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Abstract 

Little is known about intraspeaker changes in voice across 

changing speaking situations in everyday life.  In this study, 

we examined acoustic variations between and within 5 talkers 

and their effect on the likelihood that voice samples would not 

be identified as coming from the same talker. Talkers were 

drawn from a large database recorded to capture everyday 

variations in vocal characteristics. Nine samples of /a/, 

recorded on three different days, were examined for each 

talker. Acoustic characteristics were estimated using 

VoiceSauce and analysis-by-synthesis, and listeners judged 

whether pairs of voices came from the same or two different 

talkers.  Results indicate that interspeaker variability in voice 

quality exceeds intraspeaker variability, but differences are 

smaller than expected.  As predicted by models that treat voice 

quality as an auditory pattern, the acoustic attributes associated 

with incorrect “different speaker” responses varied from talker 

to talker, depending on the particular characteristics of the 

voice in question. 

Index Terms: voice quality, speaker recognition, intra-

speaker variability 

1. Introduction 

Although the study of voice quality has a long history in many 

disciplines, little is known about the extent to which an 

individual voice pattern varies across the kinds of speaking 

situations that arise in normal, every-day life. Although voices 

are sometimes described as auditory patterns [1], it is difficult 

to know what this actually means without data describing the 

acoustic input—and the acoustic variability—that the auditory 

system transforms into these patterns.  This paper describes a 

preliminary investigation into acoustic variation in individual 

talkers and its implications for listeners’ perceptions of a voice 

sample as coming from a particular talker. Specifically, we 

addressed these questions: 1) Are talkers consistently more 

similar to themselves acoustically and perceptually than they 

are to other talkers?; and 2) What is the relationship between 

acoustic and perceptual similarity?  

2. Database and Recording Procedures 

The first step in addressing these questions is developing a 

database containing multiple recordings of speakers recorded 

in a variety of speaking tasks on multiple occasions.  To our 

knowledge none of the existing multi-talker speech databases 

offers the desired combination of a large number of talkers 

(both male and female), multiple recording sessions per talker, 

multiple speech tasks per talker, and very high quality audio 

(controlled recording conditions, good quality microphone, 

high sampling rate, etc.). The final database will comprise 

speech from 200 talkers (100 male, 100 female); the current 

database includes over 185 complete recordings. All talkers 

are undergraduate students at UCLA.  

Audio recordings are made in a sound-attenuated booth 

using a ½” Brüel & Kjæ r microphone suspended from a 

baseball cap worn by the talker. Each talker participates in 

three separate recording sessions. All speech is elicited via on-

screen displays implemented in Matlab. The first speech task 

in each session is three utterances of the isolated vowel /a/ 

(which was chosen because the high F1 reduces errors in 

estimation of voice source parameters). The second is two 

repetitions of five Harvard sentences (the same sentences for 

all talkers and all sessions, randomized for each recording). 

The sentences task provides samples of read speech, and both 

of these tasks allow cross-session comparisons.  

Each session then includes two further speech tasks, 

different in each session, for a total of six one-time-only 

speech tasks. In the first session, talkers are instructed to talk 

to the research assistant (RA) who is outside the booth, giving 

her either directions on how to go somewhere, or instructions 

on how to do something (a set of suggested topics is 

provided). They are told to speak for at least 30 seconds, and 

an on-screen display counts out 30 seconds. This task provides 

a sample of clear but unscripted speech. Next, participants are 

instructed to repeat to the RA a conversation they had recently 

that wasn’t important – not exciting, not upsetting, just 

normal. Again, some possible topics are provided, and again, 

the on-screen display prompts for 30 seconds of speech. This 

task provides a sample of unscripted low-affect speech. 

In the second session, participants are instructed to repeat 

to the RA a conversation they had recently about something 

exciting that made them really happy. As before, some 

possible topics are provided and the on-screen display prompts 

for 30 seconds of speech. This task may provide a sample of 

positive-affect speech. Next, participants use their cell phones 

to call a friend or relative and talk for at least two minutes. 

Only the participant’s side of the conversation is recorded. 

This task provides a sample of unscripted conversational 

speech. 



In the third session, participants are instructed to repeat to 

the RA a conversation they had recently about something that 

really annoyed them. As before, some possible topics are 

provided and the on-screen display prompts for 30 seconds of 

speech. This task may provide a sample of negative-affect 

speech. Finally, participants watch a 1-minute video of cute 

kittens or puppies, and are asked to talk aloud to the pets as 

they watch the video. This task provides a sample of pet-

directed speech, which typically has exaggerated prosody [2]. 

The goal of recording speech from different conditions for 

the database is to sample normal, daily-life voice variation. 

We do not try to elicit voice disguises, impersonations, acted 

emotions, or other dramatic acting. Instead we focus on 

normal variability in real-life situations, to the extent that these 

can be elicited in a sound booth. The point of the different 

conditions is not to study them as such, but simply to enhance 

the likelihood of sampling realistic amounts of within-talker 

variability in voice quality. 

The voices of five female talkers were selected at random 

from this database for use in the following experiments.  Only 

the 9 tokens of sustained /a/ were studied, given the 

preliminary nature of the following experiments. 

3. Acoustic Analysis 

3.1. Selection of Measures and Data Reduction  

Based on a study of patterns of variability across talkers in 

source spectral shapes and glottal pulse shapes [3], we have 

developed a spectral model of the voice source that includes 

six factors: F0, H1-H2 (the amplitude difference between the 

first and second harmonics), the slope of the harmonic 

spectrum from H2-H4 (the second to the fourth harmonic), 

spectral slope from H4-2 kHz, spectral slope from 2 kHz to 5 

kHz, and the harmonics-to-noise ratio (HNR), which measures 

harmonic energy normalized by the spectral noise level [4]. 

Extensive studies (e.g., [5][6][7][8]) have shown that listeners 

are perceptually sensitive to all six parameters, and that, as a 

set, the parameters are sufficient to quantify source 

contributions to normal personal voice quality, so that the 

model can be considered perceptually valid. 

The literature on voice quality also includes a number of 

other measures that were included for the sake of 

completeness. These include measures of HNR in 4 discrete 

frequency ranges, H1*-A1*, H1*-A2*, H1*-A3* [9], Energy 

(the Root Mean Square energy, calculated at every frame over 

a variable window equal to five pitch pulses), and Cepstral 

Peak Prominence (CPP [10], a measure of signal periodicity). 

HN* denotes the N-th source spectral harmonic magnitude and 

AN* denotes the amplitude of the harmonic closest in 

frequency to the N-th formant. The asterisk (*) indicates a 

correction for the influence of vocal tract resonances using the 

formula given in [11].  Finally, measures of F1, F2, and F3 

were included because vowel quality differed substantially 

across (and occasionally within) talkers.   

Measures for all parameters were made using 25-msec 

Hamming window with 1-msec frame interval across the 

entire duration of each vowel token. The parameters are 

sampled every 100 msec by averaging over ±50 msec span. . 

every 100 msec across the entire duration of each vowel token. 

Source measures were extracted with VoiceSauce [12], and 

formant frequencies were measured using the Snack option 

within VoiceSauce [13].  Measures were screened for outliers 

(which were treated as missing values), and source spectral 

measures were validated using analysis-by-synthesis [14]. 

Correlation and canonical correlation were used to 

examine patterns of association among the many acoustic 

variables, including F0. The 4 HNR measures were 

significantly and substantially intercorrelated with each other 

and with CPP (mean r  = 0.95,         ), so only CPP was 

retained for subsequent analyses. Similarly, canonical 

correlation indicated that H1*-H2*, H2*-H4*, H4*-2kHz*, 

and 2kHz*-5kHz could be predicted as a set from H1*-A1*, 

H1*-A2*, H1*-A3*, and Energy (R2 = 0.88), so only the first 

set of variables was retained. Finally, formant frequencies 

were included in the final set of measures due to prominent 

differences in vowel quality within and across speakers.  Note 

that the final set of 9 acoustic measures is equivalent to our 

proposed psychoacoustic model; the observed correlations 

between model parameters and other variables suggests that 

adding parameters to the model would not increase its 

explanatory power.  

Figure 1 illustrates within- and across-talker mean and 

standard deviations for the 9 acoustic measures. Note, for 

example, that CPP’s within-talker standard deviation is larger 

for talker 4 than the across-talker standard deviation. 

 

 

Figure 1: Mean and standard deviation within-talker 

and across all talkers for (a) F0 (Hz) (b) CPP (c) 

H1*-H2* (dB) (d) H2*-H4* (dB) (e) H4*-2kHz* (dB) 

(f) 2kHz*-5kHz (dB) (g) F1 (Hz) (h) F2 (Hz) (i) F3 (Hz) 

Table 1: Normalization ranges for the variables 

F0 CPP H1*-H2* 

93 ~ 275Hz 15 ~ 32 -2.64 ~ 21.6 dB 

H2*-H4* H4*-2kHz 2kHz*-4kHz 

-0.39 ~ 29.2 dB 0 ~ 37.7 dB 0 ~ 46.87 dB 

F1 F2 F3 

522 ~ 1163 Hz 963 ~ 2701 Hz 2138 ~ 3490 Hz 

 

All nine measures were normalized to a 0-1 scale using the 

range for that variable observed in previous studies 

[6][15][16]. The normalization ranges are shown in Table 1. 

Averages were then calculated for each talker and assembled 

into vectors. The average (Euclidean) acoustic distance 

between talkers was calculated from these vectors under the 



assumption of equal weighting of measures.  Note that each 

talker was represented by an average on each measure, so that 

acoustic variability within tokens was not captured in our final 

analyses. 

3.2. Results and Discussion 

Average acoustic distances between talkers are given in Table 

1Table 2, and average acoustic distances between the nine 

tokens from each individual talker are given in Table 3. The 

average distance between talkers (45.04) did exceed the 

average distance between tokens from a single talker (34.86), 

but ranges overlapped considerably, with variability within an 

individual often exceeding differences between talkers.  Thus 

it is not the case that talkers are consistently more acoustically 

similar to themselves than they are to other talkers.  For 

example, talker 1’s voice samples differed more from one 

another, on average, than talker 1 differed from talkers 2, 3, or 

4. Talkers 3 vs 5 were by far the most distinctive pair 

acoustically, and in general talker 5 differed the most from the 

other talkers. 

Table 2: Average acoustic distances between the 5 

talkers. 

 Talker B 

Talker A 2 3 4 5 

1 36.9 31.1 32.4 59.5 

2  55.6 34.7 35.4 

3   38.6 75.4 

4    50.8 

Table 3: Average acoustic distances between the 9 

tokens for each individual talker. 

 Talker  

Distance 1 2 3 4 5 

Average 41.8 29.3 31.9 41.1 30.2 

SD 1.00 0.90 0.80 1.20 1.00 

4. Perceptual Experiment 

4.1. Method 

The nine /a/ vowels recorded from the five randomly-selected 

female talkers described above were used as stimuli in this 

experiment.  To ensure that idiosyncratic vocal features like 

final creak or pitch declination were represented, the full 

unedited vowel samples were used. Given nine recordings 

from five talkers, the stimulus set included a total of 180 

“same talker” pairs and 450 “different talker” pairs, for a total 

of 630 possible comparisons among stimuli. Two different 

randomizations of this set were created, each of which was 

divided into thirds to create 6 subsets of 210 listening trials.  

Listeners were normal-hearing UCLA students and staff 

members. They received payment or class credit for their 

participation. Ten listeners were assigned at random to each of 

the stimulus subsets, for a total of 60 listeners in 6 groups; but 

across groups, each pair of stimuli was judged by 20 listeners.  

Listeners heard the pairs of stimuli over Etymotic insert 

earphones (model ER-1) at a comfortable constant listening 

level (interstimulus interval = 250 msec). Each pair could be 

played only once in each presentation order (AB/BA). 

Listeners were not told how many speakers were represented 

in the trials. For each pair of stimuli, they judged whether the 

voices represented one talker or two different talkers, and 

reported their confidence in their response on a scale from 1 

(positive) to 5 (wild guess). The experiment was self-paced 

and listeners were encouraged to take as many breaks as 

needed.  Testing lasted about 45 minutes on average.   

4.2. Result and Discussion 

4.2.1. Listener Accuracy 

The probability of a correct “same talker” response (the hit 

rate) and the probability of an incorrect “same talker” response 

(the false alarm rate) are given in Table 4 for the 5 target 

stimuli. Each listener’s same/different responses were 

combined with their confidence ratings to create a scale 

ranging from 1 (positive that voices are the same) to 10 

(positive that voices are different), and    was calculated from 

these recoded responses (Table 5).  

Although hit rates are quite high overall, false alarm rates 

are also rather high, suggesting that listeners had difficulty 

distinguishing different talkers.  This difficulty is reflected in 

the dʹ rates in Table 5, particularly for speaker 1 vs. 3 and 1 vs. 

4, which were not discriminable at above chance levels. 

Table 4: Overall rates of correct (hit) and incorrect 

(false alarm; FA) “same talker” responses for the 5 

talkers. 

Talker Hit Rate FA Rate 

1 .89 .43 

2 .91 .34 

3 .89 .37 

4 .67 .43 

5 .83 .22 

Table 5: d′ values for pairs of talkers, with a hit 

defined as a correct “same talker” response. 

 Talker B 

Talker A 2 3 4 5 

1 1.50 0.83 0.75 1.22 

2  1.66 1.01 1.64 

3   1.08 2.00 

4    1.16 

4.2.2. The Relationship between Perceptual and 

Acoustic Similarity  

The correlation between the acoustic distances between talkers 

and    equaled 0.68 (        ), suggesting that a similar set 

of cues mediates confusions between different talkers.  To 

examine whether the parameters associated with incorrect 

“different talker” responses are also consistent across talkers, 

we used stepwise multiple regression to predict the likelihood 

of such responses from acoustic distance between the 9 tokens 

from each talker.  This method was chosen over standard 

multiple regression because of the exploratory nature of these 

analyses, and because we wished to observe the order of entry 



of the different variables into the equation.  Results are given 

in Table 6.  While this relationship is quite strong for three 

talkers (1, 4, 5), it is notably unexplanatory for talker 3. 

Further analysis is needed to understand why (by what 

acoustic measures) this talker sometimes sounded more like 

someone else than like herself. 

Table 6: Predicting incorrect “different talker” (Miss) 

responses. 

Talker  # misses Pred. vars. R2 

1 135 F0, F1, F2, H2H4, CPP .62 

2 90 F0 .45 

3 143 CPP .21 

4 262 F1, F2, H1H2, CPP .71 

5 129 F1, F2, H2H4, 2k5k, CPP .72 

5. General Discussion 

Returning to the two questions listed in the Introduction: 

1. Are talkers consistently more similar acoustically and 

perceptually to themselves than they are to other 

talkers? 

On average, talkers were acoustically more self-similar than 

they were similar to other talkers.  Perceptually, Table 4 shows 

that listeners produced many more correct than incorrect 

“same talker” responses, indicating that (at least for the small 

sample of talkers studied here), talkers are indeed perceptually 

more similar to themselves than they are to other talkers.  The 

differences are not overwhelming in either case, however.    

2. What is the relationship between acoustic and 

perceptual similarity?  

This question is perhaps best answered by, “It depends.” 

Confusions between different talkers were reasonably well 

predicted (R2 = .46) from average values of a set of static 

acoustic measures. However, results were much more variable 

when we attempted to predict cases where two voice samples 

were not identified as coming from the same talker.  Although 

prediction was relatively good for 4/5 talkers, the parameters 

associated with rates in incorrect “different talker” responses 

differed from talker to talker.  This result is consistent with 

models of voice quality that treat voices as patterns, so that the 

importance of any one acoustic parameter in determining the 

quality of a voice depends on the values of the other 

parameters that make up the pattern. 

 

Further studies will include more detailed analysis of the 

acoustic vectors that characterize each talker, and how they are 

related to confusion between talkers. The study will also be 

expanded to analyzing a larger data set with more talkers 

(including males) and various kinds of speech. 
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