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Abstract An expression for the maximum accelerating field in the narrow bunch limit (kpσr<<1)
for a bi-Gaussian drive beam is derived from linear plasma wakefield theory [1].  The optimal

plasma density for a given beam (N, σz, σr) is found to be 

€ 

kpσ z = 2  in the narrow beam limit.

We also show that the previously obtained scaling law [2,3] in which the wake amplitude
increases with the inverse square of the bunch length must be modified by a weak logarithmic
function of the beam spot size

€ 

σ r .

INTRODUCTION

This is a brief note whose purpose is to clarify some confusion in the literature
regarding the prediction of linear theory for the wakes produced by narrow particle
beam bunches. By narrow, we mean the beam’s spot size is small compared to the
collisionless skin depth. In linear theory there is not difference in the wake amplitude
between electron and positron bunches (although there is a change in sign in the
wake). We concentrate on bi-Gaussian shaped bunches. In a manuscript under
preparation we give more details on the theory and discuss the validity of the linear
predictions as the bunch charge is increased.

LINEAR WAKEFIELD EXPRESSION FOR BI-GAUSSIAN DRIVE
BUNCHES

Starting from the well-known Green’s function solution [1] for the plasma response
to an arbitrary relativistic charge bunch of the form

€ 

ρb = ρ⊥ (r)∗ ρ|| (ξ) (

€ 

ξ = z − ct ), we
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get the wake field at a position along the axis where

€ 

ξ << −σ z for a Gaussian

longitudinal profile

€ 

ρ|| (ξ) = qnbe
−ξ 2

2σ z
2

:

 

€ 

Ez(0,ξ) = { 2π (q e)(mcω p e)(nb np )(kpσ ze
−
kp
2σ z

2

2 )∗R(0)}∗Cos(kpξ)  (1)

where

€ 

R(0) = kp
2 ′ r d ′ r 

0

∞

∫ ρ⊥ ( ′ r )K0(kp ′ r )                                (2)

and K0 is the zero-order modified Bessel function.

The expression for

€ 

R(0) for a flat top beam of radius

€ 

a  with 

€ 

ρ⊥ (r) =1 for 

€ 

0 < r < a
and 0 for 

€ 

r > a  is:

                    

€ 

R(0) = kp
2 ′ r d ′ r 

0

a
∫ K0(kp ′ r ) = 

€ 

1− kpaK1(kpa)                    (3)

which was given and was plotted numerically in [1].

The corresponding expression for R(0) for Gaussian bunches with 

€ 

ρ⊥ (r) = e
−r 2

2σ r
2
is:

€ 

R(0) = (
kp
2σ r

2

2
)(e

kp
2σ r

2

2 )Γ(0,
kp
2σ r

2

2
)                     (4)

where

€ 

Γ(α,β) = tα−1
β

∞

∫ e−tdt .
In the narrow beam limit (

€ 

kpa <<1 or 

€ 

kpσ r <<1) , eq.(3) and eq.(4) can be

expanded asymptotically as :

€ 

R(0) =
kp
2a2

2
(0.6159 − ln(kpa))                         (5)

and

€ 

R(0) = kp
2σ r

2(0.05797 − ln(kpσ r))                        (6)

In fig. 1, we plot the ratio of (3) and (4) for

€ 

a = 2σ r  such that the peak density 

€ 

nb
(

€ 

nb =
N

(2π )
3
2σ zσ r

2
 for Gaussian and 

€ 

nb =
N

(2π )
1
2σ z(πa

2)
 for flat top transverse profiles)

is the same for both profiles with the same number of particles N.
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FIGURE 1. (a) The  ratio between the 

€ 

R(0)  for flat top and Gaussian profiles.(b) Comparison between
the exact form and asymptotic form for 

€ 

R(0)  for a Gaussian profile.

From figure (1a) we see that the R(0) for the two profiles differ by at most 20%
near 

€ 

kpσ z ≈1.35 and are nearly identical for 

€ 

kpσ z <<1 or 

€ 

kpσ z >>1. In figure (1b), for

a transverse Gaussian profile, we plot both the full expression for R(0) (eq.4) and the
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asymptotic expression for small kpσr (eq.6). This shows that the asymptotic expression
is extremely accurate for kpσr <0.5.

Combining eqs.(1) and (4), we obtain an expression for the wake amplitude for a
bi-Gaussian shaped drive beam:

€ 

Eza = 2π (
mcω p

e
){(q

e
)(nb
np
)(kpσ ze

−
kp
2σ z

2

2 )(
kp
2σ r

2

2
)(e

kp
2σ r

2

2 )Γ(0,
kp
2σ r

2

2
)}       (7)

This can be rewritten in terms of the total particle number bzr nN σσπ 22

3

)2(= :

€ 

Eza = qNkp
2{(e

−
kp
2σ z

2

2 )(e
kp
2σ r

2

2 )Γ(0,
kp
2σ r

2

2
)}            (8)

This explicitly shows the 

€ 

kp
2  dependence of the wake amplitude for a beam with

fixed

€ 

N ,

€ 

kpσ z  and

€ 

kpσ r .

THE OPTIMAL WAKE CONDITION AND THE LINEAR
SCALING LAW

To get the optimal wake field amplitude for a beam with given

€ 

N ,

€ 

σ z and

€ 

σ r, we
rewrite eq.(8) as:

),()}
2

,0())()()({(
22

22

2222

rpzp
zr

rp
k

rp

k

zp
zr

za kk
qNk

ekek
qN

E
rpzp

σσ
σσ

σ
σσ

σσ

σσ

Λ=Γ=
−

 (9)

where ),( rpzp kk σσΛ can also be viewed as a function of kpσz and ra≡ σr / σz and ra is

defined as the beam’s aspect ratio. Next, we maximize this expression for fixed
particle number N,

€ 

σ z, and 

€ 

σ r, i.e., we find the optimal plasma density. Although the
optimal

€ 

kp  depends on both 

€ 

σ z and

€ 

σ r, the maximum value for Λ  depends only on the

aspect ratio ra. So the maximum wake amplitude can be written as:

                     

€ 

EzM =
qN
σ rσ z

Θ(σ r

σ z

)               (10)
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FIGURE 2.  Plots of ),( 11 rpzp kk σσΛ , ),( 22 rpzp kk σσΛ and
21 pp kk

In Fig.2, we plot the function ),( 11 rpzp kk σσΛ , where 1pk  is the optimal

pk ( ),( 11 rpzp kk σσΛ ≡ )(
z

r

σ
σ

Θ ) and the function ),( 22 rpzp kk σσΛ , where zpk σ22 = . It

can clearly be seen that they agree very well as long as

€ 

σ r /σ z < 0.1. We also notice

that for very narrow beams (

€ 

σ r /σ z <<1) the ratio, 21 pp kk  is approaches unity.

To make connection with previous results [2,3] we define a new function

€ 

Π(σ r

σ z

) =Θ(σ r

σ z

) /(σ r

σ z

) (which is plotted in Fig.3). Using this function, we can rewrite

€ 

EzM as:

                                     

€ 

EzM =
qN
σ z
2 Π(

σ r

σ z

)                                (11)

The function 

€ 

Π(σ r

σ z

)  is a relatively slowly changing logarithmic function. To obtain

useful scaling laws this weak logarithmic dependence was neglected leading to the

well known 

€ 

1
σ z
2  scaling law cited in the literature [2,3].

However, although this dependence is weak it is still significant over the range of
parameters being used in present experiments and being considered in future
experiments.
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FIGURE 3. A plot of the 

€ 

Π(σ r

σ z

) =Θ(σ r

σ z

) /(σ r

σ z

)

AN ENGINEERING FORMULA FOR THE WAKE AMPLITUDE

In the limit of 

€ 

σ r /σ z <<1 we can obtain a very accurate asymptotic expansion

for

€ 

Π(σ r

σ z

) . If we use the result in eq. (6) in eq. (7) and then maximize the expression

with respect to kp
2, it is found that this occurs for

€ 

kpσ z 2 =1. This is also seen in

figure 2 where the optimized field and that for 

€ 

kpσ z 2 =1 are identical for small ra.

Using this fact, it is straightforward to obtain the asymptotic expression,

€ 

Π(σ r

σ z

) ≈ 2
e
{−0.577 − 2ln(σ r

σ z

)}

           )}ln(05797.0{
e
4

rpk σ−≈                  (12)

Therefore, in the small ra limit, we find:

€ 

EzM =
qN
σ z
2 Π(

σ r

σ z

) ≈ qN
σ z
2 {
4
e
(0.05797 − ln(kpσ r))}                         (13)

or in normalized units by ignoring 0.05797 for typically small rpk σ :
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€ 

eEzM

mcω p

≡ β ≈1.3q
e
nb
np
kp
2σ r

2 ln( 1
kpσ r

)  (14)

We can also rewrite this in the following form for comparisons with experiments:

€ 

EzM ≈ (236MV /m)(q
e
)( N
4 ×1010

)(600µm
σ z

)2 ln( 10
16cm−3

n
50µm
σ r

)       (15)

Here, we have ignored 0.05797 compared to ln 1/ rpk σ in eq. 13. This is true for

typical rpk σ values in experiments. This engineering formula is identical to eq. 1 of ref.

[2,3] except for the natural logarithmic term. As we have note before, the slow
logarithmic term can vary by factor of four for typical experimental parameters, so
comparisons to experiments need include this term.  Last, we note it is not possible to
simply merge the narrow and large spot size wake expressions via

€ 

eE = np (eV /cm)
nb
np

2π kpσ ze
−
kp
2σ z

2

2

1+
1

kp
2σ r

2

)Sin(kp (z − ct))  as was done in ref [2] Such an

expression does not include the natural logarithmic factor.
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