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ABSTRACT OF THE DISSERTATION

Towards Inclusive Low-Resource Speech Technologies:

A Case Study of Educational Systems for African American English-Speaking Children

by

Alexander Johnson
Doctor of Philosophy in Electrical and Computer Engineering
University of California, Los Angeles, 2024
Professor Abeer A. Alwan, Chair

The potential of speech technology to improve educational outcomes has been a topic
of great interest in recent years. For example, automatic speech recognition (ASR) systems
could be employed to provide kindergarten-aged children with real-time feedback on their
literacy and pronunciation as they practice reading aloud. Within these systems, speaker
identification (SID) technology could additionally be used to identify the user’s speaker
characteristics in order to ensure that they receive age, language, and dialect-appropriate
feedback. While these technologies are more established for well-represented groups in STEM
(ie. able-bodied, adult, first-language speakers of mainstream dialects), they give much worse
performance for underrepresented groups (young children, speakers of non-mainstream di-
alects, people with speech-related disabilities, etc.). This work focuses on improving speech
technology performance for children’s speech and African American English (AAE) dialect
speech with the goal of creating more equitable outcomes in early education. The contribu-
tions of this work span three primary areas: 1) Dialect identification and density scoring, 2)

data augmentation for speech recognition, and 3) Natural Language Processing for fair and

1



inclusive automatic speech assessment.

First, we create a robust system for dialect identification of African American English for
both children and adult’s speech. This system aims to take an input utterance from a speaker
of either African American English or Mainstream American English and determine which of
the two dialects the utterance belongs. The system fuses features from paralinguistics, self-
supervised learning representations, automatic speech recognition system outputs, prosodic
contours, and other descriptors of the speech signal in order to learn a mapping from the input
acoustic information to a dialect classification decision. We further explore this architecture
in automatic dialect density estimation, a task we create and develop. In dialect density
scoring, we train a system to automatically predict a speaker’s frequency of usage of dialect-
specific patterns. This information can then be passed to a speech recognition system for

more dialect-informed processing.

Second, we develop a data augmentation algorithm to improve zero-shot and few-shot
speech recognition of low-resource dialects. The algorithm, named LPCAugment, decon-
structs an input speech signal into a source and filter representation using linear predictive
coding (LPC) analysis. The poles of the filter representation can then be perturbed inde-
pendently of the source representation in order to model formant shifts that may be seen
across accents and dialects. We use this perturbation method to artificially generate speech
samples with shifted formant locations to serve as additional training data for a speech
recognition system. This speech recognition system is then evaluated on children’s speech
for child speakers of a Southern California dialect and child speakers of an Atlanta, Georgia,

area dialect.

Third, we explore automatic analysis and scoring of speech recognition transcripts for
educational assessments. Given information about a student’s spoken dialect and auto-
matically generated transcripts of their oral response to an assessment prompt, we train a
system to automatically grade the quality of the response with respect to a pre-determined

criterion. This system uses language modeling and spoken information retrieval to iden-
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tify key features in the spoken response and holistically decide if the response aligns with
the grading criteria. Combined, the steps in this work form a framework for inclusive spo-
ken language understanding technology that can be used to perform provide students with

dialect-appropriate language training or language assessment.
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CHAPTER 1

Introduction

1.1 Motivation

Artificial intelligence (AI) has revolutionized practices in finance, defense, and entertainment.
However, the education sector has significantly lagged behind in adopting machine learning-
based technologies in teaching. The deployment of Al technologies in schools could greatly
alleviate labor shortages and high work loads among educators. A 2022 technical report
found that the United States had a large shortage of teachers with 36,000 vacancies and
163,000 under-qualified individuals in teaching roles nationwide [1]. This shortage is even
more present in specialized education roles (working in dual-language immersion programs,
working with students with special needs, etc.), as illustrated by reports that 54% of speech
language pathologists in schools lack the personnel to adequately perform their duties [2].
Here, voice-based Al technology, such as automatic speech recognition (ASR) or spoken
language understanding (SLU) systems, could be used to lead students through educational
exercises, perform oral assessments, and screen for language difficulties in situations where

there is not enough staff to effectively do so for all students.

One reason for many educators’ hesitancy to use Al with their students stems from Al
researchers’ failure to prove the efficacy and fairness of the technology. For example, work
in [3] shows that many commercial ASR systems perform worse for speakers of African
American English (AAE) than for speakers of Mainstream American English (MAE). In

addition, studies have also shown that ASR systems designed to recognize adult speech



perform much worse for younger children [4, 5]. These deficiencies and inequities make
current Al-based speech technologies unsuitable to handle the needs of classrooms consisting
of diverse groups of students. In fact, the inability of many speech technologies designed
for majority groups to generalize their performances to lower resource cases (eg. speakers
of low resource languages and dialects or children’s speech) remains a pressing problem in
the speech field. This is due in large part to the fact that many data-driven speech and
language systems are trained only on the most easily-accessible data, meaning that speech
from under-represented groups in technology are often excluded from the training process.
Solutions to this problem include the creation of new speech and language datasets which
include speech from typically marginalized linguistic groups, the creation of SLU system
architectures that do not rely solely on the availability of large datasets to train the model,
and the adaptation of existing systems for low-resource cases. This dissertation presents a
framework for more equitable training of speech and language models to perform well across
speaker age, dialect, and style. We focus here on achieving fair performance in educational
applications of spoken language technology for classrooms with speakers of African American
English-speaking students, as AAE is a large, underrepresented dialect in the United states.
The rest of this section provides background information on prior work in the fields of speech

technology and linguistics on which the rest of the dissertation builds.

1.2 Transformer-based Speech and Language Systems

Many current speech and language systems utilize the transformer architecture [6]. This
architecture was proposed as an efficient solution to sequence to sequence problems, or
problems in which an input sequence (eg. a sequence of words in a sentence, a sequence of
frames in an audio signal, or a sequence of images in a video) is mapped to an output sequence
(eg. asequence of words in a different language as in machine translation, a sequence of words

corresponding to the input audio as in automatic speech recognition, or a sequence of object



labels as in video tagging). A key feature of transformers is the attention module. For each
token in the input sequence, self-attention seeks to calculate three numerical representations
(a key, a value, and a query) such that a mathematical combination of those representations
between any two tokens will represent how related they are. For example, in the sentence
“I gave his wallet to him,” the words “his” and “him” reference the same object, and so
the combination of their keys, values, and queries should give a high number to represent
that these words are highly related. Likewise, the words “I” and “gave” are not significantly
related in meaning and thus should produce a lower number when their keys, values, and
queries are combined. Similar to self-attention, cross attention seeks to calculate keys, values,
and queries between an input sequence and an output sequence that represent how related
tokens in one sequence are to the other. For example, in a machine translation task which
translates the English sentence “I need to buy fruit,” to equivalent Spanish sentence “Necesito
comprar fruta,” the system should calculate a key, value, and query for each word so that
the combination of numerical representations for the equivalent words “fruit” and “fruta”
is higher than that for less related words. Transformers are composed of two portions: an
encoder stack and a decoder stack. In the encoder stack, neural network layers with self-
attention are used to map an input sequence to a high-level representation. Then the decoder
uses cross-attention to map this high-level representation to the output sequence. A diagram
of the transformer architecture is shown in Figure 1.1 Variations of this architecture have
been widely successful in many speech and language tasks. For example, the transformer-
based language model BERT (Bi-directional Encoder Representation from Transformers)
[7] has set a benchmark in text classification, and the Generative Pretrained Transformers
(GPT) [8] series of language models have set the state-of-the-art performance in generative
language models. The current leading ASR models such as Wav2Vec2 [9] and Whisper [10]

also heavily utilize the transformer architecture.
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decoder stack.

1.3 Underrepresented Voices in Speech Technology

Transformer-based speech systems often use a large number of trainable parameters (e.g 1.6
billion parameters in Whisper-Large [10]). In order to train a large neural network, the sys-
tem in turn requires large amounts of labeled training data. While this requirement does not
typically present challenges to well-resourced linguistic groups with a large digital footprint,
such large amounts of training data are not always available for speakers of under-resourced
languages dialects or speakers whose speech characteristics are not well-represented online
(young children, speakers with speech related-disabilities, etc.). This means that researchers
will not be able to train these systems on large amounts of data from speech of people of these
minority groups in the way that they can for majority groups, and the system will conse-
quently give lower performance for the minority groups. Therefore, further work is needed to
bridge the performance gap between majority and minority users of these data-driven speech
technologies. In the scope of inclusive educational technology, this paper focuses on speech-

language systems for two groups of underrepresented speakers in technology: Speakers of



the African American English dialect and child speakers.

1.3.1 African American English

AAE is one of the most studied varieties of American English for both child and adult
speakers [11, 12]. While AAE can display several regional and generational differences, many
characteristics of AAE are common across most or all of the variants. Many scholars point to
the origin and evolution of AAE over time as the reason for the shared traits between these
variants [13]. The first large populations of Black people in the United States were enslaved
people who were brought to the US South in the 1600’s. There, AAE and White Southern
American English (SAE) grew out of British colonial dialects and heavily influenced each
other as they developed. While origins of specific AAE variants are often subjects of debate,
many scholars agree that several defining features of AAE were created during this time
and persisted through the Great Migration of African Americans throughout other regions
of the US [13]. Despite the historical and linguistic work done to better understand AAE,
the dialect is still understudied in the area of Spoken Language Systems. AAE impacts all
domains of American English (AE), but most significantly presents differences in rules for

production of the morphology , syntax, phonology, and prosody from those of Mainstream

American English (MAE).

A AE Phonology: A widely recognizable feature of AAE is it’s collection of phonolog-
ical differences, often expressed as differences in pronunciation of specific sounds or words,
from MAE. For example, AAE speakers can display word-initial labiodentalization of dental
fricatives (e.g. pronuncing “this” as “dis”), word final g-dropping (e.g. pronouncing “noth-
ing” as “nothin”), and word final r-lessnes (e.g pronouncing “four” as “fou”) [14]. While
many of these phonological patterns are not strictly unique to AAE (e.g. g-dropping has
become common in SAE and other dialects), they are more likely to appear in many AAE
speakers than in MAE speakers. Some phonological features of AAE also vary with region,

such as a regional vowel shift or lacktherof in a region where other speakers display a vowel



shift [15].

A AE Morphosyntax: Morphosyntax, which encompasses features of grammar, word
choice, and word usage, is perhaps the most widely used studied aspect of the AAE dialect.
Grammatical features of AAE such as zero copula (e.g stating “they are rich” as “they
rich”), negative concord (e.g. “They ain’t never got no money”), and preterite “had” (e.g.
stating “she had went to the store” to express the simple past “she went to the store”)
are well-documented, and the evolution of their usage since the early 1900’s has been a
popular subject of study [16]. Interestingly, it has also been shown that the number of many
morphosyntactic AAE features used by AAE-speaking children declines as the children get
older [17]. This may be due to increased exposure to MAE with age or as a result of how

the US educational system structures its lesson instruction.

AAE Prosody: Prosody, which describes usage of pitch, intonation and rhythm in
speech, is perhaps one of the most difficult aspects of speech to document. Prosodic features
can occur both within words and across longer segments, change based on a speaker’s style
or intended subject of emphasis. Due to the complex nature of prosodic patterns, a trained
linguist is often needed to annotate the speech sample accurately. In general, linguistic work
in prosody has progressed less quickly than that in other areas such as phonology and syntax.
In studying AAE, this is no exception. Many scholars agree that AAE has unique prosodic
features that are distinct from other dialects [18]. However, it is difficult to document exact
rises and falls in pitch or segment-level intonations that would make an utterance sound like
an AAE construction. The relatively small body of well-agreed upon work on AAE prosody

makes the field an area in need of future analysis.

AAE Dialect Density AAE occurs on a continuum of low to high density usage.
Children who are high density users of AAE tend to be those who are growing up in poverty
[19, 20]. Factors such as isolation and widespread school segregation likely influence the
density of language variation in these low-income speakers [21]. In addition, children in

the Southern United States have been documented to use particularly high levels of dialect



overall, as regional variation is also prevalent, and combines with AAE to result in oral

language that differs significantly from the language of print [22, 23].

Speakers of African American English often face bias, being perceived as less educated or
professional than speakers of MAE. For example, typically-developing child speakers of AAE
are often under-rated in language exams and put in special needs classes at significantly
higher rates than their MAE-speaking counterparts [24, 19]. AAE speakers with more ex-
posure to dialects outside of their own often learn to code-switch or translanguage, meaning
that they incorporate varying amounts of AAE and MAE dialectal characteristics into their
speech depending on the situation [25]. Low-income speakers typically do not get the same
number and quality of opportunities to hear and learn to use different types language, either
inside or outside of school, meaning that they often do not learn to code switch [21]. These
children in particular are at high risk for receiving assessment scores that do not reflect their

actual abilities and, subsequently, inadequate education.

Dialect density, or the frequency of one’s use of dialect-specific linguistic patterns, is a
commonly used term in discussing the effects of dialect in the classroom. The dialect dialect
density measure (DDM) of an utterance can be calculated as the number of dialect-specific
phonological and morpho-syntactic tokens in an utterance divided by the number of words
in that utterance. Of particular interest to the field of educational speech technology is the
fact that speakers who speak with higher AAE dialect density (i.e. their utterances have
a relatively high average DDM) have been shown to face more educational disparities than

their counterparts who speak with lower dialect density [19].

1.3.2 Children’s Speech

There are several well-known differences between children’s speech and adults’ speech that
cause performance discrepancies when neural network-based ASR systems trained only on
adults’ speech are tested on children’s speech [26]. First, young children have yet to master

the more complex articulatory gestures needed to produce conventional or adult-like English
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speech sounds [27]. This means that children’s speech often contains several production
errors (substituted speech sounds for example) and variability in how they produce speech
sounds. In fact, there is higher inter- and intra-speaker variability in child speech when
compared to adults [28]. Second, the frequency range of children’s voices is much higher
than that of adults, making them less compatible with systems trained on adult’s speech
[28]. Third, ASR systems trained to recognize the words of an adult’s vocabulary will likely
have bias towards interpreting the child’s words as ones more commonly used by adults
[29]. Therefore, in order to more effectively create an ASR system for children, that system
should be trained using child-specific speech data. While some children’s speech corpora
do exist, they are not nearly as plentiful as those for adults. In addition, the available
children’s speech datasets often do not contain dialectal or sociolinguistic information on the

participants, making it difficult to ensure fair performance across diverse child speakers.

1.4 Automatic Dialect Identification

Language identification (LID) and dialect identification (DID) are the processes of automat-
ically identifying a speaker’s spoken language and dialect from a short input utterance. LID
and DID identification have become integral parts of many large spoken language systems.
For example, many multilingual automatic speech recognition (ASR) systems like OpenAl’s
Whisper [10] and Meta’s Massively Multilingual Speech models [30] leverage large cross-
lingual speech corpora for training and then perform LID during inference. Other systems
like AWS transcribe [31] offer DID for commercial use cases, distinguishing input speech,
for example, between English variants from the US, UK, or India for better performance
on regional dialects. As these models expand to support more languages and dialects, sev-
eral challenges arise: First, data-driven DID methods that rely on the availability of large
amounts of dialect-labeled speech may not generalize to less well-resourced dialects and vari-

ations. Second, even within a dialect, these systems are typically only trained on adult



speech. Therefore, many DID systems are unable to accurately predict dialect for children’s
speech, making them unsuitable for speech applications in early education. Third, some
speakers may use more or fewer aspects of a dialect than others (as how some people are
perceived to have a thicker accent than others). As such, categorizing all speakers of a dialect
into the same label group regardless of frequency of use of dialect-specific pronunciations,
grammar patterns, and prosodic patterns may lead to inaccurate representations of some

speakers in downstream applications.

Several recent studies have offered promising DID systems for a limited number of di-
alects. [32] introduces a time delay neural network, as popularized by the X-vector speaker
embedding [33], with attention across both time and frequency for classifying between a
set of 16 dialects. The experiments performed in [34] additionally found frequency-based
data augmentation to be beneficial in training a recurrent neural network to classify low-
resource dialects with either speaker embeddings or a combination of Mel frequency cepstral
coefficients (MFCCs) and other acoustic features. The authors of [35] designed a multi-
task learning framework for a conformer-based system that jointly learns to output ASR
transcripts and DID labels for speech from three Telegu dialects. In order to overcome per-
formance degradation caused by domain mismatch in end-to-end DID systems, [36] creates
a domain-attentive fusion technique to better classify African and Arabic dialects across

recording conditions and speaking styles.

Despite these advancements, several challenges remain in DID, especially for widely spo-
ken languages such as English which display wide variability both within and across groups.
For example, while many current paradigms may categorize US English as distinct from
British English, they do not recognize differences between Mainstream American English
(MAE), African American English (AAE), Southern American English, Creole English, and
other variants. The work in [37] shows that ASR systems with more knowledge of the dif-
ferent dialects, achieved by joint training on DID and ASR, often perform better across

those dialects, implying that adding more specificity to the DID pipeline would improve



the performance of downstream tasks. However, it is neither simple nor scalable to simply
attempt to train current DID systems to distinguish between larger sets of dialects. First,
several dialects are low resource dialects, meaning that there is not enough publicly avail-
able speech data to train large spoken language models to recognize them. Second, speech
samples cannot always be categorized neatly into one dialect. Many speakers code-switch,
alternating between different languages or dialects [38], or incorporate aspects of multiple
dialects into their speech. Assigning discrete labels to samples from these speakers and
forcing a model to choose a single dialect for them would likely propagate error through
the system. Third, many current DID models only classify dialect from acoustic features
like spectrograms or Mel frequency cepstral coefficients which mainly discern differences in
pronunciation (e.g. [39, 40, 41]). However, dialects are a multi-faceted aspect of language
which can differ in prosody, grammar, and diction in addition to pronunciation. Previous
works which have combined prosodic cues with spectral information [42], or that have at-
tempted to classify language or dialect from grammatical features of text [43] have shown
that considering other aspects of language can improve automatic DID. This is especially
beneficial in DID for speakers with relatively high acoustic variability like children. Although
children’s developing vocal tracts and articulatory motor skills may cause their speech to
display different acoustic properties than adults [44], work in [45] shows that incorporating
prosodic and grammar information into DID systems trained on adults speech can make

them more robust for children.

Improving DID for children’s speech is of particular interest in educational speech technol-
ogy. Applications like Read Along by Google [46] use ASR and natural language processing
(NLP) to recognize and provide pronunciation and literacy feedback to children as they prac-
tice reading aloud. As education literature has demonstrated, speakers of minority dialects
like AAE are often underrated in language abilities due to raters who are unfamiliar with
AAE interpreting dialectal differences as language deficiencies [19]. In particular, children

with higher AAE dialect density have been shown to underachieve in schools that primarily
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teach in MAE [19]. Children’s DID in educational spoken language systems could be used
to detect and mitigate this bias.

1.5 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is the task of generating a text transcript of the
spoken words contained within an audio recording. Many traditional ASR systems operate
in the following way[47]: First, a training corpus of matched audio data and corresponding
text transcripts is compiled. From each audio file, a frame-level acoustic representation of
speech is extracted. These representations may be calculated deterministically, as with Mel
Frequency Cepstral Coefficients [48], or learned by the input layers of a neural network.
These frame-level features are then passed to an acoustic model which aims to predict which
speech sound, if any, was spoken in each frame of the input audio data [49]. As the output
of the acoustic model is a sequence of speech sounds that has the same length as the number
of input audio frames, a lexical model is then tasked with mapping this sequence of speech
sounds to the intended words that most likely produced them. Finally, a language model
incorporates grammatical and semantic knowledge to determine the most likely sentence
spoken by the speaker that would produce the given output of the lexical model [50]. During
training, the ASR system is trained to learn the optimal parameters that will produce the
closest transcript to the ground truth transcript. Many current end-to-end models seek
to combine the acoustic model, lexical model, and language model into one step which is
learned by a large neural network. These end-to-end models have been shown to achieve
high performance when trained on large datasets whose speaker distribution matches that
of the evaluation set. For example, OpenAl’s Whisper [10] achieves high state-of-the-art
after training on 680,000 hours of audio data scraped from the internet. However, these
end-to-end systems often experience large degradations in output quality when tested on

out-of-domain data. That is, these systems perform worse for speakers whose linguistic
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group or speech patterns were not well-represented in the training data. Therefore, Whisper
and other widely-used ASR systems typically show less efficacy when transcribing speech
from young children, speakers of African American English, and speakers with other accents
and dialects. In order to overcome these and other effects of domain mismatch, researchers
have proposed several training strategies such as data augmentation and self-supervised pre-

training.

1.5.1 Data Augmentation

Many ASR systems have been shown to perform better when trained with more audio data.
Therefore, researchers have sought out methods to cheaply generate more training data from
the existing datasets. Data augmentation methods seek to create artificial training data
containing deviations from the original samples in order to make the model less sensitive
to expected variations. For example, vocal tract length perturbation (VTLP) [51] applies a
piece-wise mapping to the frequency axis of input spectral features of a speech signal in order
to simulate speech having come from a speaker with a different vocal tract length. Speed
perturbation [52] speeds up or slows down portions of an audio signal to simulate having
speech of different speaking rates. SpecAugment [53] masks out and re-scales portions of
an input spectrogram to simulate speech time-frequency components that are missing or
changed from the original recording. By training a speech recognition system to process the
augmented speech, the system learns to transcribe the speech in an invariant manner with

respect to target characteristics such as speaking rate or vocal tract length.

1.5.2 Self-supervised Pre-training

Thus far, we have described ASR systems as trained with supervised learning. Supervised
learning means that the system is given audio data and corresponding human-labeled text

transcripts at the time of training and then tasked with finding an optimal mapping from
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the audio data to the transcripts. This process requires that all audio recordings used have
corresponding human-written labels in the form of transcripts. However, there is much more
audio data available than just what has been curated by transcribers. For example, websites
like YouTube contain many hours of audio recordings that do not contain human-written
text transcripts. This begs the question of whether or not non-labeled data can be leveraged
for training an ASR system. This task of leveraging unlabeled data is commonly referred to
as unsupervised learning if no label is used during training, or self-supervised learning if a
training task in which the system learns to predict an attribute of the data itself is created.
One of the most popular architectures for unsupervised or self-supervised learning is Meta’s
Wav2Vec2 system [9]. Before performing supervised training on the matched audio-text
pairs in the training data, Wav2Vec2 first attempts to learn information about the structure
of the audio data through a self-supervised pre-training step. Ideally, after the system
completes the pre-training step, it will learn a better neural network weight initialization
from which to start supervised training. At the input, Wav2Vec2 uses a convolutional
neural network to extract acoustic features from the speech signal. Some of these features
are intentionally masked out or removed from the system. These features are then fed to a
BERT (Bidirectional Encoder Representation from Transformers) [7]. The BERT encoder is
then tasked with learning a feature representation from which the missing information from
the masked out frames can be interpolated. After the system has been trained to do this,
the output features of the BERT encoder can be readily applied to a downstream speech
recognition model or another task. A diagram of the Wav2Vec architecture is shown in
Figure 1.2. This self-supervised pre-training task has been shown to significantly improve
model performance. Other architectures like HuBERT [54] have improved on Wav2Vec2’s
design for increased accuracy. HuBERT uses much of the same architecture as Wav2Vec2.
However, one notable difference is that the system is also tasked with learning to cluster
similar acoustic features in order to discover hidden units which may correspond to sounds

or characteristics of the language. Notably, the features output by the BERT encoder in
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HuBERT have been shown to be useful for a variety of speech tasks outside of ASR such as

emotion recognition, keyword spotting, and automatic speaker verification [55].

Contrastive loss

L
s ¢ W /@ | ﬁm; .

Transformer

Masked

Quantized
representations

\®}
@®

Latent speech Z
representations CNN

raw Waveform X m

Figure 1.2: The Wav2Vec2 architecture, demonstrating how self-supervision is used to train

the encoder layer to create a robust speech representation for downstream ASR or other

tasks.

1.6 Spoken Language Understanding for Education

After transcribing a student’s spoken response to a question, we may then want to offer
feedback on completeness, complexity, or overall quality of their answer. For this, we design
natural language processing (NLP) pipelines to extract information from or categorize the
ASR transcripts of student responses. Given a text representation of the student’s answer,
we can build on common methods in NLP for education to adapt them for spontaneous
speech and speech diverse dialects. Here, we build on methods in automatic assessment

scoring and question answering.
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1.6.1 Automatic Oral Assessment Scoring

Automatic Oral Assessment scoring seeks to train a machine to give a score to a student’s
verbal response to a prompt such that the score has high agreement with that assigned by
a human rater. In recent years, great strides have been made to automate spoken language
assessments (SLAs) that measure fluency and goodness of pronunciation. For example, [56]
explores multitask learning as an approach to overcoming the problem of limited data in
automatic oral English proficiency SLAs for Mandarin speakers. In addition, [57] compares
the performance of Wav2Vec2.0 [58] and Kaldi TDNN-based [59] grapheme embeddings as
features for evaluating children’s phonological working memory for nonwords. Similarly,
the authors of [60] use hidden states from Wav2Vec2.0 [58] to predict mispronunciations
and abnormalities in children’s speech. Such methods that take advantage of large pre-
trained automatic speech recognition (ASR) systems seem particularly promising given the
recent advancements in training strategies for architectures like HuBERT [54], WavLM [61],
and Whisper [10]. However, challenges remain in automatic SLA, especially for children.
Children’s developing language skills and growing speech articulators cause their speech to

be highly variable [44], which in turn creates challenges in recognition and assessment [62, 63].

In order to assess language abilities such as grammar usage, coherence, and reasoning,
NLP systems that infer over longer contexts are necessary. This task has been explored in
tasks such as automatic essay scoring. Studies in essay scoring have used natural language
understanding (NLU) to score written essays for narrative language proficiency [64, 65].
Notably, [66] combines hand-crafted linguistic features which capture advanced semantics
with soft label predictions from the language model, RoBERTa [67], in a hybrid model
which achieves state-of-the-art-performance readability score classification (i.e. classifying

the complexity and depth of an essay).

However, further work is needed to adapt these state-of-the-art essay scoring systems to

spoken language.
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1.6.2 Spoken Question Answering

In addition to scoring the overall quality of an oral response, a rater may also want to ex-
tract specific pieces of information from the answer in order to give targeted feedback on the
completeness and correctness of certain sections of the response. For example, if a student
is asked to verbally describe a person’s appearance, the rater may consider the description
incomplete (i.e. deserving of a lower score) if it does not mention the person’s hair color.
Using automatic question answering, an NLU system could query the student’s response for
any mention of hair color to determine the student’s score in that area. Recent advance-
ments in BERT [7] and GPT [68]-based language models have revolutionized performance in
question answering and information retrieval tasks on text. Now, a desirable outcome is to
replicate the performance of these systems in the speech domain. That is, given a set of audio
recordings and a user’s input query for information, we seek to return audio recordings or
spans that are relevant to the query. Successful architectures for this task typically take one
of two frameworks: a cascade system or an end-to-end model. A cascade system first uses
automatic speech recognition (ASR) to transcribe a spoken document and then passes that
transcript to a downstream language model for text-based question answering. End-to-end
systems seek to bypass the need for transcription and answer a question directly from audio
features. Notable cascade models include [69] which introduces a self-supervised dialogue
learning framework from conversational question answering and [70] which proposes a uni-
fied pipeline for multiple spoken language understanding tasks. End-to-end spoken question
answering models of interest include SpeechBERT [71], which jointly encodes audio and text
information for downstream spoken question answering, GhostT5 [72] which extracts and
passes a lightweight speech feature representation to a pre-trained language model to answer
questions from speech without the need for complete automatic speech recognition (ASR)
transcription, and [73] which implements a dual attention mechanism for smoother incorpo-
ration of both text and audio. While end-to-end models show promise in eliminating errors

propagated by ASR systems [74], cascade models are able to leverage large language models
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trained on massive amounts of text data for open domain question-answering. Currently,
these cascade models may be especially preferable in low-resource applications for which
there does not exist enough in-domain data to effectively train an end-to-end model from
scratch. End-to-end systems may match or surpass the performance of cascade models as

more labeled datasets for spoken question answering become available.

Despite the achievements presented by the aforementioned studies, several challenges
remain in creating robust spoken question answering and information retrieval systems.
First, much of the work done in spoken question answering is evaluated on datasets such as
the Spoken SQuAD dataset [75] or Spoken CoQA dataset [73]. These datasets often only
contain spoken questions and contexts that were either generated using text-to-speech or
read from a script created from an existing text question answering dataset. This means
that further work may be necessary to create spoken language understanding systems that are
robust to the disfluencies and lack of proper logical organization often found in spontaneous
speech [76]. Second, many of these works format the problem of spoken question answering
as finding an answer from a short context (e.g. a one minute audio recording). Many contexts
(e.g. a lecture, an instructional video, or a meeting recording) may be significantly longer,
and it is non-trivial to scale a model trained for short contexts to infer answers from a longer
context. Last, further work is needed to ensure that these systems are robust to differences
in dialect, accent, speaking style, and regional diction or other out of vocabulary words. This
may be especially true for cascade systems employing pre-trained models that were trained,

for example, on only one dialect.

1.7 Outline of the Dissertation

The rest of this dissertation is organized as follows:
Chapter 2 describes the primary databases used in this work

Chapter 3 describes the work done in African-American English Dialect Identification
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and Dialect Density scoring. We frame this work in the context of performing linguistic
evaluation for more linguistically-informed downstream tasks such as speech recognition and

spoken language understanding

Chapter 4 outlines a method created for improving automatic speech recognition for child
speakers of low-resource dialects such as African American English. This method uses data

augmentation to produce additional training data with targeted characteristics of

Chapter 5 details frameworks for spoken language understanding from speech recogni-
tion transcripts of diverse children’s speech. These frameworks use state-of-the-art natural
language processing algorithms and large language models to automatically score children’s
oral language exam responses and retrieve specific pieces of information from oral responses

for use in educational technology.

Chapter 6 describes methods for spoken language understanding and spoken question

answering from long audio files which contain speech from speakers of African American

English.

Chapter 7 is a conclusion of the dissertation which offers a summary of key findings and

suggestions for future work
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CHAPTER 2

Datasets

This dissertation primarily uses data from three datasets. The Corpus of Regional African
American Language [77] was used to perform experiments in dialect identification and di-
alect density estimation on adult African American English speech signals. We additionally
created a spoken question answering dataset from CORAAL, CORAAL QA, for use in a spo-
ken question answering task on dialectal speech. The Georgia State University Kids Speech
Corpus (GSU Kids Corpus) [78, 79] was used in both children’s AAE DID experiments and
automatic oral assessment scoring. Last, the UCLA JIBO Kids speech database [78, 80|
was collected and used as non-AAE speech in cross-dialect children’s speech recognition

experiments.

2.1 CORAAL

The Corpus of Regional African American Language database contains spoken interactions
between an interviewer and an interviewee who speaks a regional variant of AAE. The set of
speakers range in age from under 15 to over 90 and contain roughly equal numbers of male
and female identifying participants. The interviewees were asked to describe their daily lives,
experiences, and opinions on their communities as well as given space to discuss other topics
of interest to them. The entire CORAAL database contains over 200 hours of speech that are
divided into 8 components, where each component is a set of speakers from a particular city
and time of recording 8. We used the following numbers of speakers with regional dialects

from the following five US cities: 22 speakers from Washington DC (DCB), 10 speakers from
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Princeville, NC (PRV), 11 speakers from Rochester, NY (ROC), 10 speakers from Lower
East Side Manhattan, NY (LES), and 12 speakers from Valdosta, GA (VLD). We chose to
use these components, or splits of the dataset, because of their use in prior work [3] and their
coverage of different regional speaking styles. These five splits contain 143 audio files total,
of which 34 are under 15min in length, 39 are between 15min and 45min in length, and 70
are greater than 45min in length. This totals over 100 hours of spontaneous AAE speech.
For each speaker, several utterances with good audio quality ranging from 5sec to 1min in
length were selected, and their dialect densities were scored by hand as ground truths. The
dialect densities of the speakers in DCB, PRV, and ROC were scored by the authors of [3]
while the dialect densities of the speakers in LES and VLD were scored by the authors of
this dissertation. This results in a total of approximately 3 hours of dialect density-scored

utterances from 65 speakers.

2.1.1 CORAAL QA

To assess performance in the spoken question answering task, we introduce the CORAAL
QA dataset '. This dataset consists of hand-labeled answer question-answer pairs created
from speech contained in the LES, ROC, DCB, PRV, and DCB splits of CORAAL (same as
listed in the previous section). From each interview recording, we created a set of questions
using the following criteria: 1) The question can be factually and objectively answered by
information contained in a continuous time span of the audio file that is 45sec or less in length,
2) The answer to the question is given only once in the audio file, and 3) the answer to the
question is not common knowledge and must be answered through extraction from the given
audio file. The question answer pairs are given in the format: “query: answer_start_span,
answer_end_span” where the answer starting and ending span are given in seconds (e.g.
“Who is the speaker’s favorite basketball player? : 831.25, 842.76” where the numbers after

the colon indicate the start and stop time in the audio file where the speaker gives the answer

!data available at https://github.com/christinachance/ CORAAL-QA/
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to the question).

2.2 GSU Kids Speech Corpus

This dataset contains recordings of approximately 200 students between the ages of 8 and
12 years old from the Atlanta, Georgia area. The data was originally collected in [79] for
educational studies. As part of that work, metadata about the student’s reading ability and
presence of any language impairments was recorded. We later annotated a portion of the
dataset for speech tasks. The children in the dataset were recorded while performing educa-
tional exercises in reading, language, and pronunciation with a facilitator. First, the students
were administered a portion of the GFTA [81] sounds in words exercise in which they were
recorded stating phonemically diverse words in isolation. The students were then adminis-
tered two portions of the Test of Narrative Language (TNL) [82], a story retelling task and a
set of picture description tasks, which assessed their oral narrative language abilities. Each
child was recorded in 4 sessions each lasting about 2 to 10 minutes. The students were also
given additional tasks including sentence formulation and non-word repetition. The entire
dataset contains approximately 100 hours of labeled and unlabeled speech data. All children
recruited to the study lived in the Atlanta Georgia Area and were native English speakers.

The audio was recorded by a computer microphone with a sampling rate of 44.1kHz.

2.3 UCLA JIBO Kids speech

This dataset contains recordings of approximately 130 children between the ages of 4 and 7
years old, the critical age range for early acquisition of literacy. The children were recorded
while they performed educational exercises in reading and pronunciation (eg. picture-naming
tasks). Each child was recorded in 3 sessions each lasting about 15 minutes. The entire

dataset contains approximately 90 hours of labeled audio. The child speakers in the dataset
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conversed with the social robot, Jibo 2, following a protocol created by experts in early child-
hood education [83]. A facilitator was also present at each session and intervened verbally if
the child had difficulty interacting with the social robot. Each child sat approximately two
feet away from the robot with a microphone placed equidistantly between them. The children
then were administered a portion of the Goldman Fristoe Test of Articulation-3 (GFTA3)
[81] as well as exercises in counting and spelling. All children recruited to the study lived
in Southern California and were proficient in English. Many of these children spoke second
languages at home. The audio was recorded by a Logitech C920 Webcam microphone with

a sampling rate of 48kHz.

24Jibo Robot - He can’t wait to meet you,” Boston, MA, 2017. [Online]. Available: https://www.jibo.com
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CHAPTER 3

Dialect Identification and Dialect Density Scoring

In this chapter, we introduce novel systems to perform AAE dialect identification and di-
alect density scoring from short utterances. Recall from Chapter 1 that dialect density is
defined as the proportion of a speaker’s speech that contains dialect-specific phonological,
morphosyntactic, or prosodic cues. DID may be used to automatically provide dialect in-
formation to downstream tasks such as ASR or NLU for more dialect-informed processing.
Given that an utterance was detected as containing characteristics of AAE, we may want
to further estimate the dialect density measure of the utterance in order to processes low
and high density utterances differently. This task of dialect density estimation could also
be especially useful for data mining in building dialect-specific text-to-speech systems or for

linguistic cataloging of a dialect.

3.1 Dialect Density Estimation

This section focuses on performing dialect density estimation for AAE adult speech. The
focus of this work is to assess the feasibility of estimating dialect density in a low-resource
scenario such as AAE. In order to overcome the lack of data needed to train large language
models to perform such tasks, we incorporate linguistic knowledge to attempt to targetedly

extract features corresponding to well-documented aspects of AAE.
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3.1.1 Data Annotation

This work uses 208 utterances from the CORAAL database. The utterances ranged in length
from 15sec to one minute in length. For each utterance, the number of phonological aspects
of AAE and the number of morphosyntactic aspects of AAE were counted and divided by the
number of words in the utterance to calculate that utterance’s DDM. We calculate one DDM
that only takes into account the phonological aspects of dialect (DDMphon), one DDM that
only takes into account the morphosyntactic or grammatical aspects of dialect (DDMgram),
and one DDM that takes into account both (DDM). The utterances from the PRV, ROC, and
DCB sets of the CORAAL database were selected and annotated for dialect density by the
authors of [3]. The utterances from the LES and VLD sets of CORAAL were annotated for
DDM by the authors of this work. Only well-documented phonological and morphosyntactic
markers of AAE were counted as linguistic aspects of the dialect. The average DDM for each

city in the CORAAL dataset is shown in Table 3.1.

DDMphon DDMgram DDM

DCB 0.083 0.004 0.088
ROC 0.041 0.006 0.047
PRV 0.166 0.028 0.194
LES 0.018 0.025 0.042
VLD 0.122 0.029 0.141

Table 3.1: Average dialect density by city for each of the dialect density measures shown.

3.1.2 Methods

For each DDM-labeled utterance, we extract a feature set which is hypothesized to correlate
strongly with a particular aspeect of AAE dialect. We then train a backend classifier to map

the input features to a continuous dialect density prediction.
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3.1.3 Feature Sets

From each utterance, we extracted the following six feature sets:

Wav2Vec2.0 Transcripts: For the first three feature sets, we generated ASR tran-
scripts using a pretrained Wav2Vec2.0 model [9] trained on the 960hr LibriSpeech database
[84].  While these transcripts contained errors and misrepresented the out-of vocabulary
(OOV) words, we implicitly attempted to utilize consistent errors and accurate portions of

the transcripts to identify useful phonetic and grammatical information.

1. ASR Output Character Combination Frequency: The frequency of each se-
quence of two characters (bigram) in the transcript was counted and used as a feature. The
Wav2Vec2.0 model can output 31 different characters leading this feature to be a 961 x 1
vector which can be thought of as the flattened 31 x 31 matrix in which the element in row
i and column j is the number of times character i was followed directly by character j in the
generated transcript for the given utterance. We hypothesize that this feature will capture

consonant clusters that commonly occur in a particular dialect.

2. ASR Output Character Duration: From the output logits of the Wav2Vec2.0
model, the average duration of each output character was computed. We hypothesize that
this feature will be useful in determining which sounds are more or less frequently spoken or

stressed by speakers of a particular dialect.

3. ASR Output Language Modeling: In addition to the previously mentioned
features, we were interested in how neural language modeling techniques could be applied
to automatically generated transcripts of speech in order to predict dialect density. We
noticed that, of the most commonly noted features of AAE [21, 85], language differences
relating to the tense, collocation, and negation of verbs (eg. absence of copula, negative
concord, generalization of “is” and “was” to use with plural and second person subjects,
etc.) were especially prevalent. This led us to pay particular attention to verbs. First, the

verbs in each utterance were found using a pre-trained FLAIR part-of-speech tagging model
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[86]. We then used the Fisher corpus [87], consisting largely of MAE conversations, to train
word- and character-based LSTM language models, which provide probability distributions
over the next word or character in an utterance given the history. To measure mismatch of
verbs in the MAE training data and AAE testing data, we then extracted the verb OOV
rate (using the word-based model vocabulary) and the average verb surprisal [88] (using the
character-based model) for each utterance, where the surprisal of the i-th word (S(w;)) is
calculated from the letter LM as the negative log probability of the ¢-th word occuring in
sequence after words wy,...,w;_;. We also calculate the overall utterance perplexity from
the character-based model (char_ppl), the average surprisal for all words, and the ratio of
average verb surprisal to average overall surprisal. Since the LM is trained on MAE, word

choices more characteristic of AAE will have high surprisal.

4. ComParE16 Features: The widely used ComParE16 features [89] were extracted
from the audio segments using the OpenSmile toolkit [90]. This set includes pitch, energy,
spectral, cepstral coefficients (MFCCs) and voicing related frame-level features which are
referred to as low-level descriptors (LLDs). It also includes the zero crossing rate, jitter,
shimmer, the harmonic-to-noise ratio (HNR), spectral harmonicity and psychoacoustic spec-
tral sharpness. In total, this feature set contains 6373 features resulting from the computation
of various statistics, polynomial regression coefficients, and transformations calculated over

the low-level descriptor contours.

5. X-Vector: The popular X-vector was incorporated to capture speaker-specific infor-
mation [33]. These 512-dimensional neural network-generated embeddings contain speaker-
specific information that may relate to dialect. As described earlier, the 512-dimensional
vectors were projected into 5-dimensional feature vectors using the fully connected network

shown in Figure 3.1. This network achieved a validation accuracy of 72.6%.

6. Prosodic Embedding: Inspired by [91], four pitch and energy features were ex-
tracted across time from the utterances: FO (extracted with Praat [92]), the total energy in

the frame, the energy in the spectrum below 1kHz, and the energy in the spectrum above
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1kHz. These features were then normalized and used as the input to a CNN (as shown in
Figure 1) that was trained to predict the region of origin of the speaker. This forces the
CNN to classify region specific information from only the prosodic information contained
in the speaker’s changes in pitch and energy. This CNN achieved a validation accuracy of

70.7%. The output probability vector was then used as the final prosodic embedding.

Weak Supervision: To create the X-vector and Prosodic Embedding Features, we
employed a weakly-supervised learning technique. We noticed that the five cities used from
the CORAAL database have widely varying average dialect densities, with the averages
from PRV and VLD being much higher than those from ROC and LES, and with the DCB
average in between. Therefore, we believed that an utterance’s city of origin could serve
as a weak label in a preliminary step before dialect density estimation. We gathered the
set of utterances from the entirety of the 200hr CORAAL database from the five cities of
interest that matched the following criteria: 1) Contained at least 10 words to have enough
speech to estimate dialect density, 2) Contained no interruptions from the interviewer 3)
Were not contained in the set of dialect density-scored utterances. We then used shallow
neural networks to map larger input feature vectors into 5-dimensional vectors for which the
ith element represents the probability that the utterance was spoken by a speaker from the
ith city in the database. This step is intended to project larger sources of information into
smaller features vectors which contain only relevant dialect information. The idea is that
training a model to classify diverse utterances by region would prompt it to learn region-
specific information such as dialectal traits without the need to label the dialect density of
all of the utterances in the training set. The output 5-dimensional vector is then used as the

representative feature. This framework is depicted in Figure 3.1
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Figure 3.1: The architecture for the fully connected (FC) network used to project the X-vec-
tors (left) and the CNN used to project the prosodic information (right). The inputs to the
CNN are the pitch (FO) and three energy contours of the utterance. The output of both
networks is a vector whose elements represent the probability of the speaker belonging to

each of the cities used from the CORAAL database.
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3.1.4 Experiments

First, one distinct XGBoost model [93] was trained for each of the six feature sets. This
boosted decision tree model has the advantage of allowing us to easily measure the impact
of the input features on the output value for explainability. Each of the six models was
trained to predict dialect density scores from one of the given input feature sets. Then
the correlation between the predicted dialect density labels and actual dialect density labels
was calculated. We chose correlation as the performance metric because human-performed
dialect density assessments are subject to possibly high inter-rater variability within the
ranges of their scores [94], and so evaluation methods that rely heavily on the absolute value
of the dialect density may be subject to measurement noise. However, raters do tend to
assign higher or lower scores to the same speakers, and so we expect correlation between
predicted and ground truth scores to be meaningful. As some features may only correlate
with phonological aspects or only correlate with morphosyntactic aspects of dialect density,
we train each model to predict each of the three types of dialect density scores (DDMphon,
DDMgram, and DDM). Finally, we used the set of all features as the input to the XGBoost
model, as shown in Figure 3.2. As the ComParE16 feature set was large, only the most

impactful 10 ComParE16 features were used in the combined feature set.

3.1.5 Results and Discussion

Table 3.2 gives the Pearson Correlation of the predicted dialect density measure with the
ground truth labels for the test set for an XGBoost model trained on the listed feature
sets. We also include the SHAP value plots [95] which give the relative importance of each
feature to the model during prediction. Figures 3.3 and 3.4 give the SHAP value plots for
the models trained on all features for predicting DDMphon and DDMgram, respectively.
As the DDMphon term dominiates the total dialect density measure, the SHAP value plot
for DDM is nearly identical to that of DDMphon. In these plots, the Wav2Vec2.0 Char
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Figure 3.2: Overview of the features used in the proposed dialect density estimation proposed

framework.

Comb features are listed as charl_char2 (e.g. N_space is the frequency of the “N” character
being followed by a space character), and the Wav2Vec2.0 Char Dur features are listed as
the character whose duration was used as the input feature from the letters A-Z, period,

apostrophe, space, or silence (sil) characters.

In order to demonstrate the reliability of our results, we also perform random hold out
on the highest performing features. Here, we randomly select speaker-independent train and
test split (80% train, 20% test) from the data 200 times and report the average scores over
all runs in Table 3.3.

Looking at the individual features, we note that the Wav2Vec2.0 Character Combinations
and Wav2Vec2.0 LM features were especially effective in estimating dialect density. Many
of the character combinations appear to relate to word initial and word final sounds (eg.
N_space (frequency of an “N” followed by a space character in the ASR transcripts), F_space
(frequency of an “F” followed by a space), and space_U (frequency of a space followed by
a “U”)). This is in line with observations that AAE includes dropping of word final nasals
and glides and simplification of word initial and word final consonant clusters. Character

perplexity (char_ppl) from the language modeling features was the most impactful feature in
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Correlation DDMphon | DDMgram | DDM

Wav2Vec2.0
0.382 -0.013 0.359

Char Dur.

Wav2Vec2.0
0.303 0.124 0.503

Char Comb
Wav2Vec2.0 LM 0.520 0.108 0.637
X-vector 0.404 0.392 0.369
ComParE 0.102 0.189 0.443
Prosody 0.029 0.376 0.008
All features 0.552 0.430 0.718

Table 3.2: Pearson Correlation between actual and predicted dialect density measures for
each of the three metrics: only the phonological component of the dialect density (DDM-
phon), only the morphosyntactic component of the dialect density measure (DDMgram), and
the entire dialect density measure (DDM). The results for the model trained on six feature

sets individually as well as the model trained on the combination of all of the features are

shown.

Correlation DDMphon | DDMgram | DDM
Wav2Vec2.0
0.339 0.126 0.495
Char Comb
Wav2Vec2.0 LM 0.502 0.173 0.629
All features 0.569 0.385 0.678

Table 3.3: Average Pearson Correlation between actual and predicted dialect density mea-

sures for each of the three DDMs over 200 iterations of Random Hold Out validation.
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estimating all three DDM scores. This feature is particularly useful in providing an objec-
tive distance metric between the MAE of the Fisher Corpus and the ASR transcripts of the
target dialect speech which, unlike WER, does not require ground truth transcripts or suffer
as heavily in the presence of OOV words. The features derived through weakly supervised
embedding (projected X-vector and Prosody embedding) have the most significant correla-
tion with DDMgram. This may indicate that learning grammar from audio files or imperfect
transcripts requires larger amounts of data which our method of weak supervision allows
us to utilize. In general, the ComParE features using Auditory Rasta filtering proved to be
most useful. The RASTA-style filtered auditory spectrum is inspired by psychoacoustics and

has been shown to capture context-dependent information useful in ASR [96].

As Figure 3.3 shows, the combination of the five most impactful features in predicting
DDMphon was: character perplexity (char_ppl), mean rising slope of the Rasta-filtered au-
ditory spectrum, the frequency of an “N” character followed by a space character in the
ASR transcripts (N_space), the standard deviation of distances between peaks in the Rasta-
filtered auditory spectrum, and the PRV component of the projected X-vector. As Figure
3.4 shows, the five most impactful features in estimating DDMgram are character perplexity,
duration of sounds predicted to be silence or unintelligible by Wav2Vec2.0 (sil), the PRV
component of the prosody embedding, the ROC component of the projected X-vector, and
the frequency of an “F” followed by an “A” in the ASR transcripts (F_A). The frequency of
F_A as a feature may due to a formant shift of the vowel following “F” in several words such
as “fell” or “fire” as is seen in some dialects of the US South. We note that the features taken
from the Wav2Vec2.0 output are most useful in predicting phonological aspects of AAE di-
alect density. The character perplexity in particular has a remarkably high correlation with
the DDMphon. A high character perplexity is indicative of the presence of character strings
that would be unlikely to occur in the MAE sentences of the Fisher corpus. Therefore,
this feature proves effective in separating MAE and AAE utterances by the pronunciation

perceived by the Wav2Vec2.0 model. The character duration and frequency of combinations
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of characters output by the Wav2Vec2.0 model similarly have high correlations with the
dialectal phonological differences. The prosody feature by far has the highest correlation
with DDMgram. This may indicate that grammatical differences between AAE and MAE
often co-occur with prosodic differences. We note that the utterances from different cities
of the CORAAL database contain largely disparate numbers of AAE grammatical features,
with the utterances from PRV and LES containing several and the utterances from DCB
and ROC containing relatively few of these. This may make our method of training prosody
embeddings with the utterances’ city of origin as target particularly effective in identifying
the expected amount of grammatical features. As there are many more phonological AAE
tokens than morphosyntactic AAE tokens in the dataset (ie. each spoken clause likely con-
tains only one verb phrase whose grammar structure can be modified but several words whose
pronunciation can be changed), the phonological features dominate the total dialect density
measure (DDM). As a result, the features that are most useful in predicting DDMphon (eg.
character perplexity and character combination frequency) are also more useful in predicting
DDM. The ComParE16 features are significantly better at predicting the total dialect den-
sity measure than either DDMphon or DDMgram alone. This set contains a large number
(approximately 6400) of features, and we note that the XGBoost model utilizes different
features from this set for predicting each dialect density measure. For predicting DDMphon,
the spectral feature, ‘RASTA-style filtered auditory spectrum,” and the OpenSmile feature,
‘ZCR’ (zero-crossing rate), are the two features with the most impact. These may correlate

to dialectal aspects of pronunciation like vowel shifts and durations.

3.2 DID

The previous section describes methods for AAE dialect density estimation for adults given
that the utterance is known to be from a potential AAE speaker. In this section, we expand

the framework to perform dialect identification for both children and adults whose dialect
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Figure 3.3: SHAP value plot for the XGBoost model trained to predict DDMphon from the

set of all features. The features are listed from top to bottom in order of significance.

is not previously known. That is, we seek to determine whether a person is a speaker of
AAE or MAE from only a short utterance of their speech. In addition, we seek to create
a framework that can be applied regardless of speaker age (adult or child) or speaker style

(e.g. spontaneous or read speech).

3.2.1 Data Curation

The focus of this work is on dialect detection given spontaneous speech, particularly adult
and children’s AAE speech. There is no dataset available for this task, so we build on
multiple datasets, as described below. The AAE data used in this work reflects southern

variants, due to the availability of such data for children’s speech.

A particular challenge in this work is learning dialect representations that are robust to
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Figure 3.4: SHAP value plot for the XGBoost model trained to predict DDMgram from the

set of all features. The features are listed from top to bottom in order of significance.

recording conditions, speaker style, and speaker traits (eg. age, gender, et.). We select these
datasets for their coverage of a wide range of these scenarios. All speech data are resampled

to 16kHz for experimentation. The utterances used are each approximately 5-15sec in length.

CORAAL. To train the system to perform DID for AAE adult speech, we utilized the
recordings of speakers from the Princeville, NC, Valdosta, GA, and Washington DC, sets
of CORAAL. The speakers from these sets as had the highest average dialect density, or
frequency of use of dialectal characteristics [3, 97], making them more apt to use for DID.
From these speakers, we selected utterances that contained at least five spoken words, as
denoted by the ground truth transcripts, and were free of non-speech sounds. This resulted

in a speaker-independent training and test set totalling approximately 20 hours and 2 hours
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of speech, respectively.

Librispeech. In order to show how availabe large out-of-domain datasets can be used
for training, we use the popular Librispeech corpus [98] to train models to learn the negative
class (samples that contain only MAE and no AAE). We randomly selected utterances from
train-clean-100 dataset to create a training set and utterances from the dev-clean set to
create a validation set. These speaker-independent data splits were created to contain the

same number of utterances as those from CORAAL.

SITW. The Speakers in the Wild Challenge (SITW) dataset [99] contains recordings of
conversational speech in various recording environments, primarily involving MAE speakers.
We randomly selected a subset of the same number of utterances as that of the CORAAL
test set. This subset is used only for testing and serves as a reference for spontaneous,

non-dialect speech in background noise.

GSU Kids: The Georgia State University Kids’ Speech Dataset ' (GSU Kids) [100]
is a speech dataset of approximately 200 children aged 8-13 from the Atlanta, GA area.
The children were recorded in a noisy classroom environment as they performed educational
assessments in story-telling and picture-description tasks. The children’s speech was anno-
tated by the authors for aspects of AAE dialect, and the dataset was subsequently divided
into AAE-dialect and non-AAE dialect speaking children. In this work, a subset of ap-
proximately 800 utterances totalling about 3 hours was randomly selected for use such that
approximately half of the utterances contained AAE speech. In order to determine which
children in the dataset spoke AAE, the dataset was annotated for dialect tokens that are

widely accepted to be common markers of AAE as in [3].

The speaking styles and train/test usage of different data sets are summarized in Table
3.4. We use “non-AAE” instead of MAE for the Kid’s speech, since it is mostly a southern

dialect. The adult corpora may also contain dialects that are not MAE, but the data are

!The GSU data was collected with support by the Eunice Kennedy Shriver National Institute of Child
Health & Human Development of the NIH under Grant POITHD070837.
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Source Dialect Style # speakers | avg # test
Train/Test | utt./spkr
CORAAL AAE spon/noisy | 61 11 72
Libri MAE read/clean | 251 | 40 20
SITW MAE | spon/noisy | — | 119 6
GSU Kids AAE spon/noisy | — 117 3
GSU Kids | non-AAE | spon/noisy | — 76 4

Table 3.4: Summary of characteristics and usage of speech datasets. We show the number
of speakers used in training and testing to highlight the low-resource problem caused by
the lack of available training data from AAE speakers. The datasets with no entry in the
“Train” column were used only for testing. We also include the average number of utterances
per speaker in each test set. There are approximatley 8000 utterances in each training set,
800 utterances in the CORAAL, Librispeech, and SITW test sets, and approximately 400
utterances in the GSU AAE and GSU non-AAE test sets.

dominated by the MAE dialect.

3.2.1.1 Text Data

In order to train language models for dialect detection, we utilize two large corpora of Twitter
text data. All Twitter text is preprocessed to match Wav2Vec2.0 ASR transcript format.
The data is lowercased, and we remove hashtags, mentions, and punctuation (excluding
periods and apostrophes). While primarily adult twitter data may be less applicable for
training models for children’s speech, the volume and availability of the data makes it an

interesting use case.

TwitterAAE [101] is a dataset of over one million tweets that were automatically
found to have a high probability of being authored by a speaker of AAE. Through training

a probabilistic model that took into account the geographic location of the tweeter, the N-
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gram probability of the words used in the tweets, the grammatical structure of the tweet
as identified by an automatic part-of-speech tagger, and the presence of AAE syntax, these

tweets were found to display many common aspects of AAE.

The Sentiment 140 dataset [102] is a database of 1.6 million tweets on various subjects
labeled with the corresponding user sentiment of the message. In this work, we use this

dataset as a reference set of non-AAE text of the same format as text of Twitter AAE.

3.2.2 Models

We train several models, each using one of three different architectures (CNN, LSTM, or
BERT-style masked language model), to learn different aspects of dialect from different
linguistically-focused features of the data. The goal of the model training is binary classi-
fication of the input data as containing or not-containing AAE speech. An overview of the

models used is shown in Figure 3.5.

CN N (2 conv layers:

conv2d(filters=32,

strides=(1,16),
kernel=(4,4)), maxpool, 2
FC layers
Output binary
dialect decision:
Spectrogram IF_C(S";I'M (STHIE FEE0: AAE or not?

Masked Language
Wav2Vec2 ASR Transcript / Models

linguistic features

Figure 3.5: The feature set and backend models used in the proposed dialect identification

scheme.
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3.2.2.1 CNN

We use a modified version of the Convolutional Neural Network from [103] to map acoustic
and prosodic features to dialect. The CNN layers had kernel sizes of 4x4 with: kernel strides
of 1, 16 output channels in the first layer, and 32 output channels in the second layer. The
convolutional layers were followed by max pooling and then two fully connected layers that
mapped to the final output decision. While [103] found that the spectrogram was the best
feature for DID, [104] saw more success using MFCCs. We evaluate the performance of both
of these features for child and adult DID. We extract the spectrogram with a window size of
10ms and window shift of 5ms. For the MFCCs, we extract the 20dim-feature along with the
first and second derivatives. We additionally use prosodic features as described in [105, 97].
These include the FO contour extracted with Praat [106], the energy contour of the signal,
the energy contour of the signal lowpass filtered at 1kHz, and the energy contour of the
signal highpass filtered at 1kHz. We perform DID both using the prosody features alone and
in concatenation with the best from the MFCC and spectrogram features in the CNN.

3.2.2.2 LSTM

We employ the popular self-supervised learning representations extracted by Hubert [54] in
this task. The Hubert hidden layer outputs are input into a one-layer 128-dim Long Short
Term Memory (LSTM) layer and then two fully connected layers with sizes of 64 and 1 to

make the binary dialect classification decision.

3.2.2.3 Language Models

One prominent difference between AAE and MAE is the pronunciation of certain words in
given contexts. For example, Southern AAE may include reductions of word final consonant
clusters (e.g. pronouncing “band” as “ban”) and a raising of the /TH/ vowel (e.g. pronouncing

“kill” as "keel’) [107]. Character-level ASR systems may capture these pronunciation differ-
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ences. We use a Wav2Vec2.0 model [108] trained on the Switchboard Telephone Corpus
[109] to generate ASR transcripts for the speech data. We evaluate the performance of the
ASR system and find it consistent with previously reported results on AAE and non-AAE
speech for the given cases [3]. Using the ASR transcripts as input, we apply a character-level
BERT-style transformer language model (LM) [110], pre-trained using a masked language
model (MLM) objective and finetuned to distinguish between the AAE and MAE text in a
binary classification task. The use of the LM allows us to take advantage of large language
models that benefit from large amounts of text data and utilize the abundant text data on
Twitter. We explore two LM configurations, both building on a pretrained small BERT
model,? with the CLS token embedding input to a single fully connected layer used to decide
whether or not the speech contains AAE dialect. One model simply trains this classifier with
a cross-entropy (CE) objective using the two sources of Twitter data, also updating weights
of the BERT model. For the second model, we further pretrain the model with the MLM
objective on the Twitter data, followed by additional pretraining on the Librispeech and
CORAAL ASR transcripts. We then train the last classification layer with the LM weights
frozen using CE with the CORAAL-Libri transcripts, and finally further fine-tune the full

model for a few iterations with CE on the ASR transcripts.

Grammatical features are another defining aspect of AAE. For example, AAE can include
a dropping of auxiliary verbs (e.g. “he gone” instead of “he is gone”) or a deletion of the
infinitive marker “to” (e.g. “it’s your turn go” instead of “it’s your turn to go”). In order
to capture these differences, we applied the automatic part-of-speech (POS) tagger from
the Python SpaCy library to the Twitter text data and the ASR transcripts. For example,
the POS tagger may take the transcript, “who all goin” as input and produce the output
sequence of the same length, “PRON DET VERB.” Anecdotally, we find that even when the
ASR system spells words differently than in the standard English dictionary, these words

are often tagged as the correct part of speech (e.g. tagging “goin” as a verb here). We then

Zhttps://tfhub.dev/google/collections /bert /1
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learn a token-level transformer language model using MLM pretraining on the Twitter data
to predict dialect as MAE or AAE from the sequence of POS tags, similarly to the character
LM.

3.2.3 Experiments

Using the features listed above, we train the CNN, LSTM, and Bert MLM to perform
AAE DID. All systems are trained with the CORAAL training set as the positive class and
the Librispeech training set as the negative class. The language models are additionally
pre-trained on the Twitter text data. Although the positive samples come entirely from one
dataset and the negative samples come entirely from another, we chose training datasets that
are each compilations of various recordings from across different speakers, years, locations,
and recording devices, meaning that there will not likely be spurious channel effects or
recording conditions that can help distinguish recordings of the same database. We evaluate
the performance training on CORAAL (noisy, spontaneous) and Librispeech (clean, read)
in two cases: 1) Resolving AAE-speech in CORAAL from the non-AAE speech in SITW
(noisy, spontaneous) and 2) Resolving the AAE-speech from the non-AAE speech in the GSU
Kids’ speech database (noisy, spontaneous). This will show the robustness of the systems
to different speaking styles and recording conditions. We additionally show the performance
of score-level fusion of the best models. The model output scores are added and then the
new detection threshold is taken to be the median score of the test set. This method of
fusion allows us to fuse the scores in the case when we do not have enough data to create a
separate validation set to train a fusion model. We choose the median confidence score as
the threshold because we know in advance that the test sets are balanced in the number of
utterances in each class. In a real scenario, the demographics of a group of users would likely
be known, and the threshold could be chosen to match those demographics (eg. if the system
were used in an area where approximately two-thirds of the population spoke AAE then the

threshold could be set at the 33rd percentile value of the output scores if it could not be
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Validation Set
Linguistic CORAAL AAE vs. | GSU AAE vs.
Feature Backend (CORAAL AAE vs.
Correlate SITW MAE GSU non-AAE
Librispeech MAE)

Acc. F1 Acc. F1 Acc. F1
1. Spectrogram CNN Acoustic 91.1 92.2 72.9 76.5 55.3 54.2
2. MFCC CNN Acoustic 73.8 83.5 60.5 69.8 55.7 58.3
3. Prosody feat CNN Prosody 90.8 91.2 83.3 80.1 52.4 52.9
4. concat(Spec.,Pros) CNN | Acoust, Pros. | 91.8 92.9 88.9 88.9 58.2 55.6
5. Hubert feat LSTM Acoustic 78.1 87.7 71.1 82.9 64.8 74.3

6. Char-level text
MLM Phonology 82.6 79.9 66.9 56.8 51.5 58.9

pre-train Twitter

7. Char-level text
MLM Phonology 91.0 89.3 88.2 81.4 62.7 71.2

finetune CORAAL-Libri
8. POS-token

MLM Grammar 69.2 60.7 67.5 60.1 46.8 61.4

pre-train Twitter

9. POS-token
MLM Grammar 84.8 77.4 87.1 77.5 55.2 68.4
finetune CORAAL-Libri

Table 3.5: The results of binary classification for each model using 0.5 as the detection
threshold. For each model, we present the targeted linguistic correlate of dialect (Acoustic
Phonetics (Acoustic), Phonology, Morphology/Syntax (Grammar), or Prosody (Pros)) and
the Accuracy (Acc.) and F1 score (as calculated by Python SKlearn). Twitter refers to both
TwitterAAE and Sentiment140 text data.

found through validation). In order to show the performance of the fused models without

respect to threshold, we also calculate their Area under the ROC Curve (AUC) values.

3.2.4 Results and Discussion

Table 3.5 shows the performance of the individual models trained on a particular feature or
a concatenation of 2 features. Each row shows the input features to the model, the model

backend, the target linguistic correlate of the model, and the accuracy and F1 score of that
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CORAAL AAE GSU AAE vs.

Model
vs. SITW MAE GSU non-AAE
Acc. F1 AUC | Ace. F1 AUC
4. 90.0 89.6 90.2 | 55.4 554 55.6
5. 769 844 754 | 656 76.2 57.3
7. 88.6 854 773 | 61.8 70.2 62.3

4+5 88.6 89.8 781 | 67.3 725 65.5
4+7 86.1 86.3 773 | 61 682 626
5+ 7 89.2 834 794 | 68.6 744 69.2
44+5+7]895 8.8 81.1 | 70.7 77.6 70.4

Table 3.6: The results of binary classification for the individual and fused models when
the threshold is taken as the median output score. We also report the AUC values as

threshold-invariant metrics.

model for the validation set and two test sets. Table 3.6 shows the Accuracy, F1 score, and
AUC for the models. In Table 3.5, the models are trained with a detection threshold of
0.5. The fused models in Table 3.6 use the median value of the test set as the detection
threshold. Therefore, we recalculate the performance of the individual models with the
median threshold for inclusion in Table 3.6 in order to show the effects of thresholding and

fusion separately.

We observe that several of the individual models, including those trained on the spec-
trogram, MFCC, and prosody features perform significantly worse for the children’s speech
test set than for the adult speech test set. This may be an indication that these models
overfit to the acoustic features or speaker style of the adult speech. The largest drop is for
prosody features; it may be that prosody is less reliable for children because of the high FO

and disfluencies and/or because of greater variability,

The model trained on the concatenated spectrogram and prosody features performs bet-
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ter than the models trained on either feature individually in nearly all cases, showing that
these features may provide complementary dialect information. This model (4) does better
than any other individual models for the CORAAL vs. SITW test set, suggesting that the
combination of spectrogram and prosody made the model more invariant to the change in
speaker style between the training and test case. However, this model still does not gener-
alize well to the children’s test set. Although the model trained on Hubert self-supervised
learning representations performs worse for the validation set than the other acoustic fea-
tures, it appears to generalize much better to the children’s speech. This may be because the
wide range of speaker variability seen by Hubert during pre-training has allowed it to learn
more robust representations of higher-pitched voices and disfluent speech as seen in children.
Both language models see a significant improvement after being fine-tuned on data from
the ASR transcripts. The character-level MLM trained directly on the transcripts seems
to learn information about AAE pronunciations from the Twitter and ASR transcript data
that meaningfully translate to other datasets. The grammar-based MLM trained on POS
tags does more poorly. This may be due to tagging errors or indicate that dialect-specific
grammatical patterns are not consistent enough across age and geographic region to be useful

for classification.

Table 3.6 shows that fused models improve performance over individual models for the
children’s data, but give no significant benefit for the adult test set. The model trained on
Hubert features seems most important to obtaining good results on the kids’ speech, as the
fused model without it does less well for the GSU test set. The fusion of the models trained
on concatenated spectrogram and prosody features, the Hubert features, and the language
modeling representations gives the best results for children, with statistically significantly

higher accuracy and F1 scores than any other model.

The table also shows that use of the median threshold with the individual models im-
proves performance for the adult test set compared to the 0.5 threshold, especially for the

Hubert features. This may suggest that the detection threshold should be shifted with a
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shift in domain, and further studies are needed to create thresholding strategies that do
not require large amounts of in-domain development data for low-resource cases. For the
children’s speech case, only the model (5) sees an improvement from the change in threshold.
Comparing the individual models in Table 3.5 to the fused model, we see that the model
(4 4+ 5 + 7) still shows significantly better performance for the children’s speech and is not
significantly worse than any model for the adult speech. Note that this model also has the
highest AUC for the children’s c