


fication. But little effort has been made in using the i-vectors

for a depression detection task. The main reason is the lack

of large databases to learn the Universal Background Model

(UBM) and the total variability matrix for i-vector extraction.

Some studies have worked around this problem and applied i-

vectors for this task. Oversampling of the data is done in [24]

to extract i-vectors for depression detection. Paula et al. in

[25] perform experiments using MFCCs, Shifted-Delta-Cepstra

(SDC), Rasta Perceptual Linear Prediction Coefficients (PLP),

and spectral and prosodic features as input to an i-vector sys-

tem with feature concatenation for estimating depression level.

Further, experiments in a speaker independent setup are shown

in [26]. A multimodal setup using video features as well with

MFCC based i-vectors is described in [27]. These studies have

shown the potential of i-vectors in improving the depression de-

tection performance.

The rest of the paper is organized as follows. Sections 2

and 3 describe the database and acoustic features used in this

paper, followed by Section 4 which describes the system used

for depression identification. Section 5 presents the results and

a discussion, while Section 6 concludes the paper.

2. Database

The depression database used in this study was developed as

a part of the Experimental Research on Genetic Epidemiology

(CONVERGE) study [28]. The CONVERGE study was de-

signed for a genome-wide association of major depression dis-

orders and thus focused on a few cases with increased genetic

risk for MDD. In order to obtain a more genetically homo-

geneous sample only women were recruited to the study (the

genetic correlation between males and females for depression

is approximately 0.6)[29]. Each subject was interviewed by

a trained interviewer assisted by a computerized assessment.

The diagnoses of depressive (dysthymia and MDD) and anxiety

disorders (generalized anxiety disorder - GAD, panic disorder

with or without agoraphobia) were made with the Composite In-

ternational Diagnostic Interview (Chinese version) [30], which

classifies diagnoses according to the Diagnostic and Statistical

Manual of Mental Disorders fourth edition (DSM-IV) criteria.

The database includes recordings of the interviews from

735 individuals classified as suffering from MDD and 953

healthy individuals. The database is in Mandarin. All the audio

recordings were collected with a sampling rate of 16kHz. There

are a total of 52 hours and 28 minutes of data. A large degree

of phonetic and content variability characterize this database.

3. Acoustic Features

3.1. ComParE 2016 Acoustic Feature Set

The ComParE 2016 feature set has been used in paralinguis-

tics analysis [31] and in previous depression research [27, 32].

This set consists of F0, energy, spectral, cepstral coefficients

(MFCCs) and voicing related frame-level features which are

referred to as low-level descriptors (LLDs). They also in-

clude zero crossing rate, jitter, shimmer, harmonic-to-noise ra-

tio (HNR), spectral harmonicity and psychoacoustic spectral

sharpness. In total, this feature set contains 6373 static fea-

tures resulting from the computation of various functionals over

low-level descriptor contours. These functionals are statistical,

polynomial regression coefficients and transformations on the

low-level descriptors. We used the TUMs open-source openS-

MILE system to extract the ComParE16 features[33] .

3.2. Mel Frequency Cepstral Coefficients (MFCCs)

Mel Frequency Cepstral Coefficient (MFCCs) were extracted

with a window size of 25 ms, a window shift of 10 ms, a pre-

emphasis filter with coefficient 0.97, and a sinusoidal lifter with

coefficient 22. A filter bank with 23 filters was used and 13

coefficients were extracted. Utterances were downsampled to 8

kHz before feature extraction. We also used the first and second

derivatives of MFCCs.

3.3. Voice Quality Features (VQual)

Based on extensive studies on the patterns of variability across

speakers in source spectral shapes and glottal pulse shapes [34],

a spectral model to represent the voice source contribution to

perceived voice quality has been developed [35]. The model pa-

rameters include the fundamental frequency (F0), harmonic-to-

noise ratios, and difference in harmonic amplitudes H1-H2, H2-

H4, H4-H2k where the amplitudes of first, second, and fourth

harmonics, and the harmonic nearest to 2 kHz as H1, H2, H4,

and H2k. This model is perceptually valid in that listeners are

sensitive to the parameters of the model. This set of parameters

account for perceived voice quality (e.g., [36, 37, 38, 39]).

Inspired by this model, a feature set was developed for auto-

matic speaker verification applications. The feature set, denoted

as VQual, comprised of F0, first three formants (F1, F2, F3),

H1-H2, H2-H4, H4-H2k, formant amplitudes A1, A2, A3 and

cepstral peak prominence (CPP, [40]). The formants F1, F2, and

F3 were added to capture the variation in vowel quality which

differs substantially across (and occasionally within) speakers.

CPP, a measure of signal periodicity, replaced the harmonic-

to-noise ratios. This set of features was effectively applied to

automatic speaker verification [41, 1]. The features were ex-

tracted every 10ms using VoiceSauce software [42]. We also

added the features’ first and second derivatives. Even though

the feature set was originally developed to capture speaker iden-

tity, we expect this feature set to provide valuable information

for automatic depression detection as well.

4. System Description

4.1. Gaussian Mixture Models for Classification

To model frame-level features we used Gaussian Mixture Mod-

els (GMMs). We trained GMMs for both the depressed and

non-depressed cases i. e., the Expectation Maximization algo-

rithm is used to cluster the data. After obtaining the GMMs, we

used a maximum likelihood estimator to obtain the similarity of

each test utterance to either class.

4.2. Total Variability Modeling

In the total variability space, the Universal Background Gaus-

sian Mixture Model (UBM) which represents the feature distri-

bution of the acoustic space, is adapted to a set of given speech

frames based on the eigenvoice adaptation technique [43] in

order to estimate utterance-dependent GMM parameters. The

eigenvoice adaptation technique operates on the assumption that

all the pertinent variability is captured by a low rank rectangu-

lar matrix T named the total variability matrix. The i-vector

extraction can be represented as follows:

M = m+ Tv (1)

where m is the mean super-vector of the UBM. M is the mean

centered super-vector of the speech utterance derived using the
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0th and 1st order Baum-Welch statistics. v is the i-vector the

representation of a speech utterance.

In this work, we consider binary classification of classes:

depressed or non-depressed. We followed the approach de-

scribed in [23] to extract the i-vectors considering these two

classes.

4.3. Logistic Regression

Using i-vectors, we performed classification with logistic re-

gression [44]. We learn the regression coefficients from train-

ing data by maximizing the log likelihood. We then applied the

logistic regression algorithm to estimate the probability that a

given utterance belongs to a particular class.

4.4. Fusion of Scores

Since MFCCs and Voice Quality features carry complementary

information we built separate i-vector classification systems us-

ing those features. We then used a score-level (log probability)

fusion approach to combine the results to test for further im-

provements. Here, we linearly combined the scores using the

following equation:

s = αsv + (1− α)sm (2)

where sm and sv correspond to the logistic regression scores

using MFCCs and VQual respectively, α ranging from 0 to 1 is

the coefficient. The scores were scaled to have zero-mean and

unit-variance prior to fusion.

5. Experiments and Results

5.1. The Experimental Setup

The data were split into train and test sets by randomly assign-

ing 70% of the speakers to the train set and 30% to the test set.

After MFCCs and VQual feature extractions, as described in

Section 3, a UBM of 256 mixtures was trained for each feature

set. Followed by total variability matrix calculation, and used it

to extract i-vectors of dimension 600. Since we had an adequate

amount of data available, we trained a UBM using the training

data alone without any data augmentation [24]. The i-vectors

were then classified using a logistic regression model trained

using the i-vectors of the training data. We then linearly added

the scores of MFCCs and VQual feature classifiers to obtain the

score-level fusion results.

For the baseline systems, we trained 256 mixture GMMs.

Thus, we maintained uniformity between the i-vector setup and

the baseline. We also evaluated the performance of the Com-

ParE 2016 setup on the CONVERGE data.

5.2. Results

Results obtained for different classifier setups are summarized

in Table 1. We perform the classification by using the fea-

ture sets individually, followed by using i-vectors for the each

of the feature sets. ComParE16 feature set performed bet-

ter than MFCCs and VQual for classification. It can be seen

that i-vectors improved the accuracies by 26.86%, 29.66% and

7.54% for MFCCs, VQual and ComParE16 features respec-

tively. Thus, proving that i-vectors are able to successfully de-

crease the impact of speaker and phonetic variability in speech.

Also note that VQual i-vectors provided results compara-

ble to MFCC i-vectors, and they improved the performance by

6% (relative) when fused with scores from the MFCC i-vectors

system. Thus, proving our hypothesis that VQual features pro-

vide information complementary to that provided by MFCCs.

In contrast, score fusion did not improve the results in the case

of using features only but rather it worsened it. Note that we

also fused ComParE16 i-vector system with the fused MFCC

and VQual i-vector system. The results remained almost the

same as the fused MFCC and VQual i-vector system. Addition-

ally, we also concatenated MFCC and VQual features and used

them in the i-vector framework. The accuracy from this system

was not on par with the score level fusion system.

It is not always feasible to obtain lengthy speech recordings

from subjects. Hence, we investigated the robustness of the sys-

tem as the length of the input speech is decreased. To do this,

we split the test utterances into smaller segments of 10s, 20s,

30s and 40s and used these segments to perform classification.

Figure 1 depicts the changes in accuracy with test-utterance du-

ration. For these experiments we trained on full segments (1.8

min) and used three different i-vector setups MFCCs, VQual

and score level fusion of MFCCs and VQual. As expected the

overall performance of the classifiers decreased with the de-

crease in the test-utterances duration. But interestingly, we can

see that fusion results continued to outperform the individual

MFCC i-vectors and VQual i-vector systems.

Further, we observe that VQual features when fused with

MFCCs provide a significant improvement. As the duration of

the test utterance decreases this relative improvement increases

from 8% when the complete utterance is provided to 15% when

the test duration is 10s

5.3. Discussion

It is difficult to detect depression using frame-level features. Us-

age of utterance-level information improved the results. This

can be seen in our experiments using i-vectors. Moreover,

this improvement is also due to the normalization in the to-

tal variability space. Thus, decreasing the impact of speaker

and phonetic variability on system performance. Note that even

though, the ComParE16 features include across utterance statis-

tics, the performance improvement is not as much as using i-

vector framework.

Combining the MFCC and VQual features into a single

model by concatenation did not perform as well as the score

level fusion approach. So, we used score-level fusion for our

further experiments.

As expected, both MFCCs and VQual features performed

worse as test utterances became shorter. But, the VQual fea-

tures were able to improve the performance of the system

through score fusion by providing complementary information

to MFCCs. We can continue to detect depression with an ac-

curacy of 77% even when the test utterances were 10 seconds

long and the accuracy is as high as 95% when the test utterances

were 1.8 minutes long.

6. Conclusion

This study proposed the use of voice quality features (VQual),

which account for perceived voice quality, for depression de-

tection. We used the VQual feature set in combination with

MFCCs at the score-level to obtain improvement over each sys-

tem. We showed improved performance when i-vectors are used

for the depression detection, and discussed the robustness of our

setup as the duration of the test utterance decreased.

Future work will include using auto encoders [45] to learn

the most effective features for detecting depression. Addition-
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Table 1: Results on depression detection using different feature sets with and without the i-vector framework. Boldface indicate the

numbers which are the best among all the experiments

Features Precision Recall F1-score Accuracy

MFCCs 0.4070 0.9206 0.5645 0.6272

VQual 0.3614 0.8692 0.5105 0.5792

ComParE16 0.8016 0.8311 0.8161 0.8064

Score Fusion (MFCCs & VQual) 0.3930 0.9346 0.5533 0.6252

MFCC i-vectors 0.8281 0.9860 0.9002 0.8958

VQual i-vectors 0.8807 0.8692 0.8749 0.8758

ComParE16 i-vectors 0.9018 0.8551 0.8778 0.8818

MFCC & VQual i-vectors 0.90175 0.91589 0.90877 0.90782

Score Fusion (MFCC & VQual) i-vectors 0.9263 0.9766 0.9508 0.9479

Score Fusion (MFCC, VQual & ComParE16) i-vectors 0.9193 0.98131 0.94929 0.94589
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Figure 1: Effect of test utterance duration on the performance of the system

ally, as the CONVERGE data is large enough one more inter-

esting analysis would be using deep neural networks to perform

the detection.
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[4] P. A. Vöhringer and S. N. Ghaemi, “Solving the Antidepressant
Efficacy Question: Effect Sizes in Major Depressive Disorder,”
Clinical Therapeutics, vol. 33, no. 12, pp. B49–B61, 2011.

[5] P. Cuijpers, A. Van Straten, E. Bohlmeijer, S. D. Hollon, and
G. Andersson, “The effects of psychotherapy for adult depression
are overestimated: A meta-analysis of study quality and effect
size,” Psychological Medicine, vol. 40, no. 2, pp. 211–223, 2010.

[6] K. B. Wells, R. D. Hays, M. A. Burnham, W. H. Rogers, S. Green-
field, and J. E. Ware, “Detection of depressive disorder for patients
receiving prepaid or fee-for-service care. Results from the Medi-
cal Outcomes Study.” Jama, vol. 262, pp. 3298–3302, 1989.

[7] K. S. Kendler, S. H. Aggen, and M. C. Neale, “Evidence for mul-
tiple genetic factors underlying DSM-IV criteria for major depres-
sion,” JAMA Psychiatry, vol. 70, no. 6, pp. 599–607, 2013.

[8] N. Cummins, S. Scherer, J. Krajewski, S. Schnieder, J. Epps, and
T. F. Quatieri, “A review of depression and suicide risk assessment
using speech analysis,” Speech Communication, vol. 71, pp. 10–
49, 2015.

[9] B. Stasak, J. Epps, and R. Goecke, “Elicitation design for acous-
tic depression classification: An investigation of articulation ef-
fort, linguistic complexity, and word affect,” INTERSPEECH, vol.
2017-Augus, pp. 834–838, 2017.
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