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ABSTRACT

This paper proposes a novel linear prediction coding-based data aug-
mentation method for children’s low and zero resource dialect ASR.
The data augmentation procedure consists of perturbing the formant
peaks of the LPC spectrum during LPC analysis and reconstruction.
The method is evaluated on two novel children’s speech datasets
with one containing California English from the Southern California
Area and the other containing a mix of Southern American English
and African American English from the Atlanta, Georgia area. We
test the proposed method in training both an HMM-DNN system
and an end-to-end system to show model-robustness and demon-
strate that the algorithm improves ASR performance, especially
for zero resource dialect children’s task, as compared to common
data augmentation methods such as VTLP, Speed Perturbation, and
SpecAugment.

Index Terms— Children’s Speech, low-resource ASR, Dialect-
Robust ASR, African American English, Data Augmentation

1. INTRODUCTION

Current state-of-the-art automatic speech recognition (ASR) systems
are unreliable for low-resource dialects [1]. Recent approaches have
made strides in domain adversarial learning [2], cross-dialect trans-
fer learning [3], and text-to-speech-based data augmentation [4] for
dialect and accent-robust ASR. While these approaches are promis-
ing, it is also advantageous to create less computationally expensive
data augmentation methods that can still make the training samples
representative of real-use scenarios. Data augmentation methods like
vocal tract length perturbation (VTLP) [5], speed perturbation [6],
and SpecAugment [7] seek to create artificial training data contain-
ing deviations from the original samples to make the model less sen-
sitive to expected variations. However, these current state-of-the-art
data augmentation methods do not specifically target formant shifts
and pronunciation differences that are known to occur in some di-
alects. In order to make ASR systems more robust to dialectal dif-
ferences, new data augmentation methods are needed.

In this paper, we attempt to improve children’s ASR systems for
a low and zero resource dialect. Children’s ASR technology has a
large number of uses in early education ranging from literacy prac-
tice to pronunciation training [8]. However, despite their benefits,
ASR systems for children have developed much less quickly and
give worse performance than ASR systems for adults due to a num-
ber of challenges: First, children possess less fine motor control over
their speech articulators, leading to higher intra-speaker variability
[9, 10]. Second, as children grow, their vocal tract sizes change at
different rates, leading to higher inter-speaker variability [11, 12].
Third, procuring large amounts of labeled children’s speech data is
often difficult. Hence, there is typically not enough children’s data
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to perform robust data-driven ASR experiments. Even the available
children’s speech corpora, such as the OGI kids’ corpus [13], only
contain kids’ speech of a single dialect, making it difficult to uti-
lize them in training a children’s ASR system for less standard di-
alects like Southern American English or African American English
(AAE). As end-to-end ASR systems with no explicit pronunciation
models become widespread, it becomes important to develop more
model-invariant data augmentation techniques that can incorporate
linguistic knowledge into the model training. Here, we propose a
novel data augmentation strategy for improving the performance of
both hybrid and end-to-end systems for the understudied dialects of
Southern American English and AAE in children given little to no
in-domain data.

Data augmentation methods have been largely successful in im-
proving children’s ASR performance [14, 15]. This paper proposes
a new linear prediction coding [16] (LPC)-based data augmentation
strategy, LPC Augment, which perturbs the frequency spectrum peak
locations of the speech signal. Inspired by the LPC-based speaker
normalization framework described in [17], we create a new aug-
mentation method to simulate formant shifts due to dialectal dif-
ferences in children’s speech. A key difference between the pro-
posed method and past methods is its ability to shift formants in-
dependently of each other by applying a different random pertur-
bation to each pole of the LPC synthesis filter. While other data
augmentation techniques like VTLP also seek to shift formant fre-
quencies, they can currently only scale formants frequencies by pre-
determined amounts. This is insufficient in modeling several of the
dialect-dependent formant shifts that appear in language. For exam-
ple, in Southern AAE, the vowel \EY\ has a lower first formant and
higher second formant than in Standard American English [18]. We
evaluate the effectiveness of the proposed method, in comparison
with other data augmentation techniques, in improving the perfor-
mance of both a hidden Markov Model deep neural network (HMM-
DNN)-based system and an end-to-end system for cross-dialect chil-
dren’s speech recognition.

2. DATASETS AND METHODS

2.1. Novel Datasets

This paper introduces two novel children’s speech datasets ! that
can be used for low-resource children’s ASR tasks. The first is the
UCLA JIBO Kids’ Dataset. This dataset contains recordings of ap-
proximately 130 children between the ages of 4 and 7 years old, the
critical age range for early acquisition of literacy. The children were
recorded while they performed educational exercises in reading and
pronunciation (eg. picture-naming tasks). Each child was recorded

Uhttp://www.seas.ucla.edu/spapl/projects/Jibo.html
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in 3 sessions each lasting about 15 minutes. The children conversed
with the social robot, Jibo 2, following a protocol created by experts
in early childhood education [19]. A facilitator was also present at
each session and intervened verbally if the child had difficulty inter-
acting with the social robot. Each child sat approximately two feet
away from the robot with a microphone placed equidistantly between
them. The children then were administered a portion of the Goldman
Fristoe Test of Articulation-3 (GFTA3) [20], a common oral assess-
ment used by speech-language pathologists, as well as exercises in
counting and spelling. All children recruited to the study lived in
Southern California and were proficient in English. Many of these
children spoke second languages at home. The audio was recorded
by a Logitech C920 Webcam microphone with a sampling rate of
48kHz.

The second dataset is the GSU Kids’ Dataset. This dataset con-
tains recordings of approximately 160 children between the ages of 8
and 10 years old. The children were recorded while performing edu-
cational exercises in reading, language, and pronunciation with a fa-
cilitator. The children then were administered a portion of the GFTA,
as well as other assessments used by speech-language pathologists,
and exercises in counting and spelling. Each child was recorded in 5
sessions each lasting about 2 to 10 minutes. All children recruited to
the study lived in the Atlanta Georgia Area and were native English
speakers. The audio was recorded by a computer microphone with a
sampling rate of 44.1kHz.

In both datasets, the recordings took place in offices at the stu-
dents’ schools during the school day and include background noise
as one would find in a real use case. In this paper, we use only the
single word utterances in both datasets from the GFTA assessment
in order to focus on the performance of the acoustic model alone (no
language model used). Approximately 5 hours of audio data from
each dataset were used, and all speech samples were downsampled
to 16kHz for the ASR experiments.

2.2. The Proposed Data Augmentation Method

In this section, we propose a novel data augmentation technique.
We use the notation from the linear prediction equation s[n] —
S p_, ars[n — k] = e[n] where s[n] is the windowed frame of the
signal and e[n] is the residual, the prediction order, P, is estimated
as P = 2F 4. (in kHz) +2 where Fi,qz is one half the sampling
frequency.

The algorithm is then given as follows assuming an all pole
model. For each frame:

1: Compute the LPC coefficients, a1, az,...ap of the windowed
signal.

2: Compute the residual e[n] as the result of passing s[n] through
the filter A(z) =1 — Y0 axz™F

3: Solve for the complex conjugate roots, ', of the prediction filter
polynomial A(z)

4: Compute the magnitude and phase of each root r

5: Multiply the phase of each complex conjugate pair of roots by
a warping factor wyVk = 1,2,...P where the warping factor
values are chosen from a random uniform distribution € [z, y]
once for each utterance and held constant across all frames of
the utterance.

6: Recombine the magnitude with phase of each pole, creating the
warped polynomial roots 7, = |ry| * ¢/ (wi*£7i) The warping
does not affect the magnitude in order to ensure filter stability.

2«Jibo Robot - He can’t wait to meet you,” Boston, MA, 2017. [Online].
Available: https://www.jibo.com

7: Determine the new prediction polynomial, A(z) as the polyno-
mial whose roots are the warped prediction filter roots, 7'
8: Create the perturbed output frame by passing the residual e[n]
through the filter with transfer function 1/A(z2)
An example of the spectrum of signal perturbed with LPC Aug-
ment is shown in Figure 1. A block diagram of the algorithm is
shown in Figure 2.
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Fig. 1. An example of the LPC spectra of a child in the UCLA JIBO
kid’s Database pronouncing the phoneme \AA\, and the result of
perturbing it with LPC Augment. In the perturbed signal, the first
two formant peaks have been shifted to the left, and the third has
been shifted to the right.

3. EXPERIMENTAL SETUP

In this section, we introduce the experimental setup including the
data and models. For the data, both the Californa English speech
data from the UCLA JIBO kids’ dataset and Georgia English (we
henceforth refer to the combination of Southern American English
and African American English represented in the dataset as “Geor-
gia English”) from the GSU kids’ dataset are split into training, val-
idation, and test sets with a ratio of 7:1:2 with no overlap between
speakers. As a result, approximately 3.5 hours of data are used for
training. We verify the proposed method across both a hybrid HMM-
DNN model and an end-to-end attention-based model to demonstrate
that LPC Augment is not model-dependent.

The hybrid system is built based on Kaldi [21] and Pykaldi2
[22], where Pykaldi2 is used for acoustic model training. Specifi-
cally, a four-layer bidirectional long short term memory (BLSTM)
model with 512 nodes in each direction is used. The input is 80
dimensional log filter-bank energy extracted with a frame length of
25ms and a frame shift of 10ms. We also use a frame skipping strat-
egy [23] by concatenating two adjacent frames and then skipping
the frame by a ratio of 2 to accelerate the model training. The acous-
tic model then outputs an approximately 3488 dimensional vector
representing the senone probabilities for each frame, which are then
decoded using a pre-constructed WEST graph in Kaldi. Prior to the
acoustic model training for kids’ data, HMM-GMM and BLSTM
models are trained using the Librispeech clean 100 hours data [24],
as the model for the forced alignment acquisition and the start point
for kids’ acoustic model training, respectively.

The end-to-end model is the sequence-to-sequence (S2S) Speech
Transformer as proposed in [25]. The model input is the spectro-
gram calculated with a frame size of 25ms and a frame shift of 10ms.
The input is then passed to the network which consists of a series
of three convolutional layers each with a receptive field of size 11,
and an encoder and decoder block both composed of six stacked
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Fig. 2. Diagram of the LPC Augment Algorithm

multi-head attention units and fully connected layers with residual
connections. The output then contains 31 classes: 26 lowercase let-
ters, apostrophe, period, space, noise marker, and end-of-sequence
tokens.

We use the proposed data augmentation scheme to train the
model and evaluate the performance across training and testing con-
ditions. Data augmentation was performed using MATLAB’s LPC
coefficient algorithm. Each utterance is windowed using a 20ms
long Hamming window before being passed into the augmentation
algorithm. The length of the Hamming window was determined
empirically in pilot experiments. The perturbed audio sample is
then input into the neural network. We first optimize the range of the
warping factors wy, using the validation set. The training set size was
increased by 3x with the proposed method. Preliminary experiments
showed that augmenting the training set size to 5x yielded no addi-
tional increase in performance. We then compare the performance
of the optimized proposed method with that of other common data
augmentation methods in recognizing children’s speech of both the
in-domain dialect and an out-of-domain dialect.

We first train the models on speech from one of the English di-
alects and test on the other dialect for the zero resource scenario. We
then train a model jointly on both children’s datasets for the low-
resource scenario.

4. RESULTS AND DISCUSSION

4.1. Optimizing the Warping Factor

Warping Factor | CA val | GA val
w € [0.8,1.0 16.41 63.44
w € [1.0,1.2 15.97 69.16
w € [0.8,1.2 14.63 51.63
w € [0.9,1.1 14.86 55.93
w € [0.7,1.3 13.94 58.85

Table 1. Results of the recognition experiment (in %WER) on the
validation set with the proposed method for different warping factors
using the transformer model. CA Val denotes the performance of the
system trained with data augmentation on the speech data containing
dialects found in Georgia and validated on speech containing dialects
found in California. GA Val similarly denotes the performance of the
system trained with data augmentation on the speech data collected
in California and validated on the speech data collected in Georgia.
The lowest WER for each case is shown in boldface.

In order to optimize the range of warping factors, wy, used in
the proposed method, we first train the transformer model on the
California English training set and evaluate it on both the Califor-
nia English and Georgia English validation set (CA val and GA val
respectively). We use the training set containing California English
because it is considered a widely-spoken American dialect. Adapt-
ing the California English training set to the Georgia English vali-
dation set then represents adapting from a more standard dialect to
the less standard dialect as in low-resource scenarios. Table 1 shows
the performance in percent word error rate (% WER) of the proposed
algorithm for warping factors within the indicated range.

4.2. Zero Resource Scenario

Here, we are primarily concerned with achieving the best result on
the out-of-domain data (GA Test), and so we continue with the warp-
ing factor chosen in the range [0.8,1.2]. Zero resource scenarios
occur when the model is trained on only one dialect and tested on
another. We proceed to compare the performance of the proposed
method (abbreviated LPC Aug) in zero resource dialect children’s
ASR with three of the most commonly used data augmentation algo-
rithms: VTLP, Speed Perturbation (Speed Pert.), and Spec Augment
(SpecAug). We also combine the more successful data augmenta-
tion methods to determine their cumulative effects. The results of
both the transformer and hybrid model are shown in Table 2. The
proposed method, LPC Augment, achieves a statistically significant
(p < 0.05) reduction in WER over the baseline (“No Aug”) for mis-
matched dialect cases. The lowest WER when training on one dialect
and testing on the other is achieved when LPC Augment is used in
conjunction with SpecAugment. In testing and training on the same
dialect, the lowest WER is achieved by using SpecAugment alone in
three out of four cases.

4.3. Low Resource Scenario

We train the models on data from both the CA dataset and the GA
dataset in order to create an ASR system that performs well over
multiple dialects and ages. This represents the low-resource case, as
the training sets from both dialects are small. We show the results in
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Train CA Train GA
9%WER Transformer HMM-DNN Transformer HMM-DNN
Test Set CAtest | GAtest | CAtest | GAtest | CAtest | GAtest | CAtest | GA test
No Aug 18.34 70.00 16.39 76.29 56.56 24.01 92.26 37.74
VTLP [5] 20.07 71.46 15.85 77.83 65.41 25.10 91.26 37.29
Speed Pert. [6] 26.39 69.58 14.57 76.74 63.12 27.82 90.44 38.82
SpecAug [7] 17.85 62.84 13.93 76.47 54.84 22.64 88.71 34.84
LPC Aug 19.49 62.70 14.30 76.74 51.76 24.79 81.33 38.73
Speed Pert. 2132 | 6863 | 1430 | 7692 | 6385 | 2295 | 90.16 | 37.56
+ SpecAug
Speed Pert.
+LPC Aug 23.86 71.88 13.75 77.29 55.68 23.54 83.15 36.83
SpecAug
+LPC Aug 18.61 59.80 13.30 75.02 51.13 22.90 75.41 3548

Table 2. Comparison of common speech data augmentation methods with the proposed method. Each model (Transformer and HMM-DNN)
is trained on either the California English training set (Train CA) or the Georgia English training set (Train GA) and then evaluated on both
the California English test set (CA test) and the Georgia English test set (GA Test). Columns representing zero-resource scenarios (where the
model is trained on only one dialect and tested on the other) are highlighted. The lowest word error rate for each case is shown in boldface.

%WER in Table 3. Note that the high baseline WERs observed in
Tables 2 and 3 have been observed in previous low-resource accented
children’s ASR tasks in other languages as well [26].

Transformer HMM-DNN
J%WER CAtest | GAtest | CAtest | GA test
No Aug 26.12 21.18 16.94 37.83
VTLP 21.47 15.84 17.49 36.83
Speed Pert. 19.68 14.57 15.76 37.92
SpecAug 19.23 13.80 15.03 35.20
LPC Aug 19.76 14.39 14.66 38.46
Speed Pert. | g0y | 1376 | 1439 | 3674
+ SpecAug
Speed Pert.
+LPC Aug 19.01 13.52 14.30 37.47
SpecAug
+LPC Aug 18.91 13.34 13.84 35.29

Table 3. Results of the models trained on both Train CA and Train
GA and tested on CA Test and GA Test with the proposed and other
data augmentation methods. The lowest WER for each case is shown
in boldface.

4.4. Discussion

We observe that LPC Augment creates a significant reduction in
WER for zero resource dialect children’s ASR as compared to the
other frequency-based data augmentation method, VTLP. This is
likely due to the algorithm changing formant locations indepen-
dently of each other rather than according to a predefined warp-
ing function. It appears that LPC Augment is complementary to
SpecAugment, as they can typically be used together to give better
performance than either alone or compared to other data augmenta-
tion methods. In the zero-resource scenario in Table 2, the HMM-
DNN ASR system results in a much higher reduction in WER for
the CA test set than for the GA test set. This may be a result of pre-
training the model on Librispeech 100-clean which contains speech

of a dialect more similar to California English. Further work is nec-
essary to determine how the pre-training dataset biases the model
towards better performance for a given dialect. We also notice in
Table 3 (low-resource case) that the transformer model typically
benefits more (% improvement over the baseline) from data aug-
mentation than the HMM-DNN system. The transformer’s implicit
language modeling may allow it to better learn relevant groupings of
characters and hence may have a bigger advantage for the children’s
small vocabulary task. In the low-resource task, we observe that
LPC Augment used simultaneously with SpecAugment and Speed
Perturbation appears to give improved performance across dialects.
We conclude that LPC Augment shows promise in creating robust
low and zero-resource dialect ASR systems.

5. CONCLUSIONS

The proposed LPC-based data augmentation scheme provides sig-
nificant reduction in WER for children’s out-of-domain dialect ASR.
The method can also be used in combination with SpecAugment to
further improve ASR performance for both HMM-DNN and Trans-
former models. We showed comparable or better performance than
the state-of-the-art data augmentation methods for the zero resource
case and were able to create a reliable system in the low-resource
case. All improvements were statistically significant. Future work
includes evaluating the algorithm across children of different ages
and further optimizing the choice of warping factors for different age
groups and dialects. Future work also include evaluating the pro-
posed method for adults’ multi-dialect and low-resource ASR sys-
tems.
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