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ABSTRACT

This paper1 presents a novel system which utilizes acoustic, phono-
logical, morphosyntactic, and prosodic information for binary auto-
matic dialect detection of African American English. We train this
system utilizing adult speech data and then evaluate on both chil-
dren’s and adults’ speech with unmatched training and testing sce-
narios. The proposed system combines novel and state-of-the-art
architectures, including a multi-source transformer language model
pre-trained on Twitter text data and fine-tuned on ASR transcripts as
well as an LSTM acoustic model trained on self-supervised learn-
ing representations, in order to learn a comprehensive view of di-
alect. We show robust, explainable performance across recording
conditions for different features for adult speech, but fusing multiple
features is important for good results on children’s speech.

Index Terms— Dialect Identification, African American En-
glish, Children’s Speech, Language Modeling

1. INTRODUCTION

Dialect (and accent) identification (DID) techniques have recently
been subjects of great interest [1]. Successful prior work in this area
includes [2] which identifies optimal time-frequency representations
for a CNN-backend for English accent classification and [3] which
uses a variational autoencoder to generate unsupervised learning rep-
resentations for efficient Chinese and Arabic DID.

Despite these advances, DID still presents several challenges.
First, as [4] notes, it is difficult to recognize accent and dialect across
different speaker styles. Another challenge in DID is the multi-
facetedness of the definition of dialect. A dialect is a set of pronun-
ciations, diction, grammar, and prosodic cues that are native to the
speech of a region or group [5]. Most commonly used state-of-the-
art DID systems only examine a subset of these linguistic aspects, re-
sulting in an incomplete representation of dialect. This motivates the
need for DID systems that combine several sources of information to
form more comprehensive classification decisions. Comprehensive
language representations becomes even more important for low-data
scenarios. While large end-to-end models may be able to implicitly
learn characteristics of dialect in data-rich cases, they cannot avoid
overfitting while training to recognize aspects of a low-resource lan-
guage. Therefore, smaller models that incorporate linguistic knowl-
edge to scaffold the training into targeted processes are preferable
for low-resource DID. Of particular interest would be further stud-
ies on the role of prosody in DID. Works such as [6] show that hu-
mans use prosody when classifying dialects, and several studies (eg.
[7, 8]) have found prosody useful for automatic DID, but best prac-
tices for incorporating it are not well-defined. This paper explores

1This work is supported in part by the NSF.

DID for two low-resource scenarios: 1) African American English
(AAE) and 2) Children’s speech. AAE is the set of regional dialects
spoken by African Americans throughout the United States. It in-
cludes differences in phonology, morphology, syntax, and prosody
from the Mainstream American English (MAE) dialect [9, 5]. AAE
is an understudied dialect in speech processing, and there is only
a small number of speakers whose labeled speech is available pub-
licly. Automatic dialect and accent identification for children is also
an area in need of further study. As children’s pitches are higher than
those of adults, and their pronunciations and prosody are subject to
greater variability, children’s speech can present challenges to sys-
tems trained only on adult’s speech [10]. DID for children would
be particularly useful for automatic bias mitigation in education, as
child speakers of non-standard dialects are often perceived as less
intelligent or possessing language impairments [11]. A few works
like [12] show promise in children’s accent identification by com-
bining prosodic information with MFCCs in feature processing for
a k-nearest neighbor system, but further studies are needed to show
how more powerful models can take advantage of this information.

Domain adaptation has been a widely-used method of combating
the difficulties seen in low-resource cases. Specifically, systems that
seek to utilize large amounts of out-of-domain, high-resource data
in order to learn general trends that are applicable to low-resource
tasks have been successful. For example, [13] uses domain-attentive
fusion to learn domain generality for unseen samples. Another ex-
ample of this is shown in self-supervised learning representations,
like those from Hubert [14], which have been applied to a variety
of small-data tasks after being trained on large amounts of out-of-
domain data [15]. In this paper, we use out-of-domain data to train
a combination of neural networks, each targeted towards a different
linguistic aspect of dialect, to perform low-resource DID. The nov-
elty of our approach comprises of 1) A method which fuses different
models, including multi-modal language models which use Twitter
text data, in order to create a robust and interpretable DID system,
2) Performing a detailed study on which machine-readable features
relate most strongly to the presence of dialect, and 3) Generalization
of results across both adult’s and children’s speech.

2. METHODS

In this paper, we create a system for binary classification of utter-
ances as containing AAE or not containing AAE speech. An utter-
ance is defined as belonging to the AAE class if it contains at least
one phonological or morphosyntactic marker of AAE as transcribed
by expert transcribers. The following section describes the datasets
and models used in the experiments.IC
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2.1. Datasets

The focus of this work is on dialect detection given spontaneous
speech, particularly adult and children’s AAE speech. There is no
dataset available for this task, so we build on multiple datasets, as
described below. The AAE data used in this work reflects southern
variants, due to the availability of such data for children’s speech.

2.1.1. Speech Datasets

A particular challenge in this work is learning dialect representations
that are robust to recording conditions, speaker style, and speaker
traits (eg. age, gender, et.). We select these datasets for their cover-
age of a wide range of these scenarios. All speech data are resampled
to 16kHz for experimentation. The utterances used are each approx-
imately 5-15sec in length.

CORAAL. The Corpus of Regional African American Lan-
guage (CORAAL), [16] is a speech dataset containing recordings
of oral interviews with speakers of AAE. These recordings contain
spontaneous speech in a variety of different recording conditions. In
this work, we utilized the recordings of speakers from Princeville,
NC, Valdosta, GA, and Washington DC, as speakers from those
cities had the highest average dialect density or frequency of use of
dialectal characteristics [17, 8]. From these speakers, we selected
utterances that contained at least five spoken words, as denoted by
the ground truth transcripts, and were free of non-speech sounds.
This resulted in a speaker-independent training and test set totalling
approximately 20 hours and 2 hours of speech respectively.

Librispeech. In order to show how availabe large out-of-domain
datasets can be used for training, we use the popular Librispeech
corpus [18] to train models to learn the negative class (samples that
contain only MAE and no AAE). We randomly selected utterances
from train-clean-100 dataset to create a training set and utterances
from the dev-clean set to create a validation set. These speaker-
independent data splits were created to contain the same number of
utterances as those from CORAAL.

SITW. The Speakers in the Wild Challenge (SITW) dataset [19]
contains recordings of conversational speech in various recording
environments, primarily involving MAE speakers. We randomly
selected a subset of the same number of utterances as that of the
CORAAL test set. This subset is used only for testing and serves as
a reference for spontaneous, non-dialect speech in background noise.

GSU Kids: The Georgia State University Kids’ Speech Dataset
2 (GSU Kids) [20] is a speech dataset of approximately 200 children
aged 8-13 from the Atlanta, GA area. The children were recorded
in a noisy classroom environment as they performed educational as-
sessments in story-telling and picture-description tasks. The chil-
dren’s speech was annotated by the authors for aspects of AAE di-
alect, and the dataset was subsequently divided into AAE-dialect
and non-AAE dialect speaking children. In this work, a subset of
approximately 800 utterances totalling about 3 hours was randomly
selected for use such that approximately half of the utterances con-
tained AAE speech. In order to determine which children in the
dataset spoke AAE, the dataset was annotated for dialect tokens that
are widely accepted to be common markers of AAE as in [17].

The speaking styles and train/test usage of different data sets are
summarized in Table 1. We use “non-AAE” instead of MAE for
the Kid’s speech, since it is mostly a southern dialect. The adult

2The GSU data was collected with support by the Eunice Kennedy Shriver
National Institute of Child Health & Human Development of the NIH under
Grant P01HD070837.

Source Dialect Style # speakers
Train/Test

avg # test
utt./spkr

CORAAL AAE spon/noisy 61 11 72
Libri MAE read/clean 251 40 20
SITW MAE spon/noisy – 119 6
GSU Kids AAE spon/noisy – 117 3
GSU Kids non-AAE spon/noisy – 76 4

Table 1. Summary of characteristics and usage of speech datasets.
We show the number of speakers used in training and testing to
highlight the low-resource problem caused by the lack of available
training data from AAE speakers. The datasets with no entry in the
“Train” column were used only for testing. We also include the av-
erage number of utterances per speaker in each test set. There are
approximatley 8000 utterances in each training set, 800 utterances in
the CORAAL, Librispeech, and SITW test sets, and approximately
400 utterances in the GSU AAE and GSU non-AAE test sets.

corpora may also contain dialects that are not MAE, but the data are
dominated by the MAE dialect.

2.1.2. Text Data

In order to train language models for dialect detection, we utilize two
large corpora of Twitter text data. All Twitter text is preprocessed to
match wav2vec ASR transcript format. The data is lowercased, and
we remove hashtags, mentions, and punctuation (excluding periods
and apostrophes). While primarily adult twitter data may be less
applicable for training models for children’s speech, the volume and
availability of the data makes it an interesting use case.

TwitterAAE [21] is a dataset of over one million tweets that
were automatically found to have a high probability of being au-
thored by a speaker of AAE. Through training a probabilistic model
that took into account the geographic location of the tweeter, the N-
gram probability of the words used in the tweets, the grammatical
structure of the tweet as identified by an automatic part-of-speech
tagger, and the presence of AAE syntax, these tweets were found to
display many common aspects of AAE.

The Sentiment 140 dataset [22] is a database of 1.6 million
tweets on various subjects labeled with the corresponding user senti-
ment of the message. In this work, we use this dataset as a reference
set of non-AAE text of the same format as text of Twitter AAE.

2.2. Models

We train several models, each using one of three different archi-
tectures (CNN, LSTM, or BERT-style masked language model), to
learn different aspects of dialect from different linguistically-focused
features of the data. The goal of the model training is binary classifi-
cation of the input data as containing or not-containing AAE speech.

2.2.1. CNN

We use a modified version of the Convolutional Neural Network
from [2] to map acoustic and prosodic features to dialect. The CNN
layers had kernel sizes of 4x4 with: kernel strides of 1, 16 output
channels in the first layer, and 32 output channels in the second
layer. The convolutional layers were followed by max pooling and
then two fully connected layers that mapped to the final output deci-
sion. While [2] found that the spectrogram was the best feature for
DID, [12] saw more success using MFCCs. We evaluate the perfor-
mance of both of these features for child and adult DID. We extract
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the spectrogram with a window size of 10ms and window shift of
5ms. For the MFCCs, we extract the 20dim-feature along with the
first and second derivatives. We additionally use prosodic features
as described in [23, 8]. These include the F0 contour extracted with
Praat [24], the energy contour of the signal, the energy contour of the
signal lowpass filtered at 1kHz, and the energy contour of the signal
highpass filtered at 1kHz. We perform DID both using the prosody
features alone and in concatenation with the best from the MFCC
and spectrogram features in the CNN.

2.2.2. LSTM

We employ the popular self-supervised learning representations ex-
tracted by Hubert [14] in this task. The Hubert hidden layer out-
puts are input into a one-layer 128-dim Long Short Term Memory
(LSTM) layer and then two fully connected layers with sizes of 64
and 1 to make the binary dialect classification decision.

2.2.3. Language Models

One prominent difference between AAE and MAE is the pronun-
ciation of certain words in given contexts. For example, South-
ern AAE may include reductions of word final consonant clusters
(e.g. pronouncing “band” as “ban”) and a raising of the /IH/ vowel
(e.g. pronouncing “kill” as ’keel’) [5]. Character-level ASR systems
may capture these pronunciation differences. We use a Wav2Vec2.0
model [25] trained on the Switchboard Telephone Corpus [26] to
generate ASR transcripts for the speech data. We evaluate the per-
formance of the ASR system and find it consistent with previously
reported results on AAE and non-AAE speech for the given cases
[17]. Using the ASR transcripts as input, we apply a character-level
BERT-style transformer language model (LM) [27], pre-trained us-
ing a masked language model (MLM) objective and finetuned to dis-
tinguish between the AAE and MAE text in a binary classification
task. The use of the LM allows us to take advantage of large lan-
guage models that benefit from large amounts of text data and utilize
the abundant text data on Twitter. We explore two LM configura-
tions, both building on a pretrained small BERT model,3 with the
CLS token embedding input to a single fully connected layer used to
decide whether or not the speech contains AAE dialect. One model
simply trains this classifier with a cross-entropy (CE) objective using
the two sources of Twitter data, also updating weights of the BERT
model. For the second model, we further pretrain the model with
the MLM objective on the Twitter data, followed by additional pre-
training on the Librispeech and CORAAL ASR transcripts. We then
train the last classification layer with the LM weights frozen using
CE with the CORAAL-Libri transcripts, and finally further fine-tune
the full model for a few iterations with CE on the ASR transcripts.

Grammatical features are another defining aspect of AAE. For
example, AAE can include a dropping of auxiliary verbs (e.g. “he
gone” instead of “he is gone”) or a deletion of the infinitive marker
“to” (e.g. “it’s your turn go” instead of “it’s your turn to go”). In
order to capture these differences, we applied the automatic part-of-
speech (POS) tagger from the Python SpaCy library to the Twitter
text data and the ASR transcripts. For example, the POS tagger may
take the transcript, “who all goin” as input and produce the output
sequence of the same length, “PRON DET VERB.” Anecdotally, we
find that even when the ASR system spells words differently than in
the standard English dictionary, these words are often tagged as the
correct part of speech (e.g. tagging “goin” as a verb here). We then

3https://tfhub.dev/google/collections/bert/1

learn a token-level transformer language model using MLM pretrain-
ing on the Twitter data to predict dialect as MAE or AAE from the
sequence of POS tags, similarly to the character LM.

2.3. Experiments

Using the features listed above, we train the CNN, LSTM, and
Bert MLM to perform AAE DID. All systems are trained with the
CORAAL training set as the positive class and the Librispeech
training set as the negative class. The language models are addi-
tionally pre-trained on the Twitter text data. Although the positive
samples come entirely from one dataset and the negative samples
come entirely from another, we chose training datasets that are each
compilations of various recordings from across different speakers,
years, locations, and recording devices, meaning that there will
not likely be spurious channel effects or recording conditions that
can help distinguish recordings of the same database. We evaluate
the performance training on CORAAL (noisy, spontaneous) and
Librispeech (clean, read) in two cases: Resolving AAE-speech in
CORAAL from the non-AAE speech in SITW (noisy, spontaneous)
and Resolving the AAE-speech from the non-AAE speech in the
GSU Kids’ speech database (noisy, spontaneous). This will show
the robustness of the systems to different speaking styles and record-
ing conditions. We additionally show the performance of score-level
fusion of the best models. The model output scores are added and
then the new detection threshold is taken to be the median score of
the test set. This method of fusion allows us to fuse the scores in the
case when we do not have enough data to create a separate validation
set to train a fusion model. We choose the median confidence score
as the threshold because we know in advance that the test sets are
balanced in the number of utterances in each class. In a real sce-
nario, the demographics of a group of users would likely be known,
and the threshold could be chosen to match those demographics (eg.
if the system were used in an area where approximately two-thirds
of the population spoke AAE then the threshold could be set at the
33rd percentile value of the output scores if it could not be found
through validation). In order to show the performance of the fused
models without respect to threshold, we also calculate their Area
under the ROC Curve (AUC) values.

3. RESULTS AND DISCUSSION

Table 2 shows the performance of the individual models trained on a
particular feature or a concatenation of 2 features. Each row shows
the input features to the model, the model backend, the target lin-
guistic correlate of the model, and the accuracy and F1 score of that
model for the validation set and two test sets. Table 3 shows the
Accuracy, F1 score, and AUC for the models. In Table 2, the mod-
els are trained with a detection threshold of 0.5. The fused models in
Table 3 use the median value of the testset as the detection threshold.
Therefore, we recalculate the performance of the individual models
with the median threshold for inclusion in Table 3 in order to show
the effects of thresholding and fusion separately.

We observe that several of the individual models, including
those trained on the spectrogram, MFCC, and prosody features
perform significantly worse for the children’s speech test set than
for the adult speech test set. This may be an indication that these
models overfit to the acoustic features or speaker style of the adult
speech. The largest drop is for prosody features; it may be that
prosody is less reliable for children because of the high F0 and
disfluencies and/or because of greater variability, The model trained
on the concatenated spectrogram and prosody features performs bet-
ter than the models trained on either feature individually in nearly
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Feature Backend Linguistic
Correlate

Validation Set
(CORAAL AAE vs.
Librispeech MAE)

CORAAL AAE vs.
SITW MAE

GSU AAE vs.
GSU non-AAE

Acc. F1 Acc. F1 Acc. F1
1. Spectrogram CNN Acoustic 91.1 92.2 72.9 76.5 55.3 54.2

2. MFCC CNN Acoustic 73.8 83.5 60.5 69.8 55.7 58.3
3. Prosody feat CNN Prosody 90.8 91.2 83.3 80.1 52.4 52.9

4. concat(Spec.,Pros) CNN Acoust, Pros. 91.8 92.9 88.9 88.9 58.2 55.6
5. Hubert feat LSTM Acoustic 78.1 87.7 71.1 82.9 64.8 74.3

6. Char-level text
pre-train Twitter MLM Phonology 82.6 79.9 66.9 56.8 51.5 58.9

7. Char-level text
finetune CORAAL-Libri MLM Phonology 91.0 89.3 88.2 81.4 62.7 71.2

8. POS-token
pre-train Twitter MLM Grammar 69.2 60.7 67.5 60.1 46.8 61.4

9. POS-token
finetune CORAAL-Libri MLM Grammar 84.8 77.4 87.1 77.5 55.2 68.4

Table 2. The results of binary classification for each model using 0.5 as the detection threshold. For each model, we present the targeted lin-
guistic correlate of dialect (Acoustic Phonetics (Acoustic), Phonology, Morphology/Syntax (Grammar), or Prosody (Pros)) and the Accuracy
(Acc.) and F1 score (as calculated by Python SKlearn). Twitter refers to both TwitterAAE and Sentiment140 text data.

Model CORAAL AAE
vs. SITW MAE

GSU AAE vs.
GSU non-AAE

Acc. F1 AUC Acc. F1 AUC
4. 90.0 89.6 90.2 55.4 55.4 55.6
5. 76.9 84.4 75.4 65.6 76.2 57.3
7. 88.6 85.4 77.3 61.8 70.2 62.3

4 + 5 88.6 89.8 78.1 67.3 72.5 65.5
4 + 7 86.1 86.3 77.3 61 68.2 62.6
5 + 7 89.2 83.4 79.4 68.6 74.4 69.2

4 + 5 + 7 89.5 86.8 81.1 70.7 77.6 70.4

Table 3. The results of binary classification for the individual and
fused models when the threshold is taken as the median output score.
We also report the AUC values as threshold-invariant metrics.

all cases, showing that these features may provide complementary
dialect information. This model (4) does better than any other in-
dividual models for the CORAAL vs. SITW test set, suggesting
that the combination of spectrogram and prosody made the model
more invariant to the change in speaker style between the training
and test case. However, this model still does not generalize well
to the children’s test set. Although the model trained on Hubert
self-supervised learning representations performs worse for the val-
idation set than the other acoustic features, it appears to generalize
much better to the children’s speech. This may be because the wide
range of speaker variability seen by Hubert during pre-training has
allowed it to learn more robust representations of higher-pitched
voices and disfluent speech as seen in children. Both language
models see a significant improvement after being fine-tuned on data
from the ASR transcripts. The character-level MLM trained directly
on the transcripts seems to learn information about AAE pronunci-
ations from the Twitter and ASR transcript data that meaningfully
translate to other datasets. The grammar-based MLM trained on
POS tags does more poorly. This may be due to tagging errors or
indicate that dialect-specific grammatical patterns are not consistent
enough across age and geographic region to be useful for classifi-
cation. Table 3 shows that fused models improve performance over

individual models for the children’s data, but give no significant
benefit for the adult test set. The model trained on Hubert features
seems most important to obtaining good results on the kids’ speech,
as the fused model without it does less well for the GSU test set.
The fusion of the models trained on concatenated spectrogram and
prosody features, the Hubert features, and the language modeling
representations gives the best results for children, with statistically
significantly higher accuracy and F1 scores than any other model.

The table also shows that use of the median threshold with the
individual models improves performance for the adult test set com-
pared to the 0.5 threshold, especially for the Hubert features. This
may suggest that the detection threshold should be shifted with a
shift in domain, and further studies are needed to create thresholding
strategies that do not require large amounts of in-domain develop-
ment data for low-resource cases. For the children’s speech case,
only the model (5) sees an improvement from the change in thresh-
old. Comparing the individual models in Table 3 to the fused model,
we see that the model (4 + 5 + 7) still shows significantly better
performance for the children’s speech and is not significantly worse
than any model for the adult speech. Note that this model also has
the highest AUC for the children’s case and good AUC for the adult’s
case. This indicates that fusion may be a promising method of cap-
turing dialectal differences in children’s speech.

4. CONCLUSIONS AND FUTURE WORK

This study introduces a framework for DID of AAE dialect by draw-
ing linguistic information from several features and training strate-
gies which deliberately target multiple aspects of dialect. This is a
particularly difficult task, as many of the distinguishing features of
AAE are underrepresented in speech datasets for adults, let alone
children. We show that compensating for this by both incorporating
Twitter text data into a Bert MLM and by fusing different features,
including self-supervised learning representations and prosodic fea-
tures, yields a promising method for advancing low-resource DID,
especially for children’s speech. Future work includes analyzing
specific aspects of children’s speech, especially prosodic speech pat-
terns, which cause confusions in DID.
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