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Abstract

Recent research has demonstrated the usefulness of subglottal resonances (SGRs) in speaker normalization. However, existing algo-
rithms for estimating SGRs from speech signals have limited applicability—they are effective with isolated vowels only. This paper pro-
poses a novel algorithm for estimating the first three SGRs (Sg1; Sg2 and Sg3) from continuous adults’ speech. While Sg1 and Sg2 are
estimated based on the phonological distinction they provide between vowel categories, Sg3 is estimated based on its correlation with
Sg2. The RMS estimation errors (approximately 30, 60 and 100 Hz for Sg1; Sg2 and Sg3, respectively) are not only comparable to
the standard deviations in the measurements, but also are independent of vowel content and language (English and Spanish). Since SGRs
correlate with speaker height while remaining roughly constant for a given speaker (unlike vocal tract parameters), the proposed algo-
rithm is applied to the task of height estimation using speech signals. The proposed height estimation method matches state-of-the-art
algorithms in performance (mean absolute error = 5.3 cm), but uses much less training data and a much smaller feature set. Our results,
with additional analysis of physiological data, suggest the existence of a limit to the accuracy of speech-based height estimation.
� 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Recent research has shown that the subglottal reso-
nances (SGRs) can be used effectively in automatic speaker
normalization algorithms, especially when the training and
testing conditions are acoustically mismatched (models
trained for adults but tested on children, for example), or
when the amount of speaker enrollment data is limited
(Wang et al., 2008a, 2009a). It has also been shown that
0167-6393/$ - see front matter � 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.specom.2012.06.004

q Parts of this article appeared in the proceedings of ICASSP 2011 and
will appear in the proceedings of ICASSP 2012.
⇑ Corresponding author. Address: Electrical Engineering Department,

University of California, Los Angeles, 56-125B Engineering IV Building,
Box 951594, Los Angeles, CA 90095, USA. Tel.: +1 310 729 1135.

E-mail addresses: hari.arsikere@gmail.com, harishan@ucla.edu
(H. Arsikere), garyleung@ucla.edu (G.K.F. Leung), slulich@wustl.edu
(S.M. Lulich), alwan@ee.ucla.edu (A. Alwan).
the second subglottal resonance (Sg2) can be used to adapt
acoustic models trained in a particular language, say Eng-
lish, to a speaker whose enrollment data is in a different
language, say Spanish (cross-language adaptation) (Wang
et al., 2008b). By definition, SGRs are the resonance fre-
quencies of the subglottal (below the glottis) input imped-
ance measured from the top of the trachea. For
measuring SGRs noninvasively, an accelerometer is com-
monly used (Cheyne, 2002; Chi and Sonderegger, 2007;
Lulich, 2010). When held against the skin of the neck at
the location of the cricoid cartilage (which is inferior to
the thyroid cartilage), an accelerometer captures the pres-
sure fluctuations at the top of the trachea, thereby yielding
a frequency spectrum whose peaks occur near the SGR fre-
quencies. However, since the use of accelerometers in many
real-life situations is unfeasible, it is necessary to estimate

SGRs from speech signals in order to use them for tasks
such as automatic speaker normalization and adaptation.
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Hence, motivated by the practical utility of SGRs and the
need to estimate them from speech signals in real time, the
present study focuses on developing an automatic algo-
rithm that can estimate the first three SGRs (Sg1; Sg2
and Sg3) of adult speakers using as little speech data as
possible. In addition, this study applies the proposed algo-
rithm to the task of automatic speaker height estimation
using speech signals. Arriving at an unknown speaker’s
height from speech data can be beneficial to forensics,
automatic analysis of telephone calls and, possibly, auto-
matic speaker identification.

Before trying to understand the existing SGR estimation
algorithms, their limitations and the ways in which the pro-
posed algorithm overcomes them, it is important and use-
ful to take note of the following well-established findings.
(1) The subglottal system and the supraglottal vocal tract
are acoustically coupled through the glottis, causing each
SGR to contribute a pole-zero pair to the speech signal
(Stevens, 1998; Lulich, 2010). These pole-zero pairs inter-
rupt formant trajectories of vowels (diphthongs in particu-
lar), causing frequency discontinuities and amplitude

attenuations (Stevens, 1998; Chi and Sonderegger, 2007;
Jung, 2009; Lulich, 2010). (2) SGRs play a role in defining
vowel feature contrasts in several languages, including
American English (Stevens, 1998; Lulich, 2010), High Ger-
man and Swabian German (Dogil et al., 2011), Standard
Korean (Jung, 2009), and Standard Hungarian (Csapó
et al., 2009; Gráczi et al., 2011). In particular, the first sub-
glottal resonance acts as a boundary between [+low] and
[�low] vowels, while the second subglottal resonance plays
the same role with respect to [+back] and [�back] vowels.
(3) SGRs are roughly constant for a given speaker, regard-
less of the content and the language spoken; however,
SGRs do differ from speaker to speaker (Chi and Sonde-
regger, 2007; Madsack et al., 2008; Wang et al., 2009b;
Jung, 2009; Csapó et al., 2009; Arsikere et al., 2010).

Existing literature on the relations and interactions
between SGRs and formants (Stevens, 1998; Chi and
Sonderegger, 2007; Lulich, 2010; Jung, 2009) suggests
two possible approaches for automatically estimating
SGRs from speech signals: (1) direct estimation based on
detecting the subtle effects of SGRs on vowel formants (fre-
quency discontinuities and amplitude attenuations), and
(2) indirect estimation based on the potential correlations
between SGRs and formant frequencies. Previous research
efforts (Wang et al., 2008a,b, 2009a) have focused on the
automatic estimation of Sg2 and Sg3, using a combination
of both approaches.

In Wang et al. (2008a), an automatic algorithm was pro-
posed for estimating Sg2 and Sg3 in isolated American
English (AE) vowels of adults as well as children. Estima-
tion of Sg2 relied on detecting a discontinuity (or jump)
in the second formant frequency (F2) track; such a discon-
tinuity can usually be observed in back-to-front diph-
thongs—[aI] and [OI]—when F2 approaches and crosses
Sg2 (Chi and Sonderegger, 2007). Given a vowel
token, F2 was first tracked frame-by-frame using Snack
(Sjölander, 1997). Then, the track was inspected for a fre-
quency discontinuity by computing its smoothed first-order
difference and comparing it with an empirically-set thresh-
old (in Hertz). If a discontinuity was found, Sg2 was
estimated as the average of the F2 values constituting the
jump. If no discontinuity was detected, Sg2 was estimated
simply as the token’s average F2. Sg3 was estimated with
the help of the following empirical relation between Sg2
and Sg3, which was derived using a previously-proposed
model of the subglottal airways (Lulich, 2006).

Sg3 ¼ Sg2f�0:3114½log10ðSg2Þ � 3:280�2 þ 1:436g ð1Þ

The algorithm was evaluated indirectly by applying it to
automatic speaker normalization tasks, and its perfor-
mance was found to be dependent on the vowel used. Spe-
cifically, the estimation accuracy was high for diphthongs
[aI] and [OI] but much poorer for other vowels.

The above Sg2 estimation algorithm was improved in
Wang et al. (2008b, 2009a), but was customized to suit chil-
dren’s speech (unlike the above algorithm, which was
applicable to adults as well as children). In Wang et al.
(2008b), a rough Sg2 estimate was first obtained using the
following empirical relation between Sg2 and the third for-
mant frequency (F3) (Lulich, 2010).

Sg2 ¼ 0:636� F 3� 103

Then, the estimate was refined by searching for an F2 jump
within ±100 Hz of the initial estimate, and computing a
weighted average of the F2 values constituting the discon-
tinuity, if a discontinuity was found. This procedure en-
abled reliable detection of the Sg2-induced F2 jump,
especially in the presence of nearby, competing jumps that
could be caused by other factors (e.g. inter-dental spaces)
(Honda et al., 2010). In Wang et al. (2009a), the initial
Sg2 estimate was obtained as in Wang et al. (2008b), but
its refinement relied on locating not only an F2 jump but
also an accompanying attenuation in the second formant’s
energy prominence, a phenomenon which has been shown
to be more robust than F2 discontinuities in indicating sub-
glottal coupling effects (Chi and Sonderegger, 2007).
Although the improved algorithms were more reliable than
the algorithm in Wang et al. (2008a), their performance
was still dependent on the vowel used.

In this study, we develop a completely different
approach to the SGR estimation problem because the pre-
viously-proposed algorithms suffer from the following lim-
itations. (1) The algorithms’ approaches are not suitable
for estimating Sg1 because it can be very difficult to detect
Sg1-induced coupling effects in trajectories of the first for-
mant. It is important to be able to estimate Sg1 because,
like Sg2 and Sg3; Sg1 could play a role in automatic
speaker normalization. (2) The algorithms are not well-sui-
ted to practical applications because: (a) their performance
is data dependent, and (b) they can be applied only to iso-
lated vowels (and not continuous or natural speech). (3)
Detection of subglottal coupling effects requires very accu-
rate formant tracking procedures. As the authors of Wang



Fig. 1. Vowel space of a particular male speaker (part of this study) in the
F1–F2 plane, demonstrating the vowel feature contrasts provided by Sg1
and Sg2. F1 (first formant) is greater than Sg1 for [+low] vowels (empty
symbols) and less than Sg1 for [�low] vowels (filled symbols). Similarly,
F2 is greater than Sg2 for [�back] vowels (circles) and less than Sg2 for
[+back] vowels (triangles).
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et al. (2009a) point out, “Manual verification and/or cor-
rection is applied through visually checking the tracking
contours against spectrograms”, which implies that their
algorithms are not completely automatic.

To address these issues, we propose a novel and fully
automatic algorithm that can estimate the first three SGRs
from continuous speech in a content-independent and lan-
guage-independent manner. However, the focus in this
paper will be on adults’ speech only. While existing algo-
rithms rely on detecting the acoustic events (in speech)
induced by SGRs, the proposed algorithm is based on
the vowel feature contrasts provided by SGRs. Specifically,
Sg1 estimation relies on the distinction it provides between
[+low] and [�low] vowels, while Sg2 estimation relies on
the distinction it provides between [+back] and [�back]
vowels. Fig. 1 shows an example of the feature contrasts
provided by Sg1 and Sg2 F 1 (first formant frequency) is
greater than Sg1 for [+low] vowels and less than Sg1 for
[�low] vowels, while F2 is greater than Sg2 for [�back]
vowels and less than Sg2 for [+back] vowels. Although
there has been some research regarding the division of tense

and lax [�back] vowels by Sg3 (Lulich, 2010; Csapó et al.,
2009), no strong evidence exists either for or against it.
Therefore, Sg3 is estimated simply by exploiting its correla-
tion with Sg2.

1.1. Speaker height estimation

Previous efforts aimed at identifying height-related fea-
tures of speech have been based largely on the assumption
that an anatomical correlation exists between speaker
height and vocal tract length (VTL). In fact, a study using
magnetic resonance imaging techniques (Fitch and Giedd,
1999)—over a wide range of speaker ages and heights—
provides some evidence in favor of this assumption.
Motivated by a fundamental premise of speech production
theory that formant frequencies are inversely proportional
to VTL, several studies have analyzed the correlation
between speaker height and formant frequencies (van
Dommelen and Moxness, 1995; González, 2004; Rendall
et al., 2005); however, no strong correlations have been
reported. A few studies have also investigated the relation
between height and fundamental frequency (F0), but have
found no significant correlation between the two (Gon-
zález, 2004; Künzel, 1989). More recently, Dusan (2005)
has reported the correlations between speaker height and
commonly-used vocal tract features such as Mel-frequency
cepstral coefficients (MFCCs) (Davis and Mermelstein,
1980) and linear prediction coefficients (LPCs); the study
shows that 57% of the variance in height can be explained
using 31 vocal tract features: the first 10 MFCCs, 16 LPCs
and the first 5 formant frequencies. Unlike Fitch and Giedd
(1999), the other studies mentioned above restrict their
data and analyses to adult speakers; thus, they are perhaps
more representative of the height estimation problem that
we investigate in this study.

A few studies have proposed algorithms for automati-
cally estimating speaker height from speech. In Pellom
and Hansen (1997), speech signals were parameterized
using the first 19 MFCCs, and 11 height-dependent Gauss-
ian mixture models (GMMs) were trained using data from
all speakers in the TIMIT corpus (Garofolo, 1988). The
height of a given test speaker was then estimated using
the maximum a posteriori classification rule. With this
approach, the height estimation error was found to be
5 cm or less for 72% of the speakers. However, it should
be noted that the same set of speakers was used for both
training and evaluation. In Ganchev et al. (2010a), an
SVM-based regression model was proposed for height esti-
mation. The model was trained and evaluated using data
from 462 and 168 speakers, respectively, in the TIMIT cor-
pus. Training was accomplished by first extracting 6552
audio features from each utterance, and then subjecting
them to a feature ranking procedure to choose the most rel-
evant subset. The subset consisting of the top 50 features
resulted in the best performance, yielding a mean absolute
error (MAE) equal to 5.3 cm and a root mean squared
error (RMSE) equal to 6.8 cm. The features consisted
mostly of means, standard deviations, percentiles and
quartiles of MFCCs, F0 and voicing probability. In Gan-
chev et al. (2010b), a similar algorithm using a Gaussian
process based regression scheme was proposed to estimate
speaker height in real-world indoor and outdoor scenarios,
and results identical to those of Ganchev et al. (2010a) were
achieved. Although the algorithms in Ganchev et al.
(2010a,b) yield reasonably good results (MAE = 5.3 cm)
using statistical measures of speech features, it is not clear
how such features relate to speaker height.

Despite the correlation between VTL and speaker height,
height estimation using vocal tract information is difficult
because the configuration of the vocal tract changes signifi-
cantly during speech production. Specifically, as evident
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from Dusan (2005) and Ganchev et al. (2010a,b), a large
number of vocal-tract features are required to capture the
correlation between height and VTL. In comparison with
the vocal tract, the configuration of the subglottal system
of a given speaker changes little over time. This is readily
exemplified by the observation that a speaker’s formants
vary much more than his/her SGRs (see Fig. 2). Therefore,
in this paper, we propose a novel approach to height estima-
tion based on the assumption that the ‘acoustic length’ of the
subglottal system is proportional to speaker height. ‘Acous-
tic length’ can be defined as the length of an equivalent uni-
form tube (closed at one end) whose input impedance closely
matches the actual input impedance of the subglottal system.
The above assumption is supported by a recent study (Lulich
et al., 2011) which showed that the first three SGRs can be
modeled as the resonances of a simple uniform tube whose
‘acoustic length’ is approximately equal to the height of
the speaker divided by an empirically-determined scaling
factor. Hence, we attempt to capture the assumed relation-
ship between height and ‘acoustic length’ by modeling the
observed correlation between height and SGR frequencies
(Arsikere et al., 2010; Lulich et al., 2011). In essence, the pro-
posed approach not only has a physiological basis, but also is
more efficient compared to existing techniques in terms of
the number of features required for estimating height.

The rest of this paper is organized as follows. Section 2
describes the databases used in this study. Section 3
explains the procedure for analyzing accelerometer signals
manually, the algorithm for automatically estimating
SGRs from speech signals, and the method for estimating
speaker height using SGRs estimated from speech. Exper-
iments on SGR estimation and height estimation, followed
by their results, are presented in Section 4. Section 5 sheds
light on the limit as to how well speaker height might be
estimated from speech signals, and also compares the
methods proposed in this study with some of our previous
techniques. Section 6 summarizes this paper and presents
the major conclusions.
Tim
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Fig. 2. Spectrogram of a speech signal (from the same speaker as in Fig. 1) su
tracks of the first three SGRs (indicated by arrows) obtained from the corresp
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2. Databases used

The present study comprises four tasks: (1) training the
SGR estimation algorithm, (2) deriving empirical relations
between speaker height and SGRs (for height estimation),
(3) evaluating the SGR estimation algorithm, and (4) eval-
uating the height estimation procedure. To accomplish the
above tasks, data from the following corpora were used:
the WashU-UCLA corpus (Lulich et al., 2010), the
WashU-UCLA bilingual corpus, the MIT tracheal reso-
nance database (Sonderegger, 2004; Chi and Sonderegger,
2004) and the TIMIT database (Garofolo, 1988). Follow-
ing is a brief description of the relevant portions of each
corpus:

� The WashU-UCLA corpus—used for tasks 1 to 3—con-
sists of simultaneous microphone and subglottal acceler-
ometer recordings from 50 adult native AE speakers (25
males, 25 females) aged between 18 and 25 years. Speak-
ers are identified as s9, s10 and so on up to s68 (some
numbers between 9 and 68 were not used). For each
speaker, two word lists were recorded (in separate ses-
sions): one with 14 AE hVd words (‘V’: 9 monoph-
thongs, 4 diphthongs and the approximant [¤]) and the
other with 21 AE CVb words (‘V’: 4 monophthongs
and 3 diphthongs, ‘C’: [b], [d] and [g]). Table 1 shows
the list of vowels recorded along with the corresponding
values of the features [low] and [back]. Although the
vowel [e] is [�low] phonologically (Stevens, 1998), we
consider it to be [+low] acoustically because its average
F1 is greater than Sg1 for most speakers in this study
(for example, see Fig. 1). Every word, embedded in the
carrier phrase, “I said a ___ again”, was recorded 10
times. The start, steady-state and end times of the ‘tar-
get’ vowel were hand-labeled in each recording using
Praat (Boersma and Weenink). All recordings were sam-
pled at 48 kHz and quantized at 16 bits/sample. The cor-
pus also contains self-reported speaker heights in
e (ms)
1000 1200 1400 1600 1800

Sg3

Sg2

Sg1

perimposed with tracks of the first three vocal tract formants (green), and
onding accelerometer signal (red). Clearly, formants vary much more than
as tracked less accurately. (For interpretation of the references to colour in



Table 1
List of vowels recorded in the WashU-UCLA corpus (native English speakers) and the WashU-UCLA bilingual corpus (native Spanish speakers). The
hVd words in American English (AE) were recorded from native English speakers only; the AE CVb words were recorded from all speakers; and the CVb

words in Mexican Spanish (MS) were recorded from bilinguals only. Note that each Spanish vowel is placed below a phonetically-similar English vowel.
For monophthongs, the values of the features [low] and [back] are also indicated.

AE, hVd context i I eI e � A V o u u aI au ¿I ¤
AE, CVb context i e A u aI au OI
MS, CVb context i e a u ai au oi

Feature [low] � � + + +
Feature [back] � � � � +
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centimeters. In this study, only recordings containing
the hVd words were used. Further details of the corpus
can be found in Lulich et al. (2011).
� The WashU-UCLA bilingual corpus—used for tasks 2

and 3—consists of simultaneous microphone and accel-
erometer recordings from 6 adult bilingual speakers (4
males, 2 females) of Mexican Spanish (MS)—their
native language—and AE. All speakers were aged
between 20 and 25 years. Speaker numbers range from
s1 to s6. Each speaker was recorded in two sessions;
one involved recording 21 AE CVb words (identical to
the WashU-UCLA corpus) while the other involved
recording 21 MS CVb words (‘V’: 4 monophthongs
and 3 diphthongs, ‘C’: [b], [d] and [g]). The list of vowels
can be found in Table 1. Spanish words were embedded
in the carrier phrase, “Dije una ___ otra vez” (meaning
“I said a ___ again”). Each word (AE and MS) was
recorded 7 times. All other procedures (labeling, height
recording) and settings (sampling rate, bit resolution)
were identical to those of the WashU-UCLA corpus.
In this study, both AE and MS recordings were used.
� The MIT tracheal resonance database—used for task 3—

consists of microphone and accelerometer recordings
from 14 adults (7 males, 7 females) aged between 18 and
78 years. Males and females are numbered from M1 to
M7 and F1 to F7, respectively. Out of the 14 subjects,
11 were native AE speakers, while M1, M7 and F7 were
native speakers of Canadian English, British English
and Mandarin, respectively. For each speaker, up to 16
dVd and 16 hVd words were recorded 5 times each by
embedding them in the carrier phrase, “ ___, say ___
again”. Details of the recorded material can be found in
Sonderegger (2004). All signals were low-pass filtered to
4.8 kHz, sampled at 10 kHz and quantized at 16 bits/
sample.
� The TIMIT database—used for task 4—contains a total

of 6300 AE sentences, 10 sentences spoken by each of
630 speakers (438 males, 192 females) from 8 major dia-
lect regions of the United States. All signals were sam-
pled at 16 kHz and quantized at 16 bits/sample. The
database also contains speaker heights in feet and
inches. In this study, data from only 604 speakers (431
males, 173 females) were used (as will be explained
below). Further details of the corpus can be found in
Garofolo (1988).
3. Methods
+ - - -
+ + + +
This section explains our methods for (1) manually ana-
lyzing accelerometer signals to obtain SGR measurements,
(2) developing and training the automatic SGR estimation
algorithm and (3) developing the automatic height estima-
tion procedure based on the SGR estimation algorithm.

3.1. Manual analysis of accelerometer signals

For each speaker in the WashU-UCLA corpus, the
WashU-UCLA bilingual corpus and the MIT tracheal res-
onance database, several measurements of the first three
SGRs were made by manually analyzing their accelerome-
ter signals. This was necessary to obtain the actual SGR
frequencies (or ‘ground truth’ values) of each speaker.
The terms actual SGRs and ‘ground truth’ SGRs will hence-
forth be used interchangeably. We first describe our proce-
dure for measuring SGRs in a given accelerometer signal
and then explain how the ‘ground truth’ SGR values were
calculated for each speaker.

All SGR measurements were made from accelerometer
signals of vowel tokens. Given a token of sufficient quality,
the first three SGRs were measured as follows. (1) The
token was down sampled to between 6 and 10 kHz depend-
ing on how noisy the signal was at high frequencies, and
then passed through a standard pre-emphasis filter with a
pre-emphasis coefficient of 0.97. (2) A segment, approxi-
mately four pitch periods in length, was chosen from the
steady-state portion of the token. In case of the two
WashU-UCLA corpora, the choice of the steady-state seg-
ment was guided by the Praat labels. However, in case of
the MIT tracheal resonance database, the segment was
chosen just by visually inspecting the spectrogram. (3)
The discrete Fourier transform (DFT) spectrum, the LPC
spectrum and the estimated wideband power spectral den-
sity (WPSD) (Nelson, 1997) of the chosen segment were
computed, and the prominent peaks in the LPC spectrum
and WPSD were identified using a simple peak-picking
algorithm. The LPC order was varied between 12 and 16
until the envelope underlying the DFT spectrum was repre-
sented satisfactorily. The WPSD can be treated qualita-
tively as a smoothed envelope of the DFT spectrum. It
was obtained, according to the approach outlined in
Umesh et al. (1999), by subdividing the vowel segment into
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several overlapping frames, calculating an autocorrelation
function for each frame after applying a Hamming win-
dow, and computing the DFT of the averaged autocorrela-
tion function. The overlap between successive frames was
fixed at 80% of the frame size, and the frame size itself
was varied between 0.9 and 1.1 times the pitch period such
that the resulting envelope was visually of the best possible
quality. Fig. 3 shows the three spectral representations of a
sample accelerometer segment from speaker s12 in the
WashU-UCLA corpus. (4) Each SGR was measured by
choosing either the LPC peak or the WPSD peak depend-
ing on which of the two provided a more accurate represen-
tation of the envelope. If neither spectral representation
was satisfactory for a particular SGR, the SGR frequency
was not measured. Hence, it is important to note that not
all three SGRs were necessarily measured in every vowel
token chosen for analysis. In general, it was more difficult
to measure Sg1 and Sg3 than to measure Sg2. While the
measurement of Sg1 was sometimes difficult (especially
for high-pitched speakers) due to its proximity to strong
low-frequency harmonics (for example, see Fig. 3), the
measurement of Sg3 was always difficult owing to the
attenuation of high frequencies caused by the low-pass nat-
ure of the neck tissues and skin.

To calculate the ‘ground truth’ SGR values, we first
obtained several SGR measurements for each speaker
using accelerometer signals of vowel tokens. For speakers
in the WashU-UCLA corpus and the MIT tracheal reso-
nance database, monophthong vowels as well as the
approximant [¤] in the hVd word list were analyzed. For
speakers in the WashU-UCLA bilingual corpus, monoph-
thongs in both the AE CVb word list and the MS CVb

word list were analyzed. It must be noted that the tokens
chosen for analysis were not distributed equally across
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Fig. 3. DFT, LPC and WPSD spectra obtained using the steady-state
portion of an accelerometer signal (vowel [i]) recorded from speaker s12 in
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spectral peaks indicate candidates for the measured values of Sg1; Sg2 and
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vowels. Table 2 shows the minimum, maximum and aver-
age number of Sg1; Sg2 and Sg3 measurements obtained
per speaker (for each database analyzed). Sg3 could not
be measured for one speaker (speaker s18 in the WashU-
UCLA corpus). For the bilingual speakers, roughly equal
numbers of measurements were obtained from AE and
MS vowels. Once the measurements were obtained, we ver-
ified if SGRs of a given speaker are invariant to spoken
content and language (shown previously for children, in
Wang et al. (2009b)) by calculating: (1) the within-speaker
coefficient of variation (COV)—defined as the ratio of stan-
dard deviation to mean—of Sg1; Sg2 and Sg3 for each
speaker in the WashU-UCLA corpus and the MIT tracheal
resonance database and (2) the within-speaker, cross-lan-
guage COV (measurements from AE and MS vowels com-
bined) of Sg1; Sg2 and Sg3 for each speaker in the WashU-
UCLA bilingual corpus. Table 3 shows the average per-
centage COVs and the corresponding average standard
deviations for each database. COVs of the order of 2–5%
indicated that the measurements varied very little about
their mean values, thus confirming that SGRs are indeed
‘constant’ for a given speaker. Hence, the ‘ground truth’
Sg1; Sg2 and Sg3 of a given speaker were taken to be the
averages of the corresponding measurements. Table 4
shows the minimum, maximum and average values of the
‘ground truth’ SGRs for each database analyzed. In the
rest of this paper, only the ‘ground truth’ SGRs will be
used (and not the measurements in individual tokens).

3.2. Automatic estimation of SGRs from speech signals

Here, we focus on the first major goal of this study:
automatic estimation of the first three SGRs from speech
signals. Data from 30 speakers (15 males, 15 females) in
the WashU-UCLA corpus were used to develop and train
the SGR estimation algorithm. The training speakers were
chosen such that their actual SGR frequencies were uni-
formly distributed in the ranges of ‘ground truth’ values
shown in Table 4. We first describe our approaches to
the estimation of Sg1; Sg2 and Sg3, and then explain the
algorithm that estimates them automatically from continu-
ous speech.

3.2.1. Estimation of Sg1

Previous studies have shown that Sg1 lies at the bound-
ary of [+low] and [�low] vowels along the F1 dimension
(see Section 1). Motivated by this finding, Sg1 estimation
relied on three main ideas: (1) defining a vocal tract-based
measure of vowel height that can be computed using speech
signals, (2) defining an Sg1-based measure of vowel height
that can be computed using speech and subglottal (acceler-
ometer) signals, and (3) developing a model to predict the
Sg1-based measure from the vocal tract-based measure.
In Syrdal and Gopal (1986), the Bark difference between
F1 and F0 was shown to be a reliable indicator of vowel
height. Based on this finding, an Sg1 estimation algorithm
was proposed in Arsikere et al. (2011a), in which the Bark



Table 2
Minimum, maximum and average number of Sg1; Sg2 and Sg3 measurements across speakers. For bilingual speakers, roughly equal numbers of
measurements were obtained from AE and MS vowels (combined numbers are shown here).

Sg1 Sg2 Sg3

Min Max Avg Min Max Avg Min Max Avg

WashU-UCLA corpus 3 30 15 8 30 15 0 19 7

WashU-UCLA bilingual corpus 15 22 18 16 27 21 3 22 13

MIT tracheal resonance database 6 20 12 9 19 12 1 8 6

Table 3
Average within-speaker percentage coefficient of variation (COV) and standard deviation (r) of Sg1; Sg2 and Sg3. For bilingual speakers, measurements
from both AE and MS data were combined (cross-language COVs and standard deviations).

Sg1 Sg2 Sg3

%COV r (Hz) %COV r (Hz) %COV r (Hz)

WashU-UCLA corpus 5.0 30 2.2 32 2.5 57
WashU-UCLA bilingual corpus 4.5 25 2.3 32 2.7 61
MIT tracheal resonance database 3.7 22 2.1 30 2.2 49

Table 4
Minimum, maximum and average values of the ‘ground truth’ SGRs of speakers in the WashU-UCLA corpus, the WashU-UCLA bilingual corpus and
the MIT tracheal resonance database. The values for males and females are significantly different.

Sg1 (Hz) Sg2 (Hz) Sg3 (Hz)

Min Max Avg Min Max Avg Min Max Avg

WashU-UCLA corpus

Males 492 622 542 1217 1492 1327 2039 2449 2198

Females 580 722 659 1382 1610 1511 2273 2575 2410

WashU-UCLA bilingual corpus

Males 491 556 533 1198 1405 1314 1931 2343 2160

Females 626 658 642 1493 1513 1503 2420 2505 2462

MIT tracheal resonance database

Males 515 567 534 1289 1382 1347 2166 2344 2230

Females 575 681 642 1373 1587 1507 2141 2550 2424
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difference between F1 and F0 was used to predict an Sg1-
based measure of vowel height: the Bark difference between
F1 and Sg1, denoted henceforth as B1;s1. However, a vocal
tract-based measure involving F1 and F0 may be problem-
atic because of two reasons: 1) F1 and F0 can be controlled
fairly independently of each other and 2) reliable estima-
tion of F1 and F0 can be difficult when they are very close
to each other (e.g., [-low] vowels produced by high-pitched
speakers). Therefore, in this study, the Bark difference
between F3 and F1, denoted henceforth as B31, was used
as the required vocal tract-based measure of vowel height.
B31 was chosen because a similar acoustic feature, namely
the Bark difference between F3 and F2, denoted henceforth
as B32, has been shown to be a reliable indicator of vowel
backness (Syrdal and Gopal, 1986; Chistovich, 1985). As
in Arsikere et al. (2011a), B1;s1 was used as the required
Sg1-based measure of vowel height.

In order to develop a model for predicting B1;s1 from B31,
we first obtained formant frequency measurements from
microphone recordings of all 30 speakers in the training
set. For each speaker, the first three formants were mea-
sured in the steady-state regions of 5 tokens each of 9
monophthongs (in the hVd word list); hence, a total of
1350 vowel tokens were analyzed. Wavesurfer (Sjölander
and Beskow, 2000), a speech analysis tool designed using
Snack, was used to obtain formant measurements semi-
automatically; formant tracking parameters were manually
adjusted until the tracking contours aligned satisfactorily
with the spectrograms. Once all the measurements were
obtained, the formant frequencies as well as the actual
SGR frequencies of the training speakers were converted
to Bark values using Eq. (2) (Traunmüller, 1990):

z ¼ ½ð26:81f Þ=ð1960þ f Þ� � 0:53; ð2Þ

where z is the Bark value corresponding to a frequency f in
Hertz. Several definitions of the Bark scale exist (see refer-
ences in Traunmüller (1990)), but the one given by Eq. (2)
offers simplicity in terms of conversion between Hertz and
Bark values, in addition to being as accurate as the other
definitions. Finally, for each of the 1350 tokens analyzed,
the values of B31 and B1;s1 were computed. Fig. 4 shows
normalized histograms of B31 and B1;s1 for [�low] and
[+low] vowels, and also a scatter plot of B1;s1 versus B31.
B31 separates the two vowel categories at approximately
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Fig. 4. Two measures of vowel height—B31 (vocal tract based) and B1;s1 (Sg1 based). (a) Normalized histograms of B31 for [�low] and [+low] vowels; the
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9.5 Bark (Fig. 4(a)) and B1;s1 provides a boundary at
approximately 0 Bark (Fig. 4(b)), confirming that B31 and
B1;s1 are indeed reliable measures of vowel height. More
importantly, as evident from Fig. 4(c), the two measures
are strongly correlated (r = �0.9241), suggesting that B31

provides most of the information required for predicting
B1;s1.

A linear regression (using data from all 1350 tokens)
between B1;s1 (dependent variable) and the first three pow-
ers of B31 (independent variables) resulted in the following
model:

B1;s1 ¼ 0:011ðB31Þ3 � 0:269ðB31Þ2 þ 1:322ðB31Þ þ 2:455:

Although this regression model had a reasonably high r-
squared (r2) value (0.8702), a non-negligible portion of
the variance in B1;s1 (13%) was still not accounted for.
The residual variance was observed to be due to individual
speaker differences. Specifically, when the regression was
performed separately for each speaker in the training set,
the resulting model coefficients showed large spreads in
their values: the coefficients related to the linear term
(B31) and the intercept term—terms with the two largest
weights—were found to have COVs equal to 115% and
162%, respectively. To reduce the inter-speaker variability
involved in predicting B1;s1, two speaker-related features
were used: F3 and F0 (both in Hertz). Steady-state F0 val-
ues of all 1350 vowel tokens used for modeling were ob-
tained automatically using Snack; the ESPS pitch
tracking algorithm was used with a frame length of 30 ms
and a frame spacing of 5 ms. When F3 and F0 (in that or-
der) were added incrementally to the above third-order
regression model, r2 increased from 0.8702 to 0.9255 and
from 0.9255 to 0.9724; the increase in each case was statis-
tically significant (p < 0:001). The updated regression mod-
el, which predicts B1;s1 using B31, F3 and F0, is:

B1;s1 ¼ 0:001ðB31Þ3 � 0:024ðB31Þ2 � 0:737ðB31Þ
þ 0:002ðF 3Þ � 0:007ðF 0Þ þ 3:903: ð3Þ

With the updated model, the COVs of the coefficients re-
lated to the linear term and the intercept term were equal
to 44% and 49%, respectively. Thus, it can be said that
F3 and F0 were successful in reducing inter-speaker vari-
ability. Given F 0; F 1 and F 3; Sg1 can be readily estimated
using Eq. (3).
3.2.2. Estimation of Sg2
Since Sg2 acts as a boundary between [+back] and

[�back] vowels along the F2 dimension (see Section 1),
its estimation, like the estimation of Sg1, relied on three
main ideas: (1) defining a vocal tract-based measure of
vowel backness, (2) defining an Sg2-based measure of
vowel backness, and (3) developing a model to predict
the Sg2-based measure from the vocal tract-based measure.
While B32 was used as the required vocal tract-based mea-
sure (based on the findings in Syrdal and Gopal (1986) and
Chistovich (1985)), the Bark difference between F2 and
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Sg2, denoted henceforth as B2;s2, was used as the required
Sg2-based measure.

In order to develop a model for predicting B2;s2, we com-
puted B32 and B2;s2 for the 1350 vowel tokens that were
used previously for developing the Sg1-estimation model.
Fig. 5 shows normalized histograms of B32 and B2;s2 for
[�back] and [+back] vowels, and also a scatter plot of
B2;s2 versus B32. B32 separates the two vowel categories at
approximately 3.5 Bark (Fig. 5(a))—which agrees well with
the findings in Syrdal and Gopal (1986) and Chistovich
(1985)—and B2;s2 provides a boundary at approximately 1
Bark (Fig. 5(b)), confirming that B32 and B2;s2 are reliable
measures of vowel backness. More importantly, as evident
from Fig. 5(c), the two measures are strongly correlated
(r = �0.9352), suggesting that B32 provides most of the
information required for predicting B2;s2.

A linear regression between B2;s2 and the first three pow-
ers of B32 resulted in the following model (r2 ¼ 0:8905):

B2;s2 ¼ �0:004ðB32Þ3 þ 0:134ðB32Þ2 � 1:958ðB32Þ þ 6:182:

In Arsikere et al. (2011b), Sg2 was estimated using a similar
regression model derived from a smaller training set con-
sisting of 11 speakers in the WashU-UCLA corpus. As in
the case of Sg1 estimation, the residual variance in the
above model (11%) was minimized by using F3 and F0.
When F3 and F0 (in that order) were added incrementally
to the regression, r2 increased from 0.8905 to 0.9429 and
from 0.9429 to 0.9713; the increase in each case was statis-
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tically significant (p < 0:001). The updated regression mod-
el, which predicts B2;s2 using B32; F 3 and F0, is:

B2;s2 ¼ 0:001ðB32Þ3 þ 0:009ðB32Þ2 � 1:089ðB32Þ
þ 0:002ðF 3Þ � 0:007ðF 0Þ � 0:019: ð4Þ

Given F 0; F 2 and F 3; Sg2 can be readily estimated using
Eq. (4).
3.2.3. Estimation of Sg3

Although there has been some research indicating that
Sg3 may lie at the boundary of tense and lax [�back] vow-
els (Lulich, 2010; Csapó et al., 2009), there is not enough
evidence to suggest that the phenomenon occurs consis-
tently in all speakers and languages. Therefore, Sg3 is esti-
mated based on its potential correlation with the other two
SGRs. Using the actual SGR frequencies of the 30 speakers
in the training set, Sg3 was found to be moderately corre-
lated with Sg1 (r = 0.7712) but strongly correlated with
Sg2 (r = 0.9180). This is evident from the scatter plots
shown in Fig. 6. A first-order linear regression between
Sg3 and Sg2 resulted in Eq. (5) (r2 = 0.8427):

Sg3 ¼ 1:079� Sg2þ 763:676; ð5Þ

which was used to estimate Sg3 once an estimate of Sg2 was
obtained using the approach outlined in Section 3.2.2. For
our training set (30 data points), the RMS error between
actual Sg3 and the Sg3 predicted using Eq. (5) (53 Hz),
was much smaller than the corresponding RMS error
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rsus B32 showing that they are strongly correlated (r = �0.9352).



Table 5
Snack parameters for automatic formant track-
ing and pitch tracking (required by the SGR
estimation algorithm).

Parameter Value

Window size 30 ms
Window spacing 5 ms
Window type Hamming
LPC order 10
LPC method Autocovariance
F0 tracking algorithm ESPS
minimum pitch 60 Hz
maximum pitch 400 Hz
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Fig. 6. Scatter plots (30 data points each) of Sg3 versus Sg1 (left) and Sg3
versus Sg2 (right). The solid lines represent first-order linear regression fits
to the data. Sg3 was correlated moderately with Sg1 (r = 0.7712) but
strongly with Sg2 (r = 0.9180).
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incurred using Eq. (1) (275 Hz). Therefore, Eq. (5) is more
reliable than Eq. (1) for estimating Sg3 from Sg2. Next, we
present the automatic SGR estimation algorithm that
incorporates the ideas described so far.

3.2.4. The automatic algorithm
In this study, our goal was to estimate SGRs from con-

tinuous speech. Since formant frequencies and F0 vary con-
siderably over time, the automatic SGR estimation
algorithm warranted a frame-based approach. We now
explain the steps involved in going from a given speech sig-
nal to the estimates of the speaker’s SGRs.

1. Downsample the signal to 7 kHz and pre-emphasize the
high frequencies by passing it through a filter with the
following frequency response.
HðxÞ ¼ 1� 0:96e�jx

Since the first three formants of adult speakers usually
lie below 3.5 kHz (Peterson and Barney, 1952; Hillen-
brand et al., 1995), a sampling rate of 7 kHz suffices
for formant tracking.
2. Track F 0; F 1; F 2 and F3 automatically using the Snack
sound toolkit. The values of the formant tracking
parameters and pitch tracking parameters are shown
in Table 5. The chosen window size (30 ms) covers at
least 2 to 3 pitch periods and the small window spacing
(5 ms) ensures smooth formant tracks. The minimum
(60 Hz) and maximum (400 Hz) pitch values accommo-
date the range of pitch frequencies observed in adults’
speech.

3. Select all voiced frames using Snack’s binary voicing
parameter: the probability of voicing (PV). Snack sets
PV to 1 or 0 depending on whether a given frame is
voiced or unvoiced, respectively. Unvoiced frames need
to be discarded because the fundamental frequency and
formant frequencies (required for SGR estimation) are
not well defined for unvoiced speech.

4. Perform the following sequence of operations for each
voiced frame in the given speech signal. The superscript
k in all the following operations indicates the kth voiced
frame.
� Obtain Bark values corresponding to F 1k; F 2k and
F 3k using Eq. (2).

� Compute Bk
31 and Bk

32.
� Predict Bk

1;s1 from {Bk
31; F 3k; F 0k} using Eq. (3), and

Bk
2;s2 from {Bk

32; F 3k; F 0k} using Eq. (4).
� Recover Sg1k and Sg2k in Bark:
Sg1kðBarkÞ ¼ F 1k � Bk
1;s1;

Sg2kðBarkÞ ¼ F 2k � Bk
2;s2:

� Convert Sg1k and Sg2k from Bark to Hertz by invert-
ing Eq. (2).

5. At the end of Step 4, every voiced frame in the signal is
associated with an estimate each of Sg1 and Sg2. Then,
estimate the speaker’s Sg1 and Sg2 as the averages of the
corresponding frame-level estimates:
Sg1 ¼ 1

Nv

XNv

k¼1

Sg1k;

Sg2 ¼ 1

Nv

XNv

k¼1

Sg2k;

where Nv denotes the total number of voiced frames.

6. Estimate the speaker’s Sg3 by plugging the above Sg2

estimate into Eq. (5).

Steps 1 to 6 are summarized in Fig. 7. It must be noted
that while the regression models for SGR estimation were
trained using formant frequencies and F0 measured in
steady-state vowels, the actual algorithm was designed to
use all voiced frames irrespective of their origin: vowels
(steady-state or otherwise), voiced consonants or transition
regions between voiced and unvoiced sounds. Although
such an approach is bound to yield a few ‘undesirable’
frame-level estimates, natural speech contains enough
vowel segments to skew the averages of frame-level esti-
mates towards the actual (‘desired’) SGR values. Fig. 8
illustrates with an example that the proposed frame-based
approach is effective in estimating Sg1 and Sg2 from con-
tinuous speech. However, it is important to observe that
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Fig. 7. Flowchart illustrating the steps involved in estimating Sg1; Sg2 and Sg3 from a given speech signal.
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the proposed algorithm cannot estimate SGRs from purely
unvoiced speech (e.g., whispered speech).

3.3. Automatic speaker height estimation

Our method for estimating speaker height from speech
signals was motivated by the previously-observed correla-
tion between SGRs and height (Arsikere et al., 2010; Lulich
et al., 2011). As mentioned in Section 1.1, our approach is
physiologically motivated because the correlation between
height and SGRs is believed to be the result of an underly-
ing correlation between height and ‘acoustic length’ (length
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of an equivalent uniform tube whose input impedance
matches that of the subglottal system).

For developing models that predict height from SGR
frequencies, we used the ‘ground truth’ SGRs and self-
reported heights (in centimeters) of all speakers in the
WashU-UCLA corpus and the WashU-UCLA bilingual
corpus (56 in total). Male speaker heights ranged from
165 to 201 cm while female speaker heights ranged from
152 to 175 cm. All three SGRs correlated negatively with
height (see Fig. 9), but Sg2 accounted for more height var-
iance (r2 = 0.68) than Sg1 (r2 = 0.58) or Sg3 (r2 = 0.58). In
contrast, Dusan (2005) reported that 31 vocal tract-based
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features (MFCCs, LPCs and formants) were necessary to
explain 57% of the variance in height. SGRs are therefore
more suitable for height estimation than vocal tract
features.

Using first-order linear regression, the following empir-
ical relations were obtained between speaker height and
SGR frequencies:

h ¼ �0:124� Sg1þ 245:476; ð6Þ
h ¼ �0:078� Sg2þ 282:107; ð7Þ
h ¼ �0:054� Sg3þ 295:659; ð8Þ

where h denotes speaker height (in centimeters). Given a
speech signal, speaker height was estimated by first estimat-
ing Sg1; Sg2 and Sg3 using the proposed SGR estimation
algorithm, and then using Eqs. (6)–(8), respectively.
Although speaker height correlated most strongly with
Sg2, all the above equations were considered for height esti-
mation because our method was affected not only by the
correlations between height and SGRs, but also by the
accuracy of SGR estimation.
4. Experiments and results

4.1. Automatic estimation of SGRs

The proposed automatic SGR estimation algorithm was
evaluated using microphone recordings from 20 speakers
(10 males, 10 females) in the WashU-UCLA corpus
(different from the training set), all 6 speakers in the
WashU-UCLA bilingual corpus and all 14 speakers in
the MIT tracheal resonance database. Two sets of experi-
ments were performed. (1) In order to assess its perfor-
mance with regard to the content spoken, the algorithm
was applied to isolated vowel tokens obtained (using Praat
labels) from the two WashU-UCLA corpora. (2) In order
to assess its ability to estimate SGRs from continuous or
natural speech, the algorithm was applied to complete sen-
tence recordings (carrier phrases) of all three corpora. Both
sets of experiments were useful in analyzing the algorithm’s
performance with regard to language, since the same algo-
rithm was applied to AE as well as MS data. In addition,
since the MIT tracheal resonance database and the two
WashU-UCLA corpora were recorded using different
equipment, our experiments were helpful in analyzing the
algorithm’s reliability under varying recording conditions.

For ease of representation, let us denote actual SGR val-
ues as Sg1a; Sg2a and Sg3a, and estimated SGR values as
Sg1e; Sg2e and Sg3e. The SGR estimation algorithm was
evaluated using two performance metrics: (1) average root
mean squared error (RMSEavg) and (2) average mean-rela-
tive standard deviation (MSDavg). While RMSEavg was
used to quantify estimation accuracy, MSDavg was used
to quantify the consistency of estimation. Denoting the
number of test speakers as Ns and the number of test utter-
ances (isolated vowels or sentences) for the ith speaker as
Mi, the definitions of RMSEavg and MSDavg for the Kth
SGR (K = 1,2,3) are as follows.

RMSEavg ¼
1

N s

XNs

i¼1

RMSEi;

RMSEi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Mi

XMi

j¼1

ðSgKij
e � SgKi

aÞ
2

vuut
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In Eq. (9), SgKi
a denotes the actual value of the Kth SGR of

the ith test speaker. In Eqs. (9) and (10), SgKij
e denotes the

estimated value of the Kth SGR corresponding to the jth
utterance of the ith test speaker. It must be noted that
the definition of RMSEavg is similar to that of the average
within-speaker standard deviations of SGR measurements
(reported in Table 3). Likewise, the definition of MSDavg

resembles that of the average within-speaker percentage
COVs of SGR measurements (reported in Table 3). There-
fore, the values in Table 3 will be used as a rough guideline
for interpreting the results of the SGR estimation
algorithm.

4.1.1. Estimation using isolated vowels

The algorithm was evaluated on: (1) 13 AE vowels in the
hVd word list of the WashU-UCLA corpus (the approxi-
mant [¤] was not used) and (2) all 7 vowels in the AE
CVb word list and the MS CVb word list of the
WashU-UCLA bilingual corpus. Each speaker in the
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WashU-UCLA corpus had 10 tokens per vowel, while each
speaker in the WashU-UCLA bilingual corpus had 21
tokens per vowel.

Fig. 10 shows the overall (males and females com-
bined) RMSEavg and MSDavg corresponding to all the
monophthongs and diphthongs in the WashU-UCLA
corpus. The following two observations can be made.
(1) The algorithm’s performance is slightly vowel depen-
dent; this might be attributed, at least in part, to differ-
ences in the accuracy of automatic formant tracking.
Specifically, it is easier to track formants when they are
fairly ‘steady’ and well separated from one another
(e.g., [e], [�] and [I]) than when two or more of them
are very closely spaced (e.g., [i] and [a]) or rapidly chang-
ing over time (e.g., [I] and [OI]). Nevertheless, the
observed vowel dependence in performance is small
enough to be ignored for practical purposes: RMSEavg

ranges from 24 Hz ([e]) to 32 Hz ([OI]) for Sg1, from
61 Hz ([e]) to 75 Hz for Sg2 ([i]), and from 98 Hz ([u])
to 118 Hz ([OI]) for Sg3. (2) For all three SGRs,
RMSEavg across vowels is of the same order as the aver-
age within-speaker standard deviations shown in Table 3,
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Fig. 11. SGR estimation using isolated vowels: overall RMSEavg and MSDa

WashU-UCLA bilingual corpus. For practical purposes, the performance can
and MSDavg across vowels is comparable to the average
within-speaker percentage COVs shown in Table 3.
Therefore, the algorithm’s performance can be consid-
ered accurate to within measurement error.

Fig. 11 shows the overall RMSEavg and MSDavg corre-
sponding to all the AE and MS vowels in the WashU-
UCLA bilingual corpus. As in the case of the native
English speakers (Fig. 10), the algorithm’s performance
in the case of the bilingual speakers is only slightly vowel
dependent. However, the more important observation here
is that the algorithm is equally accurate and consistent for
AE and MS vowels (with the exception of [au] and, partic-
ularly, [a]) despite being trained using AE data only. This
language independent nature of the algorithm can be attrib-
uted to two factors. (1) Bark differences between vocal tract
formants (B31 and B32), which are essential to the SGR esti-
mation algorithm, do not contain any language-specific
information about vowels; they are simply acoustic mea-
sures of vowel height (B31) and backness (B32). (2) Acoustic
features such as F3 and F0, which provide auxiliary infor-
mation for estimating SGRs, do not vary significantly with
the language spoken (since they carry speaker-related
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vg corresponding to the AE (left) and MS (right) vowels recorded in the
be considered to be language independent.



Table 7
SGR estimation using one sentence of continuous speech: overall
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information). Next, we show that the algorithm is effective
in estimating SGRs from continuous speech.
RMSEavg and MSDavg for the WashU-UCLA bilingual corpus.

Sg1 Sg2 Sg3

AE MS AE MS AE MS

RMSEavg (Hz) 20 18 40 32 100 90
MSDavg (%) 1.2 1.2 0.9 0.9 0.6 0.6
4.1.2. Estimation using continuous speech

The test set consisted of complete sentences from the
WashU-UCLA corpus (140 per speaker), the WashU-
UCLA bilingual corpus (147 in AE and 147 in MS, per
speaker) and the MIT tracheal resonance database
(between 85 and 170 per speaker). All sentences were less
than 2 s in duration.

The first three SGRs were estimated from each sentence
in the test set. Hence, every SGR estimate was obtained
using less than 2 seconds of speech. Table 6 shows the
results—RMSEavg and MSDavg—for the WashU-UCLA
corpus and the MIT tracheal resonance database (sepa-
rated by gender), and Table 7 shows the results for the
WashU-UCLA bilingual corpus (separated by language).
The following observations can be made from Table 6.
(1) Compared to males, females have larger values of
RMSEavg but smaller values of MSDavg (especially in the
case of Sg3). The slightly larger values of females’
RMSEavg might be attributed, at least in part, to the fact
that LPC-based formant estimation is less accurate for
speakers with high-pitched voices (usually females) as com-
pared to speakers with low-pitched voices (usually males)
(Makhoul, 1975). However, this gender dependence in per-
formance is small enough to be ignored for practical pur-
poses. (2) The overall RMSEavg for Sg3 estimation is
approximately 100 Hz. In comparison, Sg3 estimation
using Eq. (1) (which, like Eq. (5), requires an estimate of
Sg2) incurs an overall RMSEavg in excess of 300 Hz. There-
fore, Eq. (5) provides a more accurate model of the relation
between Sg2 and Sg3. From Table 7, it can be observed
once again that the algorithm is language independent.
Also, as observed earlier in Section 4.1.1, the values of
RMSEavg and MSDavg corresponding to all three databases
(Tables 6 and 7) are comparable respectively to the average
within-speaker standard deviations and percentage COVs
reported in Table 3.

The results in Tables 6 and 7 were obtained by providing
the algorithm with one sentence of data (less than 2 sec-
onds) per estimate. To see if the algorithm performed bet-
ter with more data, we estimated the SGRs of every test
Table 6
SGR estimation using one sentence of continuous speech: RMSEavg and MSDa

For practical purposes, the performance can be considered to be gender indep

Sg1 Sg2

Males Females Overall Males

WashU-UCLA corpus

RMSEavg (Hz) 22 32 25 64
MSDavg (%) 1.9 1.4 1.6 1.4

MIT tracheal resonance database

RMSEavg (Hz) 25 30 28 52
MSDavg (%) 2.8 1.3 2.1 2.0
speaker by providing the algorithm with up to 10 sentences
per estimate. Fig. 12 shows the overall RMSEavg and
MSDavg—corresponding to Sg1 and Sg2—as a function
of the number of sentences used for estimation (Sg3 shows
the same trend as Sg2 since it is estimated from Sg2). As the
number of sentences increases from 1 to 10, RMSEavg

decreases slightly (by 11% for Sg1 and 10% for Sg2, on
average), but MSDavg decreases considerably (by 67% for
both Sg1 and Sg2, on average). Therefore, the algorithm’s
performance does improve as the amount of available data
increases. The more attractive feature of the algorithm,
however, is that it performs well even when data is limited
(which can be useful for automatic speaker normalization
and adaptation).
4.2. Automatic estimation of speaker height

To evaluate the proposed height estimation procedure,
we used data from 604 speakers (431 males, 173 females)
in the TIMIT corpus—10 sentences (each between 1 and
4 s in duration) per speaker for a total of 6040 sentences.
The remaining 26 speakers in the corpus were not part of
the evaluation because their heights were outside the range
spanned by the training data (used for deriving Eqs. (6)–
(8)). Given a speech utterance, speaker height was esti-
mated by first estimating Sg1; Sg2 and Sg3, and then using
Eqs. (6)–(8), respectively.

To the best of our knowledge, the height estimation
algorithms proposed in Ganchev et al. (2010a,b) are the
most accurate of all the existing algorithms—they yield
an MAE (mean absolute error) of 5.3 cm and an RMSE
of 6.8 cm over 168 speakers in the TIMIT corpus. To com-
pare the proposed method with the algorithms in Ganchev
et al. (2010a,b), MAE and RMSE were used as the perfor-
vg for the WashU-UCLA corpus and the MIT tracheal resonance database.
endent.

Sg3

Females Overall Males Females Overall

65 61 97 125 104

1.2 1.2 0.9 0.8 0.8

61 57 74 129 101

1.1 1.6 1.3 0.7 1.0
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mance metrics. The following equations were used to calcu-
late MAE and RMSE:

MAE ¼ 1

Ns

XNs

i¼1
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Mi

XMi
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e

�� �� ð11Þ
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where Ns;Mi; h
i
a and hij

e denote the number of test speakers,
the number of test utterances for the ith speaker, the actual
height of the ith speaker, and the height estimate corre-
sponding to the jth utterance of the ith speaker,
respectively.

Depending on the amount of data used for estimating
height, MAE and RMSE were calculated in two different
ways. (1) When one sentence of speech data was used per
height estimate, MAE and RMSE were calculated at the
‘sentence level’. In other words, Mi was equal to 10 (the
number of sentences per speaker) in Eqs. (11) and (12).
The sentence-level metrics will henceforth be denoted as
MAEst and RMSEst. (2) When height was estimated using
a single utterance formed by concatenating all 10 sentences
of a given speaker, MAE and RMSE were calculated at the
‘speaker level’. In other words, Mi was equal to 1 in Eqs.
(11) and (12). The speaker-level metrics will henceforth
be denoted as MAEsp and RMSEsp. MAEsp and RMSEsp

were expected to be smaller than MAEst and RMSEst

because the SGR estimation algorithm (the basis for height
estimation) performed better when data was not limited
(see Fig. 12).

Table 8 lists the sentence-level and speaker-level MAEs
and RMSEs corresponding to automatic height estimation
using Sg1; Sg2 and Sg3. The following observations can be
made from Table 8. (1) Considering the overall (males and
females combined) performance metrics, Sg1 and Sg2 are
almost equally good for estimating speaker height from
speech signals. Despite a stronger correlation between
speaker height and Sg2 (see Section 3.3), Sg1-based height
estimation is superior for female speakers. This could pos-
sibly be because the SGR estimation algorithm is more
accurate in estimating Sg1 than Sg2 (see Tables 6 and 7);
verifying if that is actually the case is difficult because the
actual SGR values of TIMIT speakers are unknown. (2)
Sg3 gives slightly poorer results than Sg1 and Sg2 (espe-
cially for female speakers). This is presumably because
the estimation of Sg3 is indirect, requiring an intermediate
estimate of Sg2. If estimated directly from speech data, Sg3
might be able to estimate height as accurately as the other
two SGRs. (3) The sentence-level metrics are slightly worse
than the corresponding speaker-level metrics, but are still
quite acceptable. This means that the proposed method is
effective even when data is limited. (4) The overall MAEsp

and RMSEsp for Sg2-based height estimation—5.4 cm
and 6.7 cm—are comparable to the results in Ganchev
et al. (2010a,b), while the overall MAEsp and RMSEsp for
Sg1-based estimation—5.3 cm and 6.6 cm—are marginally
better. Although the proposed method is not significantly
better than the best existing algorithms, it is much more
efficient in two respects: (1) amount of training data and gen-

eralizability: Ganchev et al. (2010a,b) trained and evalu-
ated their algorithms on 462 and 168 TIMIT speakers,
respectively (train-to-test ratio = 2.75), while the proposed
method was trained on just 56 speakers in the WashU-
UCLA corpora and evaluated on 604 speakers in the
TIMIT corpus (train-to-test ratio < 0.1); (2) size of the fea-

ture set: Ganchev et al. (2010a,b) used a 50-dimensional
feature vector to estimate height, while the proposed
method used just one feature (Sg1; Sg2 or Sg3).

In addition to MAE and RMSE, the correlation
between actual height and estimated height (or equiva-
lently, between actual height and estimated SGR frequen-
cies) was considered important to the assessment of
height estimation performance. The correlation was fairly



Table 8
Sentence-level and speaker-level MAEs and RMSEs for automatic height estimation using Sg1; Sg2 and Sg3. In comparison, the algorithms in Ganchev
et al. (2010a,b) were reported to yield an overall MAE and RMSE of 5.3 cm and 6.8 cm, respectively.

Using Sg1 Using Sg2 Using Sg3

Males Females Overall Males Females Overall Males Females Overall

MAEst (cm) 5.6 5.0 5.4 5.6 5.4 5.5 5.6 5.9 5.7

MAEsp (cm) 5.5 4.9 5.3 5.5 5.2 5.4 5.5 5.8 5.6

RMSEst (cm) 6.9 6.4 6.8 6.9 6.9 6.9 7.0 7.4 7.1

RMSEsp (cm) 6.8 6.2 6.6 6.8 6.7 6.7 6.9 7.3 7.0
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Fig. 13. Scatter plot of estimated height (using Sg1) versus actual height
(604 data points). The correlation between the two quantities is poor
within gender, suggesting that the proposed method requires further
improvement.
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strong when male and female data were pooled together
(r = 0.71 for all three SGRs), but not when they were trea-
ted separately (r = 0.12 for males, and 0.21 for females, for
all three SGRs), as shown in Fig. 13. In comparison, the
within-gender correlations between ‘ground truth’ SGRs
and height (for data in the WashU-UCLA corpora) were
significantly better: jrj = {0.43 (Sg1), 0.63 (Sg2), 0.57
(Sg3)} for males, and {0.23 (Sg1), 0.48 (Sg2), 0.37 (Sg3)}
for females.

4.2.1. Analysis of height estimation performance

Although the proposed height estimation method yields
satisfactory MAEs and RMSEs within gender (see Table 8),
it needs improvement in terms of the correlation coeffi-
cients between estimated height and actual height. How-
ever, considering that the proposed method is as accurate
as the best existing algorithms while being much more sim-
ple and efficient, it is important to understand why the cor-
relations between estimated and actual height are as poor
as they are, and to find ways in which they can be
improved.

The proposed method estimates speaker height as a lin-
ear function of estimated SGR frequencies. This means, as
mentioned earlier, that the correlation between estimated
and actual height is identical to the correlation between
estimated SGRs and actual height (except for a change in
sign). Naturally, therefore, the within-gender correlations
between estimated and actual height tend to be weakened
by SGR estimation errors. While the proposed SGR esti-
mation algorithm is fairly accurate—errors are comparable
to the standard deviations in measurements (see Sec-
tion 4.1.2)—, it probably needs to be improved further
from the height estimation point of view. It must also be
noted that the proposed algorithm estimates SGRs some-
what indirectly (owing to its dependence on F0 and for-
mant measures), and is constrained to be suitable for
limited-data applications such as rapid speaker normaliza-
tion. More direct approaches (relying explicitly on the
interactions between SGRs and speech signals), or
approaches without data-related constraints, are likely to
be more accurate than the proposed algorithm.

Apart from minimizing SGR estimation errors, a possi-
ble solution for improving the within-gender correlations
would be to develop alternative models between speaker
height and SGRs. Based on the findings in Lulich et al.
(2011), we previously tried using a uniform-tube model
between SGRs and height (Arsikere et al., 2012). Although
the linear models proposed in this paper (Eqs. (6)–(8)) yield
better results than the uniform-tube model (see the discus-
sion in Section 5.2 for details), a first-order linear regres-
sion is probably not the optimal solution. However, since
the amount of data available at present is limited (56
speakers with known heights and SGRs), it is not yet clear
as to what kind of model would be the most appropriate
for height estimation.

While there exist well-defined solutions (at least two) to
improve our present results, algorithms such as those pre-
sented by Ganchev et al. (2010a,b) seem to offer little room
for improvement (mainly because the many features used
by them are not physiologically motivated).
4.2.2. Height estimation from telephone speech
Estimating an unknown speaker’s height from narrow-

band telephone speech can be of importance to forensic
applications (see Pellom and Hansen, 1997). To see if the
proposed method could estimate height using telephone
speech, it was applied to a narrowband evaluation set gen-
erated by filtering TIMIT data (from the 604 speakers used
earlier) with the ITU-T G.712 filter, which has a flat fre-
quency response between 300 and 3400 Hz (ITU-T recom-
mendation G.712, 2001). The resulting MAEs, RMSEs and
correlation coefficients were identical to those obtained for
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wideband (unfiltered) data, confirming that the proposed
method did not suffer any degradation in narrowband con-
ditions. In contrast, the algorithms proposed in Ganchev
et al. (2010a,b) and Pellom and Hansen (1997) are likely
to suffer a performance degradation with filtered speech
owing to their dependence on features derived from spec-
tral envelopes (e.g., MFCCs).

5. Discussion

In Section 5.1, we address the question as to what the
limit might be for estimating speaker height from speech
signals, and in Section 5.2, we compare the methods pro-
posed in this paper with some of our previously-proposed
techniques.

5.1. Height estimation using speech signals: existence of

performance limits

From Section 4.2.1, it is clear that the proposed height
estimation method can be improved further. It is impor-
tant, however, to have an idea of the limit to the accuracy
of speech-based height estimation. To this end, it is neces-
sary to assess the limits defined by vocal tract-based and
SGR-based approaches separately, because these limits
arise from different physiological constraints. From Sec-
tion 4.2, the most important metric for evaluating height
estimation performance appears to be the within-gender
correlations between estimated and actual height. There-
fore, the limit of height estimation accuracy will be assessed
with respect to this metric.

SGR-based approaches require estimates of SGRs in
order to estimate speaker height. Therefore, the maximum
correlations that can be achieved between estimated and
actual height are governed largely by the correlations
between ‘ground truth’ SGRs and actual height. The
WashU-UCLA corpora suggest that these correlations (in
magnitude) are roughly between 0.3 and 0.6, with an average
value of 0.45 (statistically significant, p < 0.05; see Section 4.2
for details). Therefore, it is probably correct to say that the
correlations achievable using SGR-based approaches have
a limiting value close to 0.5 (for the range of speaker heights
encountered in this study). Since this limit probably arises
from physiological constraints, it would also be interesting
to find out what those constraints are, and why the limit can-
not possibly be higher than what it appears to be.

As mentioned in Sections 1.1 and 3.3, SGR frequencies
are determined primarily by the ‘acoustic length’ of the
subglottal system. Physiologically, since the ‘acoustic
length’ is expected to be correlated with the size of the
lungs and the length of the trunk (or torso), SGRs are
likely to be strongly correlated with trunk length. However,
according to physiological data reported in Hrdlička
(1925), trunk length itself appears to be only moderately
correlated with overall body height. Specifically, Hrdlička
(1925) reports that the ratio of trunk length and height is
a function of height itself, and that short speakers (males
as well as females) have larger trunk length-to-height ratios
than tall ones. Such a relationship between trunk length
and height seems to be partly responsible for the weak cor-
relations observed in Fig. 13, with height being overesti-
mated for short speakers and underestimated for tall ones
(for both genders). In essence, SGRs, when estimated well,
may provide accurate estimates of trunk length but only
moderately-accurate estimates of speaker height. In light
of these observations, a value of 0.5 (as mentioned above)
appears to be a reasonable estimate of the limiting correla-
tion for SGR-based approaches.

In contrast to SGR-based methods, vocal tract-based
approaches rely on the correlations between VTL and
height. Fig. 5 of Fitch and Giedd (1999) shows VTL as a
function of height, and Table 5 of the paper reports the
corresponding correlation coefficients separated by gender.
Although the correlations are strong—roughly 0.8 for both
males and females—they result from the fact that the data
spans a wide range of speaker heights within gender. To
enable a comparison with the data used in this study, we
analyzed a subset of the data plotted in Fig. 5 of Fitch
and Giedd (1999) (male speaker heights between 165 and
201 cm, and female speaker heights between 152 and
175 cm). The x- and y-coordinates of the data points were
obtained with the help of the program Tracer, v.1.7

(Karolweski), and the within-gender correlation between
VTL and height was found to be 0.3 for both males and
females (not significantly different from 0.0, p > 0.05). Sim-
ilarly, Rendall et al. (2005) found the correlations between
speaker height and the first four formants of schwa vow-
els—which have relatively open vocal tract configura-
tions—to be less than or equal to 0.3 for females (0.16 on
average), and less than 0.59 for males (0.41 on average;
the correlations were higher among males probably
because the range of male speaker heights in their study
was about 20% smaller than the range of heights in our
data). Note that in the above analyses, the number of
speakers is comparable to the size of our own training data.
For the range of speaker heights encountered in this study,
a value of 0.3 (approximately) appears to be the limiting
correlation for vocal tract-based approaches; this is consid-
erably lower than the corresponding limit for SGR-based
methods.

It therefore appears that the correlations between SGRs
and speaker height determine the limit of height estimation
accuracy, although the limit itself can vary depending on
the range of speaker heights under consideration. Further-
more, it is probably easier to achieve the SGR-based limit
owing to the fact that the subglottal system of a given
speaker, unlike his/her vocal tract, is effectively time
invariant.
5.2. Comparison with previous techniques

Before proceeding to the major conclusions of this
study, it is important to understand how the methods
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proposed in this paper differ from our previously-proposed
techniques.

� Estimation of SGRs – As mentioned in Section 3.2.1,
the Sg1 estimation algorithm in Arsikere et al.
(2011a) differs from the proposed approach in that it
uses a different vocal tract-based measure of vowel
height—the Bark difference between F1 and F0
(instead of the Bark difference between F3 and F1).
When applied to the 20 test speakers in the WashU-
UCLA corpus, the algorithm in Arsikere et al.
(2011a) yields an overall RMSEavg of 27 Hz. In com-
parison, the result given by the proposed algo-
rithm—25 Hz—is better by 7%. The Sg2 estimation
algorithm proposed in Arsikere et al. (2011b) differs
from the proposed approach in that it does not use
F3 and F0 for predicting B2;s2. When applied to the
20 test speakers in the WashU-UCLA corpus, the
algorithm in Arsikere et al. (2011b) yields an overall
RMSEavg of 121 Hz, which, in comparison with the
result given by the proposed algorithm—61 Hz—is
worse by almost 50%. This confirms that F3 and F0
are indeed important to the prediction of B2;s2 and
B1;s1. Finally, as mentioned in Section 3.2.3, the pro-
posed model for estimating Sg3 from Sg2 (Eq. (5)) is
significantly better than the one suggested by Wang
et al. (2008a) (Eq. (1)).
� Height estimation using SGRs – While the proposed

height estimation method uses empirical relations of
the form h ¼ axþ b (h denotes speaker height, x denotes
SGR frequency, and a and b are constants), our previ-
ous approach to height estimation used a uniform-tube
model (Arsikere et al., 2012). The uniform-tube model
comprises empirical relations of the form h ¼ C=x,
where C is a constant incorporating the speed of sound
and an empirical scaling factor relating speaker height
and the ‘acoustic length’ of the subglottal system (Lulich
et al., 2011). Despite being better motivated on physio-
logical grounds, the uniform-tube model of Arsikere
et al. (2012) performed worse than the proposed
method: across 563 speakers in the TIMIT corpus, an
MAEsp of 5.6 cm was achieved using Sg2. The uni-
form-tube model (h ¼ C=x) does not perform as well
as expected, probably because it results in height estima-
tion errors that depend both on SGR estimation errors
and the SGR frequencies themselves: Dh ¼ �C=x2ð Þ�
Dx. In contrast, height estimation errors due to the
proposed linear model are not a function of SGR
frequencies: Dh ¼ a � Dx.
6. Summary and conclusions

In this study, a novel algorithm for automatically esti-
mating the first three subglottal resonances from speech
signals of adults was developed. In addition, the algorithm
was applied to the task of automatic speaker height estima-
tion using speech signals.

Two recently-collected databases comprising simulta-
neous recordings of speech and subglottal acoustics—the
WashU-UCLA corpus and the WashU-UCLA bilingual
corpus—were used to train the SGR estimation algorithm
and the height estimation procedure. Along with the two
WashU-UCLA corpora, the MIT tracheal resonance data-
base and the TIMIT speech corpus were used for evalua-
tion purposes.

SGR frequencies of subjects with accelerometer record-
ings were measured with the help of LPC and WPSD spec-
tra. The SGR measurements of a given speaker showed
very small spreads about their mean values: the average
within-speaker standard deviations of SGR measurements
ranged between 22–30 Hz for Sg1, 30–32 Hz for Sg2 and
49–61 Hz for Sg3. The ‘ground truth’ values (averages of
SGR measurements) of Sg1; Sg2 and Sg3 ranged approxi-
mately between 530–660 Hz, 1310–1510 Hz and 2160–
2460 Hz, respectively. Female speakers had higher SGR
frequencies than male speakers, on average.

Data from 30 speakers in the WashU-UCLA corpus
were used to train the SGR estimation algorithm. Sg1
was estimated with the help of a model trained to predict
an Sg1-based measure of vowel height (B1;s1) from a vocal
tract-based measure (B31) and two speaker-related features
(F3 and F0). Similarly, Sg2 was estimated with the help of a
model trained to predict an Sg2-based measure of vowel
backness (B2;s2) from a vocal tract-based measure (B32),
F3 and F0. Sg3 was estimated using an empirically-derived
first-order linear equation relating Sg3 and Sg2. Given a
continuous speech signal, SGR estimates were obtained
for every voiced frame in the signal and the averages of
the frame-level estimates were calculated. The algorithm
was evaluated on 20 speakers in the WashU-UCLA corpus,
and all speakers in the WashU-UCLA bilingual corpus and
the MIT tracheal resonance database. The algorithm’s per-
formance (in terms of RMSEavg and MSDavg) was found to
be practically independent of vowel content as well as lan-
guage (AE or MS). With less than 2 s of continuous speech
per estimate, the average RMS errors incurred in estimat-
ing Sg1; Sg2 and Sg3 were less than 28, 61 and 104 Hz,
respectively. The algorithm’s performance, particularly its
consistency, improved with the amount of speech data used
for estimation. The proposed algorithm is therefore effec-
tive in estimating the first three SGRs from a limited
amount of continuous speech, in a content-independent
and language-independent manner.

It is important to note that the proposed SGR estima-
tion algorithm is designed to suit real-time limited-data
applications such as rapid speaker normalization and
adaptation. If there is no restriction on the amount of
speech data that can be used, it might be possible to
develop more sophisticated and accurate algorithms for
estimating SGRs.

Speaker height was estimated with the help of empirical
first-order linear relations between height and SGR frequen-



H. Arsikere et al. / Speech Communication 55 (2013) 51–70 69
cies, which were derived using data from speakers in the two
WashU-UCLA corpora. Given a speech signal, speaker
height was estimated by first estimating the SGR frequencies
and then using the empirical relations between height and
SGRs. This procedure was evaluated on 604 speakers in
the TIMIT corpus. With up to 4 seconds of speech, mean
absolute errors of 5.4, 5.5 and 5.7 cm were incurred in esti-
mating speaker height using Sg1; Sg2 and Sg3, respectively;
the errors reduced by 0.1 cm when 30–40 s of speech data
was used. Actual height correlated well with estimated
height when male and female data were pooled together,
but not when they were considered separately (although
the within-gender MAE and RMSE were satisfactory). This
appears to be primarily due to the errors incurred in estimat-
ing SGR frequencies. The within-gender correlations
between estimated height and actual height can probably
be improved up to a certain limit (roughly 0.5) by developing
more accurate SGR estimation algorithms and more appro-
priate models between speaker height and SGR frequencies.
Despite its limitations, the proposed height estimation
method is an improvement over existing algorithms because:
(1) it achieves comparable performance while being much
more transparent (well motivated features), efficient (small
feature set and limited training data) and generalizable (test
corpus much larger than the training corpus); (2) there exist
well-defined solutions to improve it in the future; (3) it can
perform equally well in wideband and narrowband (e.g.,
telephone speech) conditions; and (4) its optimal implemen-
tation is likely to perform better than the optimal vocal tract-
based approach (which is expected to achieve within-gender
correlations close to 0.3 or smaller).
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Sjölander, K., 1997. The Snack sound toolkit. KTH, Stockholm, Sweden.
<http://www.speech.kth.se/snack/>.
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