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Objective Data and methods Results: Human subject data

Measures from high-speed imaging
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Acoustic measure

» H1*-H2*: measured from the audio signals with

Background VoiceSauce software [6].
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Computational model simulation 0| ﬁ' i
» Increases in OQ are widely assumed to be the . R | When MA is relatively small
vsical f ved breathi . ; Generating glottal area waveforms %2 04 o5 08 1 R EE TR e 1ty . . .
physical precursors of perceived breathiness, in par The parametric voice source model in [7] (denoted 0Q 00 » H1*-H2* increases monotonically with increasing OQ
because of consequent increases in H1*-H2" [1]. . (d) Speaker 4 (e) Speaker 5 similar to the observations in Fiqures 3a and 3e).
Empirical studies used electroglottographic (EGG) =E2) was chosen for this study. Figure 8: H17-H2" vs. OQ for speakers 1-5. ( *_H2* vari i th increas )
g q tp . iltared t'g . gl P 9 . » Provides greater glottal pulse shape flexibility than > H1"-H2" varies very little with increasing DG (about 2
ata or inverse-tiitered acoustic signais, and varying the LF model. These varying patterns suggest that the relationship dB). |
levels of correlation between H1*-H2* and OQ have . Allows for direct control of the glottal area pulse between H1*-H2* and phonatory characteristics may be When MA is relatively large
been reported 2, 3]. shape compared to kinematic models. speaker dependent. » H1*-H2* first increases and then slightly decreases

» In the LF model [4] the relationship is expressed as

with increasing OQ.
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H1*-H.2*=-6+O-.27exp(0.055 0Q) [3]. | g Ze;raggters: - » H1*-H2 decreases monotonically with increasing DC
- MbOde“ng Stuqli_SrSO_ not curr.entlytflljll); %Xplaln the (2): The maximum amplitude (MA) of the glottal area | :r : (similar to the human data in Figures 4b and 4e).
observed variability in experimental studies. waveform » Attributes to an increased degree of source-filter
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interaction. OQ (DC) increases — the mean glottal

(3): DC | ' | | | ,
Data and methods e T 0 03 04 Sy 0T o o o area also increases — a higher degree of
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(a) Speaker 1 (b) Speaker 2 (c) Speaker 3 source-filter interaction — the effect of “skewing” the
glottal flow waveform — results in decreased
H1*-H2*.

Human subject data g

» Synchronous audio and high-speed video recordings
of the vocal folds

» Five subjects (4 male + 1 female)
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» Vowel /i/ | | | » Human subject data: the effects of OQ and glottal
» Gradually Change t.helr phonations from preathy to - I N gap size on H1*-H2* may be variable and speaker
| | | | : : : : 0 005 01 015 02 , ,
pressed.g\l/hlle holding FO and vowel quality as steady T AT o w0 @ o w1 s oy o) Soesier 5 dependent. H1*-H2* may increase or decrease with
as possiple time time peaker €) oSpeaKker : : . : . r
Hi Fr)]—s eed imaging: 10,000 frames/sec; a resolution (@) OQ variations (b) MA variations Figure 4: H1™-H2" vs. DC for speakers 1-5 i g.ottal " S|ze,*allovl/|ng nore vanaoily
> fg P QI g- 1V, ! | ' ' of relationship between H1*-H2* and OQ to be
of 208 x 352 pixels 071 . . L . .
P | » Despite this variability, the cases in which glottal gaps observegl. |
s were observed are typically assigned an OQ of 100% ~ Model simulations: supported the observed
Extract glottal area from high-speed recording of 5 ol or close to 100%. variabilities and suggested that this relationship
the vocal folds EB . Thus, the variability in H1*-H2 with varying DC partially depends on mean glottal area (MA), a parameter
02 contributes to the observed variability in the relationship associated with the degree of source-filter interaction
o between H1*-H2* and OQ in previous studies but not directly measurable from high-speed images
i o of the vocal folds.
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