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Abstract
Due to within-speaker variability in phonetic content and/or
speaking style, the performance of automatic speaker verifica-
tion (ASV) systems degrades especially when the enrollment
and test utterances are short. This study examines how dif-
ferent types of variability influence performance of ASV sys-
tems. Speech samples (< 2 sec) from the UCLA Speaker Vari-
ability Database containing 5 different read sentences by 200
speakers were used to study content variability. Other samples
(about 5 sec) that contained speech directed towards pets, char-
acterized by exaggerated prosody, were used to analyze style
variability. Using the i-vector/PLDA framework, the ASV sys-
tem error rate with MFCCs had a relative increase of at least
265% and 730% in content-mismatched and style-mismatched
trials, respectively. A set of features that represents voice qual-
ity (F0, F1, F2, F3, H1-H2, H2-H4, H4-H2k, A1, A2, A3, and
CPP) was also used. Using score fusion with MFCCs, all con-
ditions saw decreases in error rates. In addition, using the NIST
SRE10 database, score fusion provided relative improvements
of 11.78% for 5-second utterances, 12.41% for 10-second ut-
terances, and a small improvement for long utterances (about
5 min). These results suggest that voice quality features can
improve short-utterance text-independent ASV system perfor-
mance.
Index Terms: speaker recognition, within-speaker variability,
voice quality

1. Introduction
A single speaker’s voice can vary dramatically in different situ-
ations. Word choices, mood, intentions, health conditions, and
the relationship to the listener all affect the acoustic character-
istics of that person’s voice. Such within-speaker variability
causes major difficulties when identifying speakers from their
voices. This problem becomes critical when the utterances used
to enroll and verify speakers are short. For instance, the equal
error rate (EER) for text-independent automatic speaker verifi-
cation (ASV) is 1.59–2.48% for 2-minute utterances, while the
EER skyrockets to 10.52–21.83% for 5-second utterances [1, 2].
A possible interpretation of this phenomenon is that shorter ut-
terances cannot capture all the variability in a speaker’s voice.
This within-speaker variability falls into two categories: extrin-
sic variability and intrinsic variability [3]. Extrinsic variabil-
ity includes variability that is out of the speaker’s control, such
as recording conditions, channel types, and noise. Intrinsic
variability includes variability that characterizes the speaker’s
voice, such as word choice, articulation, emotion, and speaking
style. Although extrinsic variability also affects the system per-
formance, we focus on intrinsic variability in this study. We are

most interested in finding speaker-characterizing features that
are robust to the intrinsic variability, even in short utterances.

Conventional acoustic features such as mel-frequency cep-
stral coefficients (MFCCs) are effective in various speech pro-
cessing applications, but they might not be sufficient for ASV
when within-speaker variability is large. For instance, while
MFCCs are successful at capturing the overall spectral enve-
lope, they obscure fine vocal structures, which also have an
abundance of speaker-specific information. Because the spec-
tral envelope varies based on phonetic content, long segments of
speech with rich phonetic content perform well with MFCCs,
but shorter speech segments usually lack the variety of con-
tent needed. Researchers have attempted to find alternative
features. For example, it has been found that voice source-
related features improve speaker recognition systems by pro-
viding information that complements conventional cepstral fea-
tures [4, 5, 6]. Das et al. also reported that features extracted
from the voice source signal outperform MFCCs in ASV with
test utterances shorter than 3 seconds [7]. In this study, various
voice quality features are investigated.

Voice quality can be thought of as the “timbre of the voice”.
Although it is often associated with the voice source charac-
teristics, vocal tract characteristics are also reflected. Laver,
in his pivotal study, defined voice quality as the characteris-
tic auditory coloring of an individual speaker’s voice, encom-
passing both laryngeal and supra-laryngeal features [8]. Voice
quality has recently gained momentum in speaker recognition
communities because humans utilize voice quality to recognize
speakers [9, 10]. Even though machines outperform humans in
some long-utterance tasks [3, 11], human listener performance
does not degrade much when the phonetic content and utter-
ance lengths are limited [12]. These findings suggest that voice
quality might provide important information for short-utterance
text-independent ASV.

In previous work, we have shown that a voice quality fea-
ture set inspired by a psycho-acoustic model can predict human
speaker perception and improve ASV performance by providing
complementary information to MFCCs [13, 14]. In the present
study, we extend our previous work by analyzing two types of
within-speaker variability: phonetic content and speaking-style
variability. Specifically, we address the following questions:
1) Which voice quality features are able to separate speakers
when there is large within-speaker variability? 2) How much
does the performance of a state-of-the-art ASV system degrade
from content/style variability when the utterances are short, and
how much help can the voice quality features contribute in such
cases? 3) Would the voice quality features be useful for general
short-utterance ASV tasks?
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The remaining paper is organized as follows. Section 2 de-
scribes the database and the process used to choose features.
Section 3 discusses the experiments and the results, compar-
ing the content/style matched and mismatched trials. Section 4
evaluates the proposed feature set on a standard speaker recog-
nition evaluation database. Section 5 concludes the paper with
a brief summary and description of future work.

2. Data and Feature Selection
2.1. Database

The UCLA Speaker Variability Database [13] was developed
to study both within- and between-speaker variability. Speech
samples from more than 100 female and 100 male undergradu-
ate students speaking in a variety of styles were collected across
3 different recording sessions per speaker. The speaking styles
included read sentences; giving instructions; affective recount-
ings of neutral, annoyed, and happy conversations; a phone-call;
and pet-directed speech. All the audio recordings were made
in a sound-attenuated booth with a sampling rate of 22 kHz.
Among the various speaking styles, the read sentences and pet-
directed speech were used in this study. Read sentences were
used to analyze content variability, and both read sentences and
pet-directed speech were used to analyze style variability.

The read sentences consisted of 2 repetitions of 5 Harvard
sentences [15], read in all 3 recording sessions for a total of
6 repetitions of each sentence and 30 sentences overall. The
sentences are “The boy was there when the sun rose.”, “Kick the
ball straight and follow through.”, “Help the woman get back to
her feet.”, “A pot of tea helps to pass the evening.”, and “The
soft cushion broke the man’s fall.” The read sentences were
used to test phonetic content variability.

The pet-directed speech was recorded to represent an ex-
treme speaking style. The speakers were instructed to speak
affectionately for at least 1 minute to small pets displayed in
a video. Resulting utterances were similar to infant-directed
speech, which is characterized by exaggerated prosody [16].
Within the database, the read sentences and pet-directed speech
represented contrasting speaking styles and thus were suitable
for examining the effect of varying speaking style. In this study,
all utterances were downsampled to 8 kHz for consistency with
general telephone-channel speaker recognition tasks.

2.2. Feature Selection

Previously, we showed that features inspired by psycho-
acoustic representations of voice quality [17, 18] are effective
for automatic speaker verification and human response model-
ing [14]. This feature set included F0, F1, F2, F3, H1*-H2*
(the difference between the first and second harmonic ampli-
tudes), H2*-H4* (the difference between the second and forth
harmonic amplitudes), H4*-H2k* (the difference between the
fourth harmonic amplitude and the amplitude of the harmonic
component near 2 kHz), and cepstral peak prominence (CPP,
[19]). The asterisks (*) indicate that the formant effect on a
harmonic amplitude was corrected [20]. The amplitude differ-
ence between the harmonic component near 2 kHz and 5 kHz
(H2k*-H5k) was not included because the speech samples were
bandlimited to 4 kHz. This set of parameters will be denoted as
the VQual1 features throughout this paper.

Two considerations were made to improve the voice quality
feature set. One consideration was whether formant correction
would be performed when estimating harmonic amplitude dif-
ferences. It has been observed that over-correction may occur

when formants are situated on top of a harmonic. Such inaccu-
racies may weaken the ability of the features to separate speak-
ers. Also, uncorrected harmonic amplitudes might be another
way of representing formant differences between speakers.

The second consideration was which form of the formant
amplitudes would be added. Formant amplitudes are frequently
used to represent voice quality, and they may have important
speaker-specific information. Frequently used features include
H1*-A1*, H1*-A2*, and H1*-A3* [21, 22] where A1, A2, and
A3 are the amplitudes of the first, second, and third formants.
All features mentioned above, as well as A1, A2, and A3, were
chosen as candidate features.

The features were extracted every 10 msec using Voice-
Sauce software [23], with Praat [24] chosen as the method for
extracting pitch and formant frequencies. The ability of each
candidate feature to separate speakers was examined using the
F-ratio [25, 26] separability measure, defined as:

F =
between-class variance

within-class variance
=

1
M

∑M
i=1(μi − μ)2

1
M

∑M
i=1 σ

2
i

(1)

where M is the number of classes, μi is the within-class mean,
μ is the global mean, and σ2

i is the within-class variance of a
single feature.

Four conditions were examined using the UCLA database.
In the first (“mixed phonetic content”), all read sentences were
randomly distributed to 5 subsets, and the average F-ratio was
found. In the second (“separated phonetic content”), the F-
ratios were calculated within 5 subsets of the same sentences
and averaged. Two analogous conditions (“mixed style” and
“separated style”) were also created. The difference between
the content conditions and the difference between the style con-
ditions are shown in Figure 1. Two different “separated style”
conditions are displayed using just read sentences and just pet-
directed speech.

The features with high F-ratios were similar between the
content and style variability cases. This is partially due to the
fact that content variability is also present in the style variability
subset. The harmonic amplitude difference features had higher
F-ratios without formant correction than with correction in gen-
eral. Thus, the new feature set replaced H1*-H2*, H2*-H4*,
and H4*-H2k* with H1-H2, H2-H4, and H4-H2k. Also, as the
raw formant amplitudes generally had the highest F-ratios out of
all the features using formant amplitudes, A1, A2, and A3 were
added to the feature set. The final chosen feature set included
F0, F1, F2, F3, H1-H2, H2-H4, H4-H2k, CPP, A1, A2, and A3.
These features will be called the VQual2 features and are used
throughout the ASV experiments. We expected that the VQual2
features would better separate speakers than the VQual1 fea-
tures and would further improve ASV system performance.

Interestingly, the F-ratios in the pet-directed subset were
high among the style variability conditions. This is likely be-
cause each speaker had his or her own unique style of talking
to pets, making speakers more distinct and increasing between-
speaker variability. This uniqueness in speaking style between
speakers will likely result in decent performance in same-style
ASV experiments which will be discussed in Section 3.

Since the F-ratio analyzes individual features, the ability of
the entire MFCC and VQual2 feature set was analyzed using
the J-measure [27, pp. 280–283], defined as:

J = Tr{S−1
w Sm} (2)

where Sm = Sw + Sb is the mixture scatter matrix and Sw, Sb

are the within-class scatter matrix and the between-class scatter
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Figure 1: Computed F-ratios of various voice quality features
using the UCLA Speaker Variability Database for content (top)
and style (bottom) variability. “Separated” in the top panel
indicates the subsets were separated by sentences. “Read” and
“pet” in the bottom panel indicate the subsets only contained
read sentences or pet-directed speech.

matrix, respectively. The J-measures using the read sentences in
the UCLA database are shown in Figure 2. As the voice quality
features are added to MFCCs, the J-measure increases. Thus,
we hypothesize that the VQual2 features provide complemen-
tary information to the MFCCs. This will be evaluated in the
next couple of sections.

3. ASV Speaker Variability Analysis
A state-of-the-art i-vector[28]/PLDA[29] ASV system was used
for the following experiments. This system was trained on the
NIST SRE04, 05, 06, and 08 databases. MFCCs of dimension
20, along with first derivatives, were used as baseline features.
The second derivatives were not used because they did not pro-
vide significant performance gain. The VQual1 and VQual2
features, along with first and second derivatives, were used
as alternative feature sets. After obtaining the PLDA scores
from each system, score fusion was used for further improve-
ments. Since the VQual2 features performed better than the
VQual1 features in almost all cases, only fusion performance
with MFCCs and the VQual2 features is reported. The system
outputs were linearly combined using

s = αsv + (1− α)sm (3)

where sm is the PLDA score using MFCCs, sv is the PLDA
score using VQual2 features, and α is the coefficient of sv cho-
sen from the range of 0 to 1. PLDA scores using both MFCCs
and VQual2 features were first scaled to have zero-mean and
unit-variance before fusion was performed.
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Figure 2: Computed J-measures of VQual2 and MFCC features
using read sentences (solid line). Each point on the chart is the
J-measure of all features below and to the left of that point. The
dashed line shows VQual2 features without MFCCs for com-
parison.

3.1. Content Variability

The effect of varying phonetic content was analyzed with the
five sentences from 100 female and 100 male speakers from
the UCLA database. Two different conditions were compared:
same-text trials and different-text trials. In both conditions, one
sentence was chosen to enroll speakers, and one sentence was
chosen to test the system. In the “same-text” trials, the same
sentence was used for enrollment and testing. In the “different-
text” trials, the sentences used for enrollment and testing were
different. All possible combinations of enrollment–test utter-
ance pairs were used except for the case when the enrollment
and test utterances were identical. The overall performance in
terms of EER is shown in Table 1.

As predicted, system performance degraded severely when
content variability was large. Using MFCCs, error rates in-
creased dramatically for both females and males comparing
same and different-text trials. The VQual2 features did not per-
form as well as MFCCs in the same-text trials. In the different-
text trials, the VQual2 features performed almost as well as
MFCCs for females and even better than MFCCs for males.
In all cases, fusion with the VQual2 scores provided relative
improvements of at least 13.97%, suggesting that the VQual2
features contain complementary information to MFCCs.

For comparison, Table 1 also includes results from hu-
man perception experiments presented in a previous study [14],
where the listeners were asked to determine if a given pair of
read sentences was spoken by the same speaker or two different
speakers. Note that the human listeners were not affected by the
content difference as much as the ASV system.

3.2. Style Variability

The effect of varying speaking style was examined with both
read sentences and pet-directed utterances. The read sentences
were randomly concatenated together for each speaker until 5
seconds of speech were collected. This was done twice to create
enrollment and testing sets for every speaker. No utterance was
used for both enrollment and testing. The pet-directed speech
was cut into two non-overlapping segments containing 5 sec-
onds of speech for enrollment and testing. One female and six
male speakers were removed due to poor quality or low amounts
of speech in the pet-directed recordings.

Four types of trials were designed, denoted as “enrollment
data–testing data”: read–read, read–pet, pet–read, and pet–pet.
In the read–read and pet–pet trials, the same speaking style was
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Table 1: ASV system performance in terms of EER (%) with content and style variability using the UCLA database. The fusion
performance is obtained by fusing the PLDA scores from the MFCCs and VQual2 features, and its relative improvement compared
to MFCCs is denoted in parentheses. The human speaker recognition result from a previous study [14] is added in the last row for
comparison.

female male female male
same
-text

different
-text

same
-text

different
-text

read
–read

pet
–pet

read
–pet

read
–read

pet
–pet

read
–pet

MFCC 7.71 28.14 5.97 28.33 3.65 19.19 30.30 2.13 6.38 19.30
VQual1 15.66 31.48 15.15 28.33 10.10 18.18 36.77 5.48 12.72 30.85
VQual2 12.67 28.23 13.63 27.73 6.40 18.18 35.06 3.19 11.70 28.72

Fusion 6.22 24.21 4.93 23.07 3.03 12.79 29.29 1.06 4.25 19.15
(% imp.) (19.33) (13.97) (17.42) (16.80) (16.99) (33.35) (3.33) (50.23) (33.39) (0.78)

Human [14] 10.00 12.22 - - - - - - - -

chosen for both enrollment and testing. In the read–pet trial,
read sentences were used for enrollment and pet-directed speech
was used for testing. The pet–read trial was opposite to this.
The results are shown in Table 1. The results from pet–read
trials are omitted as they were almost identical to read–pet trials.

As expected, the error using MFCCs increased dramatically
both for female and male speakers in the style-mismatched con-
dition compared to the read–read trials. This might be due not
only to feature distortion by the exaggerated prosody but also
to limited phonetic content in the pet-directed speech samples.
Most speakers had very limited phonetic content, often speak-
ing incomprehensibly or repeating phrases such as “Aww!” and
“So cute!”. Score fusion with the VQual2 features showed de-
cent improvements for the style-matched conditions, notably
33% improvement for the pet-pet trials. However, there was lit-
tle improvement for the style-mismatched condition. This is ex-
pected since the VQual2 features themselves partially reflect the
speaking style of a speaker and are susceptible to style changes.

4. ASV Short-Utterance Evaluation
Using the same ASV system described in Section 3, a series
of experiments was conducted using the NIST SRE10 database
condition 5 extended task [30] for evaluation. In addition to
the full utterance (about 5 min) evaluation, new enrollment and
testing datasets were created using the SRE10 data by cutting
the utterances to contain 10, 5, and 2 seconds of speech. The
performance in terms of EER and the optimal choice of α are
shown in Table 2, where α is the weight of the VQual2 scores
in the linear score fusion as in Eq. (3).

The VQual2 features showed around 2% absolute improve-
ment compared to the VQual1 features in all conditions. As ex-

Table 2: ASV system performance in terms of EER (%) with
the NIST SRE10 database. The relative improvement by fusion
(MFCC+VQual2) is noted in parentheses and optimal coeffi-
cient α is shown.

full 10-10 5-5 2-2

MFCC 2.89 10.88 16.90 28.47
VQual1 8.96 19.60 25.18 32.95
VQual2 7.91 17.23 22.82 30.92

Fusion 2.80 9.53 14.91 25.95
(% imp.) (3.11) (12.41) (11.78) (8.85)
α .10 .29 .35 .46

pected, both MFCCs and VQual2 features performed worse as
utterances became shorter. However, the VQual2 features were
able to improve the performance of the system through score fu-
sion by providing complementary information to MFCCs. The
weight of the VQual2 scores in the fusion (α) increased as ut-
terances became shorter, suggesting that the system relied more
on the VQual2 scores as the amount of speech decreased.

5. Conclusion
This study analyzed ASV system performance when content
and style variability were large, especially when utterances were
short. Initial examination with the UCLA Speaker Variability
Database was conducted. A VQual2 feature set was chosen that
effectively separated speakers in these large variability condi-
tions using the F-ratio and J-measure.

ASV experiments using an i-vector/PLDA ASV system
with MFCCs and VQual2 features were conducted, along with
linear score fusion. It was found that when content and/or style
conditions were mismatched, the system error rate increased
significantly. In the mismatched content conditions, score fu-
sion with VQual2 features improved performance. But unlike
humans, there was still a large difference in performance be-
tween matched and mismatched content conditions, so there
is much to be done in future work. In the mismatched style
conditions, score fusion did not improve performance much.
However, the performance gain in the pet–pet trials suggests
that voice quality features might be able to capture speakers’
idiosyncratic way of exaggerating prosody.

To examine the effects of using voice quality features with
a larger set of utterances and speakers, ASV experiments were
conducted using the NIST SRE10 telephone speech database.
Results suggest that short utterances (< 10 sec) benefit from
using VQual2 features more than long utterances (about 5 min).

Future studies will examine additional features such as
prosodic and subglottal features. We will also investigate
how phonetic content, speaking style, and affect can influence
speaker verification tasks by human listeners, and contrast the
different acoustic cues and recognition strategies used by hu-
mans and machines.
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