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Abstract 

This paper proposes an age-dependent scheme for automatic 

height estimation and speaker normalization of children’s 

speech, using the first three subglottal resonances (SGRs). 

Similar to previous work, our analysis indicates that children 

above the age of 11 years show different acoustic properties 

from those under 11. Therefore, an age-dependent model is 

investigated. The estimation algorithms for the first three 

SGRs are motivated by our previous research for adults.  The 

algorithms for the first two SGRs have been applied to 

children’s speech before. This paper proposes a similar 

approach to estimate Sg3 for children. The algorithm is trained 

and evaluated on 46 children, aged between 6-17 years, using 

cross-validation. Average RMS errors in estimating Sg1, Sg2 

and Sg3 using the age-dependent model are 51, 128 and 168 

Hz, respectively. The height estimation algorithm employs a 

negative correlation between SGRs and height, and the mean 

absolute height estimation error was found to be less than 

3.8cm for the younger children and 4.9cm for the older 

children. In addition, using TIDIGITS, a linear frequency 

warping scheme using age-dependent Sg3 gives statistically-

significant word error rate reductions (up to 26%) relative to 

conventional VTLN. 

Index Terms: children’s speech, subglottal resonances, height 

estimation, speaker normalization.  

 

1. Introduction 

Previous research on the applications of subgottal resonance 

(SGRs) has focused primarily on height estimation and 

speaker normalization. Automatic estimation of an unknown 

speaker’s height from speech can benefit forensics and provide 

useful speaker information. In [1], an automatic height 

estimation algorithm was proposed for adults, based on the 

strong negative correlations between SGRs and speaker 

height. One important feature of this algorithm is that the 

amount of training data and the number of features used for 

height estimation are very small in comparison with other 

studies [2, 3]. Although the algorithm works well on adults’ 

speech, the height estimation algorithm for children’s speech 

has not been investigated. 

        Previous research also shows that SGRs can be effective 

in speaker normalization for automatic speech recognition 

especially for children’s speech under mismatched and 

limited-data conditions. In [4], a linear frequency warping 

algorithm using either Sg1 or Sg2 was proposed. In [5], a non-

linear frequency warping scheme was used, which is based on 

mapping the SGRs and the third formant frequency of a given  
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utterance to reference values. Both the results of [4] and [5] 

indicate that SGR-based normalization is comparable to or 

better than the conventional form of vocal tract length 

normalization (CVTLN) [6] and is not sensitive to content. 

Although frequency warping using Sg1, Sg2 and formants 

gives good performance for children’s speech, the effect of 

Sg3 for children speaker normalization has not been 

investigated. 

        In this paper, we analyzed the first three SGRs (Sg1, Sg2, 

Sg3) and their relationship with formants using the WashU-

UCLA child corpus, a subset of which was used in [7]. Based 

on previous research [8] and our analysis, children with 

different age groups show different acoustic properties. The 

age of 11 years was chosen as a cutoff since this is the 

approximate age at which a child reaches puberty. Using this 

cutoff, new age-dependent regression models were trained to 

estimate Sg1, Sg2 and Sg3 for children’s speech. With these 

models, an automatic height estimation algorithm is proposed 

for children’s speech of different age groups, and a new 

method using age-dependent Sg3 is also applied to speaker 

normalization.  

        In Section 2, we present the relationship between SGRs 

and formants for children’s speech, propose an age-dependent 

SGR estimation algorithm and show the results of its 

evaluation. Section 3 describes the height estimation algorithm 

and corresponding results. Section 4 explains the linear 

frequency warping scheme using age-dependent Sg3 and the 

results of the speaker normalization experiment. Section 5 

concludes the paper. 

 

2. Analysis and automatic estimation of the 

first three SGRs  

2.1. Dataset 

The WashU-UCLA child corpus comprises simultaneous 

recordings of microphone and subglottal accelerometer signals 

from 46 child speakers (33 males, 13 females) of American 

English. The speakers are aged between 6 and 17 years: 24 

speakers were between the age of 6 and 11 years (18 males, 6 

females), 22 were between the age of 11 and 17 (15 males, 7 

females).  Every speaker was recorded in two sessions: one 

with 14 hVd words (10 monophthongs – in which we include 

the approximant [ɹ] – and 4 diphthongs) and the other with 21 

CVb words (4 monophthongs and 3 diphthongs, in three 

different consonant contexts). Every word, embedded in the 

carrier phrase, “I said a ____ again”, was recorded repeatedly 

until each child successfully said the sentence at least 3 times.  

Only the monophthong hVd words and the corresponding 

carrier phrases were used in this study. Moreover, speaker 



height was recorded in the corpus and ranged from 105cm to 

182cm. 

2.2. Analysis 

SGR analysis was conducted on all the recordings of the 10 

monophthongs: 2760 microphone recordings and 2852 

subglottal recordings. For each speaker, the first three 

formants were measured from the microphone signals in the 

steady-state region using Snack [9]. The first three SGRs were 

measured from the corresponding accelerometer signals by 

visual inspection of the resonance peaks in LPC spectra using 

Wavesurfer [10]. Both microphone and accelerometer signals 

were down-sampled to 8kHz before analysis.    

2.2.1. The relationship between Sg1, Sg2 and vowel 

class 

Previous research [11] showed that Sg1 acts as a boundary 

between high and low vowels and Sg2 forms a boundary 

between front and back vowels for adult speech, and this paper 

investigated whether Sg1 and Sg2 divided the vowel space for 

children’s speech as well. Table 1 shows the percentage of 

speakers in which Sg1 and Sg2 successfully divided the vowel 

space. The percentages are high indicating that SGRs divide 

the vowel space of children as well as adults.  

Table 1.  Percentage of speakers, separated by age 

group, whose SGRs successfully divided the vowel 

space. 

Age Group Below 11 Above 11 All speakers 

     87.5% 95.5% 91.3% 

     91.6% 95.5% 93.5% 

2.2.2. The relationship between Sg1, Sg2 and Sg3  

To investigate the relationship between Sg1, Sg2 and Sg3 for 

children’s speech, scatter plots of Sg3 versus Sg1 and Sg2 are 

shown in Figure 1. The results indicate that Sg3 is correlated 

with Sg1 (r=0.88) but more strongly correlated with Sg2 

(r=0.92). Therefore, a first-order linear regression was trained 

using Sg2 and Sg3 and the result is Eq. 1.  

 

Figure 1: Scatter plots of Sg3 vs. Sg1 (left) and Sg3 vs. Sg2 

(right). Also shown are first-order linear regression. Sg1 and 

Sg3 are correlated (r=0.88) while Sg2 and Sg3 are more 

strongly correlated (r=0.92). 

                                                      (1) 

2.3. Automatic estimation 

Estimation algorithms for the first three subglottal resonances 

were proposed for adults in [1]. The algorithm was based on 

the following central idea: Sg1 acts as a boundary between 

high and low vowels so that two acoustic features 

characterizing vowel frontness – the Bark difference between 

the third and first formants (denoted as    ) and the Bark 

difference between F1 and Sg1 (denoted as      ) – are 

correlated. Similarly, for Sg2 estimation, the Bark difference 

between F3 and F2 (denoted    ) was found to be related to 

the bark difference between F2 and Sg2 (denoted as      ) 

since both measures characterize vowel backness. An 

empirical equation was derived to predict       from a linear 

combination of the first three powers of     and a constant 

term. The same approach also applied to       and     to 

predict      . Sg3 is estimated based on its correlation with 

Sg2 using a first-order linear regression, as in Eq. 1. These 

empirical relations allowed the first three SGRs to be 

estimated from a speech signal once the first three formants 

are tracked automatically.  

        A previous study [7] derived empirical relations to 

estimate Sg1 and Sg2 for children’s speech, but the dataset 

was relatively small, and the estimation algorithm for Sg3 was 

not investigated. In this study, all the empirical relations to 

estimate the first three SGRs were derived using a larger 

dataset of 46 speakers in the WashU-UCLA child corpus. 

        When training the regression model using the data from 

all the speakers together, the results showed a relatively low r-

squared (  ) value. However, when we separated the speakers 

into two different age groups, below 11 and above 11, both of 

the regression models trained on each group resulted in larger 

values of   , as illustrated in Table 2. 

Table 2. R-squared values for the SGR estimation models of 

Sg1 and Sg2 when trained on speakers separated by age group, 

as well as when trained on all speakers. 

Age Group Below 11 Above 11 All speakers 

   for     0.91 0.92 0.85 

   for     0.91 0.93 0.85 

        Therefore, we train and test the SGR estimation 

algorithms separately for the two different age groups using a 

cross-validation method. Within each age group, each time we 

randomly chose around 60% of the speakers to train the 

regression model and the rest to test the estimation algorithm. 

Given a test speech signal, the detailed steps involved in 

estimating SGRs are the same as in [1]. 

2.4. Performance analysis of the algorithm 

The SGR estimation algorithm was evaluated using two 

performance metrics: the mean and standard deviation of the 

root mean squared errors (across speakers and 5 cross-

validation tests), denoted as      and     , respectively, both 

in units of Hz. Table 3 shows the performance of the 

automatic estimation algorithm in each age group and the 

whole dataset.  

        Noted that in applications, when age information is not 

available, broad age group estimation algorithms should be 

used before estimating SGRs. In Section 4 of this paper, 

average F3 is used as a threshold to predict the age group of 



each speaker when estimating the SGRs for speaker 

normalization.  

        The best regression models to estimate Sg1 and Sg2 for 

younger children during cross-validation are presented by     

Eq. 2 and Eq. 3. Eq. 4 and Eq. 5 present the best models for 

older children. The regression equations of Sg3 for both age 

groups are dependent on Sg2 in a similar way as in Eq. 1. 

Therefore, Sg3 for both age groups can be estimated from the 

Sg2 estimates using Eq. 1. 

Table 3. Mean and standard deviation of RMS error, 

in Hz, of SGR estimation for the set of ‘younger’ 

children (Y), ‘older’ children (O) and both sets 

‘combined’ (C).  

 Sg1 Sg2 Sg3 

 Y O C Y O C Y O C 
     48 53 51 131 126 128 170 166 168 

     31 35 34 70 66 69 81 77 79 
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Figure 2: Scatter plots of all child speaker height vs. each of 

the first three SGRs. Also shown are first-order linear 

regression fits. Speaker height correlates strongest with Sg3 

(r=-0.90), but is also correlated with Sg1 (r=-0.88) and Sg2 

(r=-0.88). 

 

3. Height estimation  

3.1. Methods 

Previous work on adult height estimation using speech signals 

has shown a strong negative correlation between the three 

SGRs and height [1]. This section tests a similar hypothesis for 

children. Using measurements for Sg1, Sg2 and Sg3 for each 

speaker, as well as information about the speakers’ heights, a 

scatter plot of height versus the SGRs for all children is 

presented in Figure 2. 

        The inverse correlation of each SGR with height is 

strong, and therefore a first-order linear regression is used to 

model the relationship between each SGR and height. The 

empirical relations were obtained between speaker height and 

SGR frequencies, as illustrated in Eqs. 6, 7 and 8. These 

equations are different from the height estimation equations 

for adults in [1]. 

 

                       (r=-0.88)                   (6) 

                       (r=-0.88)                   (7) 

                       (r=-0.90)                   (8) 

3.2. Experiments and results 

Motivated by the results of Section 2, the height estimation 

algorithm was tested used a cross-validation method in which 

the child speakers were grouped into two different categories: 

age under 11 years and age above 11 years. In each category, 

60% of the speakers were chosen to train the first order linear 

regression model between height and each empirically 

measured SGR (ground truth), and the rest were used to test 

the model. In each age group, after the models were trained, 

using the method proposed in Section 2, Sg1, Sg2 and Sg3 

were estimated for each testing speech signal. Finally, the 

trained linear regressions between SGRs and height, along 

with the three computed SGRs from the test data, were used to 

estimate the speakers’ heights, and the results were compared 

with the actual height measurements. The height was 

calculated for each voiced frame, and the estimated height for 

each test speaker was the average number across all frames. 

        This procedure was repeated 5 times for each age group, 

and each time, the root mean squared errors (RMSE) and mean 

average errors (MAE) were recorded.  Table 4 displays the 

average RMSE and MAE of this experiment for both age 

groups. 

        Additionally, to verify the necessity of the age-dependent 

SGR estimation model, the experiment was repeated again but 

with all child speakers grouped into a single category. 

Estimation of Sg1, Sg2 and Sg3 for the speakers used a model 

obtained in a similar way as Eqs. 1-5 in Section 2 but trained 

assuming age-independence of SGRs. The average RMSE 

(cm) and MAE (cm) of this experiment are also shown in 

Table 4. 

 

Table 4. Mean average error and root mean squared error of 

the height estimation algorithms when trained and tested on 

the set of ‘younger’ children (Y), ‘older’ children (O) and ‘all’ 

children (A). 

 

        The resulting regression equations of height versus each 

SGR during cross-validation training were similar to Eqs. 6, 7 

and 8 for both the younger and older groups, and therefore, 

Eqs. 6, 7 and 8 can be used to estimate height using SGRs 

regardless of age. However, RMSE and MAE were smaller 

when using different SGR estimation models for different age 

groups, suggesting the necessity for age-dependent SGR 

regression models. Thus, the height estimation algorithm can 

simplify to age-dependent SGR estimation models in 

combination with age-independent linear regressions of height 

versus SGRs.  Observing the values in Table 4 reveals that 

Sg1 returns the most accurate height estimation (MAE of 

3.8cm) for children under the age of 11 years, while Sg2 and 

Sg3 return the most accurate height estimation (MAE of 

4.9cm) for children above 11. Note that the height estimation 

error for older children is similar to that of adult speech [1]. 

 Using Sg1 Using Sg2 Using Sg3 

 Y O A Y O A Y O A 

MAE 3.8 5.0 9.4 4.3 4.9 10 4.3 4.9 11 

RMSE 4.8 6.2 10 5.9 6.5 11 6.0 6.6 12 



4. Speaker normalization 

4.1. Methods and algorithm for comparison 

Motivated by the success of the age-dependent SGRs 

estimation algorithm and the results on height estimation, we 

investigated speaker normalization using the new age-

dependent framework. The SGR warping scheme is the same 

as in [5]: the test speakers’ SGRs are warped onto a reference 

speaker’s SGRs, and in case of errors in SGR estimation, 

scaling factors were used to fine-tune the SGRs in a maximum 

likelihood approach similar to that used in VTLN techniques. 

We have shown in the previous sections that SGRs are 

estimated differently for the age groups below and above 11. 

So, for normalization we estimated the age group of the 

speaker by thresholding the average F3 for each speaker. Since 

the effect of Sg3 for normalization has not been clearly studied 

before, we include Sg3 in the experiments. The various 

experiments performed using the estimated SGRs are: (1) age-

independent Sg2 warping (2) age-independent Sg3 warping (3) 

age-independent {Sg1, Sg2, Sg3} warping, (4) age-dependent 

Sg3 warping using oracle age information and (5) F3 based 

age-dependent Sg3 warping (using F3 as a threshold to predict 

different age groups). We focus primarily on Sg3 because 

initial experiments showed that Sg3 yields best results.  We 

have also compared the results of these experiments with the 

CVTLN and age-independent {Sg1, Sg2, F3} warping in the 

previous paper [3]. 

4.2. Normalization experiment and results 

The automatic speech recognition (ASR) system used for our 

experiments was trained using adult speech and tested on 

SGR-warped children’s speech. The TIDIGITS database was 

used for both adult speech (training) and children’s speech 

(testing). The features used are the first thirteen Mel-frequency 

cepstral coefficients (MFCCs c0–c12) and their first and 

second-order derivatives computed using 25ms frames spaced 

at 10ms intervals. All signals are down sampled to 8kHz. The 

training and testing sets comprise data from 112 adults (55 

males, 57 females) and 50 children (25 boys, 25 girls; 6–15 

years old), respectively. Monophone hidden Markov models 

(HMMs) are used for recognition. The HMMs have 3 emitting 

states each, and each state has 6 Gaussian components.  

         Normalization is applied only to the testing data and not 

to the training data. The reference SGRs used in our 

experiment were obtained by taking the average of all the 

estimated SGRs of the adult speakers in the training set, which 

were Sg1ref =604.9Hz, Sg2ref=1357.4Hz and   Sg3ref 

=2228.3Hz. The F3 used for separating the speakers into the 2 

age groups was 3kHz. 

         The hidden Markov model toolkit (HTK) was used for 

all experiments, and word error rate (WER) was used as the 

performance metric. Results for all our experiments are shown 

in Table 1. 

         The results show that the experiments using only Sg3 

produce the lowest WERs followed by the Sg2 and Sg1 

warping schemes. One possible reason is that, as it has been 

shown in Section 3 that Sg3 has the strongest correlation with 

height, Sg3 may also have strong correlation with the vocal 

tract length (VTL). The combination of Sg1, Sg2 and Sg3 

gives a WER that lies between that obtained by using only 

Sg3, only Sg2 and only Sg1. Among the warping schemes 

involving only Sg3, the highest WER is obtained using the 

age-independent Sg3 estimation. The lowest WER 

Table 5. Word error rates (%) for ASR experiments. 

Experiment Type WER (%) 

Baseline 9.9 

CVTLN 2.7 

{Sg1,Sg2,F3} warp 2.7 

Age-independent Sg1 3.4 

Age-independent Sg2 2.8 

{Sg1,Sg2,Sg3} warp 2.8 

Age-independent Sg3 2.47 

Age-dependent Sg3 using F3-

based age estimation 
2.09 

Age-dependent Sg3 using oracle 

age information  
1.96 

 

occurred when using oracle age information to estimate the 

SGRs (~26% WER reduction relative to CVTLN and {Sg1, 

Sg2, F3} warp). Automatic estimation of age group using F3 

also produced WER lower than the CVTLN, {Sg1, Sg2, F3} 

with results comparable to the oracle age-dependent Sg3 

warping scheme. Though F3 alone is not a perfect measure to 

estimate age, it has been observed that it is good enough to 

roughly separate the speakers into 2 age groups to estimate 

SGRs.  

5. Conclusions 

In this paper, an age-dependent scheme for automatic height 

estimation and speaker normalization is proposed for 

children’s speech. Analysis indicates that children below and 

above 11 years old show different acoustic properties, and 

therefore, an automatic age-dependent SGR estimation 

algorithm is applied to each age group. The first three SGRs 

were estimated using a similar method adapted from adult 

speech but with age dependency considerations. Good results 

were achieved for each SGR. Using the algorithm for 

estimating SGRs and the inverse relation between SGRs and 

height, speaker height can be automatically estimated. The 

proposed height estimation algorithm performs well in each 

age group. Using a cross-validation method, speaker height 

can be estimated to within 3.8cm for younger children and 

4.9cm for older children, on average. Motivated by the 

differences between each age group, a linear frequency 

warping method using age-dependent Sg3 was applied to the 

TIDIGITS speech recognition task. The results show that the 

proposed method outperforms CVLTN and other SGR-based 

warping schemes.  

        For future work, we will evaluate the effectiveness of the 

algorithm on a larger database. Moreover, age estimation for 

children’s speech using SGRs will also be studied. 
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