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A speaker’s voice constantly varies in everyday situations, such as when talking to a

friend, reading aloud, talking to pets, or narrating a happy incident. These changes

in speaking style affect human and machine abilities to distinguish speakers based

on their voice. This dissertation studies the effects of speaking style variability on

speaker discrimination performance by humans and machines.

We compare human speaker discrimination performance for read speech versus ca-

sual conversations. Listeners perform better when stimuli are style-matched, particu-

larly in read speech – read speech trials. They perform the worst in style-mismatched

conditions. Moderate style variability affects the “same speaker” task more than the

“different speaker” task. The speakers who are “easy” or “hard” to “tell together”

are not the same as those who are “easy” or “hard” to “tell apart.” Analysis of

acoustic variability suggests that listeners find it easier to “tell speakers together”

when they rely on speaker-specific idiosyncrasies and that they “tell speakers apart”
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based on their relative positions within a shared acoustic space.

The effects of style variability on automatic speaker verification (ASV) systems

are systematically analyzed using the UCLA Speaker Variability database, which

comprises multiple speaking styles per speaker. The performance is better when

enrollment and test utterances are of the same style, but it substantially degrades

when styles are mismatched. We hypothesize that between-frame entropy can cap-

ture style-related spectral and temporal variations. We propose an entropy-based

variable frame rate (VFR) technique to address style variability in two different ap-

proaches: data augmentation and self-attentive conditioning. Both approaches im-

prove performance in style-mismatch scenarios and are comparable in performance.

Furthermore, humans and machines seem to employ different approaches to speaker

discrimination. In an attempt to improve ASV performance in the presence of style

variability, insights learnt from the human speaker perception experiments are used

to design a training loss function, referred to as “CllrCE loss”. CllrCE loss focuses

on both speaker-specific idiosyncrasies and relative acoustic distances between the

speakers to train the ASV system. This loss function improves ASV performance

in case of style variability, especially in the case of moderate style variations from

conversational speech.
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CHAPTER 1

Introduction

1.1 Motivation

The manner in which a speaker says an utterance can change unintentionally from

one scenario to another, for example, due to social context (e.g., talking to a friend

versus public speaking) or emotional or physiological state; or it can change inten-

tionally, for example, to express irony or in an attempt to hide one’s identity [KS11].

These variations introduce within-speaker variability that could affect speaker dis-

crimination abilities of both humans and machines.

Within-speaker variability can be further categorized into extrinsic variability

and intrinsic variability. Extrinsic variability is associated with factors not directly

related to the speaker’s behavior (e.g., recording conditions, channel types, and envi-

ronmental noise). On the other hand, intrinsic variability is related to the speaker’s

conscious and/or unconscious behavior that can influence speech signal production.

It could be variations due to vocal effort, speaking styles, speaking rate, loudness,

emotional state, or physical status. In this dissertation, we focus on the effects

of speaking style variability on speaker discrimination performance by humans and

machines.
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1.2 Speaker Discrimination by Humans

Within-speaker variability strongly impacts the perception of unfamiliar voices [LBG19,

LBL19]. For example, the effects of speaking style variability on speaker identi-

fication accuracy have been studied extensively, particularly in the forensic litera-

ture [SY80, BF06, GHK19, GKH15]. One study [Jes08] showed that style variability

confuses ear witnesses hearing a suspect shouting versus reading aloud during a

voice lineup. In non-forensic work, human performance has shown to suffer when

style changes from read to pet-directed speech, which is characterized by exaggerated

prosody [PYV18]. Differences in style were extreme in both examples (shouting and

pet-directed speech).

Two recent studies have provided insights into the ways in which listeners deal

with moderate speaker variability. The authors in [SBR19] compared style-matched

read speech trials with read versus spontaneous speech trials, and found that lis-

teners were more accurate and confident in style-matched trials compared to style-

mismatched ones. However, their experiments included style-matched trials only

from read speech, leaving open the question as to whether the perception of a particu-

lar style is more robust than another in identifying a speaker. A second study [STN21]

addressed this limitation by including style-matched spontaneous speech as well.

They found that performance on style-matched trials exceeded that for mismatched

trials, with performance on style-matched read speech trials better than that for

style-matched spontaneous speech. Their results also revealed a significant bias to-

ward “same speaker” over “different speaker” responses.

Although these studies show that acoustic variability confuses listeners, they leave

open the important questions of why and how this occurs. Neither study quantified

2



the extent of acoustic variability within- and across-speakers and styles, nor did

they examine the relationship between acoustic variability and how well listeners

performed in “same speaker” versus “different speaker” tasks.

Evidence from voice sorting tasks indicates that humans do vary their perceptual

strategies when “telling people together” (i.e., assessing within-speaker variability

in voice) versus “telling people apart” (i.e., assessing between-speaker variability in

voice) [LBG19, JML20]. However, we do not know how or why listeners vary their

perceptual strategies in trials where speakers are the same (a “same speaker” task)

versus trials in which speakers are different (a “different speaker” task). In “same

speaker” trials, differences between stimuli reflect within-talker acoustic variability,

while in “different speaker” trials differences largely reflect between-speaker variabil-

ity. The nature and extent of differences in listener performance in these two trial

types should follow from differences in the nature and extent of these two kinds of

variability. Thus, three major questions arise: (i) How does human speaker dis-

crimination performance vary with speaking style?; (ii) Is there a difference in how

speaking style variations affect “same speaker” versus “different speaker” tasks?; and

(iii) How does human speaker perception relate to the nature and extent of acoustic

variability that occurs within- versus between-speakers?

Recent studies [LKK19, LK19] showed that the most important principal com-

ponents (typically 2-3) describing acoustic variability for individual speakers were

shared by all the speakers, but the majority of the principal components (typically

5) were idiosyncratic. Moreover, individual speakers’ acoustic spaces (within-speaker

variability) and spaces for whole populations of speakers (between-speaker variabil-

ity) shared a similar structure. This shared structure was mainly computed over

higher-frequency harmonic (H∗4 − H∗2k, H∗2k − H5k), inharmonic energy in the voice

3



and over formant dispersion in read speech. In conversational speech, the structure

corresponded to variability in source spectral shape, spectral noise, F0, and in higher

formant frequencies. However, little is known about the relationships among within-

and between-speaker acoustic variability and listener performance, particularly in

the context of differences in speaking style. In this study we examined these rela-

tionships by asking listeners to discriminate among speakers with moderate speaking

style variations. Listener performance for individual speakers was interpreted with

respect to the speakers’ acoustic spaces, with separate analyses for “same speaker”

and “different speaker” trials.

We hypothesize that speaking style variability would have a large effect on perfor-

mance in the case of unfamiliar speaker discrimination, because the “same speaker”

task largely relies on within-speaker variability. Moreover, casual conversations have

a higher degree of variation in comparison to read speech [LBS19], suggesting that the

“same speaker” task may be more difficult for conversational speech. Performance

on “different speaker” tasks theoretically relies on the relative positions of voices in

a shared acoustic structure (between-speaker variability). Previous research [Laa92]

has shown that there are inconsistencies between listeners when classifying read and

conversational speech, indicating that the moderate differences between these styles

have minor perceptual effects, and suggesting that moderate speaking style varia-

tions result in small within-speaker variability. Based on [Laa92] and the studies

reviewed earlier, we hypothesize that moderate speaking style variability would have

a smaller effect on speaker discrimination performance for “different speaker” trials

as they primarily rely on between-speaker variability.
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1.3 Speaker Discrimination by Machines

Automatic speaker verification (ASV) refers to the task of “enrolling” speakers with

one or more utterances each and verifying the “test” utterance against the enrolled

speakers. Automatic speaker discrimination (ASD) by machines is a special case of

ASV systems where “enrollment” is done using only one utterance from the speaker.

We use ASV when referring to machine experiments in general, and ASD when

human and machine performances are compared.

ASV systems generally assume that the variability across speakers is greater

than the variability within speaker. However, this is not always the case. There

is some overlap between variability across speakers and variability within-speakers.

When the acoustic properties of an individual’s speech differ between the enroll-

ment and test utterances, ASV system performance generally degrades [SRG14].

These within-speaker variations can be from extrinsic or intrinsic variability. There

has been considerable progress in studying the effects of extrinsic variability on

ASV performance [GYM16, SS20, RFA20, ZZW21, FMB22]. While some stud-

ies showed that ASV performance also degraded due to intrinsic variabilities–vocal

effort, speaking styles, speaking rate, loudness, emotional state and physical sta-

tus [SGB08, SKS09, CX12].

The focus of this dissertation is the effect of speaking style variability which is

another source of intrinsic variability that can make acoustic characteristics consid-

erably different within a speaker. Only a limited number of studies have investigated

the effects of style variability on ASV performance. Style factors are shown to be

present in widely-used speaker representations [WK19] such as i-vectors [DKD11] and

x-vectors [SGS18]. ASV performance degradation due to style mismatch between the
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enrollment and test utterances were systematically analyzed in [PSK16, PYV18]. To

alleviate the degradation due to style variabilities, some studies proposed the use of

a joint factor analysis framework [SKS09, CX12]. In [ZRH18], curriculum-learning

based transfer learning was done using neutral/physical stressed as well as read and

spontaneous speech to compensate for style mismatches during testing. Note that

the compensation techniques proposed in these studies require a variety of speaking

styles per speaker to train the systems, i.e., the training data includes all the styles

occurring in the test utterances [ZRH18]. However, one might not always have prior

knowledge of the speaking style of the test utterances.

Variations in speech due to speaking style can be broadly classified into rhythmic

variations, including speech rate, long pauses, changes in the duration of individual

sounds, boundary articulation, and prosodic variations. However, the latter is di-

rectly associated with speaker identity and disentangling prosody from speech will

result in performance degradation in speaker verification tasks. Hence, we focus on

addressing the effects of rhythmic variations between styles. Acoustical differences

between read and conversational speech include different speaking rates and incon-

sistent pauses between words. There are also variations in the number and type

of phonological phenomena observed. For example, vowels are modified or reduced

in conversational speech, and word-final plosive bursts are not released while it is

not the case in read speech [PDB86]. Similar differences are observed across other

speaking styles as well [Esk93]. Hence, in this work we focus on developing ASV

systems that are robust to speaking style variations.
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1.3.1 Data Augmentation

One can expect that including various speaking styles in the training data might

improve the speaking-style robustness of the system. However, corpora with suffi-

cient numbers of speakers speaking with different styles are not available. A widely-

used approach to address insufficient data to train different conditions in ASV is

data augmentation using artificially generated data. Augmentation strategies in-

clude adding variations of noise, reverberation [HMB16, SGS18], collecting addi-

tional domain-specific data [ZRH18], and synthesizing data [RMG19]. Yet, for style

variability, artificially synthesizing speaking styles is not yet reliable enough to be

applied [WSX17, WK19]. Hence, we need an alternative approach to generating style

variants for data augmentation.

1.3.2 Self-attention

ASV systems generally use pooling to obtain a fixed-dimension representation from

variable-length utterances. In [VLM14], the pooling was performed at the last hidden

layer. More recent works [SGP17, SGS18] used a statistics pooling layer to calculate

the mean and standard deviation of the utterance resulting in a fixed-dimension rep-

resentation assuming each frame to be equally important. However, we know that not

all frames are equally important in conveying speaker or content information [ZA00].

To address this issue few works [ZCZ17, ZKS18, OKS18] have proposed using self-

attention in the pooling layer and have observed performance improvements in ASV

tasks. Recently [WOL18] decoupled attention weights extracted from an x-vector

system and used it in combination with an i-vector system and showed performance

improvements. The results confirm that attention weights can better represent the
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relative importance of each frame irrespective of the underlying embeddings. To

learn weights so that the embeddings are style-robust, the attention network needs

information to address style effects.

Thus, we experiment with two different approaches to address the effects of style

variability: (i) data augmentation, and (ii) self-attention conditioning. We expect

these ASV systems to be more robust to style variations than their traditional coun-

terparts.

1.4 Loss functions to train ASV systems

Automatic speaker verification is an open-set problem, i.e., the test speakers are

unavailable to the ASV system during training. ASV is, hence, a metric learning

problem that needs to map speakers to a discriminative embedding space.

However, most of the work on speaker verification has focused training with iden-

tification objectives (for example, cross-entropy loss [KSH12, GBC16], also referred

to as softmax loss). Identification loss functions learn linearly separable embeddings

by focusing on maximizing inter-speaker distances. However, identification objec-

tives do not minimize intra-speaker distances (i.e., increasing embedding similarity).

Hence, the resulting embeddings do not have adequate discriminative properties. So

the networks trained on identification objectives are often combined with different

backends to build an ASV system. One such backend is PLDA [KSO13] (probabilis-

tic linear discriminant analysis) which is used to obtain scores on the verification

task.

Addressing the drawbacks of identification loss in ASV systems, one work used
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Angular softmax [LGO18] loss. Angular softmax uses cosine similarity as the logit

input to the softmax layer. Additive margin variants of Angular softmax such as AM-

Softmax [WWZ18, WLL18] and AAM-Softmax [DGX19] use a cosine margin penalty

on the target logit. These techniques though effective, have been proven sensitive to

the value of scale and margin in the loss function, making them challenging for use

in ASV systems.

As an alternative to identification objectives, metric learning approaches that

focus on minimizing intra-speaker distances have been used. Metric learning ap-

proaches such as contrastive loss [CX12] and triplet loss [SKP15] have been used in

ASV tasks with some success [ZKH18, CWM18]. However, these approaches require

careful selection of triplet pairs i.e. anchor, positive and negative pairs, resulting in

longer training cycles. Apart from the high computational cost, these losses do not

consider the performance measures (such as equal error rate (EER) and detection

cost function (DCF)) used in the final evaluation of the speaker verification task.

It has been shown that considering metric related to final evaluation improves

ASV performance at least in text dependent ASV systems by using aAUC [MMO20],

aDCF [MMR19] and Cllr [MMO21] objectives. The Cllr loss, in particular, provides

performance improvements without the need for triplet pairs and provides compu-

tational cost similar to that of identification objectives such as cross-entropy loss.

However, [MMO21] used Cllr in a text dependent speaker verification task and its

efficacy has not been evaluated in a text independent case.

Given that the best training objective would be the one that maximizes inter-

speaker distances and minimizes intra-speaker distances, objective designs need to

consider style variations. Style variations play a critical role in determining inter and
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intra-speaker variabilities. However, none of the above objectives regard the effects

of style variations. Therefore, there is a need for a training objective (loss function)

that focuses on style variations. In this research, we experiment on developing such

an objective function.

1.5 Comparison between Humans and Machines

Speaking style variations are prevalent in everyday life, changing as we move from

talking to a friend to reading aloud, from public speaking to talking to an infant. Re-

gardless of these variations, humans are often able to recognize a familiar voice after

hearing it for a few seconds [WM12]. Previous research suggests that for humans,

recognizing familiar talkers entails matching a sample to stored voice templates,

whereas recognizing unfamiliar talkers is a much more involved process requiring

acoustic feature comparisons [VK87]. In this dissertation, we are interested in com-

paring human abilities to distinguish between unfamiliar voices from short duration

(∼3 s), text-independent utterances, in the presence of moderate style variability

against state-of-the-art automatic speaker verification systems.

Recent studies [PYV18, PAK19] showed that humans consistently outperformed

machines in both style-matched and -mismatched conditions when discriminating

speakers from samples of read versus pet-directed speech (characterized by exag-

gerated prosody), although style variations resulted in worse performance for both

humans and machines. Forensic literature includes comparisons between human and

machine performances. The authors in [HHF17] found that forensic experts were

able to resolve speaker pairs incorrectly classified by ASV systems. In these ex-

amples, differences in style were extreme, and little is known about how moderate
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variations in style, for example between read and conversational speech, affect the

relative performance of humans versus machines in speaker discrimination.

Evidence from voice sorting tasks indicates that humans vary their perceptual

strategies when “telling people together” versus “telling people apart” [LBG19,

JML20], while machines apply the same classification approach in target and non-

target trials [PAK19]. Given that humans and machines seem to employ different

approaches to speaker discrimination, this suggests that machines can adopt strate-

gies from humans, and humans might do better with machine assistance in certain

situations.

Therefore, we focus on learning from human speaker perceptual strategies to

develop ASV algorithms, in particular, training loss functions. We employed an

unfamiliar speaker discrimination task in which the listener decides if two samples

are from the same speaker or not in presence of moderate style variability (i.e, be-

tween read and conversational speech). We hypothesized that such algorithms might

improve ASV system performance for conversational styles.

1.6 Dissertation Outline

The rest of this dissertation is organized as follows:

Chapter 2 introduces the databases used in the experiments reported in the dis-

sertation. The chapter also describes the features used.

Chapter 3 begins by laying out the perception experiments used to study human

speaker discrimination performance in presence of moderate style variability. It also

analyzes the results of the experiments and attempts to answer questions on the
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effects of style variability on human performance and human approaches to speaker

discrimination.

Chapter 4 outlines the two different style-robust methods proposed in this dis-

sertation: a data augmentation method, and a self-attention conditioning method.

It also reports comparisons between the two methods and on approaches to choosing

the appropriate style-robust method for different applications.

Chapter 5 is concerned developing ASV algorithm inspired by human perception

to improve performance, especially in style-mismatched conditions.

Chapter 6 concludes the dissertation with a summary of the key results, possible

applications of the work and suggestions for future work.
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CHAPTER 2

Databases and features

Four databases were used in this dissertation. The UCLA speaker variability database

being the key database used for style variability analysis. For extracting representa-

tions from speech, we used two different feature sets: Mel-frequency cepstral coeffi-

cients (MFCCs) and voice quality features (VQual).

2.1 Databases

2.1.1 The UCLA Speaker Variability Database

In order to systematically study both within- and between-speaker variability, a

multi-speaker speech database including multiple speech tasks per speaker is needed.

Hence, the UCLA Speaker Variability Database [KKA19, KPK15, KKA21] was em-

ployed. The database is available from the Linguistic Data Consortium (LDC).1 It

incorporates commonly-occurring variations in voice deriving from phonetic content,

speaking style, and affect conditions. This database includes speech from 101 female

and 101 male speakers, recorded with a 1/2” Brüel & Kjær microphone in a sound-

attenuated booth at a sampling rate of 22kHz. Each speaker recorded 12 recordings

1https://doi.org/10.35111/c5gk-6j49
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over three sessions, providing a total of 2424 recordings in the database.

This work used read sentences representing scripted speaking style (≈ 75 sec

per speaker); giving instructions representing unscripted clear monologue style

(≈ 30 sec per speaker); narrating a recent neutral, happy, or annoying conver-

sation representing unscripted affective speech (≈ 30 sec each affect per speaker);

speaker’s side of the conversation on a call with a familiar person representing un-

scripted conversational style (60–120 sec per speaker); and talking to pets in a

video i.e., pet-directed speech, characterized by exaggerated prosody (60–120 sec

per speaker).

2.1.2 The Speakers in the Wild Database (SITW)

SITW has 2,883 recordings from 117 male and 63 female speakers divided into 6,445

utterances sampled at 16 kHz. SITW consists of both single- and multiple-speaker

audio with segment labels for person of interest (POI) in enrollment utterances.

Enrollment utterances include core (single POI) and assist (multiple speakers with

segmentation labels for POI) and test utterances include core (single POI) and multi

(multiple speakers with no segmentation labels for POI). This dissertation uses SITW

in order to gain insights into the effects of some of the proposed approaches on a

large-scale database as SITW includes some speakers employing multiple speaking

styles.

2.1.3 NIST SRE and Switchboard databases

The NIST Speaker Recognition Evaluation (SRE) 04, 05, 06, 08 and 10 databases [PM04,

PML06, MG09] and the Switchboard II corpus, phase 2 [GWC99] were used in this
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work, mainly for training the ASV systems. These databases provide more than

3,000 hours of speech samples from 3,408 female and 1,832 male talkers, sampled at

8 kHz.

The SRE and Switchboard databases offer many recordings from a large number

of speakers with multiple speech tasks. However, there are certain drawbacks associ-

ated with using them for analyses of the effects of style variability. First, they do not

provide multiple speech tasks per speaker under controlled recording environments.

Second, they do not provide metadata regarding speaking style.

2.1.4 VoxCeleb Database

The Voxceleb2 dataset [CNZ18] consists of speech from YouTube videos of 3,682

male and 2,313 female speakers and includes 1,092,009 utterances with a sampling

rate of 16 kHz. We use the DEV set from the Voxceleb2 dataset for training the ASV

systems. The main disadvantage of using VoxCeleb2 for testing is that it comprises

interview-style speech only and does not include different styles for each speaker.

Hence, we believe that it does not provide a good representation of the test case

scenario targeted in this work.

2.2 Features

2.2.1 Voice Quality Features

Voice Quality (VQual) feature selection was motivated by a psychoacoustic model

of voice quality [GSG16, KLG21]. The set comprised F0: fundamental frequency,

F1, F2, F3, F4: the first four formants, CPP : cepstral peak prominence [HCE94],
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and the amplitude differences between the first (H∗1 ), second (H∗2 ), and fourth (H∗4 )

harmonics, and the harmonics nearest 2 kHz (H∗2k) and 5 kHz (H5k), denoted as

H∗1 − H∗2 , H∗2 − H∗4 , H∗4 − H∗2k, and H∗2k − H5k. These measures quantified the

harmonic source spectral shape. Harmonic values marked with ‘*’ were corrected

for the influence of formants on harmonic amplitudes [HC99, IA04]. Following Lee

et. al. [LKK19, LK19], we also included FD: formant dispersion (calculated as the

average difference in the frequency between each adjacent pair of formants), energy

(a measure of amplitude given by root-mean-square energy calculated over five pitch

pulses), and the ratio of amplitudes of SHR: subharmonics to harmonics [Sun02,

Her21] as a measure of period doubling, for a total of 13 features for every analysis

frame. We used VoiceSauce [SKV11] to extract the VQual features. These measures

have also shown to be useful in detecting affect [PAC18], depression [AGP18, RWF22]

and sleepiness [RPA19] in speech.

2.2.2 Mel Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCCs) are one of the widely used feature sets

for speech representation [DM80]. MFCCs represent the overall spectral envelope of

the speech signal, and are closely related to the phonetic information in speech at

the frame level. A key feature of MFCCs is that they use a perceptual frequency

scale, referred to as the Mel scale.

A standard MFCC extractor process the speech segments with a window size of

25 ms, a window shift of 10 ms, and a pre-emphasis filter with coefficient 0.97. This

dissertation, however, will not only use the standard extractor but also a few of its

variants.
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CHAPTER 3

Speaker discrimination performance by humans

In this chapter, we compare human speaker discrimination performance for read

speech versus casual conversations, and explore differences between unfamiliar voices

that are “easy” versus “hard” to “tell together” versus “tell apart.” Thirty listeners

were asked whether pairs of short style-matched or -mismatched, text-independent

utterances represented the same or different speakers. Perceptual experiments were

conducted with unfamiliar voices, using short duration (∼3 s) utterances. The main

focus was to study the effects of moderate variations in speaking style (i.e., between

read and conversational speech) on human speaker recognition and discrimination

performance. We aim to answer these major questions: (i) How does human speaker

discrimination performance vary with speaking style?; (ii) Is there a difference in how

speaking style variations affect “same speaker” versus “different speaker” tasks?; and

(iii) How does human speaker perception relate to the nature and extent of acoustic

variability that occurs within- versus between-speakers? This work was published in

[AKA20, AKA22].
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3.1 Methods

3.1.1 Perceptual speaker discrimination

3.1.1.1 Stimuli

Voice samples from 40 female speakers (also used in [PYV18, PAK19]) were drawn

from the UCLA Speaker Variability Database [KKA19, KPK15, KKA21]. Forty

speakers were studied to balance concerns about testing duration versus sampling

considerations, and to provide continuity with our previous perception experiments

using this dataset ([PYV18, PAK19]). Samples were restricted to female speakers

to avoid any gender-dependent cues, and because females produced clearer contrasts

between speaking styles than male speakers did (as judged by the authors). All

speakers were self-reported native speakers of American English (confirmed post hoc

by two linguists). Two sets of voice samples were selected for each speaker. The first

(clear read speech) included five phonetically-rich Harvard sentences [IEE69], read

twice in random order. The second (casual conversational speech) consisted of the

speakers’ side of a 2-minute telephone conversation with a family member or friend.

The recordings were post-processed to remove any long preceding or trailing silences

and all non-speech vocalizations (laughing, giggling, sighing). Six ∼3 sec clips were

taken from each recording. Selections were carefully made to ensure that semantic

cues would not bias responses. For instance, stimuli were chosen from different topics

in the conversation. All chosen stimuli were recorded on the same day.
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3.1.1.2 Listeners and listening task

All experimental procedures were approved by the UCLA Institutional Review Board.

Thirty normal-hearing listeners including 24 native speakers of English (22 female,

8 male) participated in this experiment. An additional 6 speakers (3 were native

speakers of Spanish, 2 of Mandarin, and 1 of Hindi) were also tested, but were later

deleted from the data set because preliminary analyses suggested effects of native

language on listener performance. There were not enough data to explore these

effects in detail. However, in Section 3.2.1 we present the overall speaker discrimina-

tion performance of non-native speakers. The sample size was determined such that

there are 12-15 listeners per subset of voices, as will be explained later.

Each listener undertook three kinds of comparisons, in random order. In one

they heard two different read sentences; in another they compared two different clips

excerpted from a conversation; and in the third, they compared one read sentence

and one conversational sentence. Equal numbers of “same speaker” and “different

speaker” trials were included for each of these three trial types, resulting in six

different kinds of trials per experiment. Care was taken to make sure that a listener

never heard the same stimulus twice. As only five different sentences had been

recorded in the case of read speech, we randomly chose a second recording of one of

the five sentences to repeat for the sixth trial.

Listeners were tested individually in a sound-attenuated booth. Stimulus pairs

were played in random order over Etymotic insert earphones (model ER-1) at a

constant comfortable listening level. To minimize fatigue, listeners heard one of

two subsets of speakers (15 listeners per subset). Each subset included 24 speakers

selected at random from the pool of 40, for a total of 144 trials per listener (6 trial
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types x 24 speakers). On “different speaker” trials, two speakers were paired at

random, such that each was compared with every other speaker an equal number of

times.

Each listener heard the stimulus pairs in a unique random order and was asked

(i) “Did the two voices represent the same speaker or two different speakers?, and (ii)

“How confident are you in your response on a scale of 0 to 5 (0 = wild guess and 5

= very confident)?” Pairs of stimuli could be heard twice, once in each presentation

order (AB/BA). Listeners were not aware of the number of speakers included in the

experiment. They were encouraged to complete the experiments at their own pace,

taking breaks as necessary. Testing time averaged about 45 minutes.

3.1.2 Evaluation metric

3.1.2.1 Calculation of scores

Same/different responses were combined with confidence ratings to create an un-

folded similarity score for each stimulus pair. Confidence ratings (0 to 5) were mul-

tiplied by the decision (different = −1 and same = 1) to provide continuous scores

ranging from −5 (highly confident that the voices are different) to 5 (highly confi-

dent that the voices are the same). This ensured that the similarity score reflected

listeners’ confidence as well as their same/different decisions.

Similarity scores were used to calculate calibrated log-likelihood ratios (LLRs),

denoted as L. LLRs are used in this work instead of similarity scores by themselves,

as they provide reliable probabilistic interpretations of the comparisons of the two

hypotheses (“same speaker” or “different speaker”). Thus, LLRs provide a single

identification score that can be meaningfully interpreted. In other words, calibrated
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log-likelihood ratios provide numerical representations of listeners’ degree of support

for either hypothesis in each trial. This allows us to measure not only the listeners’

discriminating power, but also the strength of the trials evaluated by them [RFG11].

Moreover, the calibrated LLRs are needed to obtain the log-likelihood-ratio cost

function in Section 3.1.2.2, which, unlike the standard measures, is application-

independent. This provides a universal probabilistic interpretation in the analysis.

A calibration system based on a standard logistic regression solution [BD11a] was

used to estimate the LLRs by optimizing the following mapping:

Lt = a+ bst (3.1)

where Lt is the calibrated output log-likelihood-ratio for trial t and st is the similarity

score for trial t. Offset parameter a and the weight b are optimized with logistic

regression [Bru10].

3.1.2.2 Analysis of performance errors

Speaker discrimination performance was evaluated in terms of equal error rates

(EER) and the log-likelihood-ratio cost function (Cllr) [VB07]. While the EER is

a widely-used measure, it does not measure ability to set good decision thresholds.

Hence, Cllr, an application-independent measure for evaluating soft decisions, was

also used. It can be interpreted as a measure that is inversely related to information.

The lower the Cllr, the more the average information per trial (in bits) increases. In
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[VB07] a closed-form solution for Cllr is provided:

Cllr(Lt) =
1

2

( ∑
t∈same

log2(1 + e−Lt)

Nsame

+
∑
t∈diff

log2(1 + eLt)

Ndiff

)
(3.2)

where Lt is the log-likelihood-ratio for trial t , ‘same’ is a set of Nsame “same speaker”

trials and ‘diff’ is a set of Ndiff “different speaker” trials. These two normalized terms

represent the costs for “same speaker” (first term) and “different speaker” (second

term) trials. We will refer to the first term as Csame
llr and the second term as Cdiff

llr .

We used the Bosaris toolkit [BD11b] to perform calibration and to calculate the

evaluation measures. As data were limited, the calibration parameters were trained

on and applied to the same set of scores.

3.1.2.3 Speaker-level analysis

This section describes speaker-level measures. The log-likelihood ratio Lt, which rep-

resents listeners’ scalar responses to each given trial, was obtained for each trial t, as

outlined in Section 3.1.2.1. To compare the scores for “same speaker” and “different

speaker” trials involving each speaker, Lsame for “same speaker” and Ldiff for “differ-

ent speaker” trials were calculated separately. Lsame for a speaker was obtained by

averaging the Lt values over the “same speaker” trials that included that particular

speaker. It measures within-speaker variability across the stimuli as perceived by the

listeners: a large Lsame means small perceived within-speaker variability (i.e., these

“same speaker” trials are easy). Ldiff for a given speaker was calculated by averaging

the Lt values over the “different speaker” trials that included a given speaker; it rep-

resents between-speaker variability across the stimuli as perceived by the listeners.
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A large Ldiff value indicates that the speaker has small perceived between-speaker

variability, making it difficult for listeners to distinguish her from others.

A speaker-level aggregation of the log-likelihood-ratio cost function (Cllr; section

3.1.2.2) was also computed by calculating the mean across listeners over all the

trials that included that particular speaker. The speaker-level Cllr represents the

confidence listeners had when identifying that speaker. Speaker-level Cllr values for

“same speaker” trials (Csame
llr ) and “different speaker” trials (Cdiff

llr ) were also computed

by calculating the average of their respective Cllrs across listeners.

For speaker-level analysis, trials were combined across conditions due to the lim-

ited number of trials per speaker (9 trials x number of listeners). Although collapsing

conditions in this way precludes examination of factors other than speaker, these

analyses focus primarily on the main effect of differences among speakers, so we felt

adding power to tests of this main effect outweighed other considerations. Note that

the system-level values are denoted by using a (′), i.e, C ′llr, C
′same
llr , C

′diff
llr , L′, L

′same

and L
′diff.

3.1.3 Speaker acoustic variability

3.1.3.1 Feature extraction and data processing

Voice quality features from utterances of vowels and approximants (i.e., /l/, /r/,

/w/) in the stimuli were used as acoustic measures. There were a total of 13 features

(F0: fundamental frequency, F1, F2, F3, F4: the first four formants, CPP : cepstral

peak prominence, H∗1−H∗2 , H∗2−H∗4 , H∗4−H∗2k, and H∗2k−H5k: the amplitude differ-

ences of the harmonics, FD: formant dispersion, SHR: subharmonics to harmonics
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Figure 3.1: Block diagram representing the analysis of variability in speaker acoustic
spaces using principal component analysis (PCA) and Krzanowski analysis.

ratio and Energy) for every analysis frame. Frames with missing or unrealistic values1

were removed, after which features were normalized with reference to global maxima

and minima, for a range across speakers of 0-1. We then calculated the moving av-

erage and the moving coefficient of variation (moving CoV = moving standard deviation
moving average

)

over a 25 ms window (commonly used in speech feature extraction, equivalent to

5 observations) for each of the 13 features. This resulted in a total of 26 acoustic

features (13 moving averages and 13 moving CoVs). These 26 features were used for

subsequent analysis.
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3.1.3.2 Principal component analysis

Figure 3.1 represents the block diagram of the speaker variability analysis. Follow-

ing Lee et al. [LKK19, LK19], we applied principal component analysis (PCA) to

characterize acoustic variability in the voices of individual speakers. Utterances from

each speaker were used to calculate the within-speaker PCA representing that indi-

vidual’s acoustic space. We retained only the principal components with eigenvalues

greater than one so that each represented an interpretable amount of variance in the

data [Kai60].

The analytical approach proposed by [Krz79] was used to compare PCA spaces,

to avoid reliance on subjective criteria associated with visual examination. In this

approach, let g be the number of speakers being compared with nt observations for

the tth speaker (t = 1, 2, . . . , g), with the same set of p variables measured for each

speaker. Let us assume that for each speaker, kt principal components represent

that speaker’s acoustic variability. Next, let b be an arbitrary vector in the original

p-dimensional data-space and let δt be the angle between b and the vector most

parallel to it in the space generated by the kt principal components of speaker t

(t = 1, 2, . . . , g). We represent the loadings using the matrix Lt where the element

l
(t)
ij represents the loading of the jth variable on the ith principal component of the

tth speaker. Then the value of b that minimizes V =
∑g

t=1 cos δt
2 is given by the

eigenvector b1, corresponding to the largest eigenvalue µ1 of H =
∑g

t=1 L
′
tLt.

The eigenvector b2, corresponding to the second largest eigenvalue of H, satis-

fies the criterion for the next largest value of V and is orthogonal to b1. When kt

1For example, impossible zero values; measurements inconsistent between different techniques
such as F0 estimated by praat, snack, straight; values with NaNs; etc.
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different components have been obtained for the tth speaker (t = 1, 2, . . . , g) and

k = min(k1, k2, . . . , kg), then only a k-dimensional comparison will be useful. Any

further dimension will be orthogonal to at least one of the speaker spaces. Using this

transformation thus allows us to compare different principal component subspaces,

because the eigenvalues µi (alternatively, the minimum angles cos−1 (µi)
1
2 ) can pro-

vide a measure of the extent to which the subspaces differ, and the eigenvectors bi

can describe the nature of their similarities or differences. The smaller the angles

between the subspaces, the higher the similarity. Algorithm 1 provides a psuedocode

of the Krzanowski analysis implementation for one set of speakers.

Algorithm 1: Krwazonski analysis for set with g speakers

k ← min(k1, . . . , kg) // k-dimensional comparison

for speaker t in set do

Lt ← normalized loadings of speaker t

H ← H + L′tLt

V ← Eigenvectors(H) /* Loadings of the directions closest to the

speakers in the set */

for variable j in set of p variables do

b← Vj // Eigenvector corresponding to variable j

for speaker t in set do

c← b′ ∗ L′t ∗ Lt ∗ b

δj,t ← arccos
√
c // Angle between speaker t and direction j

Krzanowski analysis was performed over the within-speaker PCAs for all the

speakers in a set, to obtain the dimensions common to speaker acoustic spaces.

The earlier (lower) dimensions represent the components that are similar for speak-
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Table 3.1: Speaker discrimination performance in terms of equal error rates (EER,
%) and log-likelihood-ratio cost function for combined (C ′llr), “same speaker” trials
(C

′same
llr ), and “different speaker” trials (C

′diff
llr ). The better (lower cost) value for

“same speaker” versus “different speaker” trials in each condition is underlined. All
reported comparisons are statistically significant.

read – read conversation – conversation read – conversation

EER % C ′llr C
′same
llr C

′diff
llr EER % C ′llr C

′same
llr C

′diff
llr EER % C ′llr C

′same
llr C

′diff
llr

6.96 0.264 0.210 0.318 15.12 0.529 0.501 0.557 20.68 0.691 0.690 0.692

ers with similar acoustic spaces, and which are thus suitable for comparing within-

speaker variability. The speakers diverge from each other in later (higher) dimen-

sions. Hence, the components in these dimensions highlight the differences between

speakers’ acoustic spaces, making them appropriate indices of between-speaker vari-

ability.

3.2 Results

Table 3.1 shows speaker discrimination performance for the three speaking-style con-

ditions (read speech – read speech, conversation – conversation, and read speech –

conversation). Statistical significance was evaluated using a two-sample Kolmogorov-

Smirnov (KS) test [Smi48]. The statistical significance is reported in terms of p:the

statistical significance, h: (0)accept/(1)reject null hypothesis, D: the KS-test statis-

tic and N: degrees of freedom . All reported comparisons are statistically significant.

EER values in this table indicate that listeners performed best when voice samples

were style-matched read speech (EER = 6.96%). Performance decreased for conver-

sation – conversation trials (EER = 15.12%; p = 0.035, D = 0.059, N = 2304), even

though these were also style-matched. This decrease in performance is likely due to
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Table 3.2: Speaker discrimination performance of non-native listeners in terms of
equal error rates (EER, %) and log-likelihood-ratio cost function for combined (C ′llr),
“same speaker” trials (C

′same
llr ), and “different speaker” trials (C

′diff
llr ). The better

(lower cost) value for “same speaker” versus “different speaker” trials in each condi-
tion is underlined.

read – read conversation – conversation read – conversation

EER % C ′llr C
′same
llr C

′diff
llr EER % C ′llr C

′same
llr C

′diff
llr EER % C ′llr C

′same
llr C

′diff
llr

12.39 0.4292 0.3836 0.4748 23.22 0.7026 0.6667 0.7385 31.46 0.8723 0.8730 0.8716

additional variability in casual conversations (formal/informal, happy/sad/angry/neutral,

etc.; [LBS19]). The style-mismatched read speech – conversation trials resulted in

performance that was significantly worse than in either style-matched condition (read

speech: p = 4.95× 10−14, D = 0.164, N = 2304; conversation: p = 4.61× 10−7, D =

0.115, N = 2304).

A comparison of the log-likelihood-ratio cost functions (see Section 3.1.2.2), C
′same
llr ,

and C
′diff
llr values in Table 3.1 indicates that “same speaker” trials were easier than

“different speaker” trials in all conditions (read speech – read speech: p = 1.4 ×

10−101, D = 0.88, N = 1152; conversation – conversation: p = 4.76 × 10−73, D =

0.72, N = 1152; read speech – conversation: p = 9.07× 10−74, D = 0.59, N = 1152).

Differences in difficulty between the two tasks depended on speaking style, with

style-matched read speech – read speech trials showing the best performance overall

(0.210 and 0.318 for C
′same
llr and C

′diff
llr , respectively), and the most difference between

the same and different speaker tasks.
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3.2.1 Speaker discrimination performance of non-native listeners

Table 3.2 shows speaker discrimination performance of non-native listeners for the

three speaking-style conditions (read speech – read speech, conversation – conversa-

tion, and read speech – conversation). EER values in this table indicate that sim-

ilar to natives, non-natives performed best when voice samples were style-matched

read speech (EER = 12.39%). Performance decreased for conversation – conver-

sation trials (EER = 23.22%; p = 0.0.82, D = 0.052, N = 576) but it was not

statistically significant. The style-mismatched read speech – conversation trials

resulted in performance that was significantly worse than in either style-matched

condition (read speech: p = 6.194 × 10−7, D = 0.226, N = 576; conversation:

p = 3.702 × 10−6, D = 0.212, N = 576). A comparison of the log-likelihood-ratio

cost functions (see Section 3.1.2.2), C
′same
llr , and C

′diff
llr values in Table 3.2 indicates

that non-native listeners found “different speaker” trials easier in the read speech –

conversation condition and “same speaker” trials easier in the other two conditions.

However, as mentioned in Section 3.1.1.2 there were not enough data to explore the

perception strategies of non-natives in detail. In subsequent analyses, we only use

scores from native listeners.

3.2.2 Speaker-level log-likelihood-ratio analysis

Figure 3.2 compares the distribution kernel density plots overlaid onto histograms of

speaker-level log-likelihood-ratios (see Section 3.1.2.3) for “same speaker” (Lsame) and

“different speaker” (Ldiff) trials for the three style conditions. Recall that the positive

end of this scale represents highly confident “same” responses, and the negative end

represents highly confident “different” responses. The means of Lsame and Ldiff are
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shifted towards correct responses in the read speech – read speech conditions. This

increased separation of “same speaker” and “different speaker” trial distributions in-

dicates that discrimination was easier and resulted in better performance in the read

speech – read speech condition compared to the other two conditions. For example,

compare discrimination performance from the distributions in Figures 3.2(a) (read

speech – read speech) and 3.2(c) (read speech – conversational speech) (EERs =

6.96% versus 20.68%, respectively). The read speech – read speech trials resulted in

an Lsame distribution with small variance (variance = 0.05) confined to the positive

response region. This was not the case with Ldiff (variance = 0.57), indicating that

listeners were more confident when classifying “same speaker” pairs than “different

speaker” pairs.

In comparison, in the conversation – conversation condition [Figure 3.2(b)] vari-

ance in the Lsame distribution increased (variance = 0.34), and this distribution

overlapped with the Ldiff distribution (variance = 0.70), suggesting that listen-

ers’ confidence decreased overall with a change in style from read to conversational

speech. Finally, in the read speech – conversation condition [Figure 3.2(c)] the vari-

ance in the Lsame distribution increased further (variance = 0.75), while it decreased

slightly in the Ldiff distribution (variance = 0.55). This overall pattern suggests that

style affected the listeners’ confidence in “same speaker” tasks, but not in “different

speaker” tasks.

Given the multimodal shape of the distributions for conversation and style-

mismatched tasks, the findings in terms of variances of LLRs were helpful. We

evaluated the differences between the distributions across styles. The speaker-level

log-likelihood-ratios for “same speaker” (Lsame) tasks for the three style conditions

differed significantly from one another, with means of 1.8915, 1.4131 and 0.9475
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for style-matched read speech, style-matched conversation and style-mismatched

tasks, respectively (read speech – read speech versus conversation – conversation:

h = 1, p = 3.57 × 10−5, D = 0.45, N = 80, read speech – read speech versus read

speech – conversation: h = 1, p = 7.34× 10−9, D = 0.68, N = 80, and conversation –

conversation versus read speech – conversation: h = 1, p = 0.04, D = 0.30, N = 80).

In contrast, the speaker-level LLRs for “different speaker” (Ldiff) tasks for the three

style conditions did not differ significantly (means = −1.4891,−1.3433 and −1.2165

for style-matched read speech, style-matched conversation and style-mismatched

tasks, respectively; read speech – read speech versus conversation – conversation:

h = 0, p = 0.14, D = 0.25, N = 80, read speech – read speech versus read speech –

conversation: h = 0, p = 0.08, D = 0.28, N = 80, and conversation – conversation

versus read speech – conversation: h = 0, p = 0.72, D = 0.15, N = 80). This result is

consistent with our hypothesis that the effect of speaking style-variability is greater

in “same speaker” tasks than in “different speaker” tasks.

3.2.3 Speaker-level log-likelihood-ratio cost analysis

Recall that the speaker-level log-likelihood-ratio cost function, Cllr, denotes the over-

all speaker information available when the listener is performing speaker discrimi-

nation. It is calculated by averaging the values for “same speaker” trials (Csame
llr )

and “different speaker” trials (Cdiff
llr ) for a given speaker. A higher Cllr indicates

less information available to the listener for the speaker discrimination task, hence

more difficulty. For “same” and “different” trials, speaker-level Cllr values from LLR

scores were used to group speakers into three subsets. The correlation between the

speaker-level Csame
llr and Cdiff

llr is weak (r = −0.0892), hence our preference for the
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categorical approach used here, versus treating difficulty as a continuous variable.

We classified the thirteen speakers with the lowest Cllr values (“same speaker” task:

mean = 0.251; range = 0.169-0.361, “different-speaker” task: mean = 0.243; range

= 0.127-0.367) into an “easy” subset and the thirteen speakers with the highest Cllr

values (“same speaker” task: mean = 0.964; range = 0.669-1.434, “different-speaker”

task: mean = 1.076; range = 0.741-1.582) as “hard” (difficult to distinguish speak-

ers). The remaining fourteen speakers were referred to as “average” (“same speaker”

task: mean = 0.508; range = 0.368-0.647, “different-speaker” task: mean = 0.538;

range = 0.370-0.708).

The joint distribution of speakers across the three subsets for the “same speaker”

versus “different speaker” tasks is shown in Figure 3.3. An entry countmi,hj denotes

the number of speakers from subset i of the “different speaker” task overlapping with

subset j of the “same speaker” task. For example, in the first column, 6 samples

were “easy” in both the “same speaker” and “different speaker” tasks, whereas 2

samples that were “easy” in the “same speaker” task were “hard” in the “different

speaker” task. More observations fall off diagonal (speakers are not equally “easy”

to “tell together” and “tell apart”) than on diagonal (the tasks are equally “easy”

for that speaker), consistent with findings that humans rely on different information

when performing the two tasks [LBG19, JML20].

3.2.4 Variability in the speaker acoustic spaces

Because the acoustic signal is the input to human perceptual processes, examination

of acoustic variability may provide insight into the perceptual strategies listeners use

when performing “same speaker” and “different speaker” tasks. To address this, we
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used PCA to generate principal component subspaces and applied Krzanowski anal-

ysis (Section 3.1.3.2) to compare acoustic variability for speakers who were “easy”,

“average”, or “hard” to discriminate. As noted above, Krzanowski analysis provides

a means of quantifying the similarity of the acoustic spaces for different talkers, by

generating loadings of the directions in the acoustic spaces that are closest to the

PCs for the speakers in each subset.

Figures 3.4 and 3.5 show each orthogonal direction as a separate subplot. “Same

speaker” trials are shown in Figure 3.4 and “different speaker” trials are shown in

Figure 3.5. The angles listed at the top of each subplot are inversely related to the

similarity between all speakers in the set. For ease of comparison, each subplot shows

the same dimension for all three subsets of speakers (“easy”, “average”, and “hard”

to discriminate). Speaking styles are combined, however, because speaker Cllr values

were calculated across all conditions. Plots are additionally restricted to the absolute

values of the top three contributing factor loadings to focus attention on the most

important contributors to similarity and differences in the acoustic space. Finally,

we restricted the number of orthogonal directions to a dimension of k = 7, which is

the minimum number of principal components extracted per speaker.

3.2.4.1 “Same speaker” task

As Figure 3.4 shows, “easy,” “average,” and “hard” speakers were acoustically similar

along the first two dimensions (as indicated by small mean angular separations),

but they increasingly diverged after this, with the maximum variation along the

7th dimension. The mean angular separations quantify the extent to which the

dimensions represent the similarity between speakers for each subset. Within-speaker
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variations can be compared along dimension 1, which is associated with CoVs of

F1, F2, and FD for all speakers. F2 and FD contribute to separating voices on the

second dimension; H∗4 − H∗2k also contributed for “easy” speakers, and F1 for the

“average” and “hard” speakers.

On the other hand, examination of dimension 7 shows that different features un-

derlie acoustic differences for each group of speakers, with mean angular separations

of 33.35◦, 28.11◦, and 29.97◦ for “easy,” “average,” and “hard” speakers, respectively.

For “easy” speakers, this dimension is related to Energy, Energy CoV, and F2 CoV,

suggesting that differences between speakers in these factors have little effect on lis-

teners’ ability to tell voices together. For “average” speakers, this dimension is related

to CoVs of F0, F2, and FD, while voices that were hardest to tell together varied

along F3, Energy, and its CoV. Dimensions 3-6 explained a mixture of similarities

and differences, with some speakers closer to each other along those dimensions and

others farther apart.

3.2.4.2 “Different speaker” task

Figure 3.5 compares the principal components describing acoustic variability for

speakers classified as “easy,” “average,” or “hard” to “tell apart” in “different speaker”

trials. The coefficients of variation (CoVs) for F1 and FD contributed to separat-

ing voices based on their within-speaker variability on the first dimension for all

three groups; F2 CoV also contributed for “easy” and “hard” speakers, while CPP

CoV contributed for “average” speakers. The second dimension is related primarily

to moving averages of F2 and FD. Telling voices apart in the “easy” and “hard”

subsets also depended on F1. Similarity for “average” speakers was also related to
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H∗4 −H∗2k, and “average” speakers were more similar to one another along the second

dimension (7.83◦) compared to “easy” and “hard” subsets (12.83◦ and 9.43◦, respec-

tively). These results suggest that the means of formant frequencies contribute little

to making voices “easy” or “hard” to distinguish in a “different speaker” task. Di-

mension 7 describes the majority of the between-speaker variability across subsets,

with mean angular separations of 28.38◦, 31.49◦, and 29.75◦ for “easy,” “average,”

and “hard” speakers, respectively. Speakers who are “easy” to tell apart differed

from each other primarily in F0 CoV, followed by CoVs of H∗4 −H∗2k and H∗2k −H5k.

In comparison, “average” speakers varied almost equally in terms of F0, F2 CoV, and

FD CoV, while most variation in “hard” speakers was attributable to F0, followed

by smaller contributions from H∗1 −H∗2 and Energy. In other words, for the “differ-

ent speaker” task, discrimination is the easiest for talkers whose speech acoustics are

mainly separated by the three CoVs (F0 CoV, H∗4 −H∗2k CoV and H∗2k −H5kCoV ),

is less easy for “average” talkers whose acoustics differed mainly in mean F0 and two

formant-variable CoVs (extent of variability in relation to the average), and is the

hardest for talkers whose speech is distinguished only by moving averages.

3.3 Discussion

In this chapter we examined the effects of moderate speaking style variations (read

speech versus casual conversations) and of within- versus between-speaker acoustic

variability on human speaker discrimination performance. The stimuli comprised

short text-independent utterances from speakers who were not familiar to the listen-

ers.

The first objective of this work was to identify the effects of speaking style vari-
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ations on human speaker discrimination performance. Listeners performed better

in style-matched cases (EER = 6.96% when both stimuli were read sentences and

EER = 15.12% when both stimuli were excerpts from conversations) than in the

style-mismatched case (EER = 20.68%). Moderate speaking style variations affected

speaker discrimination performance when stimuli were style-mismatched and also

when they were style-matched i.e., read speech – read speech trials were easier than

conversation – conversation trials.

In comparison to our previous findings based on read and pet-directed speech

from the same speakers [PYV18] the performance gap between the style-matched

and style-mismatched conditions appears to depend at least partly on the extent of

the mismatch (moderate in the present study and extreme in the previous study).

For example, the EER in [PYV18] for the style-matched read speech – read speech

condition was 19.02%, while for the style-mismatched condition it was 39.23%, versus

6.96% and 20.68%, respectively, in the present study. Note that, the sampling rate

was higher in the present study than in our previous work (22 kHz, versus 8 kHz in

[PYV18]).

Another objective of this research was to determine the differences in how speak-

ing style variations affect “same speaker” and “different speaker” trials. The speaker-

level log-likelihood ratio distribution (see Figure 3.2) skewed heavily toward the pos-

itive region with small variance in “same speaker” trials, indicating that listeners

were more accurate and more confident in the “same speaker” trials. Confidence on

these trials was highest for read speech – read speech and worst for read speech –

conversation; this pattern did not occur for “different speaker” trials. The changes

in listeners’ confidence in “same speaker” trials seem to follow the same pattern

as did overall performance. Listeners were highly confident for the style-matched
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read speech trials, but confidence decreased substantially for the other two condi-

tions. Taken together, these results are consistent with our hypotheses that the

“same speaker” task largely relies on within-speaker variability, and that moderate

style variations impact human performance. However, no such confidence differ-

ences arose from style variability in the “different speaker” trials. This suggests that

between-speaker variability in the “different speaker” task has greater influence on

human performance compared to the effects of moderate speaking style variability.

We also found that which voices listeners judged most accurately depended not

only on the voices but also on the task: “telling speakers together” was easier for

some voices, while “telling speakers apart” was easier for others. This suggests that

listeners rely on different acoustic information when performing these two tasks. In

the “same speaker” task, the “easy” speakers varied widely along F2 CoV, Energy,

and its CoV, while “average” speakers varied the most along CoVs of F0, F2, and FD.

Finally, “hard” speakers varied mainly along F3, Energy, and its CoV in this task.

The features that made the “same speaker” task easier (F2 CoV, Energy, and its

CoV) were the ones that appeared in later dimensions (dimension 3 or higher), i.e.,

the ones that contributed to speaker idiosyncrasies in Lee et al.’s [LKK19, LK19]

acoustic voice space model. This further suggests that listeners rely on speaker

idiosyncrasies for the “same speaker” task. Note that in this task, CoVs of for-

mants (F2 CoV for “easy” speakers and CoVs of F2 and FD for “average” speakers)

played a critical role in assisting listeners in “telling speakers together.” Forensic

studies [McD04] argue that formant frequency variations have relevant speaker iden-

tification information as they are determined not only by the shape and size of the

vocal tract but also by the speaker’s style of configuring articulators for speech.

In the “different speaker” task, “easy” speakers differed in the CoVs of ampli-
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tude differences of the higher harmonics (H∗4 −H∗2k, H∗2k −H5k) and F0. These were

some of the variability features that described the shared acoustic structure across

speakers in Lee et al. [LKK19, LK19]. These results provide further evidence in

support of our hypothesis that the distance along the shared acoustic structure is

critical for speaker discrimination in the “different speaker” task. Voices that dif-

fered in moving average of acoustic properties, including a combination of mean F0,

lower harmonic amplitudes (H∗1 −H∗2 ), and energy, were difficult for listeners to dis-

tinguish. Moreover, average voices were distinguished by both moving average and

variability (CoVs) features, implying that variations between speakers along moving

average of acoustic properties could be insufficient for listeners to tell them apart,

while variations along feature CoVs assisted listeners in this task. In general, the

measures characterizing hard-to-distinguish voices are known to be important for

speaker characterization (e.g., fundamental frequency and H∗1 − H∗2 correlate with

perceived breathiness [WJ03]), but challenges arise in this task given that it involves

female-only comparisons. In a female-only comparison, there are smaller variations

in F0 and smaller influence of nasality on H∗1 −H∗2 [Sim12].

In summary, it seems that listeners find it easier to “tell speakers together” us-

ing speaker-specific idiosyncrasies, i.e., we can best explain the performance on the

“same speaker” task by the nature and extent of within-speaker variability. In con-

trast, listeners “tell speakers apart” based on differences in features (alternatively,

relative positions) within a shared acoustic structure rather than speaker-specific

features. This implies that “telling speakers apart” relies more on the nature and ex-

tent of between-speaker variability as the differences here are across acoustic features

representing shared variability. Therefore, it should be possible to perform acoustic-

based predictions of which voices will be “easy” or “hard” to “tell apart” using the
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relative positions in the shared acoustic structure. However, similar acoustic-based

predictions about “telling together” different samples of a speaker’s voice might be

challenging, as this would require finding the speaker-specific idiosyncrasies.

One limitation of this work must be noted. The perception experiments used

a homogenous panel of listeners (22 female out of 30 listeners with an age range of

17-21 years old). Hence, these findings may not fully generalize to other populations.

The results presented nevertheless provide a means of investigating the question of

the effects of moderate style-variability on speaker discrimination performance. In

the future, a heterogeneous population will be used for the listeners’ panel.
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(a) read speech – read speech

(b) conversational speech – conversational speech

(c) read speech – conversational speech

Figure 3.2: Distributions as kernel density plots overlaid onto histograms of speaker-
level log-likelihood-ratios (LLRs) for “same speaker” (Lsame) and “different speaker”
(Ldiff) trials represented as probability density functions. Lsame and Ldiff are denoted
with solid (‘–’) and dotted (‘..’) lines, respectively.
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Figure 3.3: The number of speakers that were “easy” versus “average” or “hard,”
as indexed by overall accuracy, for “different speaker” versus “same speaker” tasks.
Columns show the number of speakers who were easy, average, or hard to “tell
together” on the “same speaker” trials, while rows show how difficult the same voices
were to “tell apart” on the “different speaker” trials.
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Figure 3.4: For the “same speaker” task, the absolute loadings/coefficients of the
directions that are closest to the principal components of all speakers in a subset
versus acoustic features. The mean angular separation between groups and each di-
rection is shown above each subplot. The features are represented along the x-axis.
F0: fundamental frequency, F1, F2, F3, F4: the first four formants, CPP : cepstral
peak prominence, H∗1 − H∗2 , H∗2 − H∗4 , H∗4 − H∗2k, and H∗2k − H5k: the amplitude
differences of the harmonics, FD: formant dispersion, SHR: subharmonics to har-
monics ratio, CoV : coefficient of variation.
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Figure 3.5: For the “different speaker” task, the absolute loadings/coefficients of the
directions that are closest to the principal components of all speakers in a subset
versus acoustic features. The mean angular separation between groups and each
direction is shown above each subplot. The features are represented along the x-axis.
F0: fundamental frequency, F1, F2, F3, F4: the first four formants, CPP : cepstral peak
prominence, H∗1 −H∗2 , H∗2 −H∗4 , H∗4 −H∗2k, and H∗2k−H5k: the amplitude differences
of the harmonics, FD: formant dispersion, SHR: subharmonics to harmonics ratio,
CoV : coefficient of variation.
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CHAPTER 4

Style-robust speaker verification systems

In this chapter, the effects of speaking-style variability on automatic speaker verifica-

tion were investigated using the UCLA Speaker Variability database which comprises

multiple speaking styles per speaker. The performance was better when enrollment

and test utterances were of the same style, but it decreased substantially when styles

were mismatched between enrollment and test utterances. This chapter focuses on

reducing the effect of style mismatch when multiple styles per speaker are not avail-

able for training the speaker verification systems.

We hypothesize that entropy can capture acoustic variability due to style varia-

tions. Hence, an entropy-based variable frame rate (VFR) technique was proposed.

Using the VFR technique two approaches for style-robust speaker verification sys-

tems are developed: (i) artificially generating style-variant representations for PLDA

adaptation, and (ii) extracting speaker embeddings which are robust to speaking style

variations using attention-based conditioning. Parts of this chapter were published

in [AGP20].
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4.1 Variable frame rate-based data augmentation

4.1.1 Method

The Kaldi [PGB11] SRE16 recipe was used to develop an x-vector/PLDA ASV sys-

tem [SGS18]. The input acoustic features were 23-dimensional mel-frequency cepstral

coefficients (MFCCs) with a frame length of 25 ms and a frame shift of 10 ms, which

were mean normalized over a sliding window of up to 3 secs. Standard extrinsic data

augmentation (as in the recipe) was applied on the training data for both x-vector

and PLDA.

A widely-used strategy to attenuate within-speaker variability is to train the

PLDA with data for the conditions of variability from each speaker [GMS14, GZE12].

Although this strategy has been mainly used for external sources of variability (e.g,

noise, channel, etc.) [SGS18, GZE12], it could be also applied to deal with speak-

ing style variability. However, a sufficient amount of data is not available in the

UCLA database to train a robust PLDA in this manner. Therefore, a PLDA model

was trained with the training data and the in-domain adaptation (using the ver-

sion provided in Kaldi) was performed with the UCLA database. The experimental

configurations for adaptation will be described in Section 4.1.2.2.

In cases when multiple speaking styles per talker are not available in the training

dataset, a method to artificially generate speaking style-variant representations for

augmentation is required. We propose to use the entropy-based variable frame rate

to generate such variants. The differences across speaking styles can be broadly

categorized into rhythmic variations, including speech rate, long pauses, changes in

the duration of individual sounds, boundary articulation, and prosodic variations.
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However, the latter is directly associated with speaker identity and disentangling

prosody from speech will result in performance degradation. Hence, in this work, we

focus on addressing the effects of rhythmic variations between styles. Specifically, we

propose to generate style-variant speaker representations by applying the entropy-

based variable frame rate approach [YZA04].

4.1.1.1 Entropy Computation

Consider a random variable ν ∈ RK where p(ν), the probability distribution function

(PDF) of ν is a K-dimensional Gaussian. Let µ and Σ be the mean and covariance

matrix of the random variable. The entropy can be calculated as:

H(ν) = −
∫
p(ν) ln p(ν)dν

= −
∫
p(ν)

[
− 1

2
(ν − µ)TΣ−1(ν − µ)− ln |2πΣ|

1
2

]
dν

=
K

2
+

1

2
ln |2πΣ|

(4.1)

To facilitate faster computation and to avoid an ill-posed problem when the

random variable’s covariance matrix is not full rank, the following approximation

is used to calculate the entropy [YZA04]:

H(ν) ≈ K ln
√

2π + ln Tr Σ (4.2)

4.1.1.2 Implementation

The variable frame rate approach dynamically changes the frame rate based on

between-frame entropy using the steps shown in Figure 4.1. First, a signal is win-
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Hamming window of 25 ms and
2.5 ms frame shift (oversampled)

Extract mel-filter spectrum

Initialize buffer for 30 ms
mel-filter spectrum sequence

Compute the entropy curve every 15 ms

Set frame picking thresholds
T1 − T3 using the signal statistics

Pick frame shift based on H(νi) as:
5, 7.5 ms (more samples than

the 10 ms frame shift MFCCs),
10 ms and 12.5 ms (less samples)

Figure 4.1: Overview of the entropy-based variable frame rate approach.

dowed using 25 ms Hamming window by first sampling with frame shift of 2.5 ms,

a much lower value than the widely-used 10 ms frame shift. With these densely

sampled, or “oversampled” frames, varying the frame rate becomes a simple task

of retaining frames selectively. Mel-filter spectra are then computed. The frames

spanning a duration of 30 ms are then used to calculate the entropy curve using the

local entropy every 15 ms. VFR was carried out by comparing the signal’s entropy

to certain thresholds in order to calculate the frame picking rate in the extraction

of MFCCs. Using the entropy curve of the speech signal H(νi), i = 1, ..., N , the

frame-picking thresholds T1, T2, T3 are set as in Equation 4.3.
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T1 = ω1Mmax + (1− ω1)Mmed

T2 = (1− ω2)Mmax + ω2Mmed

T3 = (1− ω3)Mmed + ω3Mmin,

(4.3)

where ω1, ω2, and ω3 are weighting parameters of values 0.7, 0.8, and 0.5, respectively.

Mmax, Mmed, and Mmin, are the maximum, median, and minimum of the entropy

curve, respectively. The values of the weighting parameters were chosen empirically.

In this implementation, the x-vector extractor is trained using a frame shift of 10 ms.

Hence, frame rates of 5 ms (H(νi) ≥ T1) and 7.5 ms (T1 > H(νi) ≥ T2) are used to

obtain more frames from the regions where the signal has rapid changes of informa-

tion. A 10 ms frame shift is used when entropy is close to average (T2 > H(νi) ≥ T3).

Whereas the frame rate is 12.5 ms (T3 > H(νi)) when the signal has low information

gain, so that we obtain lesser frames from the region.

Recall that we aimed at reducing the effects of some of the key differences across

speaking styles such as speech rate, long pauses, changes in the duration of individual

sounds, and boundary articulation. These variations can be captured by between-

frame entropy. For instance, fast speech rate, short pause, or incomplete word final

stops (/b/, /t/) can lead to a rapid change of information in spectral characteristics

between frames resulting in a high between-frame entropy. On the other hand, a

decrease in speech rate, long pauses or an increase in the duration of an individ-

ual sound could result in a low between-frame entropy. Hence, we hypothesize that

extracting features by changing between-frame entropy could, in-turn, result in gen-

erating different style variants and hence compensate for the effects of spectral and

temporal variations from style variability through augmentation.
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Based on this hypothesis, VFR was used to generate style-variant utterance rep-

resentations. This approach is expected to be more robust than varying the speaking

rate of the entire utterance because the variations within an utterance and within

speaking style are not always uniform and can vary based on speaker characteristics,

context of the conversation, emotion, interlocutor, etc [LBS19].

4.1.2 Experimental Setup

4.1.2.1 Database Statistics

A randomly selected subset of 50 female and 50 male speakers from the UCLA

database was set aside as the “development set”. The remaining subset of 50 female

and 50 male speakers was used as the “evaluation set”. The evaluation set was

further split into “enrollment” and “test” set.

In order to analyze the effect of style variability on system performance, the

effect of phonetic variability across utterances needs to be negligible. Based on

studies [HSH13] reporting that 30-sec utterances cover enough phonetic variability

to capture speaker-specific information, 30-sec long speech samples were used both

for enrollment and test utterances. Table 4.1 shows the number of speech samples

from the UCLA database used in this experiment. Note that at least 1 min of

speech is required per speaker to generate style-matched enrollment – test utterance

pairs. Because the majority of speakers in the UCLA database did not have enough

speech in the narrative and pet-directed speaking styles, style-matched conditions for

those styles were omitted. This resulted in 23 different evaluation combinations. All

possible trials were generated for the five styles, which resulted in more non-target

trials than target trials. The recordings from the UCLA database were downsampled
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to 8 kHz during the ASV experiments to match the sampling rate of NIST SRE and

Switchboard databases that were used for training the ASV systems.

Table 4.1: Number of utterances distributed across each set used in VFR data aug-
mentation for the UCLA database.

Style read instructions narrative conversation pet-directed

Development 196 100 36 184 19
Enroll 102 104 35+ 99 16+

Test 101 104 35+ 88 16+

+ Same enroll and test utterances.

4.1.2.2 PLDA Adaptation Configurations

The PLDA trained on SRE and Switchboard data is adapted using the development

set from the UCLA database. Recall that the major focus here is data augmenta-

tion using VFR for PLDA adaptation. Hence, we designed five different adaptation

configurations to experimentally analyze the advantages of the proposed technique:

Baseline: In-domain data with a single speaking style, the same as that of the

enrollment set, is used (development set size X).

Extrinsic augmentation: Extrinsic variability is added using artificial data aug-

mentation (development set size 5X). The implementation here is similar to the

one in x-vector training [SGS18], but we use all the extrinsic variants and not a

subset. We add music, noise and babble from the MUSAN corpus [SCP15] and

reverb by convolving with simulated room impulse responses [KPP17].

VFR: Entropy-based VFR is applied to the development data (development set

size X). This generates style-variant development set.
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[Proposed] VFR augmentation: Both the original representations of the de-

velopment data and their style-variant counterparts, obtained by performing VFR,

were used (development set size 2X)1.

Multi-style: Multiple speaking styles from the in-domain data were used (devel-

opment set size 4X).

In the baseline, extrinsic augmentation, VFR, and VFR augmentation configura-

tions, the speaking style used in the development set matched that of the enrollment

utterances. For instance, when enrolling with read and testing with other styles, the

development set for PLDA adaptation contained only read sentences. In contrast,

all styles in the development set were used in the multi-style configuration.

The baseline configuration was used to assess the effects of speaking style variabil-

ity on ASV performance, as well as to establish baseline performance to be compared

with the other configurations.

The extrinsic augmentation configuration represents standard techniques [SCP15,

KPP17] that increase the amount of data, and it was used to understand how the

proposed VFR data augmentation performs in comparison. The VFR configuration

was used to analyze the effectiveness of style-variants with the VFR approach and also

to assess if style-variants alone would be enough to compensate for style variability.

Note that the multi-style configuration is the best-case scenario, but it is not realistic

to assume that one can obtain all speaking styles for each speaker.

1We experimented with VFR augmentation of size 3X, 5X, and 7X and did not find a significant
improvement over 2X.
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4.1.3 Results and Discussion

System performance in terms of the EER for the UCLA database is shown in Ta-

ble 4.2. Statistical significance was verified using McNemar’s test [McN47]. Unless

mentioned explicitly, all performance differences reported in this section are signifi-

cant with p < 0.05.

In the baseline, a style-mismatch between enrollment and test utterances con-

sistently degraded ASV performance compared to their style-matched task. For

instance, when enrolled with conversational speech, the style-matched task (con-

versation – conversation) had an EER of 0.57%. The performance degraded for

style-mismatched tasks resulting in EERs of 3.03%, 3.24%, 2.96%, and 22.12% for

conversation – read, conversation – instructions, conversation – narrative, and con-

versation – pet-directed pairs, respectively.

The second configuration of extrinsic augmentation performed slightly better than

the baseline in 9/23 tasks, especially for pet-directed speech which had fewer utter-

ances for adaptation and hence, the increase in the amount of data from augmenta-

tion could explain the improvement. On the other hand, the extrinsic augmentation

performed worse than the baseline in 6/23 tasks. Interestingly, these were the tasks

with reading or conversational speech as the development set. These styles had more

utterances than others. The standard augmentation techniques used in the extrinsic

augmentation setup merely increased the amount of data and might not have been

sufficient to address style-variability.

VFR was better than the baseline in 10/23 tasks, the same in 6/23 tasks, and

worse in 7/23 tasks. This inconsistency in performance gains between the two setups

may be due to: (i) the style variant from VFR only partially addressed style variabil-
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Table 4.2: Performance in terms of EER (%) on the UCLA database. In the baseline,
extrinsic augmentation, VFR, and VFR augmentation configurations, the speaking
style used in the development set matched that of the enrollment utterances. All
styles in the development set were used in the multi-style configuration. The best
result in each condition with improvements over other configurations is boldfaced. If
denoted by a ‘*’ the difference from the baseline is not statistically significant.

Development and Test style
Enroll style read instructions conversation narrative pet-directed

B
a
se

li
n

e read 0.98 1.91 2.25 2.20 15.87
instructions 2.89 0.09 4.67 1.82 23.53

conversation 3.03 3.24 0.57 2.96 22.12
narrative 0.63 0.91 1.09 NA 11.76

pet-directed 18.75 18.24 10.00 14.57 NA

E
x
tr

in
si

c
a
u

g
.

read 0.98 1.91 3.37 1.89 12.50
instructions 3.85 0.22 3.30 1.52 23.53

conversation 4.04 3.92 1.14 2.70 18.75
narrative 0.63 0.91 1.09 NA 11.76

pet-directed 12.50 17.65 10.00 13.73 NA

V
F

R

read 0.98 1.47 3.37 1.89 18.75
instructions 1.92 0.08* 3.30 1.22 23.53

conversation 3.03 4.90 1.14 2.27 18.75
narrative 0.48 0.91 1.09 NA 11.76

pet-directed 12.50 17.65 13.33 15.69 NA

V
F

R
a
u

g
.

read 0.98 1.91 2.62 1.29 12.50
instructions 1.92 0.07* 3.30 1.52 23.53

conversation 2.69 3.27* 0.38 2.27 18.75
narrative 0.63 0.91 0.55 NA 11.76

pet-directed 12.50 15.20 14.44 12.64 NA

Test style
Enroll style read instructions conversation narrative pet-directed

M
u

lt
i-

st
y
le

read 0.98 0.95 2.25 1.26 12.50
instructions 1.92 0.22 4.40 1.52 18.82

conversation 2.02 2.94 1.14 2.27 12.50
narrative 0.63 0.91 0.73 NA 11.76

pet-directed 12.50 13.24 13.33 15.59 NA

ity (ii) the VFR variant was only applied to development data and not to enrollment

and test data. We did not apply VFR to enroll and test utterances because it would

result in the loss of speaker-specific information.

The proposed approach of entropy-based VFR augmentation performed better

53



than the baseline in 13/23 tasks. The most notable improvement was seen when

the testing was on pet-directed speech (read – pet-directed and conversation – pet-

directed) which is often characterized by exaggerated prosody. However, for two

tasks, read – conversation and pet-directed – conversation, the proposed approach

did not improve the results compared to the baseline.

When compared to VFR, the proposed approach showed significant improvement

in 10/23 tasks. The performances were the same in 9/23 tasks. There was a degra-

dation in performance of the proposed approach for 4/23 tasks.

The proposed approach was better than extrinsic augmentation in 11/23 tasks

and the same in 11/23 tasks. The proposed approach was generally better even if it

used less data than extrinsic augmentation. This result verifies the hypothesis that

VFR, in fact, improved the ASV performance by providing style-variant utterance

representations and not by simply increasing the number of samples seen by the

PLDA classifier. However, in the pet-directed – conversation task the proposed

approach was worse than using extrinsic augmentation.

The multi-style configuration had more style information available in the develop-

ment set as compared to the proposed approach (VFR aug.), still, their performances

were comparable. Their performances were the same in 9/23 tasks, 5/23 tasks VFR

aug. was better, and multi-style was better in 9/23 tasks. These findings support

the hypothesis that VFR methods can be used as a data-augmentation technique

when multi-style data are limited. One of the tasks where VFR aug. was better

than multi-style was a style-matched task of conversation – conversation. There

are probably variations within a speaking style that could be compensated by the

style-variant augmentation approach.
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4.2 Attention-based conditioning

Section 4.1 addressed the issue of speaking style variability by using an entropy-

based variable frame rate (VFR) technique to perform data augmentation. Entropy

inherently captures spectral and temporal variations across different styles [AGP20,

RPA19]. Thus, by applying VFR, style-variant speaker representations were ob-

tained. However, that work involved data augmentation on the PLDA backend.

In contrast, this section focuses on the embedding extractor instead of the PLDA

backend to make the ASV system robust to speaking style variations.

Typically, speaker embedding extraction includes training a deep neural network

for speaker classification and using the bottleneck features as speaker representations.

Such a network has a pooling layer to transform frame-level features to utterance-level

by calculating statistics over the frames, weighing them equally. On the other hand,

self-attentive embeddings perform weighted pooling such that the weights correspond

to the importance of the frames in a speaker classification task. This work aims to

extract speaker embeddings robust to style variations. Entropy can capture acoustic

variability due to such style variations. Hence, an entropy-based variable frame rate

output is proposed as an external conditioning vector for the self-attention layer to

provide the network with information to compensate style effects.

4.2.1 Method

The proposed method includes self-attentive statistical pooling with an entropy-

based VFR conditioning for style-robust speaker verification. This approach uses an

x-vector/PLDA framework.
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Figure 4.2: Self-attentive statistics pooling with VFR conditioning.

The inputs to the x-vector/PLDA system [SGS18] are 30-dimensional mel-frequency

cepstral coefficients (MFCCs) using a 25 ms frame length and a 10 ms frame shift.

The MFCCs are mean normalized over a sliding window of up to 3 secs. Extrinsic

data augmentation of noise and reverberation [SGS18] was applied to the training

data.

4.2.1.1 Network architecture

The network architecture of the proposed method is shown in Figure 4.2. It builds

upon the network structure from x-vectors. Layers l1 to l5 operate at the frame-level,

with a small temporal context centerd at the current frame t.

l1 operates on frames (t − 2) to (t + 2), followed by l2 which operates on the

output l1 at time steps {t− 2, t, t+ 2} and finally l3 operates on the output of l2 at
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time steps {t− 3, t, t+ 3}. Layers l4 and l5 do not add temporal contexts, resulting

in a total temporal context of fifteen frames. The pooling layer uses self-attention

with conditioning vector, c(xt) providing weighted statistics. The output of pooling

is propagated to the fully connected layers l6 and l7 and to the softmax output

layer. The network is trained to classify speakers using cross-entropy. ReLUs are

used as non-linearities. The output of the affine component of l6 is used as speaker

embedding and sent to the PLDA backend.

4.2.1.2 Self-attentive pooling

As described earlier, self-attentive pooling learns weights to maximize the speaker

classification performance during training, resulting in better speaker representa-

tions. Let the input to the pooling layer from hidden layer l5 at frame t be ut.

Self-attention [CDL16] calculates attention scores αt for each frame providing us the

weighted average (µ̃) and the weighted standard deviation (σ̃) of ut:

αt = softmax(WT
2 f(W1ut + b1) + b2) (4.4)

µ̃ =
T∑
t=1

αtut (4.5)

σ̃ =

√√√√ T∑
t=1

αtut � ut − µ̃� µ̃ (4.6)

where � is the Hadamard product; W2 and W1 are the weight matrices for the

attention layer and b1 and b2 are biases for attention; f(.) is a non-linear activation

function, a sigmoid in this case.
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4.2.1.3 External conditioning: Variable frame rate

The entropy-based VFR discussed in Section 4.1.1.1 is used to extract a conditioning

vector for the self-attention network. Using the output from the thresholding stage

in Figure 4.1, we create a vector z(x) composed of 1’s and 0’s where 1 indicates that

the frame is to be picked and 0 indicate that the frame is to be skipped. We compare

the entropy, H(νi) with thresholds from Equation 4.3 and pick every rth frame from

z(x) where r is a multiple of the 2.5 ms frame shift:

r =



2, if H(νi) ≥ T1

3, if T1 > H(νi) ≥ T2

4, if T2 > H(νi) ≥ T3

5, if T3 > H(νi)

(4.7)

The number of frames set to 1 is proportional to entropy. When the entropy is

high, more frames are selected, and fewer frames are selected when the entropy is

low. Thus, equalizing the entropy across the utterance. This “oversampled” (4 times

that of MFCCs) vector z(x) is reduced by calculating a sum over every 4 frames to

obtain the conditioning vector c(x),

c(x4i) =
4∑
j=1

z(x4i+j) , i = 0, 1, . . . ,
N

4
(4.8)

Recall, that we focus on compensating for the rhythmic variations between styles

i.e, speech rate, long pauses, changes in the duration of individual sounds and bound-

ary articulation. As discussed in Section 4.1.1.2, these variations can be captured by
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between-frame entropy. Hence, we hypothesize that an entropy-based conditioning

vector may implicitly represent spectral and temporal variations in style and thereby

provide self-attention with information to compensate for style effects.

4.2.1.4 Conditional Attention

As mentioned earlier, VFR is used as a conditioning vector for the speaker em-

beddings, c(xt) in self-attentive pooling by updating f(ut) in Equation 4.4 with

f(ut, c(xt)). There are multiple possibilities for adding the conditioning vector

and three such methods are explored: concatenation, gating, and affine transfor-

mation [MBP19].

Conditioning by concatenation: The conditioning vector is concatenated with

the output of l5, adding extra dimensions to ut. These new dimensions carry in-

formation about the signal’s entropy. || indicates concatenation, Wc is the weight

matrix, and bc is the bias vector. Hence, updating self-attention as:

fc(ut, c(xt)) = tanh(Wc[ut||c(xt)] + bc) (4.9)

Conditioning by gating: A gating mechanism is used to learn a feature mask

from c(xt) and apply it to ut the output of the hidden layer (l5) before pooling, ut,

t = 1, . . . , T . A sigmoid is used for the mask to generate values between 0 and

1. As the VFR output conditions gating, frames are selected for pooling based on

signal entropy. Wg is the weight matrix and bg is the bias vector. Hence, updating
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self-attention as:

fg(ut, c(xt)) = σ(Wg(c(xt) + bg)� ut (4.10)

Conditioning using affine transformation: An affine transformation is applied

on the hidden layer (l5) output, ut by using the conditional vector to calculate scaling

γ(.) and shifting β(.). Wγ,Wβ are the weight matrices and bγ,bβ are the bias vectors

for the transformation. Hence, updating self-attention as:

fa(ut, c(xt)) = γ(c(xt))� ut + β(c(xt)) (4.11)

γ(x) = Wγx + bγ, β(x) = Wβx + bβ (4.12)

Two additional methods are studied: (A) concatenation in combination with

gating, and (B) concatenation in combination with affine. Gating is a special case of

affine transformation with shifting factor, β = 0 and scaling factor, γ ∈ [0, 1]. Hence,

those two methods are not combined.

4.2.2 Experimental Setup

As is commonly used, the embedding extractor had 512 nodes in each of l1 to l4, l5 had

1500 nodes, while l6 and l7 had 512 nodes. The self-attention layer had 500 hidden

nodes. The experiments were setup using Pytorch [PGM19] and Kaldi [PGB11]. The

optimizer was Adam [KB17] with a batch size of 128 and trained for 100 epochs. We

train the embedding extractor using the Voxceleb2 dev set.
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4.2.2.1 Database Statistics

To effectively evaluate style-robustness, we require negligible effect from phonetic

variability. As discussed in Section 4.1.2.1, we use 30 sec long speech samples to cover

enough phonetic variability and capture speaker idiosyncratic information. Hence,

1,838 30 sec segments are extracted and the statistics of the subset used are in

Table 4.1. We require a minimum of 1 min of speech per speaker to generate style-

matched trials. However, the majority of the speakers had less than 1 min of speech

for pet-directed speech and affect-matched narrative case. So the style-matched

tasks for those two styles were omitted. Thus resulting in 23 tasks (5 styles in

matched and mismatched conditions except for the style-matched pet-directed and

narrative cases). To match the sampling rate of the other databases used in this set

of experiments, the data were downsampled to 16 kHz.

Table 4.3: Number of utterances distributed across each set used in VFR conditioning
of the UCLA database.

Style read instructions narrative conversation pet-directed

Enroll 200 204 625+ 197 35+

Test 199 204 625+ 174 35+

+ Same enroll and test utterances.

4.2.3 Results and Discussion

4.2.3.1 UCLA SVD Evaluation

Table 4.4 shows the equal error rate (EER) over all style trial combinations for the

UCLA SVD data. The best result in each condition with improvement over the base-

line is boldfaced. If denoted by a ‘*’ it is not statistically significant improvement over
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the baseline. Statistical signficance (p < 0.05) was evaluated using the McNemar’s

test [McN47]. The results of an x-vector baseline is compared with self-attention and

the five conditioning methods.

The baseline x-vector performs better for style-matched conditions than style-

mismatched ones. For instance, in conditions where the data is enrolled with conver-

sational speech, the style-matched condition results in an EER of 0.57%. However,

style-mismatched conditions have EERs of 2.03%, 2.97%, 1.94% and 20% for read,

instructions, narrative, and pet-directed speech, respectively.

To evaluate the need for a self-attention layer, another model is trained with

VFR as weights for statistical pooling. However, as seen in Table 4.4, performance

degrades when using this approach (VFR weights). Thus, VFR by itself may not be

sufficient to provide meaningful weights for each frame.

Self-attentive speaker embeddings provide a statistically significant improvement

over the x-vector baseline in 6/23 tasks and only degrades in the narrative–conversation

task. These improvements are due to representations with better speaker discrimi-

nation capabilities, in agreement with the results in [ZKS18, OKS18].

Compared to the x-vector performance, among the proposed approaches of VFR

conditioning, Combined A (concatenation with gating) results in statistically sig-

nificant improvements in 12/23 tasks, while Combined B (concatenation with affine

transformation) results in statistically significant improvements in 6/23 tasks. Among

the three individual VFR conditioning methods, the concatenation results in statis-

tically significant improvements in 8/23 tasks, gating in 5/23 tasks, and finally affine

transformation in 10/23 tasks. Gating is a special case of affine transformation,

and individually gating performs worse than affine, but when combined with con-
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Table 4.5: Performance using the SITW evaluation set (EER %). The best perfor-
mance in each condition is boldfaced and is a statistically significant improvement
over the baseline. Combined A (concatenation with gating) and Combined B (con-
catenation with affine).

Model Core-Core Core-Multi Assist-Core Assist-Multi

x-vector 3.66 5.87 5.47 6.9
VFR weights 8.17 10.67 10.17 11.82
Self-attention 3.91 6.09 5.51 6.64
Concatenation 3.86 5.83 5.35 6.35

Gating 4.32 6.64 6.25 7.61
Affine 3.91 5.95 5.41 6.58

Combined A 3.69 5.81 5.26 6.54
Combined B 3.91 6.17 5.83 7.16

catenation, it performs better overall. Moreover, the best performing method, VFR

conditioning by concatenation with gating, provided significant improvement over

the self-attentive embeddings in 10/23 tasks and only degraded in conversation–

narrative tasks. In general, VFR conditioning has shown improvement in the case of

style-matched and -mismatched tasks. The most gain was in the case of pet-directed

speech. These results support the hypothesis that including the VFR conditioning

vector in self-attention facilitates the speaker representations to be robust to speaking

style variations.

4.2.3.2 SITW Evaluation

SITW evaluation results are in Table 4.5. The best performance in each case is bold-

faced and is a statistically significant improvement over the baseline. Conditioning

provides improvements over x-vectors in Core-Multi, Assist-Core, and Assist-Multi.

For the Core-Multi and Assist-Core cases, the best performing method is conditioning
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using concatenation with gating. However, in Assist-Multi, conditioning with con-

catenation performs the best. Interestingly, the proposed methods, although aimed

at addressing style-robustness, provide performance improvements in multi-speaker

scenarios.

4.3 Comparison between VFR augmentation and self-attention

conditioning using VFR

To determine the appropriate style-robust method for different applications, in this

section, we compare the VFR augmentation with the self-attention conditioning ap-

proaches.

4.3.1 Database Statistics

To match the experimental setups for both experiments, we use the x-vector setup

from Section 4.2. We then use the same subset of 50 female and 50 male speakers

from the UCLA database that was set aside in Section 4.1.2.1 as the “development

set”. The remaining subset of 50 female and 50 male speakers was used as the

“evaluation set”. The evaluation set was further split into “enrollment” and “test”

set.

4.3.2 Results and Discussion

Table 4.4 compares VFR augmentation with the best performing VFR conditioning

method which is referred to as combined A (concatenation with gating). The results

are in terms of equal error rate (EER) over all style trial combinations for the UCLA
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Table 4.6: Performance using the UCLA database (EER %) with VFR augmentation
and conditioning. The better result in each condition is boldfaced. All reported
differences are statistically significant. Combined A (concatenation with gating).

Enroll Test VFR augmentation VFR conditioning combined A

read

read 0.98 0.98
instructions 0.95 0.95
conversation 3.37 2.25

narrative 0.94 0.94
pet-directed 12.50 12.50

instructions

Read 1.92 1.92
instructions 0.86 0.86
conversation 2.20 2.20

narrative 1.22 1.22
pet-directed 11.76 11.76

conversation

Read 1.01 2.02
instructions 4.90 3.92
conversation 1.14 0.38

narrative 1.62 2.59
pet-directed 12.50 12.50

narrative

Read 0.32 0.63
instructions 0.91 0.91
conversation 0.73 1.09
pet-directed 11.76 11.76

pet-directed

Read 12.50 12.50
instructions 11.76 11.76
conversation 13.33 13.33

narrative 17.65 11.76

SVD data. The better result in each condition is boldfaced. All reported differences

are statistically significant. Statistical significance (p < 0.05) was evaluated using

the McNemar’s test [McN47].

The VFR augmentation and VFR conditioning approaches are comparable in

performance. VFR augmentation performs better than conditioning in 4/23 tasks,

while VFR conditioning performs better than augmentation in 4/23 tasks. The

performances are comparable in the remaining 15/23 tasks.

Given that VFR augmentation does not require any front-end model changes and
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only changes the backend, it is a faster and cost-effective approach to address style

variability. Hence, it could be used in applications that are time-sensitive and/or

require cost-effective updates.

On the other hand, VFR conditioning is easily applicable with other embedding

extractors with pooling layer (for instance, ResNet architectures [ZZW21]). Thus,

this approach can be used when embedding extractors other than x-vectors are being

used. Moreover, the performance of VFR conditioning is more consistent in the case

of exaggerated prosody tasks and hence could be the choice for experiments with

high prosodic variations.

4.4 Chapter Summary

Speaking style variations degrade the performance of ASV systems. We hypothesize

that signal entropy can capture style-related spectral and temporal variations. Hence,

we proposed to use entropy-based VFR in two different ways to develop style-robust

ASV approaches. First, we used VFR to perform data augmentation when multiple

styles were not available to perform an in-domain adaptation of the PLDA classifier.

The ASV performance showed significant improvement in the presence of a speaking-

style mismatch by addressing performance degradation using VFR data augmenta-

tion. The performance of the proposed approach was comparable to the best-case

scenario of having multiple styles available for PLDA augmentation. Second, VFR

was used to condition self-attentive speaker embeddings providing style-robust rep-

resentations. The best conditioning approach, concatenation with gating, results

in statistically significant improvements over the x-vector baseline in 12/23 tasks

and outperforms self-attention in 10/23 tasks. In addition, performance improve-

67



ments on multi-speaker scenarios in SITW evaluation due to the proposed approach

were observed. The simplicity of the proposed method allows for extension to other

embedding extractors that utilize a pooling layer. Finally, VFR augmentation and

conditioning approaches are comparable in performance. Hence, the requirements of

the application (for example, time-sensitivity, low-cost, generalization, data charac-

teristics etc.) will be the key determining factors to chose among the two methods.

Augmentation is useful for time-sensitive and/or low-cost applications, while, the

conditioning approach can be used for other embedding extractors (for example,

ResNet architectures [ZZW21]) or in applications with high prosodic variations.
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CHAPTER 5

Can we learn from human speaker perception

strategies to improve ASV?

In Chapter 1, we reviewed literature that showed differences in human and machine

approaches to speaker discrimination. Subsequent chapters illustrated the effects of

speaking style variability on human and machine speaker discrimination abilities.

In this chapter, we develop ASV algorithms that are inspired by human speaker

perception strategies in an effort to improve ASV performance in the presence of

style variability.

5.1 Method

5.1.1 Human speaker perception model

Chapter 3 modeled human speaker perception for moderate style variability between

read and conversational speech. Our results showed that listeners find it easier to

“tell speakers together” using speaker-specific idiosyncrasies, while listeners “tell

speakers apart” based on relative positions within a shared acoustic structure rather

than speaker-specific features.

This section aims to incorporate this model in the training loss function. Thus,
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we need a loss function that focuses on speaker-specific idiosyncrasies for the “target

speaker” task while using acoustic distances between speakers for the “non-target

speaker” task.

5.1.2 Baseline models

An x-vector/PLDA system [SGS18] is the baseline. Additionally, the best performing

VFR conditioning network from Chapter 4: concatenation with gating, referred to

as “combined A” is also used.

The inputs to the embedding extractor are 30-dimensional mel-frequency cepstral

coefficients (MFCCs) using a 25 ms frame length and a 10 ms frame shift. The

MFCCs are mean normalized over a sliding window of up to 3 secs. Extrinsic data

augmentation of noise and reverberation [SGS18] was applied to the training data.

5.1.3 Loss Functions

5.1.3.1 Cross-Entropy (CE) Loss

A widely-used loss function for training ASV systems, including the x-vector system

is the cross-entropy loss. This function calculates loss for a multi-class classification

problem. CE loss can be calculated as,

LCE = − 1

m

m∑
i=0

log
e(WT

yi
.xi+byi )∑N

j=0 e
(WT

j .xj+bj)
(5.1)

where the xi is the ith training sample, yi is the ground truth speaker label of the

ith training sample, i ∈ {1, . . . ,m}, where m is the total number of training samples.
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W indicates the weight matrix, b is the bias vector. Wj and Wyi are the jth and

yth
i columns of W, respectively. The CE loss is calculated for a total of N speakers.

The CE loss aims at maximizing inter-speaker distances. However, it does not

minimize intra-speaker distances. By maximizing inter-speaker distances, the ex-

tracted embeddings are linearly separable. On the other hand, for the embeddings to

include desirable discriminative features, the loss should also minimize intra-speaker

distances. The embeddings trained on CE loss–maximizing inter-speaker distances–

are equivalent to the human approach of focusing on relative positions within a shared

acoustic structure to “tell speakers apart”. To minimize intra-speaker distances and

implement other aspects of human perception strategies, we need a loss function that

focuses on speaker-specific idiosyncrasies.

5.1.3.2 Cllr Loss

In order to focus on speaker-specific idiosyncrasies without increasing the length of

the training cycles, we chose log-likelihood-ratio cost function (Cllr) [VB07] as a loss

function for training the embedding extractor, referred to as “Cllr loss”.

Cllr is an application independent measure for evaluating soft decisions in ASV

performance. There is a closed-form solution for Cllr [VB07] that provides the Cllr

loss function as follows:

Cllr(θ) =
1

2

(
Ctar(θ)

Ntar

+
Cnon(θ)

Nnon

)
(5.2)

Ctar(θ) =
∑
i∈tar

log2(1 + e−sθ(xi,yi)) (5.3)

Cnon(θ) =
∑
i∈non

log2(1 + esθ(xi,yi)) (5.4)
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where θ represents the model parameters, sθ(xi,yi) is the score from the last layer of

the embedding extractor for speaker yi from input xi, ‘tar’ is a set of target speakers

and ‘non’ is a set of non-target speakers. The two terms in Equation 5.2 represent

the costs for Ntar “target” (Ctar(θ)) and Nnon “non-target” speakers (Cnon(θ)).

Cllr can be interpreted as a measure that is inversely related to information. The

lower the Cllr, the more the average information per trial (in bits) increases. Opti-

mization is performed with the objective to minimize Cllr loss. Cllr loss is calculated

for each minibatch by considering the output of the last linear layer as scores and

using the class labels to define target and non-target speakers.

Thus, Cllr loss minimizes intra-speaker distances by focusing on speaker-specific

idiosyncrasies. This is similar to the human approach to “tell speakers together”.

5.1.3.3 Proposed method: CllrCE loss

Inspired by human speaker-discrimination strategies, we propose to use the combi-

nation of cross-entropy loss and Cllr loss for training ASV systems. In other words,

we aim to combine the approach for “telling speaker apart” and “telling speakers

together” in the loss function to focus on maximizing “inter-speaker” distances and

minimizing “intra-speaker” distances. We thus use a combined loss function referred

to as “CllrCE loss”,

CllrCE(θ) =
1

2
(Cllr(θ) + LCE) (5.5)

Given that the perception model used to derive this loss function is based on

human speaker discrimination strategies in the presence of moderate style variability,
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i.e, between read and conversational speech, we hypothesize that this loss function

will provide the most improvement in conversational speech tasks.

5.2 Experimental Setup

The experimental setup for training and testing the embedding extractor is same as

in Section 4.2.2. Adam [KB17] optimization was used with a batch size of 128 and

trained for 100 epochs. The embedding extractor was trained on the Voxceleb2 dev

set.

The UCLA SVD data and SITW evaluation set were used for testing. The statis-

tics of the UCLA database used is provided in Section 4.2.2.1. The proposed method

was tested on a total of 23 style conditions from the UCLA SVD data. Further it

was tested on four evaluation conditions of the SITW corpus.

5.3 Results and Discussion

5.3.1 UCLA SVD Evaluation

Table 5.1 compares the performance (EER %) of different loss functions on the

UCLA database. The loss functions used are cross-entropy loss (CE), Cllr loss, and

CllrCE loss. These loss functions are used to train the x-vector system and the best

performing VFR conditioning: combined A (concatenation with gating). Statistical

significance was verified using McNemar’s test [McN47]. Unless mentioned explicitly,

all performance differences reported in this section are significant with p < 0.05.

The Cllr loss function by itself does not provide an improvement over the widely-
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used CE loss function in both x-vector and VFR conditioning architectures. However,

when combined with the CE loss, the performance improves in both architectures.

In the x-vector setup, the CllrCE loss provides the best performance in 9/23

conditions. While in the VFR conditioning setup CllrCE loss results in the best

performance in 11/23 conditions.

When compared against their CE counterparts, we can see that the conditions

where the CllrCE loss provides improvements are the ones that include conversation

style. In the VFR conditioning setup, the improvements by using the CllrCE loss

are in read – conversation, instructions – conversation, conversation – narrative, and

narrative–read conditions. While with the x-vector setup, these conditions include

read – conversation, instructions – narrative, conversation – read, conversation –

instructions, conversation – narrative, conversation – pet-directed, pet-directed –

conversation, narrative – read, and narrative – pet-directed. In this case, the im-

provements are with conditions involving conversation and narrative styles (closest

to the conversation style).

The results agree with our hypothesis that using the perception model in training

the ASV system will improve performance in the conversation style. Interestingly, it

also improved performance in some cases of the narrative style, which might resemble

conversational speech.

5.3.2 SITW Evaluation

Table 5.2 presents the performance on the SITW evaluation set using different loss

functions. The loss functions used are cross-entropy loss (CE), Cllr loss, and CllrCE

loss. These loss functions are used to train the x-vector system and the best per-
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forming VFR conditioning: combined A (concatenation with gating). The best per-

formance in each condition is boldfaced and is a statistically significant improvement

over the baseline. The results are reported in terms of EER (%) and also minDCF0.01

values. minDCF evaluates scores produced by the classifier, i.e., soft decisions and

is a calibration independent measure.

The results show that the best performing system in terms of minDCF0.01 values

is the one with combination loss in VFR conditioning setup. However, EER values

of the CllrCE loss in the VFR conditioning setup are slightly worse than the CE

loss counterpart for assist-core and assist-multi evaluations. Overall, the proposed

loss function with the VFR conditioning setup results in the best performance on

the SITW evaluation. Since SITW involves mainly conversational speech, this re-

sult agrees with our hypothesis that the new loss function improves ASV system

performance for conversational styles.

In summary, Tables 5.1 and 5.2 show that the combined CllrCE loss improves ASV

performance, especially in conversational style tasks. Thus, implying that these two

loss functions are complementary where Cllr loss focuses on speaker-specific idiosyn-

crasies and CE loss focuses on the relative distance between speakers in a shared

acoustic space.
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CHAPTER 6

Conclusion

This dissertation examines the speaker discrimination abilities of humans and ma-

chines in the presence of speaking style variability.

6.1 Summary

Chapter 2 presented several databases and features that were used in the experiments

reported in this dissertation. In particular, the UCLA SVD database with multiple

styles per speaker is an important database to systematically examine the effects of

style variability. Other publicly available databases used in this dissertation include

the Speakers in the Wild Database, the NIST SRE and Switchboard databases,

and the Voxceleb database. The features used were the voice quality feature set

motivated by a psychoacoustic model of voice quality [GSG16, KLG21] and Mel-

frequency cepstral coefficients.

Chapter 3 examined the effects of speaking style variations (read speech ver-

sus conversational speech) on human speaker discrimination accuracy. The results

showed that the difficulty of the discrimination task changed with style: the style-

matched read speech – read speech condition was easiest, followed by conversation

– conversation. The style-mismatched condition resulted in the worst performance.
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Moderate speaking style variability affects the “same speaker” task more than the

“different speaker” task. The same speakers were not “easy” or “hard” to distinguish

in the “same speaker” and “different speaker” tasks. Analysis of acoustic variability

suggested that listeners found it easier to “tell speakers together” when they rely

on speaker-specific idiosyncrasies and that they “tell speakers apart” based on their

relative positions within a shared acoustic space. The chapter contributes to our

understanding of the relationship between human speaker perception and the nature

and extent of acoustic variability.

Chapter 4 focuses on automatic speaker verification systems when there is speak-

ing style variability. We analyzed automatic speaker verification (ASV) system per-

formance in both style-matched and style-mismatched conditions. Style-mismatched

conditions resulted in performance degradation. To develop style-robust ASV sys-

tems, we hypothesized that signal entropy could capture style-related spectral and

temporal variations. Thus, two approaches using entropy-based variable frame rate

(VFR) were proposed. The first approach focused on performing data augmenta-

tion when multiple styles per speaker are not available to train the PLDA classifier.

The second approach extracted style-robust embeddings using a self-attentive em-

bedding extractor with VFR conditioning. We evaluated five different conditioning

approaches. The best conditioning approach, concatenation with gating, results in

statistically significant improvements over the x-vector baseline in 12/23 tasks. Fi-

nally, both augmentation and conditioning approaches improved performance in the

style-mismatched conditions and were comparable in performance. The augmenta-

tion approach is more suitable for time-sensitive and low-cost applications. On the

other hand, the conditioning approach can be used in high prosodic variation condi-

tions, as well as when applying these approaches to other embedding extractors (for
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example, ResNet architectures [ZZW21].

Finally, in Chapter 5, we introduce a loss function (CllrCE) that is inspired by

human perception strategies. The Cllr loss by itself focuses on speaker-specific id-

iosyncrasies to “tell speakers together”, while the CE loss focuses on relative acous-

tic distances between the speakers to “tell speakers apart”. The perception model

was derived from moderate style variability between read and conversational speech.

Hence, the CllrCE loss provides the most improvement in conditions with conversa-

tional speech.

6.2 Future Work

The perception experiments used a homogeneous set of listeners (22 female out of

30 listeners with an age range of 17-21 years old). It would be interesting to repeat

the perception experiments with a heterogeneous set of listeners to evaluate the

generalizability of the proposed human speaker perception model.

Preliminary analyses suggested some effects of native language on listener per-

formance. However, the subject pool did not include sufficient listeners who were

non-native speakers of English to perform further analyses. A future perception

study focusing on the effects of native language on listener performance would pro-

vide further insights into human speaker perception.

The VFR conditioning approaches only focus on using a TDNN/x-vector-based

embedding extractor. Given the generalizability of the proposed approach, it would

be interesting to evaluate the performance in other embedding extractors (for exam-

ple, ResNet).
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The perception study only focused on moderate style variability. Since the pro-

posed ASV approach based on human perception strategies provided improvements

only in conversational speech conditions, a perception study of higher variability in

speaking styles might aid in developing more robust ASV approaches.
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