
 

 

 

 

BIRD-PHRASE SEGMENTATION AND VERIFICATION:  

A NOISE-ROBUST TEMPLATE-BASED APPROACH 

Kantapon Kaewtip
1
, Lee Ngee Tan

1
, Charles E.Taylor

2
, Abeer Alwan

1 

1
Department of Electrical Engineering, 

2
Department of Ecology and Evolutionary Biology, 

University of California, Los Angeles, California, USA 
 

kkaewtip@ucla.edu, tleengee@ee.ucla.edu, taylor@biology.ucla.edu, alwan@ee.ucla.edu 

 

 

ABSTRACT 

In this paper, we present a birdsong-phrase segmentation and 

verification algorithm that is robust to limited training data, 

class variability, and noise. The algorithm comprises a noise-

robust, Dynamic-Time-Warping (DTW)-based segmentation 

and a discriminative classifier for outlier rejection.  The 

algorithm utilizes DTW and prominent (high energy) time-

frequency regions of training spectrograms to derive a reliable 

noise-robust template for each phrase class. The resulting 

template is then used for segmenting continuous recordings to 

obtain segment candidates whose spectrogram amplitudes in 

the prominent regions are used as features to a Support Vector 

Machine (SVM). The algorithm is evaluated on the Cassin's 

Vireo recordings; our proposed system yields low Equal Error 

Rates (EER) and segment boundaries that are close to those 

obtained from manual annotations and, is better than energy or 

entropy-based birdsong segmentation algorithms.  In the 

presence of additive noise (-10 to 10 dB SNR), the proposed 

phrase detection system does not degrade as significantly as 

the other algorithms do. 

 

        Index Terms: bird phrase detection, limited data, 

dynamic time-warping, SVM, noise-robust, template-based. 

 

1. INTRODUCTION 

Birdsongs typically comprise a sequence of smaller units such 

as syllables and phrases. Automatic phrase or syllable 

detection systems of bird sounds are useful in several 

applications [1]. However, bird-phrase detection is challenging 

due to segmentation error, duration variability, limited training 

data, and background noise. In real recording environments, 

the data can be corrupted by background interference, such as 

rain, wind, or vocalizations of other animals, such that phrase 

detectors detect non-target segments [2],[3].        

       Most phrase detection or classification tasks consist of 

two components; first segmentation and then classification [2]-

[10]. Several studies have proposed segmentation algorithms 

for birdsongs using an energy-based or entropy-based 

approach [8],[9]. The energy-based segmentation algorithm 

first locates a local maximum time-frequency bin and expands 

the time interval until the energy is less than a pre-defined 

threshold [8]. The entropy-based segmentation algorithm uses 

the assumption that bird calls are usually sparse, while the 

background noise is relatively white, i.e. short-time entropy 

dips when a signal is detected and rises when the signal is not 

detected [9],[10]. Such segmentation approaches are sensitive 

to background noise that have high energy and high entropy 

such as other animals vocalizing [8]-[10]. A classification-

based segmentation has been proposed by using Random 

Forests to determine pixels that contain bird signals [7]. This 

approach requires manual annotation of binary masks for each 

time-frequency index which can be a difficult and consuming 

task. In addition, it is expensive to train all time-frequency 

indices with a variety of phrase duration and noise conditions 

(noise levels and noise types).    

       Template-based approaches (e.g., DTW) are appealing 

because the segmentation can be performed by discarding 

frames that are not similar to the template. Hidden Markov 

Models (HMMs) require many training examples to estimate 

their parameters, while  DTW can be trained with a few 

training samples. Several DTW algorithms can perform 

segmentation in continuous recording by searching an optimal 

lattice path (i,j,k) where i is a frame index of the test recording 

that aligns with a frame index j of a template k [12] - [15]. 

This approach requires many templates per class to represent 

the variability (silence, noise, or garbage models). The 

computation increases significantly with the number of 

training samples. Moreover, it is sensitive to noise and 

demands "a low-clutter, low noise environment" [15].  Such a 

template-based approach may perform accurate segmentation 

by introducing a noise-robust component but it might not be 

sufficiently discriminative [3].  

       Several approaches employ discriminative classifiers such 

as Support Vector Machines (SVMs) and decision trees, all of 

which also need accurate segmentation (e.g., energy-based 

segmentation or manual annotations) as preprocessing [5]-[7], 

[11]-[13]. These classifiers require the same feature dimension 

for all training and test samples, and it is usually achieved by 

extracting descriptive features such as frequency-range, 

spectral flatness, time-duration or by resampling the 

spectrogram segments to equal length.  However, this 

processing is sensitive to accurate segment boundaries and 

feature-shifting if no time alignment is performed [3].  

       In summary, template-based approaches can perform 

reliable segmentation but such generative models generally 

lack discriminative power. Discriminative-model approaches, 

on the other hand, train their models such that they focus on 

class separablility. In this paper, we take advantage of  both 

approaches; the template-based approach is enhanced by 

integrating with an independent discriminative classifier.  

Specifically, we extend our previous noise-robust DTW-based 

phrase classifier which originally requires pre-segmentation to 

a phrase detection algorithm that can automatically perform 

template-based segmentation quite reliably even in noisy 

conditions [3]. The computational requirement is also less than 

other template-based approachonly one template is required 

for each class and silence or garbage models are not needed. 

The extra benefit is that the dimension of the generated 

segments are always the same as the template and the features 

are properly-aligned with respect to the model reference;  the 

spectrogram values can be readily used as feature vectors to a  

discriminative classifier.  
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Fig. 1: Overview of the proposed algorithm  

 

2. PROPOSED ALGORITHM 

The algorithm consists of three main components (Fig. 1): 

Template Derivation (Section 2.2), DTW-based segmentation 

(Section 2.3) and SVM classification (Section 2.4). The 

training and testing procedures (Sections 2.4 and 2.5) are 

performed individually for each phrase class.  

2.1 Preprocessing  

The spectrographic feature extraction is similar to our previous 

work but with different resolution parameters to reduce the 

computation complexity of our system [3]. Short-time 512-

point FFT was performed using a 25ms Hamming window 

advanced by 10 ms; only the magnitude information is 

retained. To reduce dimensionality, a 64-uniformly-spaced 

rectangular filterbank is applied and the first 7 bins 

corresponding to frequencies below 1 kHz are discarded, 

resulting in 57-frequency-bin spectrograms.  

2.2 Deriving class templates 

The Template Derivation algorithm has a similar 

implementation as our previous work with additional 

intermediate variables used to train SVM [3]. For a given 

phrase k, the class samples are obtained from manual 

annotations. Spectrograms of the segments samples are passed 

to the Spectrogram-Fusion Algorithm (SFA) which derives a 

template that represents common features among training 

samples of the same class. A template is a collection of three 

attributes; a spectrogram reference M(k), a prominent region R(k) 

and a frame-weighting function w
(k). The spectrogram 

reference represents the time-frequency energy pattern of 

clean signals. The prominent region indicates which pixels are 

used to compute the similarity measure for DTW and the 

subsequent discriminative classification. The purpose of these 

regions is to exclude low-energy regions which are susceptible 

to background noise. A large improvement in classification 

accuracy has been observed at low SNR conditions when the 

prominent region is included [3]. The frame weighting 

function (which sums to 1) assigns more weights to reliable 

frames based on short-time correlation. In addition to 

obtaining the template, SFA also returns the aligned 

spectrograms that are used to derive the template. We will use 

these aligned spectrograms to train an SVM classifier in a later 

stage.  

 

2.3 DTW-based segmentation  

Our algorithm uses the derived template (Section 2.2) as a 

sliding elastic window to detect a target pattern from a 

continuous recording. This algorithm is a modified version 

from the DTW procedure used in the SFA. Here, DTW is used 

to find the locally optimal time warping function between a 

segment of test spectrogram S and a reference template M(k). 

 DTW-based segmentation (input: M(k) ,R(k), w(k), S) 

 The superscript □(k) indicates that the □ is a specific 

attribute of   phrase class k  

 i and j are the time indices of the reference M(k)  (with NM 

frames) and test spectrogram S (with NS frames),  

respectively. 

 C(i,j) is the cosine similarity between the ith frame of M(k)  

and the jth frame of S. 

 P(i,j) is the intermediate cumulative score.  

 The operator  denotes the element-wise multiplication.  

       1) C(i,j) =  (M(k)
iR(k)

i, XjR(k)
i) 

       2) P(1,j) = C(1,j) 

       P(2,j) = max{P(1,j)+w2C(2,j), P(1,j-1) + w2C(2,j)} for j>1 

      Recursive step 

            P(i-1,j-2)+0.5wiC(i,j-1)+0.5wiC(i,j)   Path 1 

P(i,j) = max     P(i-1,j-1) + wiC(i,j)                            Path 2 

            P(i-2,j-1) + wi-1C(i-1,j) + wiC(i,j)       Path 3 

 

3) [p1 p2 p3 … ] = peak locations of function P(NM,j) whose 

values are greater than 0.75 and are mutually separated by at 

least   .  

4) For each pi, backtrack the optimal path and assign each 

template frame with a frame of S for Path 2 and Path 3. For 

path 1, the vector assigned to the template frame is obtained 

by averaging the spectra of frame j and j-1. 
 

Note that: 1) The cosine similarity is not computed over the 

entire frequency range, but only on the range determined by 

the prominent region indicated by the reference frame R(k)
i. 2) 

In computing the cumulative score, the contribution of each 

reference frame is weighted differently based on the frame 

weighting function w. 3) The cumulative score at the last 

reference frame measures the overall similarity of the optimal 

path at that point; the range of similarity is from 0 to 1.  

Instead of backtracking from each frame in the test 

spectrogram, backtracking is performed from frames that 

correspond to peaks in P(NM,j) only frames with peak values 

higher than 0.75, and with a peak separation of at least the 

frame number of the template are selected 4) The optimal 

paths are backtracked, starting from those selected peaks. Each 

reference frame i will match with one or two frames from the 

test spectrogram. In case of two frames (Path 1), frame i will 

be matched with the average of the spectra of frame j and j-1. 

As a result, each candidate segment will have the same 

number of frames as template M(k).  

2.4 SVM training  

The verification task uses SVM as a discriminative classifier 

to reject outlier candidates. We selected an SVM because it is 

effective for limited training data (4 samples) and the model 

can be efficiently represented [2].  To train an SVM classifier, 

the positive (in-class) class comprises  the aligned spectrogram 

segments from the SFA and valid segment candidates from the 

DTW-based segmentation; the negative class consists of solely 

invalid candidates (Fig. 1). A segment is considered valid if it 

satisfies the Relative Segmentation Error Constraint (RSEC) 

criteria which is explained in Section 3.3. Features for each 



 

 

 

 

training instance are obtained by concatenating the 

spectrogram values within the prominent region. The resulting 

SVM classifier and the corresponding template are used for 

verification and DTW-based segmentation, respectively, in the 

testing procedure.          

2.5 Testing Procedure  

To search a given phrase class from a continuous recording, 

the spectrogram is first computed. The resulting spectrogram 

is passed through the DTW-based segmentation to obtain 

segment candidates, which align to the template of the given 

phrase class. For each segment, spectrogram values within the 

prominent region are vectorized to obtain a feature vector in 

the same way as the training procedure. Each feature vector is 

then classified using the SVM model derived in the training 

procedure to determine whether the segment is a target phrase 

or an outlier (i.e., another phrase class or noise).  

 
Fig. 2 Spectrograms without and with noise added 

3. EXPERIMENTAL SETUP  

3.1 Database 

All experiments in this paper used recordings described in [2]. 

Song fragments (phrases) for classification were obtained from 

recordings of Cassin’s Vireo (Vireo cassinii) in 2010. The 

database has 13 recordings which we split into two sets for 

cross validation. Each experiment randomly selected 6 files for 

training and the remaining 7 files were used for testing. Four 

rounds of experiments were repeated and the results were 

averaged. Phrase classes with at least 4 occurrences found in 

training recordings were selected from the classes on the 

training set. Depending on the random partition of training and 

testing sets in each experiment, the number of classes ranges 

from 31 to 35; the number of training sample per classes range 

from 4 to 50; the total number of target phrases are 1771. The 

recordings and annotations for this study are available online 

at http://taylor0.biology.ucla.edu/al/bioacoustics/. 

       To evaluate noise-robustness, we simulated noisy 

birdsongs by adding background noise at various signals-to-

noise ratio (10, 5, 0, -5, and -10 dB). The background noise 

was recorded in the same environment, when the target bird 

species is not singing. There are total of 7 noise files (20 

minutes long). These files contain birdsongs from other 

species as well as ambient noise. For a given recording, the 

noise file ID and time location were selected randomly to 

match the length of the recording. The noise portion is scaled 

to generate a pseudo signal-to-noise ratio of a given SNR. An 

example of the additive noise effect is shown in Fig 2. Note 

that this SNR value represents the upper bound of the true 

SNR because the original files are not completely noise-free. 

These generated noisy signals are used only in testing; the 

training uses only original recordings (fairly clean signals). 

3.2 Comparison Algorithms  

Two main contributions of our phrase detection system 

include noise-robust segmentation as well as the integration of 

the template-based segmentation and a discriminative 

classifier for outlier rejection. The optimal classifiers can be 

explored in a subsequent study; this paper focuses on the first 

contribution because accurate segmentation is crucial for most 

automatic phrase detection or transcription algorithms. For this 

reason, we compared our algorithm with baseline systems that 

employ an energy-based or entropy-based segmentation [8]-

[9]. Since the recordings used in this experiments are generally 

long and the threshold of the energy-based method depends on 

the global maximum energy in the recording, the segmented 

outputs are mostly inaccurate [16]. We saw improvements 

when a long recording is divided into subintervals as inputs to 

the algorithm so we used this modification throughout this 

experiment. For the entropy-based segmentation, we kept all 

the default parameters except the frequency range to match the 

database  [9]-[10]. For comparison algorithms, the DTW-

based segmentation in Fig 1(a) and 1(b) is replaced with two 

sequential operations; segmentation from the algorithm 

followed by DTW that are used in SFA. In other words, we 

applied DTW to the segment candidates; using the template 

derived from manual annotation, such that the time dimension 

of the DTW-aligned spectrograms of all segment candidates is 

equal to that of the template. We also applied the prominent 

region to those comparative algorithms since it gives a 

significant improvement in noise. The accuracy of the segment 

boundaries are evaluated by comparing them with manual 

annotations. Using a linear kernel with high-dimensional 

features of limited training data gave the best performance for 

all algorithms. We applied a power of 0.1 to feature values for 

dynamic scale compression. The detection threshold on the 

confidence score of the SVM is varied to obtain the Equal 

Error Rate (EER). 

3.2 Evaluation Framework 

To evaluate segmentation algorithms, several criteria have 

been proposed; for example, a segmentation is considered 

correct if the detected segment overlaps with a manually 

annotated phrase interval [9]. However, this criterion can 

generate unreliable labels; for instance, a detected segment 

that has only one overlapping frame will be considered valid. 

For a more meaningful evaluation, we consider a segmentation 

valid if the boundary offsets relative to the manual annotation 

is less than a threshold, which we call Segmentation Error 

Constraint (RSEC). Under RSEC = , a segment is considered 

valid if and only if 
               

            
   and 

             

            
  , where 

ystart and ystop are the start and stop times of the manually-

annotated segment, respectively; xstart and xstop are the start and 

stop times of the segmentation algorithm, respectively. For 

example, with  = 0.5, a given segment is considered correct if 

the boundary errors of both ends are less than or equal to half 

the phrase duration of the manual segmentation. If  = 0, the 

boundary errors of both ends are zeros, i.e. this segmentation 

is identical with the manual annotations; however, this case is 

difficult to achieve in practice. We present the performance 

curve with varying RSEC to determine the robustness to 

RSEC of each algorithm. The Equal Error Rate is used to 

measure the performance of the segmentation algorithms.  
 

 
 

 



 

 

 

 

4. RESULTS AND DISCUSSION  

Fig 3a  shows the EER of each algorithm evaluated with 

RSEC ranging from 0.1 to 1. The performance of perfect 

boundary segments is also shown for lower bound. The EER 

curve of the perfect segmentation is flat because its relative 

boundary error is always 0 hence the EER does not change 

with different RSEC criteria. It is constant at 4.45% because 

there are false alarms and misses from the SVM classification; 

note that the results represent the final output of the entire 

system. The EER of all algorithms suffer from segmentation 

errors at low RSEC; it is difficult to achieve perfect segment 

boundaries because the energy at boundary frames varies.  

Different stopping threshold of each algorithm will generate 

different boundaries, hence a small deviation is acceptable.  

       When a higher RSEC is allowed, the EER of each 

algorithm decreases up until a certain point where it starts to 

increase again because of some unreliable labels are generated 

by the high RSEC criteria. For instance, if the starting 

segmentation boundary from an algorithm is delayed by 80%, 

there will be at most 20% overlap with the manual annotation. 

If we allow RSEC of 0.9 ( =0.9), this segment will be 

considered a positive segment but only 20% of common 

portion will not sufficiently represent the given phrase. Note 

that the EER curve of our algorithm almost reaches the EER 

from manual annotation at RSEC between 0.5 and 0.8. This 

does not mean that the algorithm is perfect; it only tells us that 

under this RSEC criteria, the EER are about the same.  In 0 dB 

condition, the performance of our algorithm degrades less than 

other algorithms, compared to the clean condition.  

        The EER of each algorithm increases as the relative SNR 

decreases and at a significant rate after 0 dB SNR (Fig 3c). At 

SNRs higher than 5 dB, the EER of the proposed algorithm is 

close to that when manual segmentation is used. At 0 SNR dB 

condition, where energy of target birdsong and background 

noise are equal, the proposed algorithm still yields low ERR of 

0.1, validating its noise-robustness. 

Notice that some EER points are higher than 0.5, which is 

the upper bound of binary detection (pure guess). This is 

possible because this task of joint segmentation and 

verification is more challenging than a binary detection. In 

order to be counted as a correct prediction, two criteria must 

be satisfied, the deviation boundaries of both ends must be less 

than RSEC and the SVM must classify the segment correctly. 

The entropy-based algorithm does not perform well because 

the background noise contains high-entropy signals such as 

vocalizations of other bird species. The energy-based 

segmentation algorithm generally performs better than the 

entropy-based segmentation but it also suffers in noisy 

conditions. This is expected because background noise is also 

of high energy, especially in low SNR conditions. Most errors 

of both algorithms occur when the algorithms merge target 

phrase with a neighboring background noise.   

The proposed algorithm, on the other hand, cuts off the 

segment at each end of the template reference. This 

segmentation approach is similarity-based in the sense that it 

aligns with the template reference according to its frame-wise 

similarity. The prominent regions and frame weighting 

function additionally facilitate the alignment procedure to 

focus on the relevant regions while discarding noise. However, 

when noise level is high,  the proposed algorithm degrades as 

well because noise is also present in the prominent regions. In 

the context of segmentation, the template-based segmentation 

has a limitation that it requires a template of that particular 

phrase class. If there is no prior class label, our algorithm 

cannot perform SFA to derive the template for segmentation. 

The entropy-based and energy-based segmentation, on the 

other hand, do not require any template so they are suitable for 

analyzing data that has not been annotated. However, for a 

phrase detection where the detection of particular phrases is of 

interest, the proposed template-based algorithm has been 

shown to be robust to segmentation error and background 

noise.  

5. CONCLUSIONS 

We proposed a segmentation and verification algorithm for 

bird phrase detection. The algorithm performs template-based 

segmentation using DTW to account for duration variability. It 

uses the prominent regions to account for background noise. 

Segment candidates are then passed to a discriminative 

classifier (in this case, SVM) to reject outliers. On a Cassin 

Vireo's database, the proposed algorithm obtained the lowest 

EER in most cases compared to energy-based and entropy-

based segmentation algorithms. In fairly clean recordings, our 

proposed algorithm achieves an EER of approximately 5.71 % 

with relatively accurate segmentation boundaries. Using noisy 

recordings with low SNRs, the performances of comparative 

algorithms degrade dramatically compared to the proposed 

algorithm which keeps the performance trend close to the 

lower bound. The advantages and limitations of our algorithm 

are also discussed. Our future work will include an 

investigation of other discriminative classifiers and extending 

this work to automatic transcription.   
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Fig. 3 The Equal Error Rate of each algorithm (all plots have the same legends). Figs. 3(a) and 3(b) show the performance 

of each algorithm with different Relative Segmentation Error Constraint (RSEC) criteria under clean and 0-dB SNR 

conditions, respectively.  Fig. 3(c) show the performance trend with different SNR conditions at RSEC of 0.5 ( = 0.5). 
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