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Abstract—Non-autoregressive automatic speech recognition
(NASR) models have gained attention due to their parallelism
and fast inference. The encoder-based NASR, e.g. connectionist
temporal classification (CTC), can be initialized from the speech
foundation models (SFM) but does not account for any depen-
dencies among intermediate tokens. The encoder-decoder-based
NASR, like CTC alignment-based single-step non-autoregressive
transformer (CASS-NAT), can mitigate the dependency problem
but is not able to efficiently integrate SFM. Inspired by the
success of recent work of speech-text joint pre-training with a
shared transformer encoder, we propose a new encoder-based
NASR, UniEnc-CASSNAT, to combine the advantages of CTC
and CASS-NAT. UniEnc-CASSNAT consists of only an encoder as
the major module, which can be the SFM. The encoder plays the
role of both the CASS-NAT encoder and decoder by two forward
passes. The first pass of the encoder accepts the speech signal as
input, while the concatenation of the speech signal and the token-
level acoustic embedding is used as the input for the second pass.
Examined on the Librispeech 100h, MyST, and Aishell1 datasets,
the proposed UniEnc-CASSNAT achieves state-of-the-art NASR
results and is better or comparable to CASS-NAT with only an
encoder and hence, fewer model parameters. Our codes1 are
publicly available.

Index Terms—Non-autoregressive ASR, E2E ASR, Self-
supervised Learning, Speech Foundation Model

I. INTRODUCTION

IN recent years, self-supervised learning (SSL) has become
popular in speech [1], [2], [3] and natural language [4],

[5] processing. The SSL models learn prior knowledge from
a large amount of unannotated data and are called pre-trained
or foundation models. Widely-used speech foundation models
include APC [6] that predicts future frames from their histo-
ries, and Wav2vec2.0 [7], HuBERT [8], and WavLM [9] that
reconstruct or predict pseudo labels via the masked portions of
the speech signal. The speech foundation models are proven
effective in improving low-resource tasks by fine-tuning [10].

Concurrently, non-autoregressive automatic speech recogni-
tion (NASR) has attracted considerable interest due to its fast
inference [11], [12], [13]. Although it is not naturally designed
for streaming ASR, NASR can greatly improve the inference
efficiency for offline applications. As the earliest end-to-end
ASR framework, connectionist temporal classification (CTC)
[14], [15] can be regarded as an encoder-based NASR model
when using greedy decoding. However, the performance of
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CTC is always constrained by the output independence as-
sumption. On the other hand, most NASR models are proposed
based on the encoder-decoder framework where the decoder
can mitigate the output independence problem. For example,
the decoder of Mask-CTC [16] is a masked language model
to correct the low confidence tokens in CTC output. Align-
Refine [17] uses the decoder to refine the CTC alignment
iteratively. LASO [18], CASS-NAT [19], and Paraformer [20]
extract acoustic embedding as the decoder input for token-
level contextual representation learning. However, the encoder-
decoder framework does not perfectly fit the current foun-
dation models, which are pre-trained with the transformer
encoder structure. Although previous work developed pre-
trained models [21], [22] for the encoder-decoder framework,
it is specifically designed for autoregressive transformers.
Additionally, [23] trains the transformer decoder from scratch
with the encoder initialized from the speech foundation model.
The work in [24] and [25] introduce BERT to the NASR
model for better output dependency modeling. However, these
methods may contain unnecessary model parameters.

In this work, based on previous method (CASS-NAT) [26],
we present a new encoder-only NASR (UniEnc-CASSNAT)
that can function in a way that is similar to CASS-NAT
encoder and decoder. Like CTC, UniEnc-CASSNAT can be
initialized from speech foundation models (HuBERT base
model [8] is used). To behave as both the CASS-NAT en-
coder and decoder, UniEnc-CASSNAT has two forward passes
and accepts two types of input for each. In the first pass,
speech features (output of HuBERT Conv. encoder) are fed
into the contextual encoder to generate token-level acoustic
embeddings (TAEs). In the second pass, the concatenation
of speech features and the TAEs (along the time dimension)
are used as the contextual encoder inputs. The TAE corre-
sponding outputs are selected for ASR loss computation. The
outputs in the second pass can generate better quality TAEs
than those in the first pass and hence lead to better ASR
performance. We, therefore, further propose a multi-pass CTC
(MP-CTC) training and iterative decoding method to improve
the WER performance. Experiments on Librispeech 100-hour
[27], MyST [28], and Aishell1 [29] datasets show that the
proposed methods can achieve better or comparable WERs
to CASS-NAT, and contain fewer parameters. The framework
can be applied to other encoder-decoder-based NASR.

The remainder of this paper is organized as follows. Sec-
tion II introduces the framework of UniEnc-CASSNAT and
iterative decoding process. Experimental setups are described
in Section III. Results are shown and discussed in Section IV.
We conclude the paper in Section V.
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Fig. 1: (a): the diagram of CASS-NAT. (b): the proposed UniEnc-CASSNAT. HuBERT conv. and contextual encoders are used.
The TAE extractor is a self-attention module that transforms the acoustic representations with length T to TAEs with length
U. The generation of TAEs and second pass forward computation are repeated during iterative decoding.

II. PROPOSED FRAMEWORK: UNIENC-CASSNAT

A. Encoder-Decoder CASS-NAT

CASS-NAT [19] consists of an encoder, a token-level em-
bedding extractor (TAEE), and a decoder as plotted in Figure
1(a). The connectionist temporal classification (CTC) [14]
loss is added to learn the alignment between the acoustic
and token sequences. The alignment can provide segmentation
information for each token. TAEE extracts an embedding for
each token from encoder outputs (with a shape of [T, d],
where T is the frame length and d is the hidden dimension)
using the segmentation information. The extracted token-level
acoustic embeddings (TAEs) (with a shape of [U, d], where
U is the token sequence length) are fed into the decoder,
which models the relationship between tokens. Suppose the
input sequence is X = {x1, ..., xt, ..., xT }, the ground truth is
Y = {y1, ...yu, ..., yU} and the CTC alignment is Z, then the
objective function on the decoder side can be written as:

Ldec = logP (Y |X)

≥ EZ|X [logP (Y |Z,X)]

≈ max
Z

log

U∏
u=1

P (yu|ztu−1+1:tu , x1:T )

(1)

where tu−1 + 1 : tu represents the acoustical boundary for
token u provided by the alignment Z. We use a maximum
approximation for the expectation (Viterbi-alignment during
training). CASS-NAT is then trained by jointly maximizing
the decoder loss in Eq. 1 and the CTC loss on the encoder
side with a task ratio λ.

Ljoint = Ldec + λ · log
∑
Z∈q

T∏
i=1

P (zi|X) (2)

where q is all the alignments that can be mapped to the label
Y by removing blank tokens in CTC and repetitions.

During decoding, Viterbi-alignment is not available. We
therefore use error-based sampled alignments (ESA) (see
details in [19]), where the multiple alignments Z are sampled
based on the CTC greedy search output with low confidence

scores. The TAEs computed from the sampled alignments are
fed into the decoder to obtain multiple ASR outputs. The
autoregressive transformer provides a ranking score for each
ASR output (one ASR output corresponds to one alignment).

B. Encoder-only CASS-NAT: UniEnc-CASSNAT

Speech foundation models are proven to be useful in down-
stream ASR tasks. The encoder of CASS-NAT can be inherited
from a speech foundation model and extracts better acoustic
representations [23]. However, the CASS-NAT decoder has
to be trained from scratch. Inspired by the success of recent
work of speech-text joint pre-training [30], [31] with a shared
encoder, we rethought the necessity of CASS-NAT decoder
and propose an encoder-only CASS-NAT, denoted as UniEnc-
CASSNAT to fit the size of the speech foundation models.

The UniEnc-CASSNAT is shown in Figure 1(b) with two
forward passes. In the first pass, the hidden features extracted
from the conv. encoder are fed into the contextual encoder
for CTC modeling and the token-level acoustic embeddings
(TAEs) are extracted using the alignment information from
CTC outputs. In the second pass, the extracted TAEs ([U, d])
are concatenated with the hidden features ([T, d]) (along the
time dimension) to be the input to the contextual encoder.
The self-attention layer in the contextual encoder enables
frame-frame, frame-token, and token-token interactions be-
tween hidden features and TAEs. Note that the goal of the
first pass is to obtain TAEs, whose quality is highly related
to the ASR performance. The better the speech foundation
model, the better the quality of the TAEs extracted by UniEnc-
CASSNAT. The second pass is similar to the role of the CASS-
NAT decoder for modeling the relationships between TAEs
and frame-level hidden features. We investigate whether the
encoder is capable of both frame-level acoustic representation
learning and contextual modeling between tokens.

C. MP-CTC Training and Iterative Decoding

The output of the second pass is a sequence of T + U
vectors, where the first T vectors correspond to hidden fea-
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tures, and the U vectors correspond to TAEs. Since the quality
of TAEs is essential to the performance of the CASS-NAT
decoder, we propose to add another CTC loss to the first
T outputs of the second pass and formulate a multi-pass
CTC (MP-CTC) training. With the CE loss used on the U
outputs, the final objective function of UniEnc-CASSNAT can
be written as:

Lunienc-cassnat = Ldec+λ1 ·LCTC−1pass+λ2 ·LCTC−2pass (3)

We share the final feed-forward layer for the two CTC
losses. Theoretically, the second-pass CTC loss would have
better performance than the first pass because it accepts
additional input information (TAEs). An intuitive idea is to
iteratively improve the quality of TAEs by repeating the
second pass with newly extracted TAEs. Hence, we propose an
iterative decoding method for UniEnc-CASSNAT. Specifically,
we define the hidden features as H , and the first pass of
UniEnc-CASSNAT encoder as Iter0. Iter0 would generate
TAE0. The second pass uses H+TAE0 as input and generates
TAE1, which we define as Iter1. Generally, for iteration n,
the contextual encoder accepts H and TAEn−1 as input and
generates TAEn for the iteration n+1. In each iteration, ESA
generates multiple TAEs for the next iteration. We define the
number of sampled alignments in each iteration as Sn. The
total number of the sampled alignments would be

∏N−1
n=0 Sn,

where N is the number of iterations used in the decoding.
We empirically found that two iterations are sufficient for a
desirable word error rate (WER).

III. EXPERIMENTAL SETUP

A. Data Settings

The experiments were conducted on three datasets: the 100-
hour subset of LibriSpeech English corpus [27], the 240-
hour (annotated section) My Science Tutor (MyST) children’s
speech corpus [28], and 170-hour Aishell1 Mandarian corpus
[29]. We chose the 100-hour subset of Librispeech to enable
comparisons with previous work on NASR. We conducted pre-
processing on MyST dataset to get a better baseline compared
to [23]. For example, we mapped filling pauses, non-speech
events, and truncated words to ⟨UNK⟩. The ⟨UNK⟩ is not
considered when computing WER.

The sets of output labels consist of 1024 word-pieces
for Librispeech 100h and 500 word-pieces for the MyST,
obtained by the SentencePiece method [32]. For Aishell, 4230
characters are used as the vocabulary.

B. Model Settings

A CTC/Attention autoregressive transformer (AT) baseline
was first trained with an architecture of a 12-block encoder
and a 6-block decoder. Suppose the tuple of a transformer
setting is represented by (model dimension, feed-forward layer
dimension, number of heads in self-attention), we define three
settings: d512 for (512, 2048, 8), d768 for (768, 3072, 12),
and d256 for (256, 2048, 4). d512 is used for the two English
datasets, and d256 is used for the Aishell1 dataset. Later on,
we follow the same setting as in [23] for CASS-NAT training.
For a fair comparison, we also include a CTC baseline as

an encoder-only NASR architecture. When training with the
speech foundation models, the 12-block encoder was replaced
with a HuBERT-base model, either the English2 version for
Librispeech and MyST, or the Chinese version3 for Aishell1.
We also conducted experiments on the TAE extractor in
UniEnc-CASSNAT to examine the trade-off between perfor-
mance and model size.

All models are optimized using a noam scheduler [33] with
warmup steps of 15k (10k for Librispeech 100h), a peak
learning rate of 5e-5 for the encoder, and 1e-3 (5e-4 for MyST)
for uninitialized modules. The models were trained using a
batch size of 80s audio samples (40s for MyST because it
contains longer utterances). The training either stops when
the WER of the valid set doesn’t improve for 10 epochs or is
terminated at 30 epochs. For MP-CTC training, the task ratio
of CTC loss in the second pass is set to one.

All results are decoded without the usage of the external lan-
guage model. For the AT baseline, the beam search decoding
is applied with a beam size of 20 for Librispeech and MyST,
and 10 for Aishell1. For CASS-NAT, the number of sampled
alignments is 50 and the threshold is 0.9. We explore the
effects of the number of sampled alignments in two iterations,
and the threshold for each iteration is set to 0.9 as well.

IV. RESULTS AND DISCUSSION

A. Main Results

The main WER results of UniEnc-CASSNAT on the Lib-
rispeech 100h, MyST, and Aishell1 datasets are shown in
Table I. We first train two autoregressive transformer baselines
with or without the usage of self-supervised learning. The
results in the table again show the effectiveness of the speech
foundation models. CASS-NAT achieves close performance to
their AT counterpart, which is consistent with previous work.
We also present the results of CTC on the three datasets.
Due to the output-independent assumption, CTC is worse than
the AT baseline and CASS-NAT although it requires fewer
parameters. Note that the motivation of UniEnc-CASSNAT is
to investigate whether the encoder can jointly model the frame-
level and token-level acoustic embedding without the use of
the decoder and thus has fewer model parameters. We expect
to obtain a model with similar model parameters compared to
CTC but close performance to the CASS-NAT. As shown in
Table I, the proposed UniEnc-CASSNAT achieves comparable
or better results than CASS-NAT, for example, a WER of
11.0% for UniEnc-CASSNAT vs. 11.2% for CASS-NAT on
the Librispeech test-other set, but is superior to CASS-NAT in
terms of model size (99.3M vs. 130.5M). A smaller model size
can be helpful for on-device deployment. Compared to CTC,
the UniEnc-CASSNAT achieves much better performance than
CTC with a similar model size. The additional 3M parameters
compared to CTC (95.7M) are from the TAE extractor. The
limitation of UniEnc-CASSNAT could be its slower inference
than CTC and CASSNAT because of the multiple forward
computations of the encoder with a longer input sequence
(concatenation of frames and tokens). The RTF values in

2https://dl.fbaipublicfiles.com/hubert/hubert base ls960.pt
3https://huggingface.co/TencentGameMate/chinese-hubert-base
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TABLE I: WER performance of UniEnc-CASSNAT and comparisons to previous methods on Librispeech-100h, MyST, and
Aishell1 datasets. State-of-the-art (SOTA) results with the usage of speech foundation models that are pre-trained with the
same amount of unannotated data to ours are reported. The real-time factor (RTF) of each method on Librispeech test-other
data is presented for speed comparison. All bold-faced improvements are statistically significant.

Model Type Model Size Librispeech-100h MyST Model Size Aishell1

dev-clean dev-other test-clean test-other RTF dev test dev test

AT-w/o SSL 85.1M 6.6 18.2 6.9 18.2 0.325 13.5 14.9 33.6M 4.6 5.0
AT-w/ SSL 121.6M 4.8 11.0 4.8 10.8 0.486 11.4 13.1 107.3M 4.0 4.3

Non-autoregressive ASR

Previous SOTA w/ SSL 4.6 11.3 4.8 11.3[34] - 16.0 15.6[23] w/ SSL 3.6 3.8[35]

BERT-CTC [25] - 7.0 16.3 7.2 16.6 - - - 143M 3.9 3.9
CTC 95.7M 6.1 13.8 6.2 13.8 0.005 12.9 14.5 95.7M 4.5 4.9
CASS-NAT 130.5M 4.7 11.4 4.9 11.2 0.014 11.9 13.5 109.7M 4.0 4.3
UniEnc-CASSNAT 99.3M 4.9 11.0 4.8 11.0 0.093 11.8 13.5 102.7M 4.2 4.5

TABLE II: Ablation study of MP-CTC training, the size of the
TAE module, and the iterative decoding. d256, d512, and d768
are defined in Section III-B and their model sizes (including
encoder) are 96.1M, 99.3M, 104.2M, respectively. Sn is the
number of sampled alignments in the iteration n.

Model Type (S1, S2) dev-clean dev-other test-clean test-other
CASS-NAT (50, NA) 4.7 11.4 4.9 11.2

UniEnc-CASSNAT
SP-CTC (50, NA) 4.9 11.9 5.0 11.6

MP-CTC-d512

(50, NA) 5.0 11.7 5.2 11.8
(50, 1) 5.0 11.1 4.9 11.1
(25, 2) 4.9 11.0 4.8 11.0
(10, 5) 4.9 11.1 4.9 11.1
(5, 10) 4.9 11.1 4.9 11.2
(2, 25) 5.0 11.4 5.1 11.4
(1, 50) 5.2 11.5 5.3 11.6

MP-CTC-d256 (25, 2) 4.9 11.4 4.9 11.2
MP-CTC-d768 (25, 2) 4.7 11.2 4.8 11.0

Table I show that the UniEnc-CASSNAT is still 3-5x faster
than the AT models although it is 6x slower than CASS-NAT.

The proposed UniEnc-CASSNAT achieves the best-
performing NASR results so far in the literature [34], [23]
on Librispeech 100h and MyST. One can find better WER
performance on the Librispeech 100h data, for example, in
[21], [36]. However, in that work, the authors either use a
larger model trained with Libri60k hours of data or extra
text data. We compare the UniEnc-CASSNAT results to a
similar work BERT-CTC [25], which also uses an encoder-
only structure. Differently, UniEnc-CASSNAT generates ASR
outputs with CE loss instead of CTC loss in BERT-CTC and
does not require a pre-trained BERT module (smaller in size
than BERT-CTC). In addition, UniEnc-CASSNAT achieves the
best performance with two iterations only instead of more than
10 iterations in BERT-CTC (faster inference). Based on the
results in Table I, UniEnc-CASSNAT is better on Librispeech-
100h but worse on Aishell1 than BERT-CTC. The reason could
be that Aishell1 contains simple sentences where a pre-trained
BERT model is more beneficial [25] and the BERT-CTC has
143M parameters versus 102M in UniEnc-CASSNAT.

B. Ablation Study of UniEnc-CASSNAT

We present more results on the Librispeech 100h data to
show the importance of the proposed MP-CTC training and
iterative decoding. First, we set λ2 in Eq. 3 to zero and train

a UniEnc-CASSNAT with only first-pass CTC. The results in
Table II show that the single-pass CTC (SP-CTC) training has
a performance gap compared to the CASS-NAT. Additionally,
SP-CTC training is not able to perform iterative decoding
because TAEn>1 is not constrained by CTC outputs. MP-CTC
training is also worse than the CASS-NAT without iterative
decoding (e.g. (50, NA)). When applying iterative decoding,
we explore different combinations of the number of sampled
alignments Sn in each iteration. The total number of sampled
alignments is set to the same as that used in CASS-NAT for a
fair comparison. As shown in Table II, iterative decoding with
a setting of (25, 2) achieves the best WER performance and is
better than the WER of CASS-NAT. Most of the combinations
of Sn achieve comparable WERs to CASS-NAT. It is also
noted that the diversity of sampled alignments in the first
iteration is more important than that in the second iteration.

Finally, since the TAE extractor introduces extra model
parameters besides the foundation model, we conduct ex-
periments of UniEnc-CASSNAT with different transformer
settings (d256, d512, d768) described in Section III-B). The
results are also shown in Table II. We can see from the table
that with a bigger TAEE module, the performance tends to be
better. However, we select MP-CTC-d512 as the final results
to show in Table I because MP-CTC-d768 did not achieve
significant improvements with additional 5M parameters.

V. CONCLUSION

We present a novel encoder-only non-autoregressive ASR
(NASR) model, UniEnc-CASSNAT, which integrates the ad-
vantage of CTC and CASS-NAT. The encoder of UniEnc-
CASSNAT acts as both the encoder and decoder in CASS-NAT
to reduce the model parameters and can be well initialized
from the speech foundation models. Furthermore, MP-CTC
training and iterative decoding are proposed for UniEnc-
CASSNAT to further improve the performance to be better
or comparable to CASS-NAT. We examined the effectiveness
of the proposed methods on the Librispeech 100h, MyST,
and Aishell1 datasets. To the best of our knowledge, we
have achieved the best-performing WER results for NASR
on the first two datasets with the same settings as those in
the literature. Future work includes model compression and
distillation to further reduce the parameters.
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