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Spectral Analysis of Vibratory Gyro Noise
Dennis Kim and Robert Thomas M’Closkey, Member, IEEE

Abstract— This paper presents analysis of the noise spectra of
closed-loop mode-matched vibratory gyros. Closed-form expres-
sions for the noise-equivalent angular rate spectrum as well
as the integrated angular rate (angle) variance are derived to
explore the effects of modal frequency mismatch, closed-loop
bandwidth, and the spectra of noise sources appearing at the
sensor’s input and output. It is shown that noise sources located
at the output of the sensor’s electromechanical transfer function
create angle white noise in the closed-loop sensor. The angle white
noise dominates the integrated rate behavior until it crosses the
angle random walk asymptote at integration times exceeding the
sensor’s open-loop time constant. Even though the closed-loop
sensor asymptotically recovers the angle random walk figure
associated with the mode-matched open-loop sensor, the results
can be used to quantify the larger integrated rate variance
that is produced as a consequence of extending the sensor’s
bandwidth through feedback. A parameter, called the effective
bandwidth, is introduced to capture the relative importance of
the input noise versus output noise in determining the noise-
equivalent rate spectrum. It is shown that the rate noise spectrum
is robust to frequency mismatch as long as it does not exceed
the effective bandwidth parameter. Empirical data obtained
with a high performance MEMS vibratory gyro shows excellent
agreement with the model predictions for a variety of sensor con-
figurations including frequency-matched, frequency-mismatched,
modified bandwidth, and manipulated input noise intensity
cases.

Index Terms— Gyroscopes, inertial navigation, microsensors,
sensor phenomena and characterization, spectral analysis.

NOMENCLATURE

α coriolis coupling strength, unitless
� modal frequency mismatch, rad/s
γc closed-loop scale factor, V/(deg/s)
γ0 closed-loop scale factor when � = 0, V/(deg/s)
γOL open-loop scale factor when � = 0, V/(deg/s)
ω frequency, rad/s
ω� frequency variable associated with �, rad/s
ωc closed-loop bandwidth, rad/s
ωm mechanical bandwidth of resonator, rad/s
ωe effective bandwidth, rad/s
ωn modal frequency of dominant sense channel mode,

rad/s
ω0 drive mode frequency, rad/s
�e estimated angular rate, rad/s
νo noise spectral density at sensor output, deg/hr/

√
Hz
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νi noise spectral density at sensor input, deg/hr/
√

Hz
� sensor angular rate of rotation, rad/s
σ 2

τ variance of θ(t; τ ), deg2

σ 2
AV Allan variance of �e, (deg/hr)2

θ(t; τ ) angle change estimate over [t − τ, t] window, degree
τ integration interval, second
a drive mode response amplitude, m
c modal damping, N/(m/s)
d rebalance signal, V
d̃ scaled rebalance signal, deg/s
Hg sense channel transfer function
j

√−1
k modal stiffness, N/m
K f , forcer gain of sense channel, N/V
Kr , rebalance gain, N/V
Kx , excitation channel forcer gain, N/V
Ky pick-off gain of sense channel, V/(m/s)
m modal mass of dominant sense channel mode, kg
ni sensor input noise, V
no sensor output noise, V
p peak gain of sense mode, V/V
Q quality factor, dimensionless
Sd spectral density of d , V2/Hz
Sni spectral density of ni , V2/Hz
Sno spectral density of n0, V2/Hz
SNER spectral density of �e due to noise sources,

(deg/hr)2/Hz
| · | magnitude

I. INTRODUCTION

V IBRATORY rate gyros measure the angular rate of rota-
tion experienced by the sensor by exploiting two lightly

damped Coriolis–coupled modes of a mechanical resonator
when the equations of motion are written in a sensor–fixed
coordinate system. High mechanical quality factors (Q) in
vibratory rate gyros are essential to improving sensor perfor-
mance with respect to various noise sources that corrupt the
angular rate measurement. Although frequency-matched, or
“tuned”, open–loop vibratory gyros may achieve the sensor’s
optimum noise performance, the measurement bandwidth is
limited to the resonator’s intrinsic mechanical bandwidth and
is practically too low for high Q devices. Consequently, this
paper focuses on vibratory gyros operating in a force-to-
rebalance [1], or closed-loop, mode in which noise sources
are present at the input and output of the electro-mechanical
transfer function which represents the open-loop dynamics
of the resonator that forms the heart of the sensor. In fact,
expressions will be derived for the sensor transfer function
and the spectrum of a single noise source located at the sensor
output that reflects contributions of various noise sources
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Fig. 1. Block diagram showing the relation between the sensor transfer
function Hsensor, the noise equivalent rate signal n, and the integrated rate
signal θ . The input angular rate � is filtered by the transfer function and
then corrupted by the additive noise n to produce the estimated rate (denoted
�e). The corrupted angular rate is integrated over the interval of duration τ to
produce an estimate of the change in sensor orientation. The transfer function,
spectral density of n and the variance of θ as a function of the integration
interval τ (when �(t) = 0) are derived.

(see Fig. 1). Input noise sources include mechanical-thermal
noise [2], sensor case vibration that couples into the modes [3],
and digital-to-analog converter quantization noise. On the
other hand, a common output noise source is electrical-thermal
noise from analog signal conditioning [4]. In high-Q sensors
these noise sources conspire to produce interesting trends
in the noise-equivalent rate (NER) spectrum with respect
to sensor parameter perturbations. The effective bandwidth
parameter is introduced to capture the relative importance
of input noise sources versus output noise sources and it is
shown that although tuned closed–loop vibratory rate gyros
achieve the angle random walk (ARW) associated with tuned
open–loop operation, frequency mismatch larger than the
effective bandwidth raises the ARW figure for the sensor.
The ARW figure is especially sensitive to output noise and
when output noise is the dominant source, frequency mismatch
larger than the mechanical bandwidth leads to an increase
in ARW.

A closed-form expression for the mean square angle uncer-
tainty as a function of integration time is also derived. It
is shown that output noise sources create angle white noise
(AWN), however, as the integration time increases, the angle
variance asymptotically converges to the ARW asymptote
associated with the open-loop sensor. Thus, if the physical
mechanism that implements the feedback in the force-to-
rebalance mode contributes negligible noise compared to the
other sources, then there is no long-term noise performance
penalty in operating a closed-loop sensor. Although the closed-
loop and open-loop sensor (frequency-matched cases) share
the same low frequency asymptote in the NER spectrum,
and hence have the same ARW, there is a price to be paid
for extending the sensor’s bandwidth and the analysis herein
precisely quantifies when, and to what degree, the closed-
loop angle variance exceeds the open-loop angle variance
for integration times that are longer than the open-loop time
constant (this represents the interval of integration times for
which open- and closed-loop variances can be compared
despite the fact that these sensor configurations have very
different signal bandwidths).

The motivation for this paper was prompted by the authors’
testing of the Disk Resonator Gyro, or DRG [5]. The DRG
provided a flexible testing platform to investigate the effects of
detuning, changes in quality factor, case vibration, and buffer
noise on sensor performance. Commercial signal processing
boards were used in the studies in order to measure the

intrinsic performance of the sensor without potential limits
being introduced by more size- and energy-efficient on-chip
implementations (results in Sec. VI show a low frequency
noise floor less than 0.3 deg/hr/

√
Hz in the frequency range

extending from 0.01 Hz to 0.5 Hz). In the course of testing
the DRG it became apparent that mechanical-thermal noise,
the noise source traditionally considered dominant in MEM
resonators, was not the only source contributing to the NER
spectrum and more thorough analysis was necessary to reveal
the interplay between noise sources and resonator parameters.
This paper is closest in spirit and objectives to Leland’s
theoretical treatment of mechanical-thermal noise in closed-
loop vibratory gyros [6]. For closed-loop analysis, though, a
force-to-rebalance control architecture must be assumed and
we adopt a fixed gain element which is an idealization of the
wide-band linear filters that have been successfully applied by
the authors to the DRG and other micro-scale gyros [7], [8].
This feedback scheme, however, does not discriminate
between in-phase and quadrature components of the sensing
channel signal. Thus, both components are nulled and the
synchronous demodulation to estimate the angular rate is
performed outside of the loop which is in contrast to the force-
to-rebalance loop in [6] which leaves the quadrature “channel”
open. These different feedback schemes do yield differences
in the NER spectrum with regard to frequency mismatch
and, specifically, our approach does not see degradation in
ARW when only input noise is present, which is the case
considered in [6]. Our analysis approach also uses results
pertaining to the spectra of modulated narrowband signals to
compute the NER spectrum which departs from the slowly
varying amplitude coordinates and averaging in [6]. Further
comparison of force-to-rebalance architectures will not be
pursued, however, some recent contributions to compact on-
chip hardware implementation of vibratory gyro control and
signal processing filters are given in [9]–[11]. Error sources,
especially potential contributors to bias drift, are analyzed
in [12] for several commercially available non-mode-matched
MEMS gyroscopes.

The paper is organized as follows: Sec. II introduces the
notation for the sensor model and the block diagram for force-
to-rebalance operation; Sec. III derives the closed-loop scale
factor (which is necessary in light of the assumed feedback
scheme) and the expression for the closed-loop NER spectrum;
Sec. IV derives an expression for the variance of the integrated
rate as a function of integration time; Sec. V analyzes the
noise models by considering separate cases in which the input
noise is dominant, the output noise is dominant, and neither
noise source is dominant; Sec. VI presents experimental results
with the DRG and compares the noise model predictions to
measured NER spectra and angle variance; Sec VII concludes
the paper.

II. CLOSED-LOOP SENSOR MODEL

The fundamental model of a vibratory gyro consists of a two
degree-of-freedom (DOF) resonator with Coriolis coupling
terms modulated by the sensor’s angular velocity. The 2-DOF
perspective is necessary when modeling such sensors since
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Fig. 2. Block diagram for analysis of the noise spectrum associated with the angular rate estimate, �e. The excitation loop is assumed to produce a stable
carrier signal ẋ by driving and tracking the companion mode. The force–to–rebalance loop shown here is designed to emulate velocity–to–force feedback so
that the feedback signal d regulates the noisy pick-off measurement ỹ to zero. The block H is given by (1). The effect on �e of two noise sources, denoted
ni and no, are to be determined. The transfer function from � to �e is denoted as Hsensor in Fig. 1.

multi-channel test data is required in order to clearly identify
nearly identical modal frequencies and damping that prevents
the formation of classical normal modes. The sensor designer,
however, goes to great lengths to decouple the two degrees of
freedom so that only the Coriolis coupling terms remain. The
decoupling is necessary in order to minimize the magnitude
of the quadrature signal associated with the sensing pick-off
which, if not minimized, can saturate the high-gain buffers.
Furthermore, coupling produces offsets in the in-phase and
quadrature signals which can slowly drift if the resonator
dynamics are perturbed. The drift contributes to low frequency
“noise” in the angular rate measurement that is independent
of the noise sources considered in this paper. As in references
that have preceded this work, the following idealized, time-
invariant, single DOF model is useful starting point in the
derivation of the NER spectrum,

mÿ + cẏ + α�ẋ + ky = f. (1)

In this model, y represents the generalized coordinate of sense
mode and f represents the corresponding generalized forces
that act on this degree of freedom. The degree of freedom that
represents the excited mode is parameterized by the coordinate
x . The modal mass, damping, and stiffness parameters are m,
c, and k, respectively. The angular velocity of the resonator
is denoted � and the Coriolis coupling strength α is a
function of the resonator geometry. In order to provide a
carrier signal onto which � is modulated, the vibratory rate
gyro employs a feedback loop to establish a stable harmonic
oscillation of x (or ẋ) with oscillation frequency typically
coinciding with the modal frequency of the dominant mode in
this channel. Commonly implemented excitation loops include
a phase–locked–loop (PLL) and feedback of the resonator
velocity at the pick-off point in conjunction with automatic
gain control. Both approaches are effective in maintaining a
stable excitation amplitude as well as tracking shifts in the
modal frequency due to changes in the resonator temperature,
for example.

Open–loop vibratory rate gyros estimate � by demodulating
the rate-induced response of y (or ẏ). Closed–loop vibra-
tory rate gyros employ a second feedback loop, commonly
called the “force–to–rebalance” loop, to increase the sensor
bandwidth by nulling y using a feedback force through f
to reject the disturbance induced by the Coriolis coupling.
The feedback signal is then proportional to α�ẋ and an
estimate of � is extracted by demodulating this signal with
respect to ẋ . There are several force-to-rebalance filter choices
whose details depend on whether the sensing pick-off mea-
surement is proportional to y or ẏ. From the perspective
of control systems design, though, the optimal damping of
the mode is achieved with velocity-to-force feedback so the
present analysis assumes that the pick-off measures a signal
proportional to ẏ. If this is not the case for a particular
sensor, though, additional filters in the feedback loop must
be employed to phase shift the measurement so that it in fact
looks like the oscillator velocity is fed back to the forcer. This
choice is optimal in the sense that the classical feedback loop
sensitivity function never exceeds unity and so the feedback
mechanism does not exacerbate or amplify disturbances and
noise [13]. This is the objective of the rebalance loop controller
irrespective of the choice of architecture (PLL, linear wide-
band, and so forth). Thus, in order to focus on the closed-
loop noise properties of the sensor without dwelling on the
control architecture, it is assumed that a simple linear gain
multiplies the measurement of ẏ to specify the feedback signal.
This configuration regulates both in-phase and quadrature
components of ẏ. Readers interested in the details of the
control filter design for emulating velocity-to-force feedback
even in the presence of significant phase lag are directed to [8]
which describes a novel gyro ASIC.

The closed–loop sense channel is shown in Fig. 2. The block
H represents the transfer function of the sensor dynamics from
f to ẏ. A complete sensor model would include details of
the input and output signal conditioning dynamics, however,
since they are designed to have very little gain or phase
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change in a neighborhood of sensor modes the present analysis
assumes the input and output buffers to be simple noiseless
elements K f and Ky that converts forcer input voltage d
to the generalized force f or, at the sensor output, converts
the generalized velocity ẏ to the buffered voltage signal ỹ.
The fixed gain Kr represents the force-to-rebalance control
element. The electromechanical gyro transfer function Hg

combines the fundamental sensor dynamics as well as the input
and output gains and is given by

Hg (s) = Ky K f

m

s

s2 + 2ωms + ω2
n
, s ∈ C (2)

where ωn = √
k/m is the undamped natural frequency for the

resonance and where the resonator’s mechanical bandwidth
is defined as ωm = ωn/(2Q) with the modal quality factor
Q = √

mk/c. From the perspective of analysis, it is not
necessary to individually determine the parameters Ky , K f ,
and m because a composite parameter representing Ky K f /m
along with ωn and Q can be determined by fitting (2) to
empirical frequency response data. The peak gain of (2),
denoted p, occurs at s = jωn , and is a useful parameter in
the subsequent analysis

p = ∣
∣Hg ( jωn)

∣
∣ = Ky K f

2mωm
. (3)

III. SPECTRUM OF ANGULAR RATE NOISE

Two noise sources, one located at the sensor input, denoted
ni , and the other located at the sensor output, denoted no,
are considered (see Fig. 2). The noise sources are assumed
to produce stationary, zero-mean, uncorrelated signals with
associated mean-square spectral densities given by Sni and Sno .
All spectral densities discussed in this paper are double-sided
spectral densities and, furthermore, the mean-square analysis
does not require that the noise sources posses Gaussian proba-
bility density functions but in the vast majority of cases these
noise sources are Gaussian. It is natural to express the pick-off
noise spectrum in terms of volts squared per hertz (V2/Hz),
however, the input noise sources are often physically located
after the K f gain element because they represent forces acting
on the resonator. From a measurement perspective, though, it
is convenient to refer these noise sources to the input of the K f

gain element and thus express them in V2/Hz units as well.
The analysis assumes that all noise and disturbance sources
are aggregated into ni and no.

It is necessary to establish the scale factor of the sensor and
the closed–loop transfer function from the rate-induced signal
(� · ẋ) to the feedback signal d is used for this purpose

α

K f

Kr Hg

1 + Kr Hg
= αKr Ky

m

s

s2 + 2ωcs + ω2
n

(4)

where the closed–loop bandwidth ωc is defined as

ωc = ωm + Ky K f Kr

2m
= ωm(1 + pKr ). (5)

It is assumed that the feedback increases the sensor bandwidth
significantly beyond ωm , which requires pKr >> 1 so
that ωc >> ωm . The sensor’s excitation loop regulates the

x-DOF to a constant amplitude sinusoidal response at fre-
quency ω0 (which may be different from the sense channel
modal frequency ωn). This neglects noise that is present in
the excitation loop. The input angular rate is assumed to be
sinusoidal as well with amplitude a� and the frequency ω�

ẋ (t) = −aω0 sin (ω0t)

� (t) = a� cos (ω�t).

The steady–state response of the control effort d to the input
� · ẋ is

d (t) = −αaa�ω0 Kr Ky

2m

[

λD̂r ( jλ) cos (λt)

−λD̂i ( jλ) sin (λt) + λ̃D̂r ( j λ̃) cos (λ̃t)

−λ̃D̂i ( j λ̃) sin (λ̃t)
]

(6)

where λ := ω0 +ω�, λ̃ := ω0 −ω�, and D̂r (s) and D̂i (s) are
the real and imaginary parts of D̂ (s) := 1/

(

s2 + 2ωcs + ω2
n

)

,
respectively. The rate estimate �e is obtained by demodulating
d with respect to x̃φ , where x̃φ(t) := −Kxaω0 sin (ω0t + φ) is
a phase-shifted copy of the measurement of ẋ , and normalizing
by the closed-loop scale factor γc,

�e(t) = LP
[

1

γc
x̃φ(t)d(t)

]

= Kx aω0

γc
LP [− sin(ω0t + φ)d(t)] . (7)

The “LP[·]” operator denotes unity DC gain low pass filtering
of its argument with bandwidth ωlp . The scale factor is
determined when a constant angular rotation rate is applied, in
other words if ω� = 0 then the following constant is produced
for the angular rate,

�e(t) = 1

γc

αa2ω3
0

2m
Kr Kx Ky

∣
∣
∣D̂ ( jω0)

∣
∣
∣ a� sin

(

φ − � D̂ ( jω0)
)

(8)

where |D̂ ( jω0) | and � D̂ ( jω0) are the magnitude and phase
of D̂ ( jω0). The optimal demodulation phase, given by φd :=
π/2 + � D̂ ( jω0), maximizes (8) and rejects any components
that are in quadrature with the rate-induced signal. Note
� D̂( jω0) ≈ −π/2 radians when ω0 is in a neighborhood
of ωn so φd ≈ 0 radians. The optimal demodulation phase
can deviate significantly from this value if the pick-off signal
conditioning contributes phase lag to the measurements of ẋ
and ẏ, however, these effects are not included in the present
analysis. The closed-loop scale factor is defined so that �e =
a� when φ = φd ,

1/γc = 4m

αa2ω2
0 Kx Ky Kr

√
√
√
√

(

ω2
n − ω2

0

2ω0

)2

+ ω2
c

= 2K f

αa2ω2
0 Kx

1 + pKr

pKr

√
√
√
√1 +

(

ω2
n − ω2

0

2ωcω0

)2

. (9)

The detuning frequency is defined as � := ω0 − ωn and
quantifies the difference between the resonant frequency of
the sensing channel and the operating frequency of the drive
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channel. Since (ω2
n − ω2

0)/(2ωcω0) is well-approximated by
−�/ωc, (9) shows that the closed-loop scale factor is insensi-
tive to detuning so long as the detuning is small compared to
the closed-loop bandwidth. Furthermore, it is also evident that
γc is insensitive to changes in the rebalance gain Kr and to
changes in the quality factor so long as the maximum loop gain
magnitude satisfies pKr >> 1. Additional details given in [7]
shows that optimal demodulation phase φd also shares these
insensitivities to �, quality factor and rebalance gain under
the same assumptions. The nominal scale factor, denoted γ0,
is obtained when � = 0,

1/γ0 = 2K f

αa2ω2
0 Kx

1 + pKr

pKr
. (10)

The nominal scale factor will be used in the subsequent
analysis.

The sensor transfer function can be derived from (7) as well.
Only the case ω0 = ωn , that is, � = 0, is considered since
the calculations are lengthy and tedious when � �= 0. When
� = 0, (7) reduces to

�e(t) = − a�ωc

((

ωn(D̂r ( jλ) − D̂r ( j λ̃))

+ ω�(D̂r ( jλ) + D̂r ( j λ̃))
)

sin ω�t

+
(

ωn(D̂i ( jλ) + D̂i ( j λ̃))

+ ω�(D̂i ( jλ) − D̂i ( j λ̃))
)

cos ω�t

)

,

(11)

where the low pass operation has been used to discard com-
ponents with frequencies in a neighborhood of 2ωn . Further
simplification is possible when |ω�| << ωn . This is a reason-
able assumption since the resonant frequency of the oscillator
is intended to act as high frequency carrier onto which the
angular rate signal is modulated. With this assumption

D̂( jλ) ≈ 1

−2ωnω� + j2ωcωn
,

D̂( j λ̃) ≈ 1

2ωnω� + j2ωcωn

and (11) reduces to

�e(t) = −a�ωc

(

2ωn D̂r ( jλ) sin ω�t + 2ωn D̂i ( jλ) cos ω�t
)

= a�ωc

(

ω�

ω2
� + ω2

c

sin ω�t + ωc

ω2
� + ω2

c

cos ω�t

)

= a�
1

√

(ω�/ωc)2 + 1
cos

(

ω�t − tan−1(ω�/ωc)
)

.

Since �(t) = a� cos ω�t , the transfer function from � to �e

in Fig. 2 is

Hsensor = 1

s/ωc + 1
. (12)

This transfer function is also inserted into the block diagram
in Fig. 1. Although not derived here, Hsensor is insensitive to
� so long as |�| << ωc.

In order to complete the description of the signals in Fig. 1
the interpretation of d is now changed from a signal induced
by angular motion of the sensor to a stochastic signal due to
noise sources no and ni shown in Fig. 2. The analysis in [6]
essentially considers the same model (with no = 0) expressed
in a slowly varying amplitude coordinates system. Our analysis
approach determines the NER spectrum as the spectrum of a
modulated random process. This perspective gives quite a bit
of insight into the role of the noise sources, effects of detuning
and so forth. The spectral density of d due solely to the noise
sources is

Sd (ω) =
∣
∣
∣
∣

Kr

1 + Kr Hg ( jω)

∣
∣
∣
∣

2 (

Sno + |Hg ( jω) |2Sni

)

(13)

where Sd is expressed in V2/Hz. The signal d̃ is defined as
d̃ := (Kx aω0/γ0)d , in other words, d scaled by the amplitude
of ẋ and divided by γ0. This yields a signal whose units are
those of angular rate. The spectral density of d̃ is

Sd̃(ω) =
(

Kx aω0

γ0

)2

Sd (ω)

=
∣
∣
∣
∣

Kr

1 + Kr Hg ( jω)

∣
∣
∣
∣

2
((

Kx aω0

γ0

)2

Sno

+|Hg ( jω) |2
(

Kx aω0

γ0

)2

Sni

)

.

At this point some simplifying, though reasonable, assump-
tions are made. It is assumed that the densities Sno and Sni are
constant in a neighborhood of ω0 that encompasses the closed-
loop bandwidth so that the scaled densities can be assigned
the constants νo, νi > 0,

ν2
o := (Kxaω0/γ0)

2Sno , ν2
i := (Kx aω0/γ0)

2Sni , (14)

and, thus, after some manipulation, Sd̃ can be written

Sd̃ (ω) = K 2
r ν2

o
(ω2

n − ω2)2 + (2ωeω)2

(ω2
n − ω2)2 + (2ωcω)2 , (15)

where the parameter ωe is the effective bandwidth

ωe = ωm

√

1 +
(

pνi

νo

)2

. (16)

The effective bandwidth describes the effect of the relative
power in d due to the noise sources at the sensor’s input
and output and is especially useful in determining if detuning
increases the noise equivalent rate spectrum –more details
are provided in Sec. V. As the output noise becomes less
significant (νo → 0 for fixed νi ), then ωe → ∞. Conversely,
if νi → 0 for fixed νo, then ωe → ωm .

The NER spectral density is obtained by demodulating Sd̃
with respect to sin(ω0t +φ) (the phase φ has no impact on the
resulting spectrum). In practice, the bandwidth of the rebalance
controller filter limits the support of Sd̃ and, furthermore,
the low-pass filtering operation after demodulation by ẋ is
equivalent to bandpass filtering d with passband 2ωlp centered
at ω0 prior to demodulation by ẋ . The demodulation frequency
ω0, however, is typically several orders of magnitude larger
than the filter bandwidth, that is ω0 >> ωlp , thus, the bandpass
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filtered noise is a narrowband process and the NER spectral
density (denoted SNER) assumes a simple form [14],

SNER (ω) = 1

4

(

Sd̃ (ω0 + ω) + Sd̃ (ω0 − ω)
)

, (17)

where ω is constrained to the interval [−ωlp, ωlp ] and Sd̃ is
given by (15). Although the exact expression for SNER is lengthy
the following is derived

SNER (ω) = 1

2

(
Kr

ωc

)2

ν2
o

(

�2 + ω2
c

)

·
(

�2 + ω2
c + ω2

) (

�2 + ω2
e + ω2

) − (2�ω)2

(

(� − ω)2 + ω2
c

) (

(� + ω)2 + ω2
c

) ,

(18)

under the following assumptions
1) the noise sources can be treated as narrowband

processes, i.e. ωlp << ω0,
2) the closed-loop bandwidth is more than an order of

magnitude smaller than the demodulation frequency, i.e.
ωc << ω0,

3) the modal frequency detuning is an order of magnitude
smaller than the closed-loop bandwidth, i.e. � << ωc.

This expression is taken to be the noise-equivalent rate spectral
density in remainder of the paper.

IV. ANGLE UNCERTAINTY

A. Integrated Rate Uncertainty

Integrating �e over a τ second window gives an estimate of
the change in orientation experienced by the sensor over that
interval with respect to an inertial reference frame. In other
words

θ(t; τ ) =
∫ t

t−τ
�e(t)dt . (19)

where θ(t; τ ) denotes the change in orientation at time t
obtained by integrating the angular rate estimate over the pre-
ceding τ seconds. The noise associated with the angular rate
estimate contributes to uncertainty in the derived orientation
change. The impulse response of the integration operation is

hτ (t) =
{

1 t ∈ [0, τ ]
0 t �∈ [0, τ ] . (20)

The Fourier transform of hτ is

Hτ (ω) = 1

jω

(

1 − e− jτω
)

.

For fixed τ , the mean square value of θ(t; τ ) due to the rate
noise with spectral density SNER is denoted σ 2

τ and can be
computed from

σ 2
τ = 1

2π

∫ ∞

−∞
SNER(ω)|Hτ (ω)|2dω

= 1

2π

∫ ∞

−∞
SNER(ω)

∣
∣
∣
∣

1

jω

(

1 − e− jτω
)
∣
∣
∣
∣

2

dω. (21)

Substituting (18) into (21) yields,

σ 2
τ = 1

4π

(
Krνo

ωc

)2 (

�2 + ω2
c

)

I, (22)

where

I =
∞∫

−∞

(

�2 + ω2
c + ω2

) (

�2 + ω2
e + ω2

) − (2�ω)2

(

(� − ω)2 + ω2
c

) (

(� + ω)2 + ω2
c

)

·
∣
∣
∣

1
jω

(

1 − e− jτω
)
∣
∣
∣

2
dω. (23)

Contour integration is used to evaluate (23) (see the Appen-
dix for details) and produces the following expression for the
mean square value of the angle uncertainty as a function of
the integration interval

σ 2
τ = 1

2

(
Kr

ωc

)2

ν2
o

[(

�2 + ω2
e

)

τ

+ ω2
c − ω2

e

ωc(�2 + ω2
c )

(

(ω2
c − �2)

(

1 − cos(�τ)e−ωcτ
)

+2�ωc sin(�τ)e−ωcτ
)]

. (24)

The DC value of SNER is

SNER(0) = 1

2

(
Kr

ωc

)2

ν2
o

(

�2 + ω2
e

)

so σ 2
τ can be written

σ 2
τ = SNER(0)τ + terms bounded in τ.

Thus, the angle random walk (ARW) associated with the
sensor is determined by SNER(0), however, the terms bounded
in τ contribute interesting trends to στ that will be discussed
in Section V.

B. Allan Variance Representation

The Allan variance [15], denoted σ 2
AV(τ ), can be computed

from the rate noise power spectrum according to

σ 2
AV(τ ) = 1

π

∫ ∞

−∞
SNER(ω)

sin4
( 1

2ωτ
)

( 1
2ωτ

)2 dω.

This expression can be rewritten as

σ 2
AV(τ ) = 1

4π

∫ ∞

−∞
SNER(ω)

1

(τω)2

∣
∣
∣1 − e− jτω

∣
∣
∣

4
dω, (25)

and the similarities with (21) are evident. The 1/τ 2 factor
in (25) coverts the “moving” integration operation into a
moving average. Furthermore, the additional |1 − e− jτω|2
factor in (25) derives from the differencing operation between
the current and τ -delayed signals. The same contour for
evaluating (21) is used to compute (25) and this yields the
closed-form Allan variance expression

σ 2
AV(τ ) = SNER(0) 1

τ + 1
τ 2 β

[

(ω2
c − �2)

(

3
2 − 2e−τω cos(τ�)

+ 1
2 e−2τωc cos(2τ�)

)

+ 2ωc�

(

2e−τωc sin(τ�)

− 1
2 e−2τωc sin(2τ�)

)]

, (26)

where β is the constant

β = 1

2

(
Kr

ωc

)2

ν2
o

ω2
c − ω2

e

ωc(ω2
c + �2)

.
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V. DISCUSSION

The expression for SNER is a complicated function of �, ωe

and ωc but its features can be studied by considering SNER(ω)
when � = 0, and the value of SNER(0) when � �= 0. Although
the sensor’s ARW is determined by SNER(0), there are other
trends in SNER that impact στ which need to be elucidated.
Furthermore, it will be demonstrated that depending on the
relative importance of the noise sources, SNER(0) may be more
or less susceptible to detuning, changes in quality factor and
so forth. Three closed-loop scenarios are studied: Input noise
dominates addresses the situation when the output noise can
be neglected (ωe → ∞ as νo → 0); No dominant noise source
addresses the situation when both input and output noise
sources are important in determining properties of the noise
equivalent rate spectrum; Output noise dominates addresses
the situation when ωe = ωm because νi = 0, that is, the input
noise can be ignored. This section also discusses the response
of SNER to changes in the resonance quality factor and a brief
comparison between the tuned open- and closed-loop NER
spectra is made as well.

A. SNER(ω) When � = 0

First consider SNER under the assumption � = 0, in other
words, the sense mode frequency ωn and excitation loop
operating frequency ω0 are equal,

SNER(ω) = 1

2
K 2

r ν2
o
ω2 + ω2

e

ω2 + ω2
c
. (27)

Input noise dominates. Since (νoωe)
2 = ω2

m(ν2
o + (pνi )

2) →
(ωm pνi )

2, as νo → 0, (27) reduces to

SNER(ω) = 1

2
ν2

i
ω2

c

ω2 + ω2
c
. (28)

The NER spectrum when input noise is dominant has a low-
pass characteristic that rolls off at frequencies outside of the
band [−ωc, ωc]. The pass band value of SNER is approximately

ν2
i /2. An example of S

1
2

NER in this case is shown in Fig. 3.

No dominant noise source. There is no simplification of (27).
The high frequency asymptote of SNER is

lim|ω|→∞ SNER = 1

2
(Krνo)

2 (29)

which does not depend on the input noise and is seen to be
proportional to the square of the force-to-rebalance feedback
gain and output noise. The value of SNER at ω = 0 reduces to

SNER(0) = 1

2

((
νo

p

)2

+ ν2
i

)

, (30)

however, if ωe > ωc then the input noise essentially dictates
SNER because (27) has the shape of a lag filter that closely
approximates (28) when ω ∈ [−ωc, ωc] and SNER(0) ≈ ν2

i /2.
On the other hand, when ωe < ωc, (27) has a lead filter shape
–see Fig. 3. The role of the effective bandwidth ωe is evident
in this figure.

Fig. 3. NER spectrum for the three cases discussed in Sec. V-A. The double-
sided spectra are shown for ω > 0 and both axes have logarithmic scaling.
For these plots νi ≈ 10νo/p, so ωe ≈ 10ωm . Furthermore, ωc ≈ 10ωe .

Output noise dominates. When νi → 0, ωe → ωm , the NER
spectrum is

SNER(ω) = 1

2

(
Kr

ωc

)2

ν2
oω2

c
ω2 + ω2

m

ω2 + ω2
c
.

Since ωc >> ωm by assumption, SNER has a phase-lead shape.
The low frequency value is

SNER(0) = 1

2

(
νo

p

)2

, (31)

and the high frequency asymptote is equal to (29). The
spectrum is shown in Fig. 3 when the input noise is assumed
to be zero.

B. SNER(0) When � �= 0

The DC values of SNER are computed for the three cases
introduced in Section V-A. In general,

SNER(0) = 1

2

(
Kr

ωc

)2

ν2
o

(

�2 + ω2
e

)

.

Despite the fact that Kr and ωc appear in SNER(0), under
the assumption of large loop gain (pKr >> 1), SNER(0) is
independent of Kr and ωc and, hence, perturbations to these
parameters have no impact on ARW.

Input noise dominates. In this case, SNER(0) = 1
2ν2

i and because
this expression is independent of �, detuning does not increase
the low frequency noise and (28) closely approximates the
spectrum even if |�| �= 0. This conclusion differs from the
result in [6] because that reference uses a different feedback
scheme.

No dominant noise source. Both input and output noise sources
are important and SNER(0) reduces to

SNER(0) = 1

2

((
νo

p

)2

+ ν2
i

) (

1 +
(

�

ωe

)2
)

(32)
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which is the value of SNER(0) when � = 0 (refer to (30))
multiplied by the factor 1 + (�/ωe)

2. Note, however, if
|�| < ωe then SNER(0) is not overly degraded. In other words,
detuning up to the effective bandwidth can be tolerated without
changing the spectrum of SNER.

Output noise dominates. When the input noise can be ignored

SNER(0) = 1

2

(
νo

p

)2
(

1 +
(

�

ωm

)2
)

which is the value of SNER(0) when � = 0 (refer to (31))
multiplied by the factor 1 + (�/ωm)2. This case exhibits
the most sensitivity to detuning because if |�| > ωm

(a situation that is inadvertently, though easily, achieved in
high Q sensors) then the ARW increases in proportion to the
degree of detuning. Fig. 3 shows why the present case cannot
tolerate as much detuning as the situation when neither noise
source is dominant: when neither source is dominant ωe > ωm

and ARW does not appreciably change unless |�| > ωe.

C. Effect of Changes in Quality Factor

The sense channel resonance quality factor (Q) and mechan-
ical bandwidth, ωm , are inversely proportional. If all parame-
ters in the resonator are held constant with the exception of
ωm , the impact of quality factor on SNER can be determined for
the previously discussed cases. This enables study of the “what
if” scenario of changing the quality factor for a given sensor
design. Note that the peak amplitude of Hg, p, is proportional
to quality factor when all other parameters remain unchanged.

Input noise dominates. Recall SNER(0) = 1
2ν2

i . The source of
the input noise ni may, or may not, depend on Q. If Sni

does not depend on Q because it is due, for example, to
external vibration that couples to the mode, then changes in
Q have no effect on SNER. On the other hand, if Sni is due to
mechanical thermal noise, which is the case that has received
the most attention in the MEM gyro literature, then Sni has
Q−1 dependency so SNER(0) exhibits Q−1 dependency.

No dominant noise source. Assume ωm < ωe < ωc since this
situation yields different results from the case when input noise
dominates. Also assume � = 0. Under these assumptions SNER

has a phase-lead characteristic with SNER(0) = 1
2 ((νo/p)2+ν2

i ).
The high frequency asymptote is equal to 1

2 (Krνo)
2. Since Sno

models electrical buffer noise, it can be safely assumed that
νo is independent of Q. Thus, the high frequency “knee” in
SNER in Fig. 3 is unaffected by changes in Q because ωc and
the high frequency asymptotic value are independent of the
quality factor. The low frequency properties are affected by
changes in Q, though. If Sni is independent of Q, then, as
Q → ∞: 1) SNER(0) converges to the constant 1

2ν2
i because

the higher Q suppresses the output noise relative to the fixed
input noise, and 2) the effective bandwidth ωe decreases but
converges to the non-zero constant Ky K f νi/(2mν0). If SNER(0)
and ωe are already close to these asymptotic values, further
increase in Q yields little reduction in ARW. On the other
hand, if we assume Sni is due to mechanical thermal noise,
then increasing Q will preferentially reduce the effect of νo

compared to νi , and SNER(0) converges to 1
2ν2

i , which has Q−1

dependency.

Output noise dominates. This is an interesting case because
SNER has the greatest sensitivity to Q. Recall SNER(0) =
1
2 (νo/p)2, where p is the peak gain of the open-loop frequency
response. Because p is proportional to Q, SNER(0) has Q−2

dependency and the value of low frequency corner in the
spectrum at ωm has Q−1 dependency. Although this greater
sensitivity is desirable it does come with a price, namely, to
reap the benefits of high Q, the degree of permissible detuning
must satisfy |�| < ωm , which can be difficult to achieve in
practice. As in case when neither noise source is dominant,
the high frequency corner and asymptotic value of SNER do not
depend on Q.

D. Comparison With Open-Loop Sensor

It will be shown that SNER(0) is the same in both the open-
and closed-loop sensor assuming that the physical mechanism
which implements the feedback does not contribute any noise.
A meaningful comparison can only be made when � = 0
(ω0 = ωn) because the open-loop sensor scale factor exhibits
first order dependence on � whereas the closed-loop scale
factor is essentially independent of �. It’s useful to retain
the notation introduced for the closed-loop analysis so the
open-loop sensor is analyzed by breaking the loop at the point
indicated in Fig. 2. The signal d is still demodulated to recover
the rate estimate and so its spectral properties due to the input
and output noises will govern the NER for the open-loop case.
The spectrum of d in the open-loop case is

Sd,OL(ω) = K 2
r

(

Sno + |Hg(ω)|2Sni

)

.

To follow the closed-loop analysis d should be multiplied
by the amplitude of the demodulating drive signal (which
is assumed to be the same as the closed-loop sensor) and
normalized by the open-loop scale factor γOL. In other words,
the scaled signal is defined d̃ := (Kxaωn/γOL)d so

Sd̃,OL
(ω) =

(
Kx aωn

γOL

)2

K 2
r

(

Sno + |Hg(ω)|2Sni

)

.

The open-loop scale factor differs from the closed-loop scale
factor, however, the following relation can be derived

1

γOL

= 1

1 + pKr

1

γ0
,

where γOL is the open-loop scale factor, and γ0 is the nominal
scale factor of the closed-loop sensor when � = 0 (see (10)).
Substituting this expression into Sd̃ yields

Sd̃,OL
(ω) =

(
Kx aωn

γ0

)2 (
Kr

1 + pKr

)2 (

Sno + |Hg(ω)|2Sni

)

=
(

Kr

1 + pKr

)2 (

ν2
o + |Hg(ω)|2ν2

i

)

,

where νo and νi retain the same definitions from the closed-
loop analysis (see (14)). The open-loop NER spectrum
at ω = 0 is

SNER,OL(0) = 1

2
Sd̃,OL

(ωn) = 1

2

(
Kr

1 + pKr

)2 (

ν2
o + p2ν2

i

)

,
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where we have used the fact that |Hg(ωn)| = p. Since the
open-loop sensor is compared to the closed-loop case under the
large loop gain assumption pKr >> 1, then Kr/(1 + pKr ) ≈
1/p so the spectral density reduces to

SNER,OL(0) = 1

2

1

p2

(

ν2
o + p2ν2

i

)

which is equal to the closed-loop NER spectrum given by (30).
Thus, the ARW associated with closed-loop sensor is equal to
the ARW associated with the open-loop sensor. This result
comes as no surprise because feedback does not change the
signal-to-noise ratio of the pick-off signal ỹ in Fig. 2.

E. Asymptotes for σ 2
τ

Asymptotes for σ 2
τ are developed for the three scenarios

and although it was demonstrated in Sec. V-D that SNER(0),
which defines the sensor’s ARW, is the same for the open- and
closed-loop sensor, the fact that σ 2

τ is a weighted integral of
SNER means that σ 2

τ has additional features that can be attributed
to the presence of output noise. The asymptotes are derived
under the condition � = 0.

Input noise dominates. The variance expression (24) reduces
to

σ 2
τ = 1

2
ν2

i

(

τ − 1

ωc

(

1 − e−ωcτ
)
)

(33)

when νo → 0. The situation τ < 1/ωc has little practical
relevance because the integration time is shorter than the
closed-loop time constant. The relevant situation is τ > 1/ωc

and (33) is approximated by

σ 2
τ = 1

2
ν2

i τ, (τ > 1/ωc).

This is the classical ARW trend in which the variance grows
proportionally with the integration time for integration times
exceeding the closed-loop time constant. It will be shown that
this trend does not hold for all τ > 1/ωc when output noise
must be included in the analysis.

No dominant noise source. It is assumed ωe < ωc because, if
not, the present case is well-approximated by the case when
input noise dominates. The variance

σ 2
τ = 1

2

(
Kr

ωc

)2

ν2
o

(

ω2
eτ + ω2

c − ω2
e

ωc

(

1 − e−ωcτ
)
)

has three distinct trends

σ 2
τ ≈

⎧

⎪⎨

⎪⎩

1
2 K 2

r ν2
oτ, τ < 1/ωc

1
2 K 2

r ν2
o/ωc, 1/ωc < τ < ωc/ω

2
e .

1
2

(

(νo/p)2 + ν2
i

)

τ, τ > ωc/ω
2
e

The relevant integration times are those greater than 1/ωc and
it is observed that two asymptotes define σ 2

τ . In particular, if
τ ∈ [1/ωc, ωc/ω

2
e ], then the variance is independent of τ , in

other words, angle white noise (AWN) dominates this inte-
gration range and σ 2

τ is proportional to ν2
o and to Kr . On the

other hand, if τ > ωc/ω
2
e , then the ARW asymptote defined

by SNER(0) in (30) determines σ 2
τ . The price of increasing the

sensor’s bandwidth becomes evident: if ωc/ω
2
e > 1/ωm , the

Fig. 4. Angle variance versus τ when neither noise source is dominant.
Logarithmic axes are used. ARW and AWN asymptotes of the nominal tuned
closed–loop case are plotted with dashed lines. The tuned closed–loop plots
converge to the tuned open–loop variance as τ → ∞. When |�| > ωe, though,
the ARW asymptote increases. If the closed–loop bandwidth is increased when
� = 0, the AWN asymptote increases in proportion to the square root of
the closed–loop bandwidth, however, the ARW asymptote is unchanged. The
cross-hatch region denotes the integration times for which the closed-loop
sensor produces larger variance than the open loop sensor (the comparison
is made for τ > 1/ωm , which is the time constant of the open-loop sensor).
When output noise dominates, ωe is replaced with ωm . The closed-loop angle
variance when input noise dominates is simply the dashed line denoted “ARW
asymptote.”

closed-loop sensor, while having superior bandwidth compared
to the open-loop sensor, has larger variance for those integra-
tion times relevant to both open- and closed-loop modes of
operation, namely when τ > 1/ωm . This is shown as the cross-
hatched region in Fig. 4. Note, however, that στ does converge
to the open-loop value as τ increases beyond ωc/ω

2
e .

Output noise dominates. The asymptotes in previous case
apply with ωe replaced by ωm ,

σ 2
τ ≈

⎧

⎪⎨

⎪⎩

1
2 K 2

r ν2
oτ, τ < 1/ωc

1
2 K 2

r ν2
o/ωc, 1/ωc < τ < ωc/ω

2
m

1
2 (νo/p)2τ, τ > ωc/ω

2
m

.

The closed-loop sensor exhibits larger variance than the open-
loop sensor when τ ∈ [1/ωm, ωc/ω

2
m ], but, as τ increases

beyond ωc/ω
2
m , σ 2

τ converges to the open-loop ARW.

VI. EXPERIMENTAL RESULTS

This section compares predictions of the SNER and στ models
to experimental data from a Disk Resonator Gyro (DRG).
Details of the DRG can be found in [5] with the control loop
design discussed at length in [7]. The basic sensor has two
forcers and two pick-offs, denoted (d1, d2) and (s1, s2), from
which four scalar-valued frequency response functions can be
measured as shown in Fig. 5. The sensor can be configured
for tuned or detuned operation, also shown in Fig. 5. The
s1/d1 transfer function is used for designing the excitation loop
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Fig. 5. Empirical frequency response of all channels of the open-loop DRG.
The four transfer function magnitudes are represented in these plots. The s1/d1
channel modal frequency determines ω0 while the s2/d2 channel frequency
determines ωn . The tuned state, i.e. � ≈ 0, is represented with the thick line.
Experiments are also performed with the sensor in a detuned state in which
� ≈ 1 Hz –this case is represented by the thin line where it is observed ω0 −
ωn ≈ 1 Hz. The off-diagonal channels represent coupling between the two
degrees of freedom. The coupling is the source of angular rate and quadrature
bias, and instability in the angular rate bias can contribute to SNER, however,
coupling effects are neglected in the present analysis.

so the frequency of the resonance in this channel establishes
ω0. The s2/d2 channel represents Hg in the analysis and
the frequency of the resonance in this channel defines ωn .
Although the formulae in Sec. III and IV require all frequency
parameters to be expressed in units of radians/second for
computation, the frequency parameters in this section are given
in units of hertz. The following sense channel parameters
are noted for the tuned sensor: ω0 = ωn = 13879 Hz,
ωm = 0.104 Hz (Q = 66.7 K), and p = 41.6. The sense loop is
closed with rebalance gain Kr = 2.5, which yields closed-loop
bandwidth ωc ≈ 10 Hz. The low-pass filters used after signal
demodulation have corner frequency ωlp = 62.5 Hz. Note that
the assumptions made for the derivation of (18) are satisfied
with these sensor parameters. The (open-loop) noise spectrum
of the sense pick-off is shown in Fig. 6. After measurement
of the closed-loop scale factor and the demodulating signal
amplitude, the voltage noise spectrum is scaled to angular rate
units and the parameters selected νi = 0.33 deg/hr/

√
Hz, νo =

3.9 deg/hr/
√

Hz in the open-loop noise model ν2
0 + |Hg|2ν2

i .
The effective bandwidth associated with this noise model is
ωe = 0.38 Hz. Note that ωm < ωe < ωc so neither noise
source dominates, i.e. the analysis must include both input
and output noise for accurate prediction of SNER.

Prior to comparing measured NER spectrum to those pre-
dicted by the model, the sensor frequency response when
ωc = 10 Hz and � ≈ 0 and � ≈ 1 Hz are measured –
see Fig. 7. The frequency response is generated by correlating
the sensor output with the measured angular rate from the rate
table controller. The nominal scale factor γ0 was computed for
the case � ≈ 0 so it is expected that DC gain associated with
its frequency response is 0 dB as is evident in the figure.

Fig. 6. Open–loop noise spectrum of d̃. The model fit (black, thin line)
to the measured data (gray, thick line) estimates the input and output noise
intensities as νi = 0.33deg/hr/

√
Hz and νo = 3.9deg/hr/

√
Hz, respectively.

The effective bandwidthh is ωe = 0.38 Hz.

Fig. 7. Closed-loop frequency response magnitude when ωc = 10 Hz and
ωc = 30 Hz. For the 10 Hz case, � ≈ 0 Hz (black) and � ≈ 1 Hz (grey). The
thin black line is the magnitude of 1/(s/(10·2π)+1). For the 30 Hz case, only
measurements when � = 0 are shown, and the thin black line is the magnitude
of the model 1/(s/(30 · 2π) + 1). The transfer functions are identified by
correlating the rate table angular rate with the sensor output using the same
nominal scale factor γ0 for all cases (corresponding to a measurement made
on the 30 Hz bandwidth sensor). Note that when ωc = 10 Hz and � = 0,
the DC gain is equal to the ωc = 30 Hz case. Furthermore, the DC gain
remains unchanged even when � ≈ 1 Hz. These tests demonstrate that γc is
independent of Kr and � which justifies the use of γ0 in all measurements.

This scale factor, however, is also used in the measurement
of the frequency response when � ≈ 1 Hz so that fact that
the frequency response for this case also has DC gain of
0 dB demonstrates the insensitivity of γ to detuning. Further-
more, the transfer function corner frequency is also robust to
detuning.

Estimates of SNER are obtained by acquiring twenty four
hours of contiguous angular rate data at a sample rate of
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156.25 Hz and under the condition � = 0. A separate
experiment was conducted for every estimate of SNER shown
in the subsequent figures. Long term changes in the �e

bias value are due to slowly changing sensor dynamics over
the twenty four hour acquisition period so a 2-pole high-
pass filter with 0.0003 Hz corner frequency detrends the raw
angular rate measurement. The NER spectra are calculated
by applying Welch’s method to the detrended data with a
subrecord length of 215 points (corresponding to averaging the
spectra obtained from subrecords of 210 second duration) [16].
When computing στ , the detrended time domain data are
directly analyzed. In other words, the recorded angular rate
data is split into non-overlapping τ -second subrecords, the
subrecords are integrated, then, the variance of the integrated
values is determined.

It is of interest to see how the model (18) compares to the
NER spectrum computed from the measured angular rate data.
For this exercise the basic sensor parameters {ω0, ωm , ωn, p}
along with the desired closed-loop bandwidth ωc are used to
compute {�, Kr }. The only required closed-loop measurement
is the scale factor, γ0. It is also necessary to measure the open-
loop noise spectrum at the pick-off to estimate {νo, νi }, then,
ωe can be computed. Thus, the parameters {νo, ωe,�, Kr , ωc}
are substituted into (18) to yield predictions of the closed-
loop NER spectra. The model predictions are compared to the
measurements in Fig. 8 when � ≈ 0 and � ≈ 1 Hz (the
double sided spectral densities are graphed only for ω > 0).
Note that ωm < ωe < ωc so neither noise source is dominant
and, hence, the analysis of Sec. V-B can be applied. When

� ≈ 1 Hz, S
1
2

NER(0) is expected to increase by the factor√

(�/ωe)2 + 1 = 2.8 and this is seen to be the case in
Fig. 8. The model predicts SNER quite accurately, however,
the anti-alias filter that rolls off at ωlp is not included in the
analysis.

The effect of the changes in the rebalance gain Kr are shown
in Fig. 9. In this comparison Kr increases by a factor of three
–from 2.5 to 7.3. The analysis shows that the corner frequency

ωc and the asymptotic value of S
1
2

NER are proportional to Kr so
they also experience an increase by a factor of three. In fact,
ωc increases from about 10 Hz to 30 Hz and the high frequency

asymptotic value of S
1
2

NER increases from about 6 deg/hr/
√

Hz to
18 deg/hr/

√
Hz. The low frequency noise floor is insensitive

to the change in Kr . Although � ≈ 0 in this comparison,
� does not effect the high frequency asymptotic value or its
corner frequency (see Fig. 8).

Two experiments are also performed by manipulating ωe.
The sensor was exposed to narrow band random vibration via
a modal shaker such that the disturbance had a flat passband
extending from 13.829 kHz to 13.929 kHz. The case vibration
couples to the sensor modes and can be modeled as an increase
in the value of νi –note that νo remains fixed because the
signal conditioning electronics are unmodified. The new open-
loop spectrum is shown in Fig. 10. The effective bandwidth
has increased from 0.38 Hz to 2.5 Hz. The same detuning
experiments are conducted with � ≈ 0 Hz and � ≈ 1 Hz
but in both cases |�| < ωe so no impact is observed in SNER

as shown in Fig. 11.

Fig. 8. Comparison of SNER for the � ≈ 0 and � ≈ 1 Hz, 10 Hz bandwidth
cases. The model predictions are shown in the solid black and dashed
black traces. The detuning is larger than the effective bandwidth so the low
frequency noise floor increases by the factor

√

(�/ωe)2 + 1 = 2.8 as derived
in (32). The high frequency corner at ωc and the high frequency asymptotic
value of SNER are unaffected by detuning. The anti-alias filter constrains the
bandwidth of SNER to the interval [−ωlp, ωlp ] where ωlp = 62.5 Hz. The SNER

model does not include the anti-alias filter.

Fig. 9. Comparison of SNER when � ≈ 0 but with ωc = 10 Hz and
ωc = 30 Hz (see Fig. 7). The model predictions are shown in the solid black
and dashed black traces. Different bandwidths are achieved by changing the
rebalance gain Kr . It is evident that SNER(0) is independent of Kr , however,
since Kr is increased by about a factor of three, the closed-loop corner
frequency ωc also increases by the same factor (as indicated by (5)) and

so does the high frequency asymptotic value of S
1
2

NER (as implied by (29)).

Lastly, Figs. 12 and 13 display στ calculated from the same
detrended angular rate data that was used to compute the
spectra in Figs. 8 and 9. The predictions of στ using (24) are
also shown. As the modes detune, the increase in the value
of the angle random walk asymptote is evident in Fig. 12.
On the other hand, if � ≈ 0 but the closed–loop bandwidth
is increased, then the AWN increases as shown in Fig. 13.
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Fig. 10. Open–loop noise spectrum when an input disturbance (sensor
case vibration) is applied. The thin black trace is the open-loop noise model
with νo = 3.9 deg/hr/

√
Hz and νi = 2.3 deg/hr/

√
Hz. Note that νi has

increased compared to the spectrum in Fig. 6. The new effective bandwidth is
ωe = 2.5 Hz.

Fig. 11. SNER when � ≈ 0 Hz and � ≈ 1 Hz for the open-loop spectrum
in Fig. 10. The effective bandwidth is larger than |�| in both cases, though,
so no change is observed in the spectra (compare with Fig. 8). The model
with � = 0 is shown as the solid black line, the experiment with � ≈ 0 is
shown as the thick gray line, and the experiment with � ≈ 1 Hz is shown as
the dashed line.

The factor of three increase in closed-loop bandwidth produces
a

√
3 increase in στ ’s AWN. The long-term trend in στ in

Figs. 12 and 13 do not precisely follow the ARW asymptotes
calculated from the model for the � ≈ 0 experiments. This
is caused by drift in the zero-rate bias over the 24 hour test
period. The bias drift is due not to changes in the noise sources
but rather subtle changes in the sensor dynamics. The bias
drift adds low frequency power to SNER that is not completely
removed by the detrending filter. In fact, the empirical SNER

plots in Figs. 8 and 9 associated with the � ≈ 0 cases show

Fig. 12. The angular rate data used to produce the spectra in Fig. 8 is also
used to compute στ , shown here along with the model predictions (the thin
solid and dashed lines). Note that ωc remains fixed at 10 Hz for each case.
When � ≈ 0, the ARW trend at longer integration times does not match
the model prediction because drift in the angular rate bias contributes low
frequency power to SNER. When the sensor is detuned, though, the increase in
low frequency power due to the noise sources dominates the power contributed
by the bias drift, so the model prediction and data are almost indistinguishable
in this case. Note that the AWN asymptote is not effected by detuning,
although the τ interval over which AWN dominates will change.

Fig. 13. The data used to create the spectra in Fig. 9 is analyzed to compute
στ . Note � ≈ 0 Hz for each case, however, the sensor bandwidth is changed.
Increasing the bandwidth produces larger AWN. The model (shown as the
solid and dashed black traces) over-predicts the measured AWN because
the anti-alias filter attenuates SNER above ωlp (this can be corrected by
constraining the integral in (21) to the range [−ωlp, ωlp ]).

slightly higher power at lower frequencies compared to the
asymptote predicted by the model based on the open-loop
noise spectra. In the detuned case, though, the value of SNER(0)
is increased to such an extent that the added power from the
bias drift is masked so in this case the ARW asymptote and
data are coincident.
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Fig. 14. The square root of the Allan variance computed from the time
domain data and its comparison to prediction of the model in (26) for the
� ≈ 0 and � ≈ 1 Hz, 10 Hz bandwidth cases are shown in this figure.
The model predictions are shown in the solid black and dashed black traces.
At longer integration times ramping in the zero rate bias causes the Allan
variance to increase and depart from the model prediction.

The bias drift is also evident in the Allan deviation plot for
the � ≈ 0 and � ≈ 1 Hz, 10 Hz bandwidth cases shown in
Fig. 14. The Allan variance model (26) predicts the data quite
well except at longer integration times where instability in the
zero rate bias (which is not modeled) becomes the dominant
trend.

VII. CONCLUSION

Comprehensive noise analysis of a closed–loop vibratory
rate gyro has been developed with regard to input and output
noise sources. The effective bandwidth parameter was intro-
duced to capture the relative power of the input noise versus
output noise. In all scenarios, the low frequency asymptote of
SNER determines the ARW, thus, it is important to minimize
the value of this asymptote and it was shown that if the
sensor modes are detuned beyond the effective bandwidth an
increase in the low frequency asymptote of SNER will occur.
The analysis also shows that if output noise can be neglected,
detuning has no impact on ARW, however, if output noise
is the dominant source, then the effective bandwidth is close
to the mechanical bandwidth and the ARW figure is very
sensitive to detuning. It was also demonstrated that the closed-
loop sensor retains the same value of SNER(0) as the open-loop
sensor (� = 0 in both cases), so feedback does not change
the ARW figure but despite this fact, analysis of the variance
of the integrated rate shows for the closed-loop sensor, that
output noise creates angle white noise which produces larger
variance of the integrated signal compared to what would be
obtained with the open loop sensor. This result can be used to
precisely quantify both the benefits and potential drawbacks of
operating the sensor in closed-loop. The experimental results
with a Disk Resonator Gyro showed very close agreement with

Fig. 15. Contour for evaluating (23).

the model predictions, however, drift in the zero rate bias adds
power to the low frequency spectrum and causes deviation of
the long-term measured angle variance from the ARW figure
predicted by the model. This underscores a real challenge,
namely, pushing the quality factors to ever higher values does
not necessarily translate into improved performance unless a
means can be found to stabilize the sensor dynamics so that
the noise power created by bias drift does not dominate the
low frequency behavior of SNER.

APPENDIX

The integral I is evaluated using the contour shown in
Fig. 15. The contour orientation is counterclockwise. The
integrand of I is extended to the complex-valued function f
of the complex variable z

f (z) =
(

�2 + ω2
c + z2

) (

�2 + ω2
e + z2

) − (2�z)2

(

(� − z)2 + ω2
c

) (

(� + z)2 + ω2
c

)

· 2
z2

(

1 − e jτ z
)

, z ∈ C.

Note that f is analytic at all points with the exception of its
poles. The poles of f inside the contour are {�+ jωc,−�+
jωc} so

∫ R

ρ
f (z)dz +

∫

CR

f (z)dz +
∫ −ρ

−R
f (z)dz +

∫

Cρ

f (z)dz

= 2π j (Res( f,� + jωc) + Res( f,−� + jωc)) (34)

where Res( f, z0) denotes the residue of f at z0 ∈ C. The
restriction of f to z ∈ R+, i.e. z = ω > 0, is equal to

f (ω) =
(

�2 + ω2
c + ω2

) (

�2 + ω2
e + ω2

) − (2�ω)2

(

(� − ω)2 + ω2
c

) (

(� + ω)2 + ω2
c

)

· 2

ω2 (1 − cos(τω) − j sin(τω)) ,

so the real part of f in this case is equal to the integrand of I .
Furthermore, since f (−ω) is the complex conjugate of f (ω),
then I can be computed as a Cauchy principal value,

I = lim
ρ → 0
R → ∞

∫ R

ρ
f (z)dz +

∫ −ρ

−R
f (z)dz.

Since

lim|z|→∞ | f (z)| = 0, (uniformly)
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then by Jordan’s Lemma

lim
R→∞

∫

CR

f (z)dz = 0

so (34) reduces to

I + lim
ρ→0

∫

Cρ

f (z)dz

= 2π j (Res( f,� + jωc) + Res( f,� − jωc)) .

The evaluation of the integral on Cρ yields

lim
ρ→0

∫

Cρ

f (z)dz = −�2 + ω2
e

�2 + ω2
c

2πτ.

The residues are

Res( f,� + jωc) = ω2
e − ω2

c

j2ωc (� + jωc)
2

(

1 − e−τωc+ jτ�
)

Res( f,−� + jωc) = ω2
e − ω2

c

j2ωc (� − jωc)
2

(

1 − e−τωc− jτ�
)

.

Gathering these results yields

I = 2π
�2 + ω2

e

�2 + ω2
c
τ + 2π

ω2
c − ω2

e

ωc(�2 + ω2
c )

2

·
(

(ω2
c − �2)

(

1 − cos(�τ)e−ωcτ
)+2�ωc sin(�τ)e−ωcτ

)

.

Substituting I into (22) yields the closed-form expression
for σ 2

τ .
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