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Abstract
The need for automated speech pathology diagnostic tools

for children has increased in recent years. Such tools can help
speech pathologists identify speech disorders in children at an
early age. This paper introduces an approach to automated
clinical evaluations of children’s speech using limited data. A
database of ten normally developing first-grade children ad-
ministered the Goldman-Fristoe Test of Articulation, 3rd Edi-
tion (GFTA-3) was recorded. Graduate clinicians evaluated the
pronunciation of the rhotic sounds by evaluating words in the
GFTA-3 containing the letter ‘r’. The rhotic sounds were specif-
ically chosen due to their late acquisition in children. Experi-
ments were performed attempting to predict the results of the
clinical evaluations. Five children, judged to have proper rhotic
pronunciations, were chosen as exemplar templates for the ex-
periment. The remaining children, used for evaluation, were
aligned in time to match the five templates using dynamic time
warping, and the difference between a test child’s ‘r’ and a tem-
plate child’s ‘r’ was measured using the cosine distance. Mul-
tiple linear regression on the difference scores was shown to
be effective at producing predictions that were well-correlated
with human clinical evaluations. Several sublists of words with
rhotic sounds were used to evaluate the regression, and the
sublist containing words with the most mispronunciations per-
formed best. Further discussion includes how much each indi-
vidual template contributed to the regression and how consistent
the clinicians were at scoring children’s speech production.
Index Terms: children’s speech assessment, pronunciation
evaluation, template-based

1. Introduction
In a number of clinical settings, automated assessments of chil-
dren’s speech production can provide clear benefits and ad-
vantages. In particular, speech-language pathologists are cur-
rently required to both administer speech evaluations for chil-
dren and design treatment plans for those children diagnosed
with a speech delay or disorder. Automated speech assessments
for children can allow clinicians to focus on therapy instead
of time-consuming examinations. Additionally, human speech
pathologists do not always agree in their evaluations of chil-
dren’s speech. Machine assessments can maintain objectivity in
judgments and assist clinicians in their evaluations.

Many systems for speech evaluations have been proposed
since the 1980s. Several studies were performed by Kewley-
Port and her colleagues in the 1980-90s using templates to eval-
uate speech [1, 2, 3, 4]. The Indiana Speech Training Aid (IS-
TRA) used the best recordings from a subject as templates, and

new templates were recorded to replace old ones as the subject’s
pronunciation improved [2]. While this system was shown to
be effective, it also required heavy clinician involvement since
templates constantly needed to be updated.

More recently, the advancement of machine learning in au-
tomatic speech recognition (ASR) has led to a number of Hid-
den Markov Model (HMM) ASR systems for children’s speech
evaluations [5, 6, 7, 8, 9, 10]. The Speech Training, Assessment,
and Remediation (STAR) system achieved an r2 = 0.6 when
using phoneme likelihoods in a linear regression to assess the
pronunciation of the phoneme /r/ [6]. Another system achieved
a 76% agreement between ASR and human listeners when mea-
suring children’s speech intelligibility [9]. A more recent study
used HMMs for forced-alignment and the Mahalanobis distance
to explore trade-offs caused by thresholding scores [10].

While ASR systems have improved dramatically in recent
years, children’s ASR is still not as well-understood as adult
ASR [11, 12]. Children’s HMM-ASR systems, as well as
deep neural network ASR systems, generally require a size-
able amount of data to train and are highly dependent on the
data used [13, 14]. However, clinical speech data (especially
for child speech) are much more difficult to acquire than nor-
mal speech data, and it is impractical for clinicians to do the
work of gathering enough data for such systems. More research
is needed to enable the development of clinical evaluation sys-
tems that can be used with small amounts of training data.

This study proposes a method that uses a limited amount
of children’s speech data to train a clinical evaluation system
for children. We return to a template-based approach to tackle
this low-resource problem. In this paper, we examined chil-
dren’s pronunciation of rhotic sounds due to the late acquisition
of these sounds in children [15]. The children were reported (by
their parents) to have no history of speech, language, or hearing
impairment in a prior screening interview. From this study, we
hope to understand whether clinician perception of children’s
pronunciations can be modeled using a small number of exem-
plar pronunciations.

The rest of the paper is organized as follows. Section 2 de-
scribes the data collection and clinical evaluation process. Sec-
tion 3 describes the pronunciation evaluation system. Section 4
discusses the experiments and results. Finally, Section 5 con-
cludes the paper with a brief summary and description of future
work.



Table 1: Words containing rhotics in the GFTA-3: Sounds in
Words divided into ‘onset’, ‘coda’, ‘medial’, and ‘cluster’ cate-
gories.

Onset Coda Medial Cluster

Red Brother Giraffe Brother
Ring Chair Brushing

Door Crown
Finger Drum
Guitar Frog

Hammer Green
Star Princess

Teacher Truck
Tiger Zebra
Spider

2. Data Collection
2.1. Children’s Speech Data

This paper is part of a larger study by UCLA and Indiana
University which aims to improve children’s speech-language
pathology tools through a longitudinal analysis of children’s
speech. The database currently being collected consists of
recordings of elementary school children. All children were
screened beforehand to ensure that they did not have any speech
disorders. Each child was recorded taking the Goldman-Fristoe
Test of Articulation, 3rd Edition (GFTA-3) [16]. GFTA-3 is
a common standardized speech test which evaluates children’s
pronunciation using clinically relevant utterances. Student clin-
icians tracked the quality of phoneme pronunciation of each
child using the GFTA-3 assessment format. Each child was
seated inside a double-walled sound booth with the student clin-
ician who administered the GFTA-3. A SHURE KSM32 micro-
phone was placed approximately 1 m in front of the child and
0.5 m to the side of the student clinician, who was facing the
child. Audio was recorded at 48 kHz with 16-bit quantization.

Ten first grade children, aged between 6-7 years, were
recorded for this study. All of the children made some pro-
nunciation mistakes, but these mistakes were typical and de-
velopmentally appropriate for children of such an age. The
GFTA-3 has two sections: “Sounds in Words” and “Sounds in
Sentences”. All tests were administered by graduate speech-
language pathology clinicians. For this paper, only the “Sounds
in Words” data were used, in which each child was prompted
by the clinician to say specific words in a picture-naming task.
For example, to cue the child to say ‘table’, the clinician would
show a picture of a table and ask, “What is this?” There were
21 words from the GFTA-3 containing 22 ‘r’ sounds in a vari-
ety of phonetic contexts. These words are listed in Table 1. The
word ‘brother’ is listed twice as it has an ‘r’ in both onset cluster
and coda positions. We will refer to the onset cluster ‘r’ in this
word as ‘brother1’ and the coda ‘r’ as ‘brother2’. These words
compose the master word list for this paper. As each of the
ten children said the 22 words once (counting ‘brother’ as two
words), there were 220 total word utterances. The ten children
were separated into two groups, five in a “template” group and
five in a “trial” group. The children chosen for the trial group
included two children who were suspected of having more er-
rors in ‘r’ pronunciation than the rest of the children while still
being typically developing. The remaining children were di-
vided in such a way to ensure the template group had minimal
‘r’ mispronunciations. As these children had few pronunciation

Figure 1: Histogram of one clinician’s scores on the evalua-
tion of 330 rhotic phonemes. The scores are clearly separated
into three groups. Clinician scores were in the range of 0 to 1
where 0 represented a perfect pronunciation and 1 represented
a severe mispronunciation.

errors in general, the division was randomly assigned.

2.2. Clinician Scoring

Ten graduate clinicians from Indiana University rated the qual-
ity of production of the ‘r’ sounds from the five trial children.
Utterances were played in a random order to each clinician, and
each utterance was played a total of 3 times. As such, each utter-
ance was judged a total of 30 times, and each clinician made 330
judgments (3 judgments of 5 children saying 22 words each).
Graduate clinicians rated the quality of a child’s ‘r’ production
by clicking (with a computer mouse) within a circular bulls-
eye, displayed on a graphical user interface, with three levels:
‘no impairment’ as level 1 (inside), ‘mild impairment’ as level
2, and ‘severe impairment’ as level 3 (outside). Such a rating
system was familiar to the graduate clinicians from their prior
clinical experiences and is commonly used to explain quality of
pronunciation to children.

The distance between the center of the bullseye and the clin-
ician’s selected point was chosen as the clinician’s score where
the radius of the bullseye was normalized to 1. A histogram of
one clinician’s scores for the 330 judgments is shown in Figure
1. All graduate clinicians displayed similar Gaussian-like be-
havior in scoring around three central points as that shown in
Figure 1. A continuous scoring method was kept over a discrete
scoring method of 1, 2, or 3 because no specific instructions
were given to the clinicians about whether to use the bullseye in
a continuous or discrete way. As such, it was possible that some
clinicians used the bullseye in a more continuous way. The fi-
nal score of each utterance was chosen as the average of the 30
corresponding scores.

2.3. Word Lists

Various word lists were used in these experiments. Six different
word lists were chosen as follows:

1. All words

2. brother2, chair, door, finger, guitar, hammer, spider, star,
teacher, tiger

3. brother2, finger, hammer, spider, teacher, tiger



Figure 2: Block diagram of the similarity score extraction using the example word ‘door’ from template child 1.

4. brother1, brushing, chair, crown, door, drum, frog, gi-
raffe, green, guitar, princess, red, ring, star, truck, zebra

5. brother2, drum, guitar, hammer, princess, ring, tiger, ze-
bra

6. guitar, hammer, princess, ring, tiger

List 2 consists of words with ‘r’ in a syllable coda. List 3
consists of words with syllabic final ‘r’, while List 4 consists
of the complementary set of words with non-syllabic ‘r’. List 5
consists of words where at least one child had more than 30%
of clinician scores in the outer section of the bullseye. Finally,
List 6 consists of words where at least one child had more than
50% of clinician scores in the outer section of the bullseye.

3. Pronunciation Evaluation System
3.1. Feature Extraction

Feature sets investigated included Mel frequency cepstral co-
efficients (MFCC), perceptual linear prediction (PLP) coeffi-
cients, and linear predictive cepstral coefficients (LPCC). For
all feature sets, a window size of 25 ms, a window shift of 10
ms, a pre-emphasis filter with coefficient 0.97, and a sinusoidal
lifter with coefficient 22 were used. A filter bank with 23 filters
was used for the MFCC features. A 12th order linear predictive
coding (LPC) polynomial was used for both the PLP and LPCC
features. For all feature sets, 13 coefficients were extracted, and
the 0th (energy) coefficient was removed for a total of 12 dimen-
sions per frame. Utterances were downsampled to 8 kHz before
feature extraction.

3.2. Template Setup

Of the ten first-grade children recorded, utterances from 5 chil-
dren who were judged to have no rhotic pronunciation errors
from the original GFTA-3 assessment, and few errors in general,
were chosen to serve as templates. These children are referred
to as “template children” for the remainder of the paper. All 22
words containing ‘r’ were used for each of the 5 template chil-
dren for a total of 110 templates, 5 templates per word. For each
template, 3 consecutive frames from the corresponding feature
sets were chosen manually at the center of the rhotic sound as a

region of interest (ROI). The ROI for each word utterance can
be thought of as an exemplar pronunciation of ‘r’.

3.3. Evaluation Procedure

The 5 children not chosen to be templates were used to model
clinician scores. We will refer to these children as “trial chil-
dren” for the remainder of the paper.

The feature set of each word utterance from a trial child
was aligned to the corresponding word from a template child
using dynamic time warping (DTW) with Euclidean distance as
a metric. For example, the utterance ‘door’ spoken by a trial
child was aligned in time to match the utterance ‘door’ spoken
by a template child. After time alignment, the cosine distance
between the ROI of the template and the corresponding frames
in the aligned trial utterance was calculated, averaged over 3
frames. The resulting distance served as a similarity measure of
the trial word’s ‘r’ and the template’s ‘r’.

For each word from a trial child, the above procedure was
repeated 5 times, once for each template child. As a result, each
trial child’s word utterance had 5 different scores representing
the similarity of the trial child’s ‘r’ and each template child’s ‘r’.
Figure 2 illustrates this procedure. For subsets of the word list,
these 5 similarity ratings were used as inputs to a multiple linear
regression with the mean clinician score as the prediction.

An alternative procedure considered using all words from
a subset of the word list to create a single template to repre-
sent each template child. In this case, all ROIs from the chosen
word list spoken by a single template child were averaged to
create a single exemplar ‘r’, one for each template child. The
DTW alignment and choice of ROI for the trial utterance was
identical to the first procedure. However, the cosine distance
was computed between the ROI in the aligned trial utterance
and the mean exemplar ‘r’ of the corresponding template child.
This procedure can be illustrated with Figure 2 by simply re-
placing the single template ROI with the mean ROI as the input
of the cosine distance. As with the first procedure, the 5 result-
ing scores were used in a multiple linear regression to predict
the mean clinician score for each trial child’s word utterance.
However, the procedure using mean templates did not perform
as well and will not be reported.



Table 2: Results of the multiple linear regressions using similarity scores between trials and templates to predict clinical evaluations of
rhotic phonemes for all six word lists. Both r2 and adjusted r2 are shown.

Word List MFCC PLP LPCC
r2 adjusted r2 r2 adjusted r2 r2 adjusted r2

1 0.267 0.231 0.220 0.183 0.103 0.060
2 0.473 0.413 0.420 0.354 0.370 0.299
3 0.691 0.627 0.537 0.440 0.615 0.535
4 0.107 0.047 0.119 0.059 0.108 0.048
5 0.574 0.511 0.431 0.347 0.310 0.208
6 0.762 0.699 0.586 0.478 0.570 0.457

(a) Word List 3

(b) Word List 6

Figure 3: Clinician evaluation scores vs. scores predicted from
the regression model using Word List 3 (top) and World List 6
(bottom) with MFCCs. The line represents an ideal regression.

4. Experiments and Results
4.1. Regression Results

Table 2 shows the r2 and adjusted r2 results of the clinical eval-
uation regression models for the various word lists. In general,
MFCCs performed the best out of all the feature sets. Figures 3a
and 3b show the results of the regression scores plotted against
clinician scores using MFCCs on Word Lists 3 and 6, respec-

tively, which gave the two best regression results. Word List
6 with MFCCs gave the best regression results, modeling over
76% of the variance of the clinician scores. This is likely due
to the fact that Word List 6 better represented mispronounced
‘r’ phonemes (higher clinician scores) while the other word
lists may have overrepresented words with proper pronuncia-
tion (lower clinician scores). Additionally, Word List 3 gave
decent regression results when used with MFCCs, modeling al-
most 70% of the variance of the clinician scores. This suggests
that using the specific subset of syllabic ‘r’ sounds can improve
the evaluation procedure. One noticeable issue is that Word List
3 did not have many words that were judged as severely im-
paired by the clinicians. As seen in Figure 3a, only a small num-
ber of points represented higher scores in the linear regression.
As such, the results from Word List 3 may be questionable.

Interestingly, the regression results in most cases indicated
that some of the template children contributed to the model sig-
nificantly more than others. Table 3 shows the significance of
contribution for the five template children from the regression
using MFCCs and Word List 6. Only template child 1 and 4
contributed significantly in predicting the clinician scores. As
such, the remaining templates were likely not reliable exem-
plars of properly pronounced ‘r’ phonemes as judged by clini-
cians. Recomputing the regression using only the two signifi-
cant template children resulted in an r2 = 0.721 and adjusted
r2 = 0.695, representing only a small decrement in perfor-
mance.

Table 3: Significance of contribution of the five individual tem-
plate children for the clinical evaluation regression model using
Word List 6 with MFCCs.

Template Child ID p-value

1 0.006
2 0.220
3 0.314
4 0.002
5 0.789

In an attempt to improve the results, vocal tract length nor-
malization (VTLN) was tested at the feature extraction step to
improve alignment and template scoring. Various numbers of
filters for MFCCs, LPC orders for PLP and LPCC, and win-
dow sizes were tested as well. Additionally, the Euclidean and
Mahalanobis distances were also tested for similarity scoring
between templates and trials. However, these approaches did
not reveal any notable improvements in most cases and were
thus discarded.



Figure 4: Histogram of inter-clinician (top) and intra-clinician
(bottom) score standard deviations across all words.

4.2. Discussion

One major point of interest is how well DTW was able to
align trial utterances to templates to ensure that the ROIs cor-
responded to ‘r’ sounds. A manual inspection of the trial-to-
template alignments revealed that only 2 of the trial-to-template
alignments were misaligned out of 550 (5 trial children aligned
to 5 template children for 22 words) when using MFCCs. In
general, the alignment was successful. One of the cases of mis-
alignment had an obvious mispronunciation in the trial word
‘ring’ as [w i N]. As a misalignment would likely cause the sys-
tem to score the phoneme as mispronounced, we believe that
these alignment mistakes are acceptable for identifying difficult
words for children. The other case was in the word ‘brother2’
with no obvious pronunciation error. In this worst case sce-
nario, the system would mistakenly classify this phoneme as
mispronounced, which may be preferable to mistakenly classi-
fying a phoneme as well-pronounced in some applications (e.g.
a screening tool with high sensitivity).

Another point of interest is how difficult clinicians found
the task of scoring the ‘r’ quality to be. Inter-clinician score
standard deviations, defined as the standard deviation across
the mean judgments for each of the ten clinicians, and intra-
clinician score standard deviations, defined as the standard de-
viation across the three judgments from a single clinician, were
computed for each word utterance. The average inter-clinician

Table 4: Average values of inter-clinician and intra-clinician
score standard deviations for rhotic sounds.

Word Standard Deviation
Inter-Clinician Intra-Clinician

brother1 0.130 0.100
brother2 0.135 0.104
brushing 0.132 0.100

chair 0.079 0.085
crown 0.083 0.071
door 0.085 0.085
drum 0.135 0.099
finger 0.090 0.075
frog 0.080 0.087

giraffe 0.088 0.098
green 0.090 0.082
guitar 0.100 0.057

hammer 0.103 0.073
princess 0.141 0.114

red 0.087 0.073
ring 0.143 0.078

spider 0.097 0.073
star 0.097 0.082

teacher 0.092 0.088
tiger 0.083 0.071
truck 0.067 0.069
zebra 0.123 0.078

score standard deviation across words was 0.103, or 10.3% of
the total range of possible scores. The maximum inter-clinician
score standard deviation was 0.237 (23.7% of the range of
possible scores) for a questionable pronunciation of the word
‘door’ by one particular child, indicating that some words and
pronunciations were much less agreed upon across clinicians
than others. The average intra-clinician score standard devia-
tion across words and clinicians was 0.084 suggesting that clin-
icians were more consistent with themselves than with other
clinicians. However, the maximum intra-clinician score stan-
dard deviation was 0.450 (45% of the range of possible scores)
for a questionable pronunciation of the word ‘truck’ by one
particular child, indicating that some pronunciations presented
consistency issues for clinicians. Figure 4 shows histograms
of inter-clinician and intra-clinician score standard deviations,
which have most of their density in the lower standard devi-
ations. The bimodal nature of these histograms indicates that
most scores for a particular word either were within a single
bullseye level or spanned two adjacent levels. The low peak
between 0.3 and 0.5 in the intra-clinician score standard de-
viation histogram indicates that a small number of words was
scored across all three levels. Table 4 shows the mean inter-
clinician and intra-clinician score standard deviations for each
word in the master word list. It is clear that some words, such
as ‘princess’, caused more difficulty in scoring than others, in-
dicated by a high mean score standard deviation in Table 4. In
general, a large standard deviation in scoring an utterance was
not correlated with the ability of the regression model to predict
the mean clinician score.

Finally, we note that one fundamental difficulty in this study
was the usage of only five trial children to predict clinician
scores. Most of the poorly pronounced ‘r’ sounds were due to
only two of the trial children, although the remaining three chil-



dren contributed a few poor productions as well. Additionally,
since this study was performed using children recorded in the
state of Indiana alone, the ability to generalize to other dialect
areas is uncertain.

5. Conclusion
This study proposed a framework to predict clinician scores
of ‘r’ sounds produced by children. A database of ten first
grade children was used. Speech utterances from five children
were chosen as exemplar templates of ‘r’ production. The re-
maining five children were scored by clinicians and used to
model clinician responses. The template ‘r’ and trial ‘r’ sounds
were aligned with DTW, and the cosine distance between the
phonemes was used as an automated scoring metric. The five
scores from each trial word were used in a linear regression to
predict mean clinician scores. Various word lists were used for
regression, and it was found that the regression performed best
when poorly pronounced phonemes were well-represented.

Future work will include expanding clinical scoring of chil-
dren’s speech with more data, as well as taking into account
various ages, dialects, and speech disorders.
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