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Abstract
Text-independent speaker recognition using short utterances is
a highly challenging task due to the large variation and content
mismatch between short utterances. I-vector and probabilistic
linear discriminant analysis (PLDA) based systems have be-
come the standard in speaker verification applications, but they
are less effective with short utterances. To address this issue,
we propose a novel method, which trains a convolutional neu-
ral network (CNN) model to map the i-vectors extracted from
short utterances to the corresponding long-utterance i-vectors.
In order to simultaneously learn the representation of the orig-
inal short-utterance i-vectors and fit the target long-version i-
vectors, we jointly train a supervised-regression model with
an autoencoder using CNNs. The trained CNN model is then
used to generate the mapped version of short-utterance i-vectors
in the evaluation stage. We compare our proposed CNN-
based joint mapping method with a GMM-based joint modeling
method under matched and mismatched PLDA training condi-
tions. Experimental results using the NIST SRE 2008 dataset
show that the proposed technique achieves up to 30% relative
improvement under duration mismatched PLDA-training condi-
tions and outperforms the GMM-based method. The improved
systems also perform better compared with the matched-length
PLDA training condition using short utterances.
Index Terms: speaker verification, text-independent, short ut-
terances, i-vectors, CNNs, joint modeling, PLDA

1. Introduction
The i-vector based framework [1] has defined the state-of-the-
art for text-independent speaker recognition. It performs well
if long (e.g. more than 30 seconds) enrollment and test utter-
ances are available, but the performance degrades rapidly when
not enough data are available. There are several reasons why
long utterances perform significantly better than short ones.
First, long utterances convey richer speaker-specific informa-
tion. Second, they have richer phonetic information, which al-
leviates the context mismatch between enrollment and testing
utterances. Third, the variation of the i-vectors extracted from
long utterances are smaller than those of short utterances. How-
ever, in real applications, it is difficult to collect enough enroll-
ment and test data, and instead short utterances (10 or 5 seconds,
for example) are commonly available. To address this issue, a
range of techniques has been studied on different aspects of this
problem.

There has been a number of methods to model the variation
of short utterance i-vectors. In [2], a Full Posterior Distribu-
tion PLDA (FP-PLDA) is proposed to exploit the covariance of
the i-vector distribution, which improves the standard G-PLDA
model [3] by accounting for the uncertainty of i-vector extrac-
tion. In [4], the effect of short utterance i-vectors was analyzed,
and the duration variability is modeled as additive noise in the

i-vector space. The work in [5] introduces a short utterance
variance normalization technique and a short utterance variance
modeling approach at the i-vector feature level, which makes
use of the covariance matrices of long and short i-vectors to do
the normalization.

Alternatively, several approaches have been proposed that
leverage phonetic information to perform content matching.
The work in [6] proposes a Gaussian Mixture Model (GMM)
based subregion framework where speaker models are trained
for each subregion defined by phonemes. Test utterances are
then scored with subregion models. In [7], the authors use the
local session variability vectors estimated from certain phonetic
components instead of computing the i-vector from the whole
utterance. The phonetic classes are obtained by clustering sim-
ilar senones that are estimated from posterior probabilities of a
DNN trained for phone state classification. Another approach
was proposed in [8] which matches the zero-order statistics of
test and enrollment utterances using posteriors of each phone
state, before computing the i-vector.

In addition, a few studies have focused on the role of feature
extraction and score calibration. In [9], the authors proposed
a DNN-based method to estimate the speaker specific subglot-
tal acoustic features, which are more stationary compared to
MFCCs, largely phoneme independent, and can alleviate the
phoneme mismatch between training and testing utterances. Be-
sides this, [4] proposes QMF (Quality Measure Function) which
is a score-calibration mechanism that compensates for the dura-
tion mismatch in the trial scores.

In this paper, motivated by the good properties of long ut-
terance i-vectors, we want to learn a mapping from the short ut-
terance i-vector to a corresponding long utterance version, such
that the improved version of i-vectors can be estimated from
unseen short utterance i-vectors. To learn such mapping, the
authors in [10] proposed a probabilistic approach, in which a
GMM-based joint model between long and short utterance i-
vectors was trained, and a MMSE (minimum mean square er-
ror) estimator was applied to transform a short i-vector to its
long version. Here, we propose a novel semi-supervised map-
ping algorithm which uses CNNs to extract useful information
from short utterance i-vectors and maps it to a corresponding
long version. Specifically, in order to learn better feature rep-
resentation and get better generalization for supervised regres-
sion, we jointly train the regression model with an autoencoder,
which regularizes networks by minimizing the reconstruction
error. Our experiments show that the proposed mapping al-
gorithm significantly alleviates the duration mismatch problem
when PLDA is trained on long utterances and evaluated on
short utterances. This improved system even gives better per-
formance compared with matched-length PLDA training con-
ditions using only short utterances. Therefore, our framework
eliminates the necessity to use matched-length PLDA training
models for evaluation on different durations.



2. I-vector mapping between short and long
sessions

In the following two subsections we describe the GMM-based
mapping algorithm as in [10] and our proposed CNN-based
mapping algorithm in details.

2.1. GMM-based joint probability model

Let us define two random variables x and y representing i-
vectors extracted from short and long sessions respectively. Let
z = [xT yT ]T denote the joint random vector. The simplest way
to model the distribution of z would be a K-component GMM:

p(z) =

K∑
k=1

ckN (z;µz,k,Σz,k) (1)

where ckN (z;µz,k,Σz,k) denotes the probability density
function of the kth mixture component, with mean µz,k, co-
variance Σz,k, and weight ck.

Once the joint GMM is trained, the marginal and joint
statistics of x and y can be obtained by decomposing the mean
and covariance matrix as:

µz,k =

(
µx,k

µy,k

)
(2)

Σz,k =

(
Σxx,k Σxy,k

Σyx,k Σyy,k

)
(3)

Using the MMSE estimator, for a given test i-vector x0 cor-
responding to a short utterance, its long version can be com-
puted as the conditional mean of y:

ŷ = E[y|x0] =
∑
k

p(k|x0)(fkx0 + gk) (4)

where E[.] denotes the expectation operator, and p(k|x0),
fk and gk are defined as:

p(k|x0) =
ckN (x0;µx,k,Σxx,k)∑K

k
′
=1
ck′N (x0;µx,k

′ ,Σxx,k
′ )

(5)

fk = Σyx,kΣ−1
xx,k (6)

gk = µy,k − Σyx,kΣ−1
xx,kµx,k (7)

From Eq.(4), we can observe that the GMM-based map-
ping is actually a weighted sum of linear functions, and the
weights are the conditional probabilities of each Gaussian com-
ponent given test utterance x0. Even though the GMM-based
joint modeling method gives significant improvement for the
mismatched condition between short and long session i-vectors
[10], there are still some shortcomings of this method. Learn-
ing a mapping from short session i-vector to its long version,
is a very complex and nonlinear transform. A weighted sum
of linear functions may not be complex enough to model this
mapping. Moreover, it’s well known that GMMs are statisti-
cally inefficient for modeling data that lie on or near a non-
linear manifold in the feature space. Motivated by these rea-
sons, we propose a novel CNN-based learning algorithm, which
jointly trains an autoencoder and a supervised regression model
to learn this transformation.

Figure 1: CNN-based joint i-vector mapping framework

2.2. CNN-based joint mapping

Mapping short i-vectors to their long version is a many-to-one
mapping, i.e. many short session i-vectors can be mapped to
the same long session i-vector extracted from the full-length ut-
terance, which they belong to. There are two key factors for
this mapping. First, it’s important to find a good feature rep-
resentation of short session i-vectors, which is invariant to dif-
ferent phonemes. Second, there is redundant information from
i-vectors for this transformation, which needs to be filtered out.
By using multiple convolution layers to extract high-order fea-
tures and reduce the variability, we can find a good feature rep-
resentation of i-vectors; by using max pooling layers, we can
get rid of redundant information and avoid over-fitting.

In this paper, we use an Alexnet-like [11] neural net-
work structure, which comprises several stacked pairs of
convolution and max-pooling layers and two fully connected
layers with the output layer on the top. Unlike the regular
neural-network-based regression methods, which only map the
input tensor to the target tensor, we propose a joint framework
of representation learning and supervised regression. More
specifically, we not only map the short version i-vector to
its long version, but also map it to itself in order to jointly
train an autoencoder. The autoencoder can regularize the
supervised regression model by forcing the networks to learn
the representation of the original short-utterance i-vectors,
which can lead to good generalization. Figure 1 shows the
framework of the proposed method. We define a new objective
function to jointly train the network. Let us denote a target
long session i-vector as Ilong and target short session i-vector
as Ishort (which is the same as the input), and use Îlong and
Îshort to represent the output from the regression model and
autoencoder respectively. We can define the objective loss
function Ltotal which combines the loss from the regression
model and autoencoder in a weighted fashion as:



Ltotal = α ∗ Lr + (1− α) ∗ La (8)

where Lr is the loss of regression model defined as

Lr(Ishort, Ilong; θr) =
1

N

N∑
n=1

‖Îlong − Ilong‖2 (9)

and La is loss of an autoencoder defined as:

La(Ishort, Ishort; θa) =
1

N

N∑
n=1

‖(Îshort − Ishort)‖2. (10)

Moreover, θr and θa are parameters of the regression model and
autoencoder respectively, which are jointly trained and share the
weights before the output layer. α is a scalar weight ranging
between 0 and 1. For testing, we only use the output from the
regression model as the mapped i-vector.

3. Evaluation setup
3.1. I-vector baseline system

We evaluate our proposed method in the state-of-the-art i-
vector/PLDA framework using the Kaldi toolkit [12]. The NIST
SRE 2004, 2005, 2006 and Switchboard II datasets are used
as development data. The first 20 MFCC coefficients (dis-
carding the zeroth coefficient) and their first and second order
derivatives are extracted from the detected speech segments af-
ter voice activity detection (VAD). A 20 ms Hamming window,
a 10 ms frame shift, and a 23-channel filterbank are used. Only
male data are used here. Universal background models with
2048 Gaussian components are trained using a subset of the de-
velopment dateset (randomly select 8k utterances). The total
variability subspace with low rank (400) is trained using all the
utterances for male speakers in the development dataset. After
the i-vectors are extracted, length normalization is applied and
the PLDA model is trained.

For training the i-vector mapping model and PLDA, we se-
lect 18601 long utterances, each having more than 60s of speech
after VAD, from the development dataset. Short utterances are
generated by selecting 5s speech segments from the long utter-
ances and in the end we have around 1 million short utterances
with 5s speech each. Each short-utterance i-vector together with
its corresponding long-utterance i-vector are used as training
pairs (around 1 million pairs) for both GMM-based and CNN-
based mapping models.

The NIST SRE 2008 “short2-10sec” male condition is used
for evaluation. The enrollment and testing utterances are trun-
cated to 5s speech for our short-utterance speaker verification
tasks. There are 7799 test trials representing telephone speech.
We will compare the baseline system, GMM-based mapping al-
gorithm and our proposed CNN-based mapping algorithm un-
der the described 5s-5s task.

3.2. Neural network training

CNNs are trained using the Adam optimization strategy [13]
with mean square error criterion and scheduled learning rate
starting from 0.005. The networks are initialized with 2 differ-
ent initialization methods, which are Gaussian random normal
distributed weights with standard deviation equals to 0.05 (de-
noted as G-int) and an Xavier initializer [14] (denoted as X-int).
We adopt two neural network structures here: 1) 3 convolu-

tion layers and 2 fully connected layers (denoted as 3C2F); 2)
5 convolution layers and 2 fully connected layers (denoted as
5C2F). Parameter details are shown in Table 1. The relu ac-
tivation function is used for all layers. For each layer, before
passing the tensors to the nonlinearity function, a batch nor-
malization layer [15] is applied to normalize the tensors and
speed up the convergence. For the combined loss, we set equal
weights (α = 0.5) for both regression and autoencoder loss.
The shuffling mechanism is applied on each epoch. All neural
networks are trained from scratch. The Tensorflow toolkit [16]
is used for neural network training.

CNN
structure

3C2F 5C2F
filter size stride filter size stride

conv1 7*1*64 1 7*1*64 1
maxpool1 2*1 2 2*1 2
conv2 5*1*192 1 5*1*192 1
maxpool2 2*1 2 2*1 2
conv3 3*1*384 1 3*1*384 1
maxpool3 2*1 2 —
conv4 — 3*1*256 1
conv5 — 3*1*256 1
maxpool5 — 2*1 2
fc1 512 units
fc2 512 units
output 400 (reg), 400 (ae)

Table 1: The parameters of the trained CNN structures.
”conv” represents convolutional layer, ”maxpool” represents
max-pooling layer and ”fc” represents fully connected layer.

”reg’ represents the regression model and ”ae” represents the
autoencoder.

4. Experiment and results
In this section, we show and discuss the performance of our
mapping algorithm under different PLDA training conditions,
when only short utterances are available for evaluation. Previ-
ous work [10, 17] highlights the importance of duration match-
ing in PLDA model training. For instance when the PLDA is
trained using long utterances and evaluated on short utterances,
we note considerable degradation in speaker verification perfor-
mance compared to PLDA trained using matched-length short
utterances. Moreover, results in [10] show that irrespective of
training conditions of the PLDA model, the long length evalu-
ation utterances always give better performance compared with
short evaluation utterances.

Therefore, we show our experimental results under three
different PLDA training conditions which use i-vectors ex-
tracted from purely long utterances, purely short utterances, and
mixed long and short utterances. For mixed long and short ut-
terances case, we choose a similar amount of long and short ut-
terances and add them together for PLDA training. The results
of C6 (Telephone speech), C7 (English telephone speech) and
C8 (English telephone speech spoken by native U.S. English
speakers) conditions are shown for the NIST SRE08 evaluation
dataset. We report the best results with absolute and relative
improvement for every condition using the Equal Error Rate
(EER). As a reference for the short-utterance evaluation task,
our speaker verification system gives 2-4% EERs for standard
full-length (long) utterance evaluation task (SRE08 core task).



SRE08 5s - 5s C6 C7 C8
Baseline (no mapping) 30.12 29.23 31.06
GMM (K=1) 28.54 28.46 27.27
GMM (K=3) 27.95 27.31 25.76
CNN (3C2F, G-int) 27.17 25.77 23.48
CNN (5C2F, X-int) 25.59 25.00 21.97
Absolute improvement 4.53 % 4.23 % 9.15 %
Relative improvement 15.04 % 14.47 % 29.46 %

Table 2: EERs for different mapping methods obtained from a
trained PLDA using purely long-utterance i-vectors. C6

represents telephone speech, C7 represents English telephone
speech and C8 represents English telephone speech spoken by

native U.S. English speaker. ”K” represents the number of
Gaussian components. ”G-int” represents the Gaussian

initializer and ”X-int” represents the Xavier initializer for
CNN initialization. Boldface numbers indicate best results.

4.1. PLDA using long utterances

In this experiment, we train the PLDA using only long utterance
i-vectors. From Table 2, we observe that both CNN and GMM
based mapping give significant improvement, and the CNN-
based mapping outperforms GMM method considerably in all
conditions. For GMM mapping, the Gaussian model with more
mixture components gives better performance, but for K > 3
conditions, no significant improvement can be further achieved.
For CNN mapping, increasing the number of convolutional lay-
ers from 3 to 5 with Xavier initialization reduces the EER.
This can be attributed to the fact that more convolutional lay-
ers can increase the nonlinearity of the mapping network and
further reduce the variance. Xavier initialization ensures that
the total weights for each layer are equivalent which results
in faster convergence and optimal global minima. For CNN
(5C2F, X-int), the C8 condition shows the highest improvement
with more than 9 % absolute improvement and around 30 %
relative improvement from baseline and around 15% relative
improvement from the GMM-based (k =3) mapping algorithm.
Moreover, with the same configuration we obtained improved
performance, compared to the baseline, for C6 and C7 condi-
tions of, 15.04 % and 14.47 % respectively.

4.2. PLDA using mixed short and long utterances

In this experiment, we train the PLDA with mixed short and
long utterances. This gives improved baseline results compared
to purely long i-vectors conditions, since it takes the short ut-
terances into account for PLDA training. Table 3 illustrates
that the results are consistent with the observation of the pre-
vious section. Similarly a larger number of Gaussian mix-
tures improves the GMM-based mapping algorithm, and more
convolution layers with Xavier initializer give better perfor-
mance for CNN-based mapping. We achieved the highest rel-
ative improvement of 17.16 % with CNNs (5C2F, X-int) under
condition C8, and this algorithm also outperforms the GMM-
based (K=3) model by 9.36% relative percent. The best per-
formance of CNN-based mapping method achieved under the
mixed-length PLDA training condition is better than the purely
long-utterance PLDA training condition.

SRE08 5s - 5s C6 C7 C8
Baseline (no mapping) 27.95 27.69 26.52
GMM (K=1) 26.38 26.92 25.76
GMM (K=3) 25.98 26.54 24.24
CNN (3C2F, G-int) 25.98 24.62 22.73
CNN (5C2F, X-int) 24.80 24.23 21.97
Absolute improvement 3.15 % 3.46 % 4.55 %
Relative improvement 11.27 % 12.46 % 17.16 %

Table 3: EERs for different mapping methods obtained from a
trained PLDA using mixed long and short utterance i-vectors.

4.3. PLDA using short utterances

In this experiment, we train the PLDA using only short ut-
terances. This gives the best results among all baseline sys-
tems, since the PLDA training and evaluation conditions are
matched. It is interesting to note that from our experiments,
neither CNN nor GMM mapping algorithms give improvement
from the baseline, but instead slightly degrade the performance.
The reason might be the fact that the mapped i-vectors may
not exactly represent the corresponding long-utterance i-vector.
However, our best results using CNN mapping, reported in the
previous two sections, still perform better than the baseline we
obtained by training PLDA using only short utterance i-vectors.
We show the best results we obtain from the previous sections
using GMM-based and CNN-based models in Table 4. In fact,
we note that the best results we obtained using GMM-based
mapping are similar to the current baseline and under the C8
condition it gives worse performance, while our proposed CNN-
based mapping algorithm is consistently better than the baseline
system under all conditions.

SRE08 5s - 5s C6 C7 C8
Baseline (short utterance PLDA) 26.57 26.54 23.48

Best results of GMM
(mixed-length utterance PLDA)

25.98 26.54 24.24

Best results of CNN
(mixed-length utterance PLDA)

24.80 24.23 21.97

Absolute Improvement 1.77 2.31 1.51
Relative Improvement 6.7 % 8.7% 6.4 %

Table 4: EER for the baseline obtained from a trained PLDA
using purely short-utterance i-vectors and EER for the best

results of different mapping methods obtained from a trained
PLDA using mixed short and long utterance i-vectors

5. Conclusion
In this paper, we propose a novel semi-supervised mapping al-
gorithm, which jointly learns a supervised mapping from short
utterance i-vector to its long version with an autoencoder us-
ing CNNs. When evaluated using the NIST SRE 08 dataset,
the mapped short i-vectors can give up to around 30% rela-
tive improvement for short utterances speaker verification un-
der mismatched training conditions, and also outperform the
matched-PLDA training condition using short utterances. For
future work, we will investigate and compare different neural
network structures, and the impact of the weights for the com-
bined regression and autoencoder loss. We will also compare



the i-vector mapping results for both GMM-ivector and DNN-
ivector systems.
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