the sensor case. This theoretical “decoupling” from linear
acceleration has two important benefits. First, it enables the reso-
nators to achieve high quality factors by reducing coupling to the
less lightly damped modes of the sensor case [2]. Second, it
removes a source of spurious rate signals when the sensor is oper-
ated as a gyroscope since linear acceleration of the sensor case
does not excite the modes.

No manufacturing process is perfect, however, and small mass
and stiffness asymmetries are unavoidable. These asymmetries
cause detuning of the modal frequencies in addition to coupling of
the modes to linear acceleration. These two features can be seen
in the frequency response plot in Fig. 1 in which the SiDRG’s
in-plane radial velocity is measured at its outermost ring while its
central attachment point is given an in-plane excitation.

The problem of tuning the modal frequencies to degeneracy has
been studied at great length for various axisymmetric resonators.
Tuning has been achieved either by altering the resonator stiffness
through, for example, electrostatic forces, or by altering the reso-
nator mass distribution through mass deposition or removal [3–6].
The authors’ recent paper described a method that uses the
embedded drive and sense electrodes to guide a mass perturbation
process for tuning resonators similar to the SiDRG [7].

Methods for decoupling the Coriolis-coupled modes from linear
acceleration, however, have not been developed nearly as thor-
oughly as those for modal tuning. Zhbanov et al. analytically
addressed the analogous decoupling problem in imperfect hemi-
spherical resonators and proposed that the elimination of linear
acceleration coupling to the n¼ 2 Coriolis-coupled modes can be
achieved by causing the center of mass of the resonator to be a

node of these modes [8]. The analysis showed that the coupling
could be eliminated by “balancing” the first and third harmonics
of the mass asymmetry.1 The authors did not, however, explain
how one would measure the mass asymmetry harmonics, nor has
a reduction in linear acceleration coupling ever been empirically
demonstrated in the open literature. The goal of this paper is to
develop a method for experimentally determining the imbalance
parameters associated with linear acceleration coupling and to
demonstrate how these parameters can be used to effectively elim-
inate linear acceleration coupling.

The large scale resonator dubbed the macro disk resonator gyro-
scope (Macro DRG), which was previously used in the authors’
tuning studies [7], is modified so that in-plane vibration of the cen-
ter of the resonator is allowed. Thus, as the forcers drive the
Coriolis-coupled modes, accelerometers attached to the central
post measure the in-plane acceleration at the center of the resona-
tor. The unperturbed resonator exhibits a clear response at the fre-
quencies of the n¼ 2 Coriolis-coupled modes, which demonstrates
coupling of the modes to vibration at the resonator’s attachment
point. As small magnets are placed on the outer rings of the resona-
tor to implement reversible mass perturbations, a change can be
seen in the nature of the linear acceleration coupling.

The discussion begins with an explanation of the process by which
a coupling matrix, which includes the four “imbalance” parameters
associated with linear acceleration coupling, can be extracted from
multi-input/multi-output frequency response data. Experiments are
then performed to show how the measured imbalance parameters
change as the resonator is mass-loaded at different angular locations
along the outer rings. The locations and magnitudes of the mass per-
turbations required for decoupling are then determined using the em-
pirical relationship between mass placement and changes in the
imbalance parameters. The final result shows a dramatic reduction in
total linear acceleration coupling to the n¼ 2 Coriolis-coupled modes.
A small increase in the quality factors of the modes is also observed.

Section 6 presents a general but systematic method for linear
acceleration decoupling that uses only approximations of the first
and third harmonics of the coupling data as its guide. By using the
simplified model, this solution is implemented without detailed
knowledge of the relationship between the perturbation locations
and the change to the coupling matrix. This would likely be the
most applicable method for decoupling typical axisymmetric reso-
nators in a manufacturing environment.
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1The first and third harmonics of the mass asymmetry are simply the first and
third harmonics of the mass/unit length function along the equatorial axis of the hem-
ispherical resonator. The harmonics are considered “balanced” when they have a
value of zero. The analysis can be used to show that imbalances in the first and third
harmonics of mass asymmetry are responsible for linear acceleration coupling in axi-
symmetric rings as well.
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2 Experiment Description

The Macro DRG resonator is machined from 1018 grade, cold-
rolled steel, and has an outer diameter of 11.6 cm and a mass of
187 g. The resonator thickness is 4.7 mm and each of its nineteen
rings is 0.9 mm wide with 1.1 mm gaps between rings. Each ring
is connected to its immediate neighbors by eight “spokes,” with
45 deg angular spacing. The eight spokes connecting a ring to its
outer neighbor, however, are rotated by 22.5 deg from the eight
spokes connecting the ring to its inner neighbor. Thus, the posi-
tions of the eight spokes alternate radially between positions
22.5 deg from each other giving sixteen angular spoke locations,
as can be seen in Fig. 2. The resonator is attached at its center to a
1.2 cm diameter aluminum post that is suspended 19 cm below
the location where the post is clamped. Small NdFeB magnets,
each with a 1.6 mm diameter, 0.8 mm thickness and mass of
approximately 12 mg, can be attached to the top surface of the
resonator to create reversible localized mass perturbations.

Actuation and sensing of the resonator are achieved using elec-
tromagnetic actuators and capacitive sensing pick-offs. A photo-
graph of the experiment along with a diagram of the layout is
shown in Fig. 2 and block diagrams are shown in Fig. 3. Each
electromagnet is a modified relay that uses variable current
through its solenoid to exert a radial magnetic force on the resona-
tor. Each sensing pick-off consists of a 5 mm diameter electrode
placed parallel to the outside edge of the outermost ring of the res-
onator. The resonator is biased at 60 V and, as the resonator
vibrates, the capacitance between the resonator and the electrode
changes. Charge on the electrode flows to the virtual ground of
the transimpedance amplifier which is configured with a 1 MX
feedback resistor, thereby providing a gain of 106 V/A.

Sensing of the post motion is achieved with two accelerometers
that are mounted onto a nylon sheath near the post’s attachment to
the resonator. The nylon electrically isolates the accelerometers
from the resonator bias. The accelerometer measurements are AC

Fig. 2 Left: The experimental setup of the Macro DRG, configured to measure
linear acceleration coupling. The resonator hangs from the flexible post so that in-
plane movement of the resonator’s attachment point can be measured by the accel-
erometers. On the right hand side of the resonator, near one of the D2 actuators,
two stacks of the NdFeB magnets can be seen. These are used to create a reversi-
ble mass perturbation to the resonator. Right: A schematic of the forcer/pickoff
arrangement for the Macro DRG. The angular positions for mass perturbations are
measured as the angle with respect to the x-axis, which is aligned with the A1 and
S1 sensors and intersects the central axis of the post.

Fig. 1 Left: The Silicon Disk Resonator Gyroscope (SiDRG) has an 8 mm diameter and motivates
the study in this paper. Only one quadrant of the resonant structure is shown here. In an opera-
tional gyroscope, electrodes are embedded between the rings to drive and sense the in-plane el-
liptical Coriolis-coupled modes. Right: The frequency response of the SiDRG exterior ring’s
radial velocity to in-plane excitation of the resonator’s central attachment point. The two n 5 2
Coriolis-coupled modes exist at two slightly different frequencies, indicating a detuning which is
caused by small mass asymmetries. The fact that these modes are observable in this experiment
suggests that the Coriolis-coupled modes exhibit coupling to movement at the attachment point,
which can impact an operational gyroscope’s performance by allowing linear case acceleration to
produce spurious rate signals. By performing mass perturbations on the top surface of the reso-
nator it is possible to reduce this coupling. This paper investigates methods for reducing the cou-
pling and tests these methods on a macro-scale model of the SiDRG (shown in Fig. 2). The two
n 5 1 modes, which correspond to in-phase motion of the resonator rings, are nominally coupled
to linear acceleration and Coriolis forces, but are not generally used for rate detection.
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coupled and then integrated so that they are proportional to the
post velocity in a neighborhood of the n¼ 2 Coriolis modes. The
A1 accelerometer is placed so that its sense axis is parallel to
the sensing axis of S1, and the A2 accelerometer is placed so that
its sense axis is 90 deg counter-clockwise from the A1 accelerome-
ter. The locations of the sensors and actuators are shown in the
right hand illustration in Fig. 2. Each drive signal is applied to
opposing paired electromagnetic actuators so that the net force
applied to the entire resonator is minimized. The second pair of
actuators is placed 45 deg from the first so that they present
“orthogonal” excitations with respect to the n¼ 2 Coriolis-
coupled modes. Finally, a pick-off is placed 90 deg from each
electromagnetic actuator so that the two pick-offs are 45 deg apart
(in a likewise “orthogonal” arrangement). The x-axis in Fig. 2 acts
as a reference for angular locations on the resonator.

The two 2� 2 frequency responses of the Macro DRG with no
magnets added are shown in Fig. 4. A 10 s chirp signal in a neigh-
borhood of the n¼ 2 Coriolis-coupled modes is used to drive the
actuators, which yields frequency response estimates with a
0.1 Hz resolution.

3 Empirical Estimation of the Coupling Matrix

The linear acceleration coupling model that relates the two fre-
quency responses displayed in Fig. 4 assumes that the vibration of
the resonator couples to the velocity of the post by the coupling
matrix, B, i.e.,

v1

v2

� �
¼ B

s1

s2

� �
; B 2 R2�2 (1)

where s1 and s2 are the radial velocities of resonator at S1 and S2

while v1 and v2 are the velocities of the structure at A1 and A2. The
bar over the coupling matrix denotes that it is constant with
respect to frequency.

The radial velocities can be thought of as measurements of the
“velocity” states of the Coriolis modes and, because B is a real
matrix, v1 and v2 are simply linear combinations of these states.
The coupling matrix, B, is generally identified for a particular
mass perturbation scenario and can be represented as

B ¼ B0 þ
XN

i¼1

DBðmi;/iÞ; B0;DBðmi;/iÞ 2 R2�2 (2)

where B0 is the coupling matrix for the nominal resonator and
DBðmi;/iÞ is the change in the coupling matrix for each individ-
ual mass perturbation of mass mi at location /i. For this paper, the

angle / is the counter-clockwise angle from the x-axis of that per-
turbation, as illustrated in Fig. 2. This model is partially inspired
by the analytical model of the effects of mass perturbations on a
simple ring as discussed later in Sec. 4.2.

The experimental setup enables the measurement of a complex-
valued 2� 2 transfer function, B(x) (Fig. 5). This coupling trans-
fer function is defined by

BðxÞ ¼ HvðxÞH�1
s ðxÞ

where HsðxÞ ¼

s1

d1

ðxÞ s1

d2

ðxÞ
s2

d1

ðxÞ s2

d2

ðxÞ

2
64

3
75 2 C

2�2 and

HvðxÞ ¼

v1

d1

ðxÞ v1

d2

ðxÞ
v2

d1

ðxÞ v2

d2

ðxÞ

2
64

3
75 2 C

2�2

(3)

Fig. 3 Top: Electromagnetic actuator and capacitative sensor setup. Bottom: Testing block diagram.

Fig. 4 The 2 3 2 frequency response of the accelerometer ve-
locity to a chirp input from each forcer, denoted Hv, is displayed
using the dotted traces, while the frequency response of the
capacitative sense measurements from the same inputs,
denoted Hs, is displayed using the solid traces. If no linear
acceleration coupling were present, the accelerometer velocity
responses would be nearly linear in this frequency range and
correspond to motion of resonator center as a consequence of
the cantilever response of the post to which it is attached.
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The real and imaginary parts of a sample measurement of
B(x) are shown in Fig. 6. In order to agree with (1), B(x)
should be real and constant with respect to frequency in a
neighborhood of the Coriolis-coupled modes. In this experi-
ment, however, the small imaginary part and the small slope
are caused by the dynamics of the post. These dynamics are
linear with respect to frequency in the narrow frequency range
of the Coriolis-coupled modes, but change as mass perturba-
tions are made to the structure. Because it is difficult to com-
pensate for the effect of the post, each of the four components
of the real, 2� 2 coupling matrix, B, are approximated by
averaging the corresponding real parts of B(x), denoted below
as BRðxÞ, at the frequencies of the two Coriolis-coupled
modes, i.e.,

B ¼ 1

2
BRðx1Þ þ BRðx2Þð Þ (4)

where x1 and x2 are the two frequencies of the n¼ 2 Coriolis-
coupled modes.

4 A Model for Mass Perturbation Effects on the

Coupling Matrix

4.1 Empirical Derivation of a Coupling Model. An experi-
ment was conducted to measure DBðm;/Þ, which is the change in
the linear acceleration coupling matrix B of the Macro DRG for a
single mass perturbation. Although it is possible to quantify the
effects of mass perturbations performed on different rings, in this
experiment, all perturbations are constrained to the ring with the
second largest radius. The first part of the experiment tests the line-
arity of m in the DB function. A measurement of B was taken each
time an additional magnet was added to the spoke 11.25 deg
counter-clockwise from the x-axis (i.e., /¼ 11.25) and the differ-
ence between the measured perturbed coupling matrix and the
unperturbed one, denoted B0 in Eq. (2), was computed. The experi-
ment was conducted five times in order to assess the repeatability

of the results. The mean and standard deviation of the results are
shown in Fig. 7. The data closely follow a least squares linear fit,
confirming that DB is adequately linear with respect to m.

In the second part of the experiment, each mass perturbation
consisted of six small magnets (i.e., m¼ 72 mg when using 12 mg

magnets) placed at various angular locations, /i. The matrix B
was then measured for each case when the perturbation was
applied to the sixteen spokes as well as the sixteen midpoints
between the spokes. The differences between each measured cou-

pling matrix, B, and the unperturbed one, B0, are shown in Fig. 8.
The experiment was conducted five times and the plots show the
mean and standard deviation of the results.

An expression for relationship between the coupling matrix and
mass placement is found using a discrete Fourier transform
(DFT). The formula for the DFT for this case is

Fig. 5 Block diagram for identification of the coupling matrix,
B(x), from measured responses Hv and Hs

Fig. 6 The real (left) and imaginary (right) parts of the four components of B(x). The slopes of
the real parts and the small imaginary parts are caused by post dynamics in the region of the
modes of interest. A constant, real coupling matrix, B, is calculated by taking the average of the
real parts of B(x) at the two resonant frequencies.

Fig. 7 An experiment that tests the linearity of DB with respect
to m. Five separate tests were done in which the value of B was
measured as magnets were added to an individual spoke. Mag-
nets were attached in two stacks so that the final test with
twelve magnets is performed with two stacks of six magnets.
The average of the four channels of DB is plotted as the dots
whereas the error bars give the standard deviation of the tests.
The solid line is a least square fit to the averaged data. The
assumption that DB is linear with respect to m appears to be
appropriate.
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XðkÞpq ¼
X31

l¼0

DB
AVE

pq ð6 m0;/lþ1Þe�j2p
32

lk

k ¼ 0;…; 31 for p; q ¼ 1; 2

(5)

where m0 is the mass of one magnet (approximately 12 mg),
which is the smallest mass perturbation that can be applied to
the Macro DRG. The superscript (k) on X

kð Þ
pq denotes that it is

the kth component of the vector Xpq, the superscript AVE above
DB denotes that it is the averaged value for that value of /l þ 1

and j ¼
ffiffiffiffiffiffiffi
�1
p

. The DFT factors the original functions into a
weighted sum of harmonics. The magnitudes of the first sixteen
harmonics are shown in Fig. 9. The approximation of the linear
acceleration perturbation function that uses only X

1ð Þ
pq and X

3ð Þ
pq

(p, q¼ 1, 2) is

DBðm;/Þ � m
1:39 cosð/þ 0:014Þ þ 0:53 cosð3/þ 0:096Þ 1:35 sinð/þ 0:015Þ þ 0:51 sinð3/þ 0:116Þ
�1:41 sinð/þ 0:125Þ þ 0:58 sinð3/þ 0:101Þ 1:34 cosð/þ 0:174Þ � 0:54 cosð3/� 0:034Þ

� �
(6)

where m is the magnitude of the mass perturbation in milligrams
and the argument terms are expressed in radians. This approxima-
tion fits the data well, and is plotted as the dotted trace in Fig. 8.

4.2 Comparison to the Analytical Ring Model. The promi-
nent features of the empirically derived perturbation function
for the Macro DRG are, perhaps unsurprisingly, similar to the
features of the analytically derived perturbation functions for
similar, but simpler, structures. The analysis of Zhbanov et al.,
which addresses hemispherical resonators, suggests that linear
acceleration coupling can be eliminated by balancing only the
first and third harmonics of the angular mass distribution [8].
The same analytical technique can be applied to a single ring

to reach the same conclusion. As the disk resonator structure is
essentially a collection of rings, it is instructive to derive the
effect of mass perturbations on linear acceleration coupling in
planar rings.

First, the center of mass is expressed in terms of its x and y
components, denoted Cx and Cy, respectively. Next these are
decomposed into static and dynamic parts such that

Cx ¼ Cx0 þ C0x
sin xt

2 mring þ
PN

i¼1 mi

� � and

Cy ¼ Cy0 þ C0y
sin xt

2 mring þ
PN

i¼1 mi

� � (7)

Fig. 8 The four components of the perturbation matrix, DB, plotted against the placement of
the perturbing mass. In this case, the coupling matrix, B, was measured as a six magnet test
mass is placed at each of the spokes as well as the midpoints in between the spokes. The per-
turbation matrix is taken as the difference between the coupling matrix of the perturbed resona-
tor and coupling matrix associated with the unperturbed resonator. The test was conducted five
times and the error bars represent the standard deviation of the data. The dotted trace is given
by the first and third harmonic approximation of the averaged data explicitly given in Eq. (6).
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where x is the frequency of vibration, mring is the total mass of
the symmetric part of the ring and N is the number of discrete
masses, mi, which cause the deviation from symmetry.2 By apply-
ing the mode shape of the n¼ 2 Coriolis-coupled modes,3 the
dynamic parts of the center of mass position can be written as

C0x ¼ A cosð2wÞ
XN

i¼1

mi 3 cos /i þ cos 3/i½ �

þA sinð2wÞ
XN

i¼1

mi 3 sin /i þ sin 3/i½ �

C0y ¼ A cosð2wÞ
XN

i¼1

mi �3 sin /i þ sin 3/i½ �

þA sinð2wÞ
XN

i¼1

mi 3 cos /i � cos 3/i½ �

(8)

where w is the angle between the modal axes and the x-axis, A is
the amplitude of vibration, and the N total masses have angular
positions /i, as illustrated in Fig. 10. One can express this rela-
tionship using a coupling matrix for a ring, Bring, that has the
same form as Eq. (1)

C0x
C0y

" #
¼ Bring

A cosð2wÞ
A sinð2wÞ

� �
where

Bring ¼
P

i mi 3 cos /i þ cos 3/i½ �
P

i mi 3 sin /i þ sin 3/i½ �P
i mi �3 sin /i þ sin 3/i½ �

P
i mi 3 cos /i � cos 3/i½ �

� �
(9)

This equation reveals that, in theory, linear acceleration coupling
is only caused by mass distributions with nonzero first and third
harmonics. Next, the change in Bring for a single mass perturbation
is defined as

DBringðm;/Þ ¼ m
3 cos /þ cos 3/ 3 sin /þ sin 3/
�3 sin /þ sin 3/ 3 cos /� cos 3/

� �
(10)

Note that the signals s1 and s2 in the experimental model given in
Eq. (1) would act as measurements for A cos (2W) and A sin (2W)
if the resonator were a simple ring. Indeed, it has been shown that
the mode shape of n¼ 2 Coriolis-coupled modes for the Macro
DRG deviates only slightly from that of a simple ring [7]. Thus, it
is not surprising that this analytical model for the perturbation func-
tion of a ring and the experimentally derived model for the Macro
DRG given in Eq. (6) share important characteristics. Namely, the
perturbation relationships of both are linear with respect to m and
are dominated by the first and third harmonics with respect to /.

5 Decoupling Using the Experimental Perturbation

Function

The experimental model is ultimately validated by its useful-
ness in driving each of the elements of B to zero. Thus, the decou-
pling problem is stated as finding the combination of N masses,
mi, placed at positions /i, such that

Bþ
XN

i¼1

DBðmi;/iÞ ¼ 0 (11)

The decoupling method discussed in this section, dubbed the
“spokes method,” restricts angular locations of the perturbations
to the locations of the spokes. The spokes are logical locations for
adding mass because the perturbation results from the previous
section were measured at the spokes. Using the approximation
that DBðm;/Þ is linear in m, one only needs to choose four
locations, U¼ {/1, /2, /3, and /4}, so that a solution
M ¼ M1 M2 M3 M4½ �T exists to A(U)M¼ b where

AðUÞ¼

DB11ðm0;/1Þ DB11ðm0;/2ÞDB11ðm0;/3Þ DB11ðm0;/4Þ
DB12ðm0;/1Þ DB12ðm0;/2ÞDB12ðm0;/3Þ DB12ðm0;/4Þ
DB21ðm0;/1Þ DB21ðm0;/2ÞDB21ðm0;/3Þ DB21ðm0;/4Þ
DB22ðm0;/1Þ DB22ðm0;/2ÞDB22ðm0;/3Þ DB22ðm0;/4Þ

2
6664

3
7775;

andb¼

�B11

�B12

�B21

�B22

2
6664

3
7775 (12)

Fig. 9 The magnitudes of the discrete Fourier transform of the
mean values plotted in Fig. 8. The four bars of each grouping
are the DB11, DB12 ,DB21, and DB22 components, respectively. It
is clear that the first and third harmonics are the dominant fea-
tures of the perturbation function.

Fig. 10 Basic diagram for ring linear acceleration coupling
analysis. The dotted shape represents a possible mode shape
for the ring, with antinodal axis an angle W from the x-axis. The
position of the single attached mass, mi, oscillates with the
ring, thereby causing the center of mass, shown here as ‘3’, to
oscillate as well.

2The denominators of Eq. (7) are factored out of the dynamic parts because the
total deviation from symmetry,

P
mi, is much smaller than the total mass of the reso-

nator, meaning that that the inverse of the denominators are effectively constant with
respect to the mass asymmetry.

3The mode shape used in this derivation is defined by w(/, t)¼ 2Acos(2/ – 2W)
sin (xt) and u(/, t)¼A sin (2/ – 2W) sin (xt) where w and u are the radial and tan-
gential parts of the velocity of a point on the ring at angular position / [9]. An exag-
gerated mode shape is visualized as the dotted ellipse in Fig. 10.
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Again, m0 is the mass of one magnet so that M1, M2, M3, and M4

are the number of magnets necessary for each of the four perturba-
tions. A solution can be chosen from the many possible ones by
minimizing the total perturbation mass required

min
/1 ;/2;/3 ;/4

X4

i¼1

Mi

subject to : AðUÞM ¼ b

detðAÞ 6¼ 0

/i 2 /spokes;Mi � 0; i ¼ 1; 2; 3; 4

(13)

in which the Mi� 0 constraint is in place because mass cannot be
removed in this scenario. The requirement that A is nonsingular
eliminates the values of U for which the corresponding M is not
unique while not disqualifying any minimizing solutions. Note
that the values of DB used here are simply the average values of
DB as plotted in Fig. 8. The optimization is performed by deter-
mining M for each of the 1820 possible values of U. The optimal
U and M are chosen as those that minimize cost function,P4

i¼1 Mi. Generally, the optimal values of Mi are not integers
even though the actual perturbations require whole numbers of
magnets. Thus, the values of Mi are rounded after the
optimization.

The coupling matrix derived from the data in Fig. 6 is used to
start the decoupling process which can be followed in Table 1. At
each step, optimization (13) suggests that perturbations of Mi

magnets be added to the locations /i. The actual number of mag-
nets utilized for each perturbation is calculated by rounding to the
nearest integral value. A new coupling matrix is estimated and the
process is repeated until the optimization suggests that each of the
optimal perturbations is less than 0.6 magnets. The linear acceler-
ation coupling is assessed by computing the H2 norm of the

forcer/accelerometer transfer function in a neighborhood of the
n¼ 2 modes. This is discussed in more detail in Sec. 5.1.

5.1 Quantifying Coupling Reduction. The exact and
approximated values of the H2 norm of Hv in the frequency band
[f1, f2] are given by

jjHvjj22 ¼
ðf2

f1

trðH�v ðf ÞHvðf ÞÞdf

�
XN

k¼0

tr H�v f1 þ kDf

� �
Hv f1 þ kDf

� �� �
Df

where tr(�) is the trace of a matrix and H�v is the conjugate trans-
pose of Hv. The H2 norm is a natural choice because it facilitates
the calculation of the root-mean-square acceleration to a white-
noise force disturbance applied to the n¼ 2 modes. More specifi-
cally, if independent band-limited white-noise inputs of intensity
c Vffiffiffiffi

Hz
p are applied to the electromagnetic actuators, the root-mean-

square output of the accelerometers is given by c k Hv k2. The
approximated value of k Hv k2 is tracked throughout the linear
acceleration decoupling process using f1¼ 1620 Hz, f2¼ 1660 Hz,
N¼ 400, and Df¼ 0.1 Hz. The final value k H2 k2 is less than 5%
of the initial value, confirming that there is a significant reduction
in coupling. The value of tr H�v Hv

� �
is plotted versus frequency in

Fig. 11 prior to and after decoupling. The reduction in coupling is
also qualitatively confirmed in Fig. 12, which displays the acceler-
ometer outputs when uncorrelated band-limited white-noise sig-
nals drive the electromagnetic forcers before and after decoupling.
Figure 13 displays the power spectrum before and after decou-
pling, averaged over 20 such tests.

Another effect of linear acceleration coupling is that the quality
factors of the Coriolis-coupled modes of the resonator are reduced
because energy is transferred from these modes to the more heav-
ily damped post. These quality factors can be extracted in a ring

Table 1 Linear acceleration decoupling using the spokes method

kHvk2ð
ffiffiffiffiffiffi
Hz
p

m=s=VÞ

Optimization solution
Added number of magnets

for next perturbationAngular locations (deg) Number of magnets

First step 192.9 191.25, 213.75, 258.75, 281.25 7.0, 13.3, 5.3, 4.4, 7, 13, 5, 4
Iteration 1 67.2 33.75, 146.25, 168.75, 281.25 3.3, 1.0, 0.9, 3.0 3, 1, 1, 3
Iteration 2 8.1 11.25, 123.78, 236.25, 348.75 0.1, 0.4, 0.1, 0.4 0, 0, 0, 0

Total magnets added
37

Fig. 11 A plot of trðH�v Hv Þ before and after the two decoupling
methods were implemented. Each of the methods exhibit over a
95% reduction in the H2 norm of the forcers-to-accelerometers
transfer functions. For reference, the transfer function Hv meas-
ured prior to decoupling is the solid trace plotted in Fig. 4.

Fig. 12 Uncorrelated white-noise inputs with equal variance
are applied to the two electromagnetic forcers in a frequency
band encompassing the modes of interest for both the original
and decoupled cases. The velocities of the post are measured
before decoupling (gray) and after decoupling (black) using the
spokes method.
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down test by exciting a single mode and then observing the decay
rates after the excitation is removed. Figure 14 displays the fil-
tered peak amplitude of the output during ring down tests per-
formed before and after decoupling. The quality factor of the low
frequency mode increases from 6.8 K to about 7.8 K after decou-
pling while the quality factor of the high frequency mode
increases from 7.9 K to about 8.0 K.

6 Decoupling Without Initial Measurement of the

Perturbation Function

The linear acceleration decoupling process discussed in Sec. 5
works very well for the resonator under test and demonstrates the
feasibility of reducing linear acceleration coupling through
mass perturbations. This section presents a more generalized
and robust method. The first improvement removes the need
for a previously measured perturbation function. This consider-

ably increases the appeal of the method because, when other
resonators are fabricated, the perturbation functions will likely
be different. The Spokes Method, which, as implemented in
the previous section, requires that sixteen irreversible perturba-
tions be made to the resonator in order to derive its perturba-
tion function and clearly involves more testing than necessary.
In contrast, the method discussed in this section, denoted the
“general method,” approximates the first and third harmonics
of the perturbation function with as few perturbations as possi-
ble and then updates the perturbation function as more data
sets are acquired. The second improvement over the previous
method removes the constraint that perturbations only be made
at the spokes. By allowing perturbations to take place at any
angular location the optimal perturbation requires fewer
masses. Also, this allows the process to be generalized to ring-
shaped resonators that do not have strongly preferred perturba-
tion locations.

Fig. 13 The averaged power spectrum of both accelerometers with uncorrelated band-limited
noise inputs with a 50mv=

ffiffiffiffiffiffiffi
Hz
p

spectral density before (gray) and after (black) decoupling is per-
formed using the spokes method. The modes of interest are located between 1630 and 1650 Hz.

Fig. 14 A ring down test is performed on the resonator before and after decoupling is imple-
mented and the time responses of the peak outputs are plotted. The quality factors are approxi-
mated by the slope of linear least square fits to the data. The low frequency mode shows a
marked increase in its quality factor.
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6.1 Online Approximation of the Perturbation
Function. For the present approach, the perturbation function
uses only the first and third harmonics so that each component can
be expressed as

DBðmi;/iÞpq ¼ mi

�
xð1Þpq cos /þ xð2Þpq sin /

þ xð3Þpq cos 3/þ xð4Þpq sin 3/
� (14)

where xpq is the vector of the weightings on the cosine and sine
terms of the first and third harmonics for DBðmi;/iÞpq. With
N� 4 calibration measurements of DB, the perturbation function
can be estimated by finding the least squares solution of

m1 cosð/1Þ m1 sinð/1Þ m1 cosð3/1Þ m1 sinð3/1Þ
m2 cosð/2Þ m2 sinð/2Þ m2 cosð3/2Þ m2 sinð3/2Þ

..

. ..
. ..

. ..
.

mN cosð/NÞ mN sinð/NÞ mN cosð3/NÞ mN sinð3/NÞ

2
66664

3
77775

xpq ¼

DBpqðm1;/1Þ
DBpqðm2;/2Þ

..

.

DBpqðmN;/NÞ

2
666664

3
777775

(15)

for p, q¼ 1, 2. A notable feature of this method is that perturba-
tions of greater magnitude have a greater influence on the approxi-
mation of the perturbation function.

6.2 Solution to the General Decoupling Problem. The two
harmonic perturbation function, built using Eq. (14), can now be
used to find solutions to (11) in which /i 2 0; 2p½ Þ. The minimiza-
tion, Eq. (13), is generalized to

min
/1 ;/2;/3 ;/4

X4

i¼1

Mi

subject to : AðUÞM ¼ b

detðAÞ 6¼ 0

/i 2 ½0; 2pÞ;Mi � 0; i ¼ 1; 2; 3; 4

(16)

in which the spoke constraint has been removed and A and b are
defined as in Eq. (12) using the two harmonic perturbation func-
tion, DBðmi;/iÞ, from Eq. (14). Though the problem is not quasi-
convex, the steepest descent method appears to converge to the
global minimal solution when the solution to Eq. (13) is used as
an initial condition. The minimizing result is at the edge of the
feasible region, meaning that the difference between two of the
optimal angular locations is arbitrarily small (causing A to be

nearly singular) and/or one of the optimal mass magnitudes is
arbitrarily close to zero. Thus, at least one of the masses is redun-
dant and the solution actually requires only two or three point
masses. A brief discussion comparing this solution to those found
in the literature is contained in the Appendix.

6.3 Choice of Initial Perturbation Locations. The general
method must start with an estimate of the perturbation function.
Thus, four “calibrating” perturbations are made to provide this
estimate. Ideally, these perturbations are performed in a way that
allows for a balanced estimate of the perturbation function while
not adding additional coupling to the system. In order to ensure
that an equal emphasis is placed on the first and third harmonics,
the four test masses of equal magnitude should be spaced using
the following relation

/1¼ /2 � p=4 ðmod pÞ
¼ /3 � p=2 ðmod pÞ
¼ /4 � 3p=4 ðmod pÞ

(17)

This constraint guarantees that the condition number of left hand
matrix of Eq. (15) is 1 when N¼ 4 and m1¼m2¼m3¼m4. Thus,
an error in any individual measurement of DBpq will not dispro-
portionately corrupt the approximation of xpq. In practice, this
constraint forces the perturbation locations to be no closer than 45
deg apart.

One may choose any four locations that satisfy restraint (17),
though, it is advantageous to choose locations that also reduce
coupling. Though crude, the perturbation function for an axisym-
metric ring generally approximates the perturbation function for
any axisymmetric device. Thus, this function is used to guide the
first step. One chooses locations that best reduce the imbalance
parameters by solving

min
/1;/2 ;/3;/4

�X4

i¼1

3 cos /i þ cos 3/i;
X4

i¼1

3 sin /i þ sin 3/i;

X4

i¼1

�3 sin /i þ sin 3/i;
X4

i¼1

3 cos /i � cos 3/i

�
b

subject to : /i 2 /spokes and /i satisfies ð17Þ for i ¼ 1; 2; 3; 4

(18)

where b is defined as in Eq. (12). The /i 2 /spokes restraint is
added here to simplify the minimization. Unlike optimizations
(13) and (16), which theoretically determine the locations and
magnitudes of perturbations that eliminate coupling, optimization
(18) theoretically determines the locations that will cause the
greatest reduction in coupling for fixed perturbation magnitudes.

6.4 Implementation of the General Method. The techni-
ques developed in Secs. 6.1–6.3 are used to guide the General

Table 2 Linear acceleration decoupling using the general decoupling method

kHvk2ð
ffiffiffiffiffiffi
Hz
p

m=s=VÞ

Optimization solution
Added number of magnets

for next perturbationAngular locations (deg) Number of magnets

Calibration 1 192.9 56.25, 101.25, 146.25, 191.25 NA 2, 2, 2, 2
Calibration 2 195.9 234.45, 299.16 19.96, 14.59 4, 4
Calibration 3 163.3 336.93, 96.92, 216.9 6.7, 0.43, 28.90 6, 0, 6
Calibration 4 140.5 187.0, 260.35 12.5, 12.0 8, 8
Iteration 1 44.5 165.8, 234.2 3.47, 4.09 3, 4
Iteration 2 11.9 58.9, 179.9, 299.9 0.541, 0.8371, 0.33 0, 1, 0
End 10.6 50.41, 312.2 0.54, 0.31 0, 0

Total magnets added
52
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Method, the steps of which can be followed in Table 2. For this
implementation, two magnets were used at each of the four cali-
bration points in the first step, and the change in the coupling ma-
trix is measured for each calibration mass added. Despite
attempting to add the masses in a way that reduces coupling, it
appears kHvk2 increased slightly. The unexpected increase demon-
strates a potential pitfall of putting too much faith in an analyti-
cally defined perturbation function (in this case DBring (m, /)).

For the next step, two more calibration masses, made up of four
magnets each, are placed at the two locations suggested by optimi-
zation (16). For cases in which three masses are suggested, the
calibration masses are simply placed at the two points requiring
the most mass. The measurements are used to re-estimate x11, x12,
x21, and x22. The third and fourth calibration steps use six and
eight magnets, respectively, and the estimate of the two harmonic
perturbation function achieves greater accuracy. A plot of one
channel of the estimated perturbation function can be seen in
Fig. 15. The last two steps use the refined model to guide the
placement of the last few magnets. The process is terminated
when all suggested mass perturbations are less than 0.6 magnets.
The value of tr H�v Hv

� �
is plotted versus frequency in Fig. 11 so

the result can be compared to the result using the Spokes Method.
Again, the coupling is reduced by a large degree. The general
method did, however, require more magnets than the spokes
method. This can be attributed to the use of a less accurate pertur-
bation function and the addition of magnets that were required for
the initial calibration.

7 Conclusions

Axisymmetric resonators are ideal structures for creating vibra-
tory gyroscopes, however, manufacturing imperfections inevitably
couple the modes that are exploited for angular rate sensing to lin-
ear acceleration of the sensor’s case. A systematic approach to
reduce the coupling has been proposed and is suitable for planar
microelectromechanical (MEM) resonators in which strategic
mass loading or removal can be implemented. The process was
demonstrated on a macroscale resonator (the Macro DRG) that,
by virtue of its size, facilitated the numerous experiments that
were conducted in order to empirically determine the nature of the
acceleration coupling. Using the Macro DRG allowed us to focus
on developing a decoupling process without the challenges posed
by working with MEM devices. Despite the fact that the experi-
mental apparatus is limited by the quantized nature of the mass

perturbations imposed by the minimum magnet size, the results
show that a factor of 20 reduction in coupling is easily achievable.
Although the Macro DRG is considerably more complicated than
the ring structures typically addressed in the literature, the empiri-
cally measured Macro DRG linear acceleration coupling perturba-
tion function closely follows the analytical ring resonator model.
Nevertheless, the proposed approach is based on measuring the
perturbation function for each resonator with a systematic
sequence of experiments.

Acknowledgment

This material is based upon work supported by the National
Science Foundation under Grant No. 0601622.

Appendix: A Comparison To Literature

The basic problem of decoupling using a known perturbation
function, articulated in Eq. (11), can be reformulated as

PN
i¼1

mi cosð/iÞ

PN
i¼1

mi sinð/iÞ

PN
i¼1

mi cosð3/iÞ

PN
i¼1

mi sinð3/iÞ

2
66666666666664

3
77777777777775
¼

xT
11

xT
12

xT
21

xT
22

2
6664

3
7775
�1

b (A1)

by combining Eqs. (11) and (14). This formulation more clearly
demonstrates that the problem is equivalent to the harmonic bal-
ancing problems solved by Fox et al. and Zhbanov et al. [8,10].
Fox’s method, formulated for problems involving even harmonics,
produces two mass solutions when they exist, and these solutions
agree with the end result of optimization (16) in these cases.
When the solution requires three masses, however, Fox’s method
does not give a solution. For example, if the right hand side of Eq.
(A1) equates to 0 0 1 0½ �T, then, three masses are required for
decoupling. Zhbanov’s method is complete and simple, but
requires four masses, and generally requires more mass than the
solution to optimization (16). The results to optimization (16) are
expressed in a well-posed manner in Ref. [11], but have been
excluded here for brevity.
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Fig. 15 A plot of the (1, 1) component of DBðm0;uÞ as meas-
ured during the calibrations for the example of the general
method. The diameters of the circles scale with the magnitudes
of the perturbation used for each calibration step. The first and
third harmonic approximation of the perturbation function,
[cos u sin u cos 3u sin 3u]x11, is plotted using the solid line.
This approximation is used to guide the final two decoupling
steps. The dotted line is the first and third harmonic approxima-
tion that was shown in Fig. 8. Though it does not precisely
match the previous approximation, which utilized more pertur-
bations, the new approximation is still a useful decoupling tool.
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