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Abstract
This work proposes a novel framework for automatically scor-
ing children’s oral narrative language abilities. We use audio
recordings from 3rd-8th graders of the Atlanta, Georgia area as
they take a portion of the Test of Narrative Language. We de-
sign a system which extracts linguistic features and fine-tuned
BERT-based self-supervised learning representation from state-
of-the-art ASR transcripts. We predict manual test scores from
the extracted features. This framework significantly outper-
forms a deterministic method based on the assessment’s scoring
rubric. Last, we evaluate the system performance across stu-
dent’s reading level, dialect, and diagnosed learning/language
disabilities to establish fairness across diverse demographics of
students. Using this system, we achieve approximately 98%
classification accuracy of student scores. We are also able to
identify key areas of improvement for this type of system across
demographic areas and reading ability.
Index Terms: Children’s Speech, Spoken Language Assess-
ments, Automatic Speech Recognition, Bias Mitigation

1. Introduction
Spoken language assessments (SLA) are a pivotal tool in mea-
suring the development of children’s oral language and narrative
skills. These assessments are time-consuming and often require
access to a highly-trained language specialist. Great strides
have been made to automate oral language tests in order to serve
a greater number of students. For example, [1] explores multi-
task learning as an approach to overcoming the problem of lim-
ited data in automatic oral English proficiency SLAs for Man-
darin speakers. In addition, [2] compares the performance of
Wav2Vec2.0 [3] and Kaldi TDNN-based [4] grapheme embed-
dings as features for evaluating children’s phonological work-
ing memory for nonwords. Similarly, the authors of [5] use
hidden states from Wav2Vec2.0 [3] to predict mispronuncia-
tions and abnormalities in children’s speech. Such methods that
take advantage of large pre-trained automatic speech recogni-
tion (ASR) systems seem particularly promising given the re-
cent advancements in training strategies for architectures like
HuBERT [6], WavLM [7], and Whisper [8]. However, chal-
lenges remain in automatic SLA, especially for children. Chil-
dren’s developing language skills and growing speech articu-
lators cause their speech to be highly variable [9], which in
turn creates challenges in recognition and assessment [10, 11].
This paper deals with automatically assessing children’s SLAs
for the Test of Narrative Language (TNL) [12]. This assess-
ment tests both children’s speech pronunciation and language
abilities such as the ability to correctly, coherently, and com-
pletely recall a story with correct grammar (including tense,
word order, and subject verb agreement). This test is popu-

lar among clinicians because it does not call for full transcrip-
tions of the children’s speech, only scoring of pre-defined test
items. Machine scoring must go beyond pronunciation-only
models for SLA and incorporate aspects of natural language un-
derstanding (NLU). Studies in essay scoring have used NLU to
score written essays for narrative language proficiency [13, 14].
Notably, [15] combines hand-crafted linguistic features which
capture advanced semantics with soft label predictions from
the language model, RoBERTa [16], in a hybrid model which
achieves state-of-the-art-performance readability score classifi-
cation. However, further work is needed to adapt such meth-
ods to spoken language systems. [17] shows good performance
in assessing children’s language abilities by using ASR tran-
scripts of spoken sentences for downstream inference of oral
proficiency. A needed next step is to apply more sophisticated
NLU on ASR transcripts to measure narrative abilities both
within and across spoken sentences. This problem is addition-
ally complicated by the effects of bias towards speakers. The
authors of [18] show that child speakers of minority dialects are
more likely to be under-rated in language proficiency or mis-
diagnosed as having a language impairment. The authors of
[19] further point out that ASR systems also typically produce
higher word error rates for speakers of low-resource dialects.
Therefore, when performing downstream NLU tasks on ASR
transcripts, special attention must be given to ensure that rater
and system bias are not compounded in the pipeline. In this
work, we present a novel system for fair children’s SLAs. The
system leverages ASR transcripts from large pretrained ASR
systems to score children’s ability to pronounce words and cor-
rectly recall elements of a story with correct grammar. We com-
pare a string similarity-based approach with a transfer learning-
based neural network approach which utilizes a fusion of self-
supervised learning representations from large language mod-
els and hand-crafted features extracted from ASR transcripts.
Finally, we show system performance across children’s read-
ing ability, language-impairment, and dialect to ensure inclusive
and explainable performance. The novelties are 1) selection of
NLP methods for automatic assessment scoring that are robust
to dialect and children’s speech differences 2) offering insights
on how cross-domain training can improve performance in the
low-resource task, and 3) a providing a detailed analysis of the
system across demographics.

2. Methods
2.1. Data

This paper uses audio recordings of 184 3rd-8th grade students
from the Atlanta, Georgia, area as they perform the “Test of
Narrative Language (TNL) - Task 1, Story Retelling” assess-
ment (data collected in [20]) where students are read a story by



the test administerer. The students are then asked to retell the
story and graded on their ability to use the set of pre-determined
test keywords from the original story-telling. These keywords
contain story elements (eg. character names, locations, times,
important objects, and action verbs) that must be retold in the
same verb tense and order to receive credit in the test scoring.
For example, if a test item contained the sentence, “Tim eats
his lunch while Matt plays football” where the bolded words
are the scored keywords, the child will receive points for two of
the four keywords if they retell it as “Tim played football while
Matt ate lunch,” as the word order or tense of the other two
keywords are incorrect. Each child’s assessment was admin-
istered and audio recorded by a trained member of the project
staff according to the TNL standardization manual protocols.
The recordings were then independently scored by a speech-
language pathologist and a second trained speech-language staff
member. If disagreements occurred in scoring, the two scorers
reviewed the audio discussed differences to come to a consen-
sus. Each child’s score was an integer value between 0 and
the total number of test keywords. Recordings were taken at
the child’s school. Audio was recorded in stereo at a sampling
rate of 48kHz. All recordings were resampled to mono audio
with a sampling rate of 16kHz for experimentation. Each of the
children gave a response with an average length of about 5min,
resulting in approximately 16 total hours of speech. Although
not necessary to the TNL protocol or the training procedure be-
low, the project team additionally transcribed ground truth tran-
scriptions for each audio recording. The dataset additionally
contains demographic metadata on the students in the following
categories: 1) the presence of reading/language impairment, 2)
the student’s reading ability (good or poor) as rated by a team of
experienced teachers and learning specialists as a selection cri-
terion for the study, and 3) the speaker’s dialect (either African
American English (AAE) or Southern American English) as la-
beled by the authors according to the procedure in [19].

2.2. Experiments

Figure 1: Overview of a) the string-search rubric-based ap-
proach and b) the neural linguistic feature-based approach.

We first map the test scores to discrete labels in order to
formulate the assessment scoring problem as a multi-class clas-
sification task. This is intended to reduce over-fitting to neg-
ligibly small differences between scores. We sort the scores
into five equally spaced histogram bins and then assign a class
to each sample based on its bin, resulting in a five-class clas-
sification task. We predict the class automatically from ASR-
generated transcripts. We consider ASR transcripts from Whis-
per, Wav2Vec2.0, and HuBERT. A 4-gram KenLM language
model [21] trained on the LibriSpeech Corpus [22] is applied
to the the output transcripts of each ASR system, and we report
scoring accuracy both with and without the effects of the exter-

nal language model. We also fine-tune HuBERT on the MyST
Database [23] to explore possible improvements from training
on additional children’s speech data.

String-Search Rubric Matching-based scoring (SSRM)
The TNL provides a comprehensive scoring rubric which as-
signs points to each keyword given. As a preliminary approach
(shown in Figure 1a), we apply fuzzy string matching with a
similarity ratio of 85% to the ASR transcripts to identify close
matches to the specified keywords. This method then awards
points to a student’s predicted score if a word whose Leven-
shtein edit distance with a test keyword is less than or equal to
15% of the word length appears in the ASR transcript. We then
present the accuracy and root mean square error (RMSE) of this
method for each ASR systems used.

Neural Linguistic Feature-based Scoring (NLF)
A weakness of the SSRM scoring is that it only consid-

ers whether or not a close match to a keyword appears in the
transcripts. It does not consider, for example, whether words
were used in reference to the right characters or appeared in the
correct order. These tasks require a neural network-based ap-
proach to capture finer scoring details. For this, we split the
samples from the TNL into a 45-15-40, train-val-test split. We
arrived at this split by starting with a 70-10-20 train-val-test split
and reducing the amount of data in the training set until perfor-
mance significantly worsened. This was done to best simulate
the low-resource data scenario found in many children’s speech
responses. With this data, we employ methods used in read-
ability assessment from [15]. We first apply transfer learning
to large language models to generate soft label features from
the transcripts for downstream scoring. Here, we experiment
with BERT [24], RoBERTa, BART [25], and XLNET [26] us-
ing Huggingface. A 5-dim fully-connected layer is appended
to the output of the large language model, and then, we fine-
tuned this extended model on a combination the WeeBit Cor-
pus [27] and the training set of the TNL data for more task-
specific text-scoring. A parameter grid search over the valida-
tion set using the AdamW Optimizer found a linear learning
schedule (beginning with a learning rate of 2e-5 and a weighted
decay of 0.01 after 10% of the total training steps were used
in warmup) and a batch size of 8 as the best system hyperpa-
rameters. The other model hyperparameters were not changed
from their original implementations. The WeeBit Corpus con-
tains short news article-style texts used for children’s reading
comprehension tasks. These texts are each labeled with an inte-
ger difficulty rating between 1 and 5 with difficulty 1 meant for
children ages 7-8 and difficulty 5 meant for children ages 14-
16. By having the network simultaneously learn to both predict
difficulty levels of children’s texts and scores for narrative lan-
guage proficiency on spoken transcripts, we create a multitask
learning framework in which the machine must learn to com-
bine both knowledge of age-appropriate reading texts (WeeBit)
and knowledge of oral language abilities (TNL). As education
literature shows that children’s reading proficiency and compre-
hension abilities are directly correlated with their oral language
proficiency [28], we use this strategy to make the machine use
the same weights to jointly predict both tasks. We report the
accuracy of this system in predicting the TNL scores of the test
set. Next, we extract the subset of the 255 hand-crafted linguis-
tic features found optimal for the WeeBit corpus in [15] and try
additional features from that study in the “Discourse”, “Seman-
tic”, and “Traditional” categories which capture several mea-
sures used to score essay quality (eg. ease of identifying main
topics, density of predicted entities, lexical difficulty of words
used) as proposed by [15]. Finally, we concatenate the hand-



crafted features with the soft-labels given by the large language
model for input to a backend classifier trained to perform score
prediction (as shown in Figure 1b). We experiment with logistic
regression, support vector machines, Random Forest, and XG-
Boost [29] and report the accuracy of each system.

Figure 2: Semantic Similarity between each student’s ASR and
ground truth transcript. ASR transcripts generated with Whis-
per, Hubert, and Hubert fine-tuned on MyST.

Evaluation of Fairness: As no training is necessary for
the SSRM scoring, we report the accuracy over the entire set of
speakers. For the NLF scoring, we report metrics as averaged
over 5 train-test splits. To ensure that the model performs fairly
for diverse students, we also report test accuracy for the three
demographic categories listed in Section 2.1.

3. Results and Discussion
Table 1 shows the results of the SSRM method for the differ-
ent ASR transcripts in comparison to the performance on the
ground truth transcripts. We report ASR WERs and the 5-class
classification accuracy and RMSE. In addition to lowest over-
all WER, Whisper also had 93.6% precision and 93.7% recall
in correctly detecting and transcribing the test keywords with
a detection threshold of 85% string matching. Table 2 shows
the performance of the NLF method while only using the lan-
guage model with a final classification layer (no linguistic fea-
tures) after being fine-tuned on the WeeBit corpus and training
set of the TNL transcripts. To better understand the effects of
different steps in this training pipeline, we perform an ablation
study in which we remove stages from the training. Fine-tuning
the best performing language model on only the TNL with no
WeeBit text data gives a maximum classification accuracy of
approximately 60%. Likewise, fine-tuning this language model
on only the WeeBit text without using the TNL transcripts gives
a maximum classification accuracy of about 58%. Next, Table 3
shows the performance of backend classifiers using a concate-
nation of the soft-labels from the best system in Table 2 and
hand-crafted linguistic features. Table 2 shows that BERT per-
forms equally well with either the Whisper ASR transcripts or
the Hubert-finetuned on MyST transcripts. We proceed with
the Whisper transcripts because of their higher semantic simi-
larity with the groundtruth transcripts (depicted in Figure 2). Fi-
nally, we divide the student samples into the three demographic
groups listed in Section 2.1 and show the performance of the
best system for each group in Table 4.

A comparison of the string-matching (SSRM) approach and
neural (NLF) approach shows that the machine learning method
far outperforms the rubric-based baseline. The proposed sys-
tem (BERT soft labels + hand-crafted linguistic features + XG-
Boost) achieves a classification accuracy of 98.5% using the
Whisper ASR transcripts. In comparison, the rubric-based ap-
proach achieves only about 87% classification accuracy and
sees marginal improvement even with the ground truth tran-

Table 1: ASR Word Error Rate (WER) , Classification Accuracy
(C. Acc), and classification RMSE for the fuzzy string matching
approach for each system

Transcripts WER C. Acc RMSE
Ground Truth - 88.0% 0.120

Wav2Vec2 37.0% 61.4% 0.402
HuBert 46.7% 62.0% 0.413

HuBert Finetuned 42.5% 64.1% 0.407
HuBert XL 43.9% 73.3% 0.282
HuBert XL

w/ 4-gram LM 38.9% 76.0% 0.282

Whisper Large 26.8% 86.4% 0.136
Whisper Large
w/ 4-gram LM 26.3% 87.0% 0.130

Table 3: System performance using a backend classifier to
predict assessment scores from an input concatenation of
hand-crafted linguistic features and soft labels from the best-
performing large language model (BERT) extracted from the
best ASR transcripts (Whisper). Backend classifiers tested are:
Support Vector Machines (SVM), Logistic Regression (LogReg),
Random Forest (RandFor), and XGBoost.

BERT Soft Labels + Linguistic Features
Transcripts Classifier C. Acc F1 Score RMSE

Ground
Truth

SVM 96.9% 0.96 0.034
LogReg 97.0% 0.96 0.032
RandFor 98.5% 0.97 0.029
XGBoost 99.2% 0.99 0.025

Whisper

SVM 96.5% 0.95 0.038
LogReg 96.0% 0.96 0.039
RandFor 97.6% 0.97 0.032
XGBoost 98.5% 0.98 0.030

scripts. Since the rubric-based method only considers whether
or not test keywords appeared in the story and not whether
they’re used coherently, the performance difference between the
two approaches suggests that the proposed system is able to cap-
ture grammar and logic rules used in scoring the assessments
that cannot be assessed with a simple fuzzy string search. The
ablation study shows a significant degradation in performance
of the proposed approach when either the test set or the added
WeeBit set is removed from the fine-tuning process. This fur-
ther suggests that the language model only performs well given
a sufficient amount of in-domain data but can make use of the
correlation between reading proficiency measures (with WeeBit
readability scores) and oral proficiency measures (with the TNL
training set) in order to learn relationships in children’s lan-
guage well. Given that we only use 45% of the 184 samples
in training, this approach appears to successfully deal with the
low-resource data problem in children’s language assessments.
The demographic splits in Table 4 imply that our method per-
forms fairly across language ability (or presence of disability),
reading ability, and dialect. Across the Reading/Language Im-
pairment demographics, the NLF method matches or outper-
forms the rubric-based approach in all cases. We note, however,
that the rubric-based approach performs more fairly across these
categories, with scores from the ASR transcript varying by less
than 3% absolute value from the control students (no impair-
ment) to the students with both a reading disorder and language
impairment. The NLF method achieves nearly perfect accu-



Table 2: The classification metrics (C. Accuracy, F1-score, and RMSE) of each of the fine-tuned language models considered when
predicting scores. Numbers reported are the average of 5 trials of random hold out.

BERT ROBERTA BART XLNET

Transcript C. Acc F1 RMSE C. Acc F1 RMSE C. Acc F1 RMSE C. Acc F1 RMSE

Ground Truth 96% 0.95 0.04 91% 0.90 0.15 80% 0.78 0.40 84% 0.83 0.16

Whisper 96% 0.95 0.04 90% 0.89 0.16 78% 0.77 0.43 82% 0.82 0.18

HuBert Large 95% 0.94 0.04 86% 0.85 0.27 75% 0.60 0.50 80% 0.79 0.24

HuBert Base 89% 0.88 0.11 83% 0.83 0.16 71% 0.69 0.29 80% 0.77 0.35

HuBert Base Ft 96% 0.95 0.04 93% 0.93 0.09 82% 0.82 0.18 82% 0.81 0.19

Wav2Vec2 85% 0.83 0.15 87% 0.84 0.25 70% 0.70 0.40 85% 0.83 0.30

Table 4: Results for both the SSRM and NLF approaches across different student demographics. We present a breakdown of best
performing ASR system (Whisper) word error rate, the classification C. Accuracy and RMSE of the system on the ground truth (GT)
transcripts, and those metrics on the Whisper ASR transcripts for the following three demographic splits: 1) Type of Reading or
Language Impairment from i) control - no impairment, ii) RD Only- student has reading disorder like dyslexia that does not occur with
or as a secondary effect of a primary learning or language impairment or other condition, iii) RD + LI - A reading disorder that occurs
with a primary Language impairment 2) Reading status from i) Poor - the student is evaluated to read at a level below their appropriate
grade level or ii) Good - the student reads at or above their appropriate grade level, and 3) Dialect from i) African American English
(AAE) or ii) Non-AAE - a mix of characteristics of General American English and Southern American English native to the Atlanta,
Georgia Area. Note that the number of students in the Reading/Language Impairment and Reading Status demographic categories do
not sum to the full 184. For this analysis, we excluded children with other disorders like ADHD that may complicate the test taking and
children who were not able to be assessed for reading status into either the Poor or Good category.

Demographic String-Search Rubric (SSRM) Approach Neural Linguistic Feature (NLF) Approach
Reading/Language

Impairment WER # of
students

GT
RMSE

GT
C. Acc

Whisper
RMSE

Whisper
C. Acc

GT
RMSE

GT
C. Acc

Whisper
RMSE

Whisper
C. Acc

Control 21.1% 32 0.125 87.5% 0.125 87.5% 0.020 99.9% 0.025 99.9%
RD only 26.8% 60 0.116 88.3% 0.133 86.6% 0.061 87.5% 0.064 87.5%
RD+LI 34.5% 27 0.111 88.8% 0.148 85.0% 0.110 87.8% 0.130 85.0%

Reading Status WER # of
students

GT
RMSE

GT
C. Acc

Whisper
RMSE

Whisper
C. Acc

GT
RMSE

GT
C. Acc

Whisper
RMSE

Whisper
C. Acc

Poor 27.0% 142 0.119 88.0% 0.140 85.9% 0.022 95.0% 0.033 89.5%
Good 21.1% 32 0.125 87.5% 0.125 87.5% 0.086 97.5% 0.094 96.9%

Dialect WER # of
students

GT
RMSE

GT
C. Acc

Whisper
RMSE

Whisper
C. Acc

GT
RMSE

GT
C. Acc

Whisper
RMSE

Whisper
C. Acc

AAE 26.8% 116 0.119 87.9% 0.155 84.4% 0.062 94.0% 0.061 94.1%
Non-AAE 25.4% 68 0.108 88.2% 0.102 89.7% 0.013 99.2% 0.013 99.2%

racy for the control case. However, this system performs worse
for students with impairments who may make non-standard lan-
guage errors not present in the WeeBit training set. The com-
plex nature and differing severities of these language disorders
creates high variability in the narrative language abilities of the
students in these groups. This suggests the need for additional
data or data augmentation strategies to model disordered chil-
dren’s language in order to improve performance more fairly
across these demographics. We observe a similar trend in the
poor vs good reading status demographics. However, the NLF
approach performs better than the rubric-based approach across
both the “good” and “poor” reading students. The almost 6%
drop in performance of this system from the ground truth tran-
scripts to the Whisper transcripts for the Poor reading status
group may mean that further ASR improvements are needed for
the speech differences that these children display. We observe
relatively unbiased performance across dialect for the proposed
system. While the work in [19] demonstrates that many com-
mercially available ASR systems give worse performance for
US East-coast AAE speakers than California General American
English, little has been done to compare ASR performance for

AAE vs other American dialects like Georgia’s Southern Amer-
ican English. The comparably high WERs for these two Geor-
gia dialects shown in Table 4 demonstrate that further work is
needed in understanding and improving ASR for multiple types
of children’s regional dialectal speech.

4. Conclusions
This work presents a novel system for automatically assess-
ing children’s oral narrative language abilities from ASR tran-
scripts. The neural network-based approach, which combines
learning representations from BERT and hand-crafted measures
of language proficiency, achieves high accuracy both across all
students and when evaluated specifically on students in a mi-
nority demographic (reading ability, language impairment, or
dialect spoken). Future steps include expanding this method to
other types of SLAs and improving the investigated ASR sys-
tems for better recognition of diverse children’s speech. 1
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