NON-LINEAR FREQUENCY WARPING FOR VTLN USING SUBGLOTTAL RESONANCES AND THE THIRD FORMANT FREQUENCY

Harish Arsikere1 Steven M. Lulich2 Abeer Alwan1

1Department of Electrical Engineering, University of California, Los Angeles, USA
2Department of Speech and Hearing Sciences, Indiana University, Bloomington, USA
harishan@ucla.edu, slulich@indiana.edu, alwan@ee.ucla.edu

ABSTRACT

This paper proposes a non-linear frequency warping scheme for VTLN. It is based on mapping the subglottal resonances (SGRs) and the third formant frequency (F_3) of a given utterance to those of a reference speaker. SGRs are used because they relate to formants in specific ways while remaining phonetically invariant, and F_3 is used because it is somewhat correlated to vocal-tract length. Given an utterance, the warping parameters (SGRs and F_3) are determined by obtaining initial estimates from the signal, and refining the estimates with respect to a speaker-independent model. For children (TIDIGITS), the proposed method yields statistically-significant word error rate (WER) reductions (up to 15%) relative to conventional VTLN (linear warping) when: (1) speakers show poor baseline performance, and/or (2) training data are limited. For adults (Wall Street Journal), the WER reduction relative to conventional VTLN is 4–5%. Comparison with other non-linear warping techniques is also reported.

Index Terms— vocal-tract length normalization, subglottal resonances, non-linear frequency warping, third formant

1. INTRODUCTION

Vocal-tract length normalization (VTLN) is an integral part of many state-of-the-art speaker-independent (SI) automatic speech recognition (ASR) systems [1–3]. Typically, VTLN algorithms alleviate inter-speaker variability by warping (or scaling) the frequency axis, and their efficacy depends largely on how the warping function is formulated. In this paper, the focus is on developing a new warping function for speaker normalization on a per-utterance basis.

Linear warping is a popular approach to VTLN, and it has been investigated in detail by several studies [4–6]. The slope of the linear warping function — commonly referred to as the warp-factor — is a parameter that can be estimated by: (1) performing a maximum-likelihood (ML) grid search, or (2) computing the reference-to-target ratio of certain acoustic features (e.g., formant frequencies). The ML approach is superior to most ratio-based methods (see [5] for a comparison), and is commonly referred to as the conventional form of VTLN. Conventional VTLN is simple and effective, and used as the basis for many state-of-the-art speaker normalization algorithms (e.g., frame-specific VTLN using 3-dimensional Viterbi decoding [7], class-specific VTLN using clustering schemes [8,9], and enhanced VTLN using elastic registration [10]).

Non-linear warping differs from linear warping in the sense that it allows the degree of scaling to vary as a function of frequency. It is generally regarded as being the more accurate approach (although not as widely used) because linear warping is based on a highly-simplified model of inter-speaker variability (see [11] and [12] for a detailed discussion). As in the case of linear warping, non-linear schemes can be based either on an ML grid search (e.g., bilinear transformation [13] and bi-parametric warping [14]) or on the use of acoustic features (e.g., power-law warping using the third formant [15], and affine warping using the first three formants [16]).

Although there is a consensus among researchers that linear warping is probably not the optimal approach, only a few non-linear techniques (mostly shift-based approaches operating in Mel-like domains [17, 18]) are known to perform better than conventional VTLN (mostly in digit-recognition tasks). Some non-linear algorithms require more data than conventional VTLN [15, 16], while others are applicable only to certain speaker populations [14]. In this study, we aim to develop a non-linear frequency-domain warping scheme that can improve upon conventional VTLN in different scenarios (in both small- and large-vocabulary ASR).

The approach proposed here is based on the use of subglottal resonances (SGRs), which are the resonances of the subglottal input impedance, and the third formant (F_3): the first two SGRs (Sg_1 and Sg_2) are used for normalizing the first two formants (F_1 and F_2), while F_3 or the third SGR (Sg_3) is used for normalizing higher formants (further details in Section 2). SGRs have been used in the past for speaker normalization [19–21], but mostly for linear warping in mismatched conditions (note that [20] uses a shift-based non-linear approach). In [19], Sg_2 (estimated from speech) is used to compute the warp-factor, while in [21], an estimate of Sg_1 or Sg_2 is used to improve conventional VTLN. This study differs from [19] and [21] in three important ways: (1) use of more than one SGR (and F_3) leading to non-linear warping, (2) refinement of SGR estimates using an ML grid search, and (3) normalization at the utterance level (rather than at the speaker level) to enable comparisons with the most effective implementation of conventional VTLN [22].

The rest of this paper is organized as follows. Section 2 presents our non-linear warping scheme. Speaker normalization experiments and their results are discussed in Sections 3 and 4, respectively. Section 5 contextualizes this study, and Section 6 concludes it.

2. NON-LINEAR WARPING USING SGRS AND F_3

Since formants are important carriers of phonemic information, our warping scheme is designed to achieve an implicit normalization of formant frequencies. We first explain our motivation for using SGRs and F_3, and then discuss the following two aspects: (1) formulation of the warping function, and (2) estimation of warping parameters.

SGRs are useful in speaker normalization for two reasons. (1) They are independent of phonetic content and language (for a

1Work supported in part by NSF Grant No. 0905381.
2.1. Formulation of the warping function

Motivated by the above arguments, our non-linear warping function is designed to map the SGRs and F3 of a given target utterance to those of a reference speaker. Figure 2 shows the proposed warping function (in red). Denoting the reference and target parameters with subscripts \(r \) and \(t \), respectively, the function can be defined as:

\[
\hat{f} = \begin{cases}
 m_1 f & 0 \leq f \leq S_{g1r} \\
 m_2 (f - S_{g1r}) + S_{g1r} & S_{g1r} < f \leq S_{g2r} \\
 m_3 (f - S_{g2r}) + S_{g2r} & S_{g2r} < f \leq F_3r \\
 m_4 (f - F_3r) + F_3r & F_3r < f \leq F_{r/2},
\end{cases}
\]

where \(F_r \) is the sampling frequency, and \(f \) and \(\hat{f} \) are the frequency scales before and after warping, respectively. The scalars \(m_1 \) to \(m_4 \) are the slopes of the lines constituting the warping function, and can be easily computed given the reference and target parameters (i.e., SGRs and F3). Note that if \(Sg3 \) is used instead of F3, F3, and given speaker) [19, 23]. (2) They form natural phonological boundaries between vowel categories: \(Sg1 \) lies roughly at the boundary of [+low] and [-low] vowels along the \(F_1 \) dimension, and \(Sg2 \) lies roughly between [+back] and [-back] vowels (empty vs. filled symbols) along the \(F_2 \) dimension.

Figure 1 shows two examples of how \(Sg1 \) and \(Sg2 \) divide the \(F_1\)-\(F_2 \) plane (data are taken from the WashU-UCLA corpora [23, 28]): the plot in blue is for a male speaker (\(Sg1^{m}, Sg2^{m} \)), and the plot in red is for a child speaker (\(Sg1^{c}, Sg2^{c} \); age = 11 years). It is evident from the figure that by mapping \(Sg1^{c} \) to \(Sg1^{m} \) and \(Sg2^{c} \) to \(Sg2^{m} \), the formant clusters of the child speaker can be aligned (roughly) with those of the male speaker. Since this argument is true for any arbitrary speaker pair, we hypothesize that \(Sg1 \) and \(Sg2 \) could be useful in normalizing \(F_1 \) and \(F_2 \). To normalize higher formants, we consider two parameters: \(F3 \) and \(Sg3 \). \(F3 \) is a natural choice because formants beyond \(F1 \) and \(F2 \) are closely related to vocal-tract length [11, 29], while \(Sg3 \) could be useful because it is phonetically invariant and has a frequency range similar to that of vocal-tract length [11, 27].

Figure 2 shows the proposed non-linear warping function (red) maps the SGRs and \(F3 \) of a given target utterance (subscript \(t \)) to those of a reference speaker (subscript \(r \)). The scalars \(m_1 \) to \(m_4 \) are the slopes of the lines constituting the warping function. The conventional linear warping function is also shown (blue; slope = \(\alpha \)). \(F_s \) is sampling frequency; \(F_k \) = ‘knee’ frequency (ensures bandwidth preservation).

\(F_{3r} \) in Eq. (1) must be replaced by \(Sg3_r \) and \(Sg3_t \), respectively. The proposed warping function is non-linear because the degree of scaling \((f/\hat{f}) \) varies with \(f \). In contrast, the conventional linear warping function (blue curve in Fig. 2) has a constant value of \(f/\hat{f} \) (equal to \(\alpha \)), except for \(f \in (F_k, F_{r/2}) \) (i.e., the ‘knee’ frequency, ensures bandwidth preservation after warping).

2.2. Estimation of warping parameters

For the proposed warping function to be most effective, the reference and target parameters (i.e., SGRs and \(F3 \)) must be estimated as accurately as possible. We outline our estimation approach here, and present the relevant details later in Section 3.

In [19] and [21], reference SGRs were estimated from the training data used for ASR experiments. In contrast, they are determined \textit{a priori} in this study, using manual measurements that have been obtained previously from accelerometer recordings of subglottal acoustics in the WashU-UCLA corpora [23]. We believe that the current approach is more reliable because speech-based estimates of SGRs are prone to error. Similarly, a reference value for \(F3 \) is determined using manual measurements that have been obtained previously from microphone recordings of vowel segments.

Target parameters are estimated on a per-utterance basis. Given a speech signal, initial estimates of SGRs are obtained using our recent algorithms (see [30] for adults’ speech and [21] for children’s speech). To compute an initial estimate of \(F3 \) at the utterance level, frame-level \(F3 \) estimates corresponding to all the available voiced frames are averaged (the Snack sound toolkit [31] provided formant estimates and voicing decision at the frame level). Since the initial SGR estimates are prone to errors (on the order of 5–10%), they are refined using an ML framework. The initial \(F3 \) estimate is also refined because: (1) Snack’s formant tracker is not always accurate, and (2) voiced frames include non-vowel sounds such as nasals and liquids, which are probably not good indicators of vocal-tract length. The refinement procedure is as follows.

Denoting the initial target estimates with the superscript \(i \), the ‘optimal’ target parameters \(Sg1^i, Sg2^i \) and \(F3^i \) (\(Sg3^i \)) can be written as \(k_1^i \times Sg1^i, k_2^i \times Sg2^i \), and \(k_3^i \times F3^i \) (\(k_3^i \times Sg3^i \)).
respectively, where \(\{k_1^*, k_2^*, k_3^*\} \) is the ‘optimal’ set of multiplicative refinement factors. Given an utterance, the set \(\{k_1^*, k_2^*, k_3^*\} \) is determined using the ML framework given by Eq. (2):

\[
\{k_1^*, k_2^*, k_3^*\} = \arg \max_{(k_1, k_2, k_3)} P(\Omega(k_1, k_2, k_3) | \lambda, W), \tag{2}
\]

where \(\lambda \) is a set of SI models, \(W \) is the word-level transcription associated with the given utterance, and \(\Omega(k_1, k_2, k_3) \) is the sequence of warped feature vectors extracted using the \(a \ priori \) reference parameters and the target parameters \(k_1 \times Sg_1^3, k_2 \times Sg_2^3, k_3 \times F_3^3 \) \((k_3 \times Sg_33)\). The search range for \(\{k_1, k_2, k_3\} \) depends on the accuracy of the initial target estimates. The feature vectors \(\Omega(k_1, k_2, k_3) \) are the normalized features for the given utterance. Figure 3 summarizes our approach for estimating the ‘optimal’ target parameters.

In Task 1, we compare PW1 with: (1) conventional VTLN and the target parameters, and (2) bi-parametric warping (BPAR), which was proposed in [14] for children’s ASR. In CVTLN, the warping factor \(\alpha \) takes values between 0.70 and 1.10 in steps of 0.01, and the ‘knee’ frequency \(F_0 \) equals 0.9 times the signal bandwidth. BPAR is a non-linear scheme that uses two parameters to achieve frequency-dependent scaling; it is implemented exactly as described in [14].

3.1. Specifics of the proposed warping scheme

- **Reference parameters**: Since the training set consists of adult speakers in Task 1 as well as Task 2, the same \(a \ priori \) reference values are used in both cases: \(Sg_1 = 601 \text{ Hz}, Sg_2 = 1419 \text{ Hz}, Sg_3 = 2304 \text{ Hz}, \) and \(F_3 = 2614 \text{ Hz} \). These numbers are derived by averaging manual measurements that have been obtained previously for the 50 adult speakers in the WashU-UCLA corpus.

- **Target parameters**: In Task 1, \(Sg_1, Sg_2 \) and \(F_3 \) are used for frequency warping. \(Sg_3 \) is not considered because our algorithm for children’s speech can accurately estimate only the first two SGRs [21]. Since the errors incurred by our algorithm lie between 5 and 10%, on average, we allow the SGR estimates to be refined by up to 15% (assuming maximum errors of 15%). Thus, the refinement factors \(k_1 \) and \(k_2 \) (see Sec. 2.2) are allowed to take values between 0.85 and 1.15 in steps of 0.05 (7 points). On the other hand, the refinement factor \(k_3 \) (for \(F_3 \)) is assigned a constant value of 1.00. This is because, as suggested by our preliminary experiments, utterances in the TIDIGITS database are probably not long enough (only 1–7 digits) to ensure that all three refinement factors are reliably estimated. In short, therefore, the \(\{k_1, k_2, k_3\} \) search space for Task 1 is a 2-dimensional grid of 49 points.

In Task 2, SGRs are estimated using our algorithm for adults’ speech [30]. Since the errors incurred by our algorithm lie between 4 and 5%, on average, we allow the SGR estimates to be refined by up to 10%. The initial \(F_3 \) estimate is also allowed a 10% refinement. Each of the three refinement factors can take values between 0.90 and 1.10 in steps of 0.05 (5 points). Therefore, the \(\{k_1, k_2, k_3\} \) search space for Task 2 is a 3-dimensional grid of 125 points.

3.2. Algorithms for comparison

For convenience, let PW1 and PW2 denote the algorithms that use the proposed warping function with parameters \(\{Sg_1, Sg_2, F_3\} \) and \(\{Sg_1, Sg_2, Sg_3\} \), respectively. The other algorithms investigated in this study are as follows.

In Task 1, we compare PW1 with: (1) conventional VTLN (CVTLN), and (2) bi-parametric warping (BPAR), which was proposed in [14] for children’s ASR. In CVTLN, the warp-factor \(\alpha \) takes values between 0.70 and 1.10 in steps of 0.01, and the ‘knee’ frequency \(F_0 \) equals 0.9 times the signal bandwidth. BPAR is a non-linear scheme that uses two parameters to achieve frequency-dependent scaling; it is implemented exactly as described in [14]. Note that PW2 is not considered in Task 1.

In Task 2, we compare PW1 and PW2 with: (1) CVTLN (\(\alpha \) takes values between 0.80 and 1.20 in steps of 0.01; \(F_0 \) is the same as in Task 1), and (2) region-based linear warping (RVT LN), which, in [9], was applied to adults’ ASR using the WSJ database. RVT LN clusters the unwarped feature vectors of a given utterance into different regions and estimates a separate warp-factor for each of them. The specific form of RVT LN implemented here is the “2 Region KM-Sep” algorithm, which, in [9], was shown to be better than CVTLN on a monophone-based WSJ system.

4. RESULTS AND DISCUSSION

4.1. Task 1: children’s speech

Results for Task 1 are shown in Table 1. Since Task 1 is a mismatched setup with limited vocabulary (only 11 words), even a simple algorithm like CVTLN can improve significantly upon the baseline. In fact, as evident from Column 1, CVTLN is as effective as...
Table 1. WERs (%) for Task 1 (adults train, children test). The subset of the testing set (Cols. 5–7) comprises 10 speakers with the highest baseline WERs. ‘Full Tr’, ‘Tr/4’ and ‘Tr/2’ denote the full training set, 50% of the training set, and 25% of the training set, respectively. CVTLN = conventional VTLN; BPAR = bi-parametric warping; PW1 = proposed warping with {Sg1, Sg2, F3}. The lowest WER in each column is highlighted.

<table>
<thead>
<tr>
<th></th>
<th>Full Testing Set</th>
<th>Subset of Testing Set</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Tr</td>
<td>Tr/2</td>
</tr>
<tr>
<td>Baseline</td>
<td>9.9</td>
<td>15.7</td>
</tr>
<tr>
<td>CVTLN</td>
<td>2.7</td>
<td>3.1</td>
</tr>
<tr>
<td>BPAR</td>
<td>2.6</td>
<td>2.9</td>
</tr>
<tr>
<td>PW1</td>
<td>2.7</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Table 2. WERs (%) for Task 2 (adults train, adults test). RVTLN = region-based linear warping; PW2 = proposed warping with {Sg1, Sg2, Sg3}. The lowest WER in each column is highlighted.

<table>
<thead>
<tr>
<th></th>
<th>Test-Only Norm</th>
<th>Train+Test Norm (Full Tr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full Tr</td>
<td>Tr/2</td>
</tr>
<tr>
<td>Baseline</td>
<td>9.0</td>
<td>10.3</td>
</tr>
<tr>
<td>CVTLN</td>
<td>8.3</td>
<td>9.2</td>
</tr>
<tr>
<td>RVTLN</td>
<td>8.3</td>
<td>9.4</td>
</tr>
<tr>
<td>PW1</td>
<td>8.1</td>
<td>8.8</td>
</tr>
<tr>
<td>PW2</td>
<td>7.9</td>
<td>8.8</td>
</tr>
</tbody>
</table>

4.3. Complexity: CVTLN versus the proposed approach

To estimate the ‘optimal’ warping function, CVTLN requires a smaller search grid compared to the proposed approach. For example, in Task 2, CVTLN uses a 41-point grid while PW1 and PW2 use a 125-point grid. The search-grid size, and hence the run time, for our approach can be reduced possibly by improving the accuracy of our SGR estimation algorithms. Also, since frequency warping can be implemented efficiently as a linear transformation of unwarped features [35], the run time for our approach can possibly be reduced further by deriving its linear-transform equivalent.

5. RELATION TO PRIOR WORK

Previous studies [19–21] have used SGRs for speaker normalization, but mostly for linear warping in severely-mismatched conditions (training on adult males, testing on children). Here, we broaden the scope of SGR-based normalization by evaluating our approach in different tasks: ASR in matched and mismatched conditions, ASR with limited training data, and training of normalized SI models. In addition, the present study differs from [19–21] in several important ways: (1) it uses a priori manual measurements to derive reference SGRs, (2) it uses an ML framework to refine target SGRs after estimating them from speech signals, (3) it applies normalization at the utterance level (rather than the speaker level), (4) it demonstrates an improvement over CVTLN in both small- and large-vocabulary ASR tasks, and (5) it uses a more realistic mismatch setup (training on adult male and female speakers, testing on children).

6. CONCLUSIONS

A non-linear frequency-warping scheme is proposed in this study. It achieves normalization by mapping the SGRs and F3 of a given utterance to those of reference speaker. The proposed approach is applied to children’s speech in a mismatched setup (TIDIGITS) and adults’ speech in a matched setup (WSJ). Using Sg1, Sg2 and F3 for children’s speech, statistically-significant WER reductions (up to 15%) can be achieved relative to CVTLN: (1) especially for speakers whose baseline performance is poor, and/or (2) when training data are limited. For adults, normalization of training data using Sg1, Sg2 and Sg3 results in models that are more compact than CVTLN-trained models, with relative WER reductions between 4 and 5%.
7. REFERENCES

