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Automatic phrase detection systems of bird sounds are useful in several applications as they reduce

the need for manual annotations. However, birdphrase detection is challenging due to limited training

data and background noise. Limited data occur because of limited recordings or the existence of rare

phrases. Background noise interference occurs because of the intrinsic nature of the recording envi-

ronment such as wind or other animals. This paper presents a different approach to birdsong phrase

classification using template-based techniques suitable even for limited training data and noisy envi-

ronments. The algorithm utilizes dynamic time-warping (DTW) and prominent (high-energy) time-

frequency regions of training spectrograms to derive templates. The performance of the proposed

algorithm is compared with the traditional DTW and hidden Markov models (HMMs) methods under

several training and test conditions. DTW works well when the data are limited, while HMMs do bet-

ter when more data are available, yet they both suffer when the background noise is severe. The pro-

posed algorithm outperforms DTW and HMMs in most training and testing conditions, usually with a

high margin when the background noise level is high. The innovation of this work is that the proposed

algorithm is robust to both limited training data and background noise.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4966592]
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I. INTRODUCTION

Studies of animal biodiversity and song syntax would

benefit greatly from an ability to identify species and classify

phrase types automatically.1–4 We focus here on automatic

classification of songs by birds. These vary dramatically

from simple notes to complex sequences with thousands of

different song types.5 One common structure of birdsongs is

for several closely spaced “notes” to be grouped into

“phrases,” separated from one another by short time inter-

vals, thus, long sequences of phrases comprise a “song.” For

example, Cassin’s Vireos (Vireo cassinii; CAVI) have songs

made up of phrases, short bursts of notes, <0.7 s in duration,

separated by 1 s of silence or more. Each bird will typically

have 40–60 phrase types6 that can be reliably distinguished

manually by an observer; doing so automatically is challeng-

ing due to within-class variability, limited training data, and

noisy environments. This problem shares many features with

speech processing in human, while presenting new chal-

lenges of its own.

Birdsongs become especially challenging when the song

repertoire is diverse: some species have thousands of distinct

phrases in their lexicons. Two spectrograms with identical

class labels may look different due to time misalignment and

frequency variation. The frequency distribution of birdsong

elements often resembles a Zipf-Mandelbrot distribution

where some phrases appear many times, while others appear

sparingly. Thus, it is important to have an automated system

that can correctly classify birdsongs and can be trained with

only a few samples per phrase. Furthermore, the amount of

available training data may be limited by the logistics of the

recording procedure. The lack of human annotation may also

limit the amount of training labels even when more recordings

are available. The manual annotation labor can be reduced if

an automatic classifier is able to correctly identify phrase

types while requiring few training data.

Another challenge of automatic phrase classification is

background noise. In real recording environments, the data

can be corrupted by background interference such as rain,

wind, other animals, or even other birds vocalizing.

Automatic birdsong systems may suffer from detecting non-

target segments or segments that contain both the target

phrases, as well as unwanted noise components. Most systems

are sensitive to noise and demand “a low-clutter, low noise

environment.”7 A noise-robust classifier needs to handle such

adverse conditions that may be present in the training data

and also in the actual deployment data.

a)Portions of this work were presented in “A robust automatic bird phrase

classifier using dynamic time-warping with prominent region identi-

fication,” Proceedings of ICASSP, Vancouver, Canada, May 2013 and

“Bird-phrase segmentation and verification: A noise-robust template-based

approach,” Proceedings of ICASSP, April 2015.
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Techniques such as support vector machines (SVMs),

sparse representation, hidden Markov models (HMMs), and

dynamic time-warping (DTW) have been used for automatic

birdsong classification.8–14 Template-based approaches such

as DTW are appealing because the segmentation can be per-

formed by discarding speech frames that are not similar to the

template. However, the limitation of DTW is that it would

require numerous templates to capture the speech variability.

To solve this problem, templates may be grouped using sev-

eral techniques such as clustering.15 HMMs, on the other

hand, treat a speech or audio signal as a sequence of observa-

tions generated by a state machine. HMMs are described as

“generative models” as the models learn the statistical distri-

bution of acoustic features. HMMs employ the maximum

likelihood (ML) criterion, which requires their estimated

probability models to represent the actual distribution of data.

However, this requirement is difficult to achieve, resulting in

high performance degradation of speech recognition in mis-

matched conditions such as noisy environments or speaker

variability since it is impossible to include all of those condi-

tions when training HMMs.

Studies in Ref. 13 show that, under noisy recording condi-

tions, “good performance of the DTW-based techniques

requires careful selection of templates that may demand expert

knowledge,” while HMMs need “many more training exam-

ples than DTW templates.” Some algorithms have been

designed to reduce noise in birdsongs based on signal enhance-

ment techniques, such as spectral subtraction.16–18 Another

noise-robust processing technique, commonly used in speech

processing, is mask based.19,20 Generally, a mask is estimated

from testing samples and used for enhancing the test features.

In Ref. 21, a mask is obtained during both training and testing

and is used as a feature for species classification. Another

related idea is the glimpsing model of speech where the speech

energy is sparse in the time-frequency space.22 The glimpsing

model can be valid for bird vocalization whose frequency cov-

erage, in general, ranges from 1 kHz to 20 kHz but only a few

ranges of hundred Hz contain significant energy at a particular

time. This prominent time-frequency region is abbreviated as

prominent region throughout this paper.

Template-based classifiers are appealing as time align-

ment can be integrated with noise-robust processing. In our

methodology, the SFA derives, iteratively, a prominent region

from training samples using DTW. A contribution here is that

our training procedure automatically derives a good template,

bypassing manual selection. To achieve this, the algorithm

aligns all training spectrograms with respect to one another

and attempts to extract a reliable template using the prominent

regions. In our classifier architecture, each class has one tem-

plate, which comprises three entities: a spectrogram, a promi-

nent region description, and a weighting function. A weighting

function assigns more weights to reliable frames based on

short-time correlations. In our testing procedure, these three

entities are used by a DTW scheme to measure the similarity

between a given test sample and a class template. The class

template that achieves maximum similarity is identified as the

classification output.

Section II briefly presents the database used, while Sec.

III elaborates on the implementation of the proposed classifier.

Sections IV and V describe the experimental framework and

present results along with a discussion and ideas for future

work. In this paper, we study the performance of the proposed

system, traditional DTW, and HMMs under several training

and test conditions. The number of training samples is varied

to investigate the algorithm’s robustness to limited training

data. Three training conditions—clean, multiconditional, and

adverse training—are used to see how noise level affects mis-

match. Adverse training simulates situations where most of

the recordings are severely corrupted by background noise so

the data available to train the system are mostly unreliable.

II. THE CAVI DATABASE

The CAVI species is found commonly in many conifer-

ous and mixed-forest bird communities in far western North

America. Birdsong phrases for classification were obtained

from song recordings of male CAVIs because only the males

of this species give full songs. Their songs have been

described as “…a jerky series of burry phrases, separated by

pauses of �1 s. Each phrase is made up of 2 to 4 notes [sylla-

bles], with song often alternating between ascending and

descending phrases….” The “song [is] repeated tirelessly,

particularly when [the singing male is] unpaired….”23 Figure

1 shows the spectrogram of a CAVI song segment containing

two different phrases, each consisting of two syllables.

Manual phrase annotation was obtained by human expert

annotators. Phrase identity and time boundaries of each

phrase in the song were annotated based on visual spectro-

gram inspection using Praat software.24 Phrase types were

categorized based on their frequency trajectories on spectro-

grams, and the label of the phrase was assigned to the subjec-

tively matching spectrogram in the CAVI phrase catalogue.

Whenever a phase segment with a subjectively different fre-

quency trajectory from the existing spectrograms was found,

its spectrogram was added to the catalogue, and a new phrase

label was created.

The recordings were obtained in a mixed conifer-oak for-

est at �800 m elevation (38�2900400N; 120�3800400W), near

the city of Volcano, California, USA. Each sound file was

recorded in WAV-format, 16-bit, mono, 44.1 kHz sampling

rate. Each file contains songs from a single targeted CAVI,

with occasional vocalizations of other species in the back-

ground. One or more files were recorded per CAVI individ-

ual. More information about CAVI and the recording setup

FIG. 1. (Color online) A spectrogram of a CAVI song segment. The spectro-

gram contains three phrases. Each phrase contains two syllables.
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can be found in Refs. 6 and 11. All recordings with some

metadata and the phrase catalogue are available online.29

III. PROPOSED ROBUST TEMPLATE-BASED
ALGORITHM

The proposed algorithm includes spectrogram genera-

tion (Sec. III A), prominent region identification (Sec. III B),

noise-robust DTW (Sec. III C), and a SFA (Sec. III D). Only

SFA is used in training, while all the others are involved in

both training and testing.

A. Spectrogram generation

Each sound file is first downsampled from 44.1 kHz to

20 kHz because the energy above 10 kHz is relatively weak. A

highpass filter at 1 kHz cutoff is applied to the signal to elimi-

nate irrelevant signals because the energy of the signals for

these birds below 1 kHz is absent. The range of energy can be

specified according to the species being classified. The short-

time 512-point fast Fourier transform (FFT) was performed

using a frame length of 10 ms and a frame shift of 5 ms; then

the magnitude of the Fourier transform is obtained while the

phase information is discarded, resulting in a spectrogram.

B. Prominent region identification

When a birdsong recording is corrupted by background

interference, the accuracy of classifiers may degrade signifi-

cantly. Figure 2 shows examples of spectrographic mismatch

of some random phrases extracted from a real recording.

Spectrograms of the same columns have the same class

labels [i.e., Figures 2(a) and 2(d) are from the same class].

The top images represent clean spectrograms and the bottom

images are spectrograms of the same phrase class as above

but corrupted by background interference.

High-energy regions in both clean and noisy spectrograms

form a distinctive feature of a given class, as these regions are

somewhat invariant when corrupted by noise. A low-energy

region, on the other hand, is not a reliable discriminative cue

for classification. For example, the region above 5 kHz in Fig.

2(b) has low energy while this region apparently has high

energy in Fig. 2(e), resulting in a spectrographic mismatch.

However, if we reduce the scope of attention to a portion of

the spectrogram image (rather than the entire image), the mis-

match can be reduced. In this example, Figs. 2(b) and 2(e) are

more similar if only the region below 5 kHz is considered.

In our algorithm, we use a better representative region

rather than a rectangular patch. For example, the region

enclosed by the dotted boundary in Fig. 3(d) represents the

prominent region of the spectrogram in Fig. 3(a). In this

paper, we denote the prominent region of a spectrogram S
as R ¼ /ðSÞ. Let S be a spectrogram and Si denote the ith
column vector of S or simply the vector representing the

spectrum at frame i. To derive R ¼ /ðSÞ for each frame

spectrum Si, we first determine the maximum amplitude

ki ¼ maxðSiÞ, and assign a value of 1 to RiðkÞ if RiðkÞ is

greater than a threshold 0.2ki, where k is the frequency

index. Then we expand this interval by 0.5 kHz.

A more sophisticated algorithm to derive the prominent

region can also be used as described in Sec. III D. However,

the focus of this section is to present the effectiveness of the

prominent region rather than to study the optimal region der-

ivation method. Figures 3(e) and 3(f) illustrate the pixels of

the spectrogram from Figs. 3(b) and 3(c), respectively,

which are selected based on the prominent region shown in

Fig. 3(d). The process of deriving a prominent region is per-

formed only for the training template; we do not derive the

prominent region of the test data.

C. Noise-robust DTW

Two spectrograms, S1 and S2, of the same phrase may

have different durations that cannot be aligned by a simple

shift so a DTW is incorporated into our framework.11,14 The

dynamic time aligning component is shown to be essential to

this classification task.11 The cosine similarity is shown to be

a good metric for a DTW scheme.11,25 Let us define a notation

hðu; vÞ ¼ uTv=jujjvj as the cosine similarity degree between

vectors u and v where j•j represents the l2 vector norm. In our

algorithm, the cosine similarity is used to measure the similar-

ity of the spectra between a frame of a given spectrogram and

a frame of a template. For noise-robustness, the cosine simi-

larity is only computed within the prominent region.
FIG. 2. Spectrograms of clean (a)–(c) and noisy samples (d)–(f). Spectrograms

in the same columns [e.g., (a) and (d)] have the same class labels.

FIG. 3. Illustration of prominent regions. For a reference spectrogram (a),

the prominent region is the region enclosed by the dotted boundary in (d).

For spectrograms (b) and (c), (e) and (f) show the pixels in the correspond-

ing prominent regions, respectively.
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Procedure I: Robust DTW (p, X0, c) ¼ RDTW(Y, R,w, X).

Notations

� i and j are the time indices of the reference Y (with NY frames) and test X (with NX frames), respectively.

� wi is the weight (importance values) of frame i

� Ri is the prominent region of frame i

� C[i,j] is the cosine similarity between the ith frame of Y and the jth frame of X

� P[i,j] is the intermediate cumulative score

� The operator � is the element-wise multiplication

� c is the vector of frame-wise cosine similarities of Y and X0

� p is the overall similarity between Y and X0

Summary of procedure

1. C½i; j� ¼ hðYi � Ri;Xj � RiÞ
2. P½1; j� ¼ C½1; j� for j � floorð0:5NXÞ

3. wi ¼
wi

w1 þ w2 þ 	 	 	 þ wNY

P½2; j� ¼ max
P½1; j� þ w2C½2; j�
P½1; j
 1� þ w2C½2; j�

�
(1)

4. Recursive step for i � 3

P½i; j� ¼ max

P½i
 1; j
 2� þ 0:5wiC½i; j
 1� þ 0:5wiC½i; j�; path 1

P½i
 1; j
 1� þ wiC½i; j�; path 2

P½i
 2; j
 1� þ wi
1C½i
 1; j� þ wiC½i; j�; path 3

8<
: (2)

p ¼ maxðP½NY ; j�; floorð0:5NXÞÞ � j � Nx. Backtrack the optimal path and obtain X0 accordingly. ci ¼ hðYi � Ri;X
0
i � RiÞ

DTW is used to find the optimal time-warping function

between a test spectrogram X and a reference spectrogram Y so

that the resulting spectrogram X0 will have the same number of

frames as Y and also properly align with the template M. Our

DTW scheme is described in procedure I and explained step by

step as follows.

(1) The local score C(i,j) of the DTW is the frame-wise

cosine similarity between the ith frame of Y and jth
frame of X. The cosine similarity is not computed over

the entire frequency range, but only on the range deter-

mined by the prominent region of the reference frame Ri.

These prominent regions are determined during the train-

ing process (procedure II in Sec. III D)

(2) The optimal warping function is constrained to begin

within the first 10% of the test frames. The initial cumu-

lative scores are taken from the cosine similarity scores

of the first frame of the template and the allowed frames

of the test spectrogram.

(3) A given reference frame is allowed to align with up to two

test frames and vice versa; for this reason we employ DTW

type I.26 In Eq. (2), the cosine similarity values are weighted

by 0.5 for path 1 so as not to double count the similarity score

with the same frame of the reference spectrogram, i.e., Yi.

This makes p, the final cumulative score of the optimal path

(between the reference and the test spectrogram), comparable

across all testing spectrograms or samples. In computing the

cumulative score, each reference frame is weighted differ-

ently based on the frame weight input vector w of the DTW

such that the weights sum to 1 (
PNm

i¼1 wi ¼ 1). Depending on

situations, the weight vector w can be determined in several

ways, some of which will be described in Sec. III D.

(4) The optimal path is backtracked ensuring that at least 80%

of the test frames are accounted for. Along with the aver-

age similarity p, the DTW also outputs the aligned spectro-

gram X0 and the corresponding vector of frame-wise

similarities c. To obtain the time-warped test spectrogram

that aligns with the template X0 ¼ ½x01; x02;…; x0NM
�, the

optimal path is backtracked as shown

x0i ¼ max

1

2
xj þ xj
1ð Þ; path 1

xj; path 2

xj ¼ x0i
1; path 3:

8>>><
>>>:

(3)

All 3 outputs (p, X0, c) are needed for the training process,

while only the overall similarity p is needed for testing.

D. SFA

It is important to design an algorithm that extracts common

features from training samples and discards noise components,

resulting in a good template that represents the characteristics

of the phrase class. A template T is defined as a collection of

three attributes: a spectrogram reference Y, a prominent region

R, and a weight function w. Our SFA (see Fig. 4) takes N train-

ing spectrograms per phrase class, S¼ {S1, S2, …, S(N)}, and

outputs a template model (Ŷ ; R̂; ŵ) that represents common

features among the training samples in each case. This proce-

dure is performed individually for each class.

Procedure II: Spectrogram fusion

ðY;R;wÞ ¼ SFAðS1; S2;…; SðNÞÞ
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Procedure II is explained as follows.

This procedure derives a template (Y,R,w) from a set of

spectrograms. Let N be the number of spectrograms. As an

overview of the procedure, the algorithm picks a spectro-

gram from the same training set to construct an initial tem-

plate. The template is then updated through several

iterations. This procedure is repeated in a similar fashion in

which some other spectrograms are used as initial templates.

The best template, among all trials, is stored.

Steps 1 and 2: The variable pcurrent keeps track of how

well the current template represents all N training spectro-

grams. For efficiency, the user can set pthreshold as a satisfy-

ing score so that the procedure will terminate and return the

current template when pcurrent> pthreshold.

Steps 2 and 3: The variable n keeps track of the number

of training samples that have been used to initialize a tem-

plate. For each trial, a new training spectrogram is selected

from the remaining list. In other words, spectrogram S(n) is

selected at the nth trial and used as the initial template.

Specifically, the spectrogram reference Y is simply the

selected spectrogram itself [Y¼ S(n)] and the prominent

region is derived accordingly R ¼ /ðYÞ.
Steps 4 and 5: If there is only one training sample, this ini-

tial template becomes the final template as there is no fusion

to be carried out. If N> 1, the initial template is then used as a

reference in the DTW (Sec. III C) and each training sample

is used as a test. In other words, we perform

ðpðmÞ; ~SðmÞ;cðmÞÞ¼RDTWðY;R;w;SðmÞÞ for all m¼1,2,…,N.

The spectrograms should now be aligned with the template Y,

i.e., frame i should have similar spectral characteristics among

~S
ð1Þ
; ~S
ð2Þ
;…; ~S

ðNÞ
. Then for each frame i of each ~S

ðmÞ
, the spec-

trum is normalized so that the frame magnitude is 1 to make

the algorithm invariant to energy level. The prominent region

is then determined for each normalized spectrogram.

Now the template is updated as follows. For each time

and frequency index [k,i], the spectrogram reference is taken

to be the median values of ~S
ð1Þ½k; i�; ~S

ð2Þ½k; i�;…:; ~S
ðNÞ½k; i�.

The purpose of this operation is to align invariant compo-

nents and to discard outliers contributed from noise or

within-class variability. The median value operation is

robust when the noise level is excessive in some samples.

For each time and frequency index [k, i], the updated promi-

nent region R[k,i] is taken from the majority vote from

~R
ð1Þ½k; i�; ~R

ð2Þ½k; i�;…:; ~R
ðNÞ½k; i�. This new template (Y, R, w)

is then used as a reference in the RDTW to generate another

new template by the same procedure. We found that using

only five iterations is sufficient for any type of data. If an

unreliable (e.g., noisy) spectrogram happens to be the initial

template, the resulting model may be unreliable. For this rea-

son, the SFA performs several trials with different initial

templates from the same class. At the end of the final itera-

tion or at the end of each trial, the average similarity (pave) is

compared with the highest similarity stored from the previ-

ous trials pcurrent. If the average similarity exceeds (pcurrent),

the template is then updated to be the template of this trial.

Step 6: The procedure is repeated on until pcurrent meets

pthreshold or the number of trials reaches N. (All training sam-

ples have already been used for initializations.) Finally, the

algorithm selects the template from the trial whose average

similarity (pave) is the highest. The template (Y,R,w) gener-

ated from this trial is assigned to that particular phrase class.

Example 1: N 5 1. Suppose the training contains only

spectrogram a [Fig. 5(a)]. The template attributes are derived

as Y¼ a, R ¼ /ðaÞ, and w is determined by the frame ampli-

tudes of Y (Step 3). These initial spectrogram, prominent

region, and weight function are shown in Figs. 5(d), 5(e),

and 5(f), respectively. Since N¼ 1, the procedure terminates

at Step 4 without going through Steps 5 and 6. Therefore, the

final template attributes for this case are Y¼ d, R¼ e, and

w¼ f [Figs. 5(d), 5(e), and 5(f), respectively].

Example 2: N 5 3, Q 5 5. Suppose the training con-

tains three spectrogram S¼ {a, b, c} [Figs. 5(a), 5(b), and

5(c), respectively]. For the first trial (n¼ 1), the first train-

ing spectrogram (a) is selected to be the initial reference.

Similar to example 1, the template attributes are then

derived as Y¼ a, R ¼ /ðaÞ, and w is determined by the

frame amplitudes of Y (Step 3). These initial spectrogram,

prominent region, and weight function are again shown in

Figs. 5(d), 5(e), and 5(f), respectively. However, since

N¼ 3, the algorithm executes Step 5. That is, training spec-

trograms a, b, and c are aligned with Y and the new Y, R,

FIG. 4. An overview of the SFA. The input of the algorithm is a set of train-

ing spectrograms and the output is the template representing those

spectrograms.
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w are computed according to the alignment (Step 5). This

procedure is repeated five times (Q¼ 5) and the last tem-

plate and pave are then stored as the global template and the

current score, respectively. The global template attributes

are shown in the last row where Figs. 5(g), 5(h), and 5(i)

are the current global spectrogram reference, prominent

region, and weight function, respectively. For the second

trial (n¼ 2), b is selected to be the initial reference and the

procedure is carried on until Step 6. However, if the pave

from trial 2 happens to be less then pave (from trial 1), the

global template is not updated. After all training sets are

used as initial templates, the final template is taken as the

current global template. If the last template of trial 1 yields

the highest pave among all three trials, this template from

trial 1 is essentially the output of procedure II.

E. Phrase classification

For a given phrase, the spectrogram is derived as

described in Sec. III A. Then the spectrogram is used to

compute the similarity with each class template as

described in Secs. III B and III C. The overall similarity

between a template and a test is in the range of [0,1]. The

class that gives the highest similarity is identified to be the

classification output. Note that the SFA is not in classifica-

tion or testing.

IV. EXPERIMENTAL SETUP AND EVALUATION
FRAMEWORK

A. Database

The training set is obtained from CAVI2013 (recorded

in 2013), while the test set uses CAVI2014 (recorded in

2014). In 2013, CAVI songs were recorded in April, May,

and June, resulting in 198 audio tracks of 4 h and 50 min

recording. In 2014, CAVI songs were recorded in May and

June, resulting in 438 audio tracks. The phrases that have at

least 32 tokens in CAVI2013 and 10 tokens in CAVI2014

were selected for all experiments in this paper. There are 75

phrase classes that meet the criteria, and 32 samples are ran-

domly selected from CAVI2013 for each phrase. Therefore

training data comprise 2400 samples in total, while the test

data comprise the same 75 phrases, each of which has 10

samples (750 total samples).

1. Additive noise

To evaluate noise-robustness, we simulated noisy bird-

songs by adding background noise at various signal-to-noise

ratios (SNRs). The background noise was recorded in the

same environment, when the target bird species was not

singing. For a given recording segment, the time location

was selected randomly to match the length of the recording.

The noise portion is scaled to generate a pseudo SNR of a

given SNR value. Note that this SNR represents the upper

bound of the true SNR because the original files are not

always completely noise free. The true quality of the signal

may be worse than the SNR indicated.

2. Train and test conditions

Clean and multiconditional training were included. For

the clean training condition, the original recording (without

noise added) was used to train each algorithm. For multicon-

ditional training, each phrase segment was added with addi-

tive noise at 20 dB, 15 dB, 10 dB, and 5 dB. In other words,

four other new recordings were generated from the original

test recording. These four copies, together with the original

signals, are used for multiconditional training.

Additionally, we included adverse-condition training
where the training data are corrupted at 0 dB SNR. This con-

dition simulates a scenario where most training data are

severely corrupted by background noise possibly due to poor

quality recording or adverse environments that strongly

interfere with the vocalizing signal of the target species. The

objective of this experiment is to evaluate the robustness of

the algorithms if the only training data available are both

limited and corrupted.

Another variable to investigate, beside the mismatched

effect, is the number of training samples. Recall that N is the

number of training samples. Under each training condition, a

different number of samples was used to train each phrase

class: N¼ 1, 2, 4, 8, 16, and 32. Therefore, 18 sets of experi-

ments (3 noise-level setups and 6 sample-size training condi-

tions) were investigated in this paper.

Each experiment set was tested on six SNR conditions,

i.e., 20 dB, 15 dB, 10 dB, 5 dB, 0 dB, and the clean condition.

For a given test segment, each algorithm classifies which

one of the 75 phrase types the segment belongs to. The aver-

age classification accuracy is observed from the 750 test

samples for each SNR. In summary, each algorithm is tested

in 108 train-test conditions (3� 6� 6).

FIG. 5. Illustration of procedure II; Training samples {a,b,c}. In trial 1, sam-

ple (a) is selected as the initial reference [i.e., (d) is the same as (a)]. Next,

the initial prominent region (e) and weight function (f) are derived from the

spectrogram reference (d). After the initial step, training samples (b) and (c)

are also used, iteratively, to refine the current template. The final template

attributes are shown in (g), (h), and (i). Note that (d) and (g) are template

spectrograms. (e) and (h) are prominent regions and (f) and (i) are frame

weights.
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B. Comparative algorithms

Comparative algorithms for automatic birdsong classifica-

tion are based on the two main frameworks of the generative

learning approach—DTW and HMMs. Note that, most of the

experiments involve limited training data (less than ten training

samples per class) so deep-neural-network classifiers (which

generally require more training data than the Gaussian Mixture

Model–HMM framework) are not suitable for this study.

1. DTW

For controlled components, the sample features, similar-

ity score metric, and path configuration are identical to those

of the proposed algorithm. However, the similarity scores

are computed over the entire frequency range (unlike in the

proposed algorithm, which computes the similarity only

within the prominent regions). In addition, there is no spec-

trogram fusion. For a given test segment, the similarity score

between its spectrogram and each training spectrogram is

computed. The training sample that yields the highest simi-

larity score is then used to map to the class label, resulting in

phrase class identification.

2. HMMs

HMMs were executed using the Hidden Markov Model

Toolkit (HTK). We model 75 phrase types with 17 states per

model, and each state is modeled using 1, 2, or 4 Gaussian

mixtures (whichever gives the highest accuracy for each N)

as this combination is observed to give the best results in a

validation subset. Each model is left to right. The covariance

matrices were diagonal. The pruning option t of HRest set to

250.0 150.0 1000.0 as in the standard HTK benchmark.27,28

Mel-frequency cepstral coefficients (MFCCs) were used as

front-end features for HTK with standard parameters (25 ms

frame size, 10 ms frame shift, 26 Mel filterbanks, 39 cepstral

coefficients, including the first 2 derivatives).

V. RESULTS AND DISCUSSION

In this section, classification accuracies (Acc.) of each

classifier are presented. Three factors are analyzed for each

classifier: the number of training data samples (1,2,4,8,16,32),

the training condition (clean, multi-condition, and adverse),

and the level of background noise of the test data set (0, 0 dB,

5 dB, 10 dB, 15 dB, 20 dB, and clean). The accuracies of com-

parative algorithms in 126 train-test conditions are presented

in Figs. 6 and 7. Figures 6 and 7 share the same information

but present different perspectives. Figure 6 presents only

clean and 0 dB-SNR test conditions to illustrate the effect of

noise in test data. Figure 7 presents the results when the sys-

tems are trained with N¼ 32 and 4 to illustrate the effect of

limited training data.

Figure 6 shows the classification accuracies of compara-

tive algorithms under six subsets of experiments. Each col-

umn is a set of experiments in different training conditions;

clean [Figs. 6(a) and 6(b)], adverse-condition [Figs. 6(c) and

6(d)], and multicondition [Figs. 6(e) and 6(f)], respectively.

FIG. 6. Classification accuracies under different training and test conditions. The top and bottom rows show performance when testing with clean and 0 dB-

SNR data, respectively.
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The top plots [Figs. 6(a), 6(c), and 6(e)] and the bottom plots

[Figs. 6(b), 6(d), and 6(f)] show the experiments when the

systems are evaluated on the clean data set and the 0 dB data

set, respectively. Within each subplot, each bar group is

evaluated on the same noise condition and trained with the

same training condition (clean, adverse-condition, or multi-

condition), but with a different number of training samples.

Figure 7 shows the classification accuracies of compara-

tive algorithms under six subsets of experiments. Same as

that of Fig. 6, each column is a set of experiments in differ-

ent training conditions; clean [Figs. 7(a) and 7(b)], adverse-

condition [Figs. 7(c) and 7(d)], and multicondition [Figs.

7(e) and 7(f)], respectively. The top plots [Figs. 7(a), 7(c),

and 7(e)] and the bottom plots [Figs. 7(b), 7(d), and 7(f)]

show the experiments when the systems, however, are

trained with 32 and 4 samples, respectively. Within each

subplot, each bar group is evaluated on the same training

condition but with a different SNR for the test data sets.

A. Limited data

In this section, we analyze the relationship between the

number of training data and the classification performance

for comparative algorithms. Across all experiments, the per-

formance of each algorithm generally increases as more

training data are available but with a different rate of

improvement and performance behavior. In most conditions,

the performance of DTW starts with a decent performance at

N¼ 1, generally goes up as the number of training samples

increases but with a slow rate of improvement. The HMM

classifier, on the other hand, yields poor classification when

N is lower than 8 (limited data) but starts to catch up and out-

performs DTW when N is 16 or more.

In the clean test-train condition [Fig. 6(a)], when the

number of training samples is only one, DTW and the pro-

posed algorithm yield reasonable performances of 83.33%

and 83.93% Acc, respectively. The HTK setup results in a

pure guess for the output (1/75¼ 1.33% Acc.) due to the lim-

itation of the statistical nature of the HMM algorithm. When

the number of training samples increases to eight and above,

the performance of HMMs increases significantly, while that

of DTW increases slightly and plateaus around 95.7%. The

proposed algorithm also consistently improves and its per-

formance is comparable with HMMs when the number of

training samples is high.

It can be observed that the accuracy of DTW may

decrease even when the number of training data increase. In

Fig. 6(b), when the number of training data is 8, 16, and 32,

the accuracies go back down—30.67%, 25.87%, and

32.93%, respectively. This trend is also observed in the mul-

ticonditional training condition tested with 0 dB SNR data

set [Fig. 6(f)]. The algorithm does not necessarily benefit

from more training data especially in a mismatched testing

condition. Misclassification may occur when test data are

FIG. 7. Classification accuracies under different training and test conditions. The top and bottom rows show performance when training with 32 and 4 samples,

respectively.
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corrupted by background noise resulting in a signal that is

similar to a certain class label, which is not the actual phrase

class.

Figure 7 juxtaposes the performance of comparative

algorithms using 32 and 4 training samples. When N¼ 32,

the HMM algorithm outperforms DTW in all training and

testing conditions [Figs. 7(a), 7(c), and 7(e)]. When N¼ 4,

however, the HMM algorithm underperforms DTW in most

training and testing conditions [Figs. 7(b), 7(d), and 7(f)].

Clearly, the strength of DTW is observed when the training

data are limited, while the HMMs yield better performance

when more training data are available.

In general, the proposed algorithm outperforms DTW

and HMMs. The only case that slightly underperforms DTW

is the clean train-test condition with one training sample. In

this case, the only differences between DTW and the pro-

posed algorithm are the prominent region and weight func-

tion, which may not be well estimated when the number of

training sample is one. The proposed algorithm has a simple

procedure to derive the prominent region and weight func-

tion when N¼ 1 (Sec. III D). When the training data are

more available, however, the proposed algorithm is signifi-

cantly more robust than DTW. There are a few cases where

the HMMs outperform the proposed algorithm when N¼ 32

and tested with the clean data sets [Figs. 7(a) and 7(e)]. This

shows that HMMs work well when the number of training

data is high and the test condition is somewhat clean.

The performance trends of HMMs reflect the statistical

nature of the algorithm. When the data are limited, the algo-

rithm fails to capture the statistical model or to reliably esti-

mate the parameters. However, if more data are available,

the model generally represents the variation of the data more

accurately. The DTW algorithm, on the other hand, has an

advantage when the data are limited since there is virtually

no parameter to estimate. However, the disadvantage is that

its marginal improvement is minimal when more data

become available. If the additional training data is corrupted,

the traditional DTW may misclassify when there is a high

similarity of the corrupted training sample and the test sam-

ple (due to noise distortion). Moreover, the computation

required for DTW classification increases with the number

of training samples. These two characteristics make DTW

less appealing when the number of training data is high. The

proposed algorithm is robust to limited training data but its

models also improve when more data are available because

the model is derived in a robust fashion (in the SFA). The

computing time in classification for the proposed algorithm

is essentially the same as HMMs, which is approximately N
times faster then DTW’s computing time.

B. Noise robustness

Background noise can interfere with both test and train-

ing data. Figure 6(b) shows the accuracies of the compara-

tive algorithms with the same training conditions as Fig.

6(a). The only difference is that the testing condition is at

0 dB instead of the clean condition. The overall performance

for each algorithm drops significantly. The dramatic degra-

dation is observed in DTW and HMMs especially when the

number of training data is limited. Using only one training

sample per class, the performance of DTW drops from

83.33% (tested in clean) to 16.93% (tested with 0 dB-SNR

data set). The performance of the proposed algorithm also

drops but with less degradation from 82.93% to 66.93%.

Such difference validates the importance of the prominent

region because both DTW and the proposed algorithm essen-

tially have the same spectrogram reference when N¼ 1 (Sec.

III D). The performance of the proposed algorithm stands out

in all cases. As previously discussed in limited training data,

the model improves when more training data become avail-

able but the main strength of this algorithm is the noise-

robust component.

With four training samples, the accuracy of HMMs

drops by 83% (44.53% when tested in clean to 7.47% when

tested with 0 dB data set). For the 0 dB-SNR test set, the per-

formance of HMMs improves when more data are available

but the accuracy is still at 44.13% even when the number of

training samples is 32. Such dramatic degradation of over

one factor (98.13% when tested with the clean data set to

44.13 when test with the 0 dB-SNR data set) shows that the

HMM framework with MFCCs is not a noise-robust system

in a mismatch condition even though the same N (32) has

been shown to be sufficient in the clean condition.

This trend is also observed in the multiconditional train-

ing [Figs. 6(e) and 6(f)]. The performance of HMMs

improves when the data are more available but the accuracy

is still 69.2% even when N¼ 32. In Fig. 6(f), HMMs may

eventually catch up the proposed algorithm in multicondi-

tional training but very large amounts of data may be

required for the models to learn all the noise variations.

Nevertheless, in the 0 dB testing condition, the degree of sig-

nal degradation is so high that the HMMs may fail to recog-

nize the actual underlying clean component of the signal.

In multiconditional training and clean testing [Fig. 7(e)],

the performance trend of DTW has a unique characteristic:

the accuracy seems to increase for a higher SNR but it falls

down eventually in spite of a better signal quality. One rea-

son is that there are generally more training data at a moder-

ate SNR. Therefore, a test sample at this SNR range can

match with a training sample while a test segment at

extremely high SNR (clean) or low SNR (0 dB) may have

difficulty matching the training samples. Because the num-

ber of training data is low, it is impossible to generate all

possible clean þ noise combinations that reflect all the varia-

tions of signals that are effected by additive noise.

Adverse training condition demonstrates the scenario

where the recording condition is extremely adverse, hence,

most of training data are corrupted. Figure 6(c) shows the

accuracies of the comparative algorithms evaluated on the

clean data sets. All systems are trained in 0 dB condition but

with varying number of training samples. Compared to the

clean training condition [Fig. 6(a)], the performance of all

algorithms drops significantly. The proposed algorithm has

the least degradation and outperforms DTW and HMMs in

all N’s (numbers of training samples). Under the same N and

algorithm, the performance trend exhibits an interesting

behavior especially in adverse-condition training (and multi-

conditional training). In Figs. 7(c) and 7(d), all algorithms
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seem to reach their best performance at a moderate SNR

(5–15 dB) rather than the extreme ones (clean or 0 dB). This

is because most of training samples, if not all, are highly cor-

rupted. The model will not predict a clean sample very well

due to the mismatch. However, when the test data are at

0 dB SNR the signal quality is still too poor to get an accu-

rate prediction even though the model is trained at 0 dB

SNR. With a moderate SNR (5–15 dB) test sample, the

model characteristic is not far from the test sample, and the

signal quality is not severely corrupted, yielding the best per-

formance of all SNR levels.

VI. SUMMARY AND CONCLUSION

A robust template-based classification framework has

been proposed. The algorithm introduces “prominent

region,” which is an essential component for noise-robust

classification of birdsongs. In addition, the proposed algo-

rithm is designed to be robust when the number of training

data is limited (four samples or less). The representation of

signals is the simple time-frequency spectrogram. During the

training process, the algorithm extracts reliable information

from training samples in an iterative fashion called SFA. At

the end of the process, a template is derived for each phrase

class. Each template has three attributes—reference spectro-

gram, the prominent region, and frame weighting function.

During classification, a given test spectrogram is matched

with each template in a dynamic programming fashion. The

attributes of each template make this process much more

robust than the traditional DTW.

The phrases used in this study are extracted from songs

of the CAVI. The training set contains a wide range of train-

ing samples (from 1 to 32) per phrase class from a few bird

individuals. The data were generated in three training condi-

tions—clean, multiconditional, and adverse-conditional

training, resulting in 18 training conditions (6 numbers of

training samples each). The models or systems derived from

each training condition were then tested at 6 SNR levels,

resulting in 108 train-test conditions.

Experimental results show that the proposed algorithm

outperforms DTW and HMMs in most conditions. Among

108 train-test conditions, the best algorithm in each condi-

tion is as follows: the proposed algorithm in 3 conditions,

HMMs in 103 conditions, DTW in 1 condition, and 1 tie

case of HMMs and the proposed algorithm. The 4 scenarios

where HMMs outperform the proposed algorithm is in clean

and multiconditional training with 32 samples that tested

with somewhat clean data (15 dB or above). The only sce-

nario where DTW outperforms the proposed algorithm is

when the system is trained in clean with one sample and

tested in clean data set. However, in the five cases where the

proposed algorithm underperforms either HMMs or DTW,

the margin is small (<1%). For the rest of the train-test con-

ditions, the proposed algorithm usually outperforms by large

margins especially when the test condition has extremely

low quality (low SNRs). The behaviors of DTW and HMMs

under each training and test conditions are also analyzed. In

limited-data training conditions (four samples or less), DTW

outperforms HMMs in all cases except in multiconditional

training that tested with high-SNR data sets (15 dB and

above). When the number of training data is 32, HMMs out-

perform DTW in all cases. This observation confirms that

the HMM framework prefers a large amount of training data

while DTW works reasonably well in limited training data

but fails to improve when more data are available. Both

algorithms suffer in mismatched conditions due to back-

ground noise that may be present in training or test data. The

proposed algorithm is robust to limited training data and

noise.

Future work will include development of a better system

that takes advantage when the data are more available for

some phrase classes but are still limited for others. In addi-

tion, we will develop a noise-robust HMM framework by

integrating the concepts of prominent regions and spectro-

gram fusion in HMM training and decoding. We also plan to

extend this framework to fully automated phrase recognition

where presegmentation is not needed for classification. The

algorithm can be extended to species classification where

techniques such as k-means and other clustering algorithms

can be used.
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