Vaidish Sumaria

Graduate Researcher

- **(**+1-412-403-1313
- vsumaria@andrew.cmu.edu
- andrew.cmu.edu/~vsumaria/
- in /in/vaidishsumaria/

Skills -

Modeling Platform: Comsol, Aspen Plus, Aspen Plus Dynamics, APC Model builder, GAMS, HTRI, gPROMS

Experimental: Gas Chromatography, Temp. programmed Desorption, BET Surface Analyzer, Nitrogen Sulfur analyzer, Fixed Bed Reactors (pilot plant)

Courses –

Graduate (CMU):

Electrochemical Energy Systems, Advanced Thermodynamics, Math Modeling of ChemE Processes, Chemical and Reactive Systems, Transport Phenomena, Process Systems Modeling, Industrial Chemical Technology

Undergraduate (UPES):

Heat Transfer, Mass Transfer, Fuild Mechanics, Particulate Technology, Chemical Thermodynamics, Reaction Engineering, Process Control, Refining and Petrochemical Technology, Natural Gas Engineering

Education

University of California, Los Angeles, CA PhD student, Chemical Engineering

Carnegie Mellon University, Pittsburgh, PA Master of Science, Chemical Engineering GPA: 4.0/4.0

University of Petroleum and Energy Studies, India Jun. 2012 - May 2016 Bachelor of Technology, Chemical Engineering GPA: 3.57/4 (Silver Medalist)

Research Experience

Understanding the restructuring of model metal catalysts in reactant gases Prof. Philippe Sautet, University of California Los Angeles, Aug. 2017 - Present

- Understanding the general Trends for CO adsorption on metal surfaces as a function of coordination.
- Building DFT data base and training HDNNP for CO on Pt surfaces.
- Colaborating with *Prof. Feng Tao's* group at University of Kansas to develope a Mechanism for the CO induced restructuring for Pt starting from STM data

Understanding the Selectivity between ClER and OER on Rutile Oxides Prof. Venkat Viswanathan, Carnegie Mellon University, Sep. 2017 - Jul. 2018

- Developed a method to quantify uncertainty in the scaling relations as a function of the descriptor.
- Currently working on propagating the variable uncertainty to create a generalized probabilistic Pourbaix diagram.

Self-Formed Catalysts using Electrochemical Lithiation

Prof. Venkat Viswanathan, Carnegie Mellon University, Aug. 2017 - Present

- Known electrode materials are tested for their potential to catalyze various electrochemical reactions.
- Electrochemical intercalation is used to tune the strain and electronic structure of the catalyst.

Quantification of Uncertainty in DFT derived Material Properties

Prof. Venkat Viswanathan, Carnegie Mellon University, Oct. 2016 - Sep. 2017

- Developed a rigorous framework to propagate uncertainty within thermodynamic activity-prediction models.
- Defined a new quantity Prediction Efficiency as a measure to quantitatively find the correct descriptor for a given reaction schemes.

Publications

- D. Krishnamurthy*, V. Sumaria*, and V. Viswanathan. Maximal predictability approach for identifying the right descriptors for electrocatalytic reactions J. Phys. Chem. Lett., 2018, 9 (3), pp 588–595 (*Equal Contribution).
- V. Sumaria, D. Krishnamurthy, and V. Viswanathan. Quantifying Confidence in DFT Predicted Surface Pourbaix Diagrams and Associated Reaction Pathways for Chlorine Evolution ACS Catal., 2018, 8 (10), pp 9034–9042.
- D. Krishnamurthy, V. Sumaria, and V. Viswanathan. Quantifying robustness of DFT predicted pathways and activity determining elementary steps for electrochemical reactions J. Chem. Phys. 150, 041717 (2019).

Aug. 2018 - Present

Aug. 2016 - Dec. 2017