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ABSTRACT OF THE DISSERTATION

Towards Understanding Voice Discrimination Abilities of Humans and Machines

by

Soo Jin Park

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2019

Professor Abeer A. H. Alwan, Chair

An individual’s voice can vary dramatically depending on word choice, affect, and other

factors. Such intrinsic within-talker variability causes considerable difficulties when distin-

guishing talkers by their voices, both for humans and machines. For machines, phonetic

content variability substantially degrades performance when utterances are short (e.g., < 10

sec). Humans, on the contrary, are less influenced by content variability, and they perform

better than machines in such conditions. Hence, understanding which and how acoustic

features are related to human responses might provide insights to improve machine perfor-

mance. Yet, little is known about human and machine voice discrimination ability under

various kinds of intrinsic within-talker variabilities.

This dissertation presents studies of voice discrimination abilities of humans and machines

under text, affect, and speaking-style variabilities. The main focus is in developing a feature

set, based on a psychoacoustic model of voice quality, that can be used to improve machine

performance and to find acoustic correlates with human responses. In order to systematically

investigate the effects of within- and between-talker variability, a database was developed

at UCLA. More than a hundred females and a hundred males were recorded with various

speech styles, including sustained vowels, read sentences, affective speech, and pet-directed

speech.

Preliminary experiments indicated that the voice quality feature set (VQual1) was promis-

ing for predicting human responses, and for improving automatic speaker verification (ASV)
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performance which degraded significantly under text, affect and/or speaking-style variabili-

ties. VQual1 was modified to another set (VQual2) to better differentiate talkers, leading to

further improvements in short-utterance text-independent ASV tasks. Voice discrimination

abilities of humans and machines for very short utterances (≈ 2 sec) under high text and

style variability were analyzed using read sentences and pet-directed speech. Humans were

more accurate than machines for read sentence pairs, but the performance difference became

small for style-mismatched pairs and for perceptually marked talkers. Humans’ and ma-

chines’ decision spaces were weakly correlated, indicating a weak or non-linear relationship

between talker representations by humans and machines. However, for different-talker pairs,

the VQual2-based system responses were highly correlated with human responses. Results

also suggested that machines could supplement human decisions for perceptually marked

talkers. Additionally, VQual2 was effective in perceived affect recognition, suggesting an-

other application where voice quality features can contribute to predict human decisions.
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CHAPTER 1

Introduction

1.1 Overview and Motivation

Voice can be viewed as an “auditory face [BFB04]”, that allows us to recognize individuals

and their emotional status. What characterizes a talker’s voice can be related to her/his

physical traits and habitual style of speaking. Many researchers have made efforts to reli-

ably retrieve such information. In courts, for example, forensic phoneticians apply linguistic

knowledge to identify a criminal from her/his voice, and are also interested in construct-

ing a voice lineup for earwitnesses. The earwitnesses are often asked to identify the voice

they heard at the crime scene among the voice lineup. A fair voice lineup should be con-

structed with foils having voices similar to the suspect so that the suspect does not ‘stick out’

[NMH11]. An objective measure of perceived voice similarity is desired in that approach. In

the signal processing and machine learning areas, researchers are interested in building an

acoustic model that can represent a talker. Such a model can be used for automatic speaker

verification (ASV), automatic speaker diarization, and many other applications.

The human voice is a performance biometric, unlike widely-used biometrics such as fin-

gerprints or irises. This makes speech signals prone to a large degree of within-talker variabil-

ity. The within-talker variability falls into two categories: extrinsic variability and intrinsic

variability. Intrinsic variability includes variability related to the talker’s conscious and/or

unconscious behavior that can influence speech signal production, such as phonetic content,

Parts of this chapter were published in [PYV18].
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mood, health condition, and speaking style. Extrinsic variability includes variability that

may introduce changes in the acoustic properties of speech signals, such as recording con-

ditions, channel types, and environmental noise. Both categories of within-talker variability

can lead to considerable difficulties in distinguishing individuals by their voices both for

humans and machines.

In this dissertation, the effects of intrinsic within-talker variability on humans and ma-

chines in distinguishing voices are analyzed. Of special interest is the role of voice quality

(the timbre of voice) in constituting a voice’s identity. Little is known about the abilities of

humans and machines in detecting identity from voices influenced by various kinds of intrinsic

variability, partly because of a lack of database. Recently, a database was developed at the

University of California, Los Angeles (UCLA) to represent both within- and between-talker

variability and also recording session variability [KPK15, KKA18]. The UCLA Speaker Vari-

ability Database includes a large number of talkers (more that 100 females and 100 males),

with multiple recording sessions and varying phonetic content, speaking style, and affect con-

ditions per talker, reflecting normal, daily-life variations in voice quality. In particular, we

focus on within-talker variability in recording session, phonetic content, affect, and speaking

style in the UCLA database.

One of the most basic tasks in distinguishing talkers was employed: deciding whether two

speech samples came from a single talker or from two different talkers. This task is referred to

as voice discrimination. Because humans are known to involve acoustic feature comparison

when they discriminate unfamiliar voices, this task is appropriate to learn about acoustic

correlates of human responses. This task is also appropriate to analyze machine performances

because it is used as a standard evaluation task for ASV systems. By investigating human

responses to voice discrimination tasks, we aim at understanding how and to which extent

voice quality is related to human responses, and using the knowledge to improve machine

performance.
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1.2 Acoustic Features Often Used to Represent Voice Identity

Both for humans and machines, some objectively measurable aspects of speech need to be

considered to make meaningful comparisons among voices. Generally, these characterizing

aspects are referred to as acoustic features. An ideal feature would [Ros02, Wol72]: (1)

show high between-talker variability and low within-talker variability, (2) be robust against

noise and distortion, (3) occur frequently and naturally in speech, (4) be easy to extract and

measure from speech signals, (5) be resistant to attempted disguise or mimicry, and (6) not

be affected by the talker’s health or long-term variations in voice.

1.2.1 Acoustic Theory of Speech Production

As mentioned above, physical traits of an individual’s vocal apparatus and the way it is used

influence acoustic characteristics of her/his voice. The process of speech production is often

modeled by source and a filter [Fan60]. A schematic of the physical speech production system

and its model are shown in Figure 1.1. For voiced sounds, the source is the quasi-periodic,

harmonic-rich pressure wave produced when the air flow from the lungs is modulated by the

vibrating vocal folds. The fundamental frequency of the vocal fold vibration is denoted as

F0. In the context of perception, F0 is strongly related to pitch, and these terms are often

used interchangeably. Periodicity of the source excitation leads to a discrete spectrum, where

each discrete component is placed at integer multiples of F0. These discrete components are

called harmonics. The amplitude of the N -th harmonic is denoted as HN . For example, the

harmonic amplitudes at F0, 2F0, and 3F0, are denoted as H1, H2, and H3, respectively.

The vocal tract (which extends from the vocal folds to the lips) is modeled as a time-

varying filter whose acoustic gain is frequency-dependent due to the resonances produced

by the physical geometry. The resonance frequencies of the vocal tract are called formant

frequencies or simply formants. The lowest formant frequency is denoted as F1, the second

lowest one is F2, and so on. The amplitude of those resonances are called formant amplitudes,

and denoted as A1, A2, and so on.

Over a short duration, the speech production system can be modeled as a linear, time-
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Figure 1.1: A schematic of the speech production system for a voiced sound segment. The

schematic view of human speech production system (top panel) and its corresponding model

are shown (middle panel). Example spectra that represent typical voice source, vocal tract

transfer function, and the output sound (denoted as A, B, and C, respectively) are also

provided (bottom panel). Adapted from [ESW97].
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invariant system. Hence, the output speech spectrum can be considered as a product of

the source spectrum and vocal tract transfer function as shown in Figure 1.1. The above

mentioned acoustic features, the fundamental frequency, harmonic amplitude, formant fre-

quencies and formant amplitudes, are highly dependent to the talker’s physical traits. For

example, the length and elasticity of vocal folds determine the fundamental frequency, and

the vocal tract length influences formant frequencies. However, a talker can manipulate, to

some extent, her/his vocal apparatus to produce a desired sound. For example, by changing

the level of constriction of laryngeal muscles, the fundamental frequency can be higher or

lower, and by changing the vocal tract constriction location, formant frequencies can be

changed. Thus, these acoustic features can be related to the talker identity by providing

information about the talker’s physical traits and habitual style of speaking.

1.2.2 Acoustic Correlates to Perceived Identity

One way of analyzing the perceptually relevant acoustic aspects of voice identity is to corre-

late talker similarity judgments with a range of measured acoustic features from the stimuli.

Based on these similarity judgments, multidimensional scaling (MDS, [KW78]) is often used

to produce a solution based on a number of dimensions. The resulting MDS space can be

thought of as a perceptual “voice space” where the stimuli are close if they are perceived

as similar. The MDS axes can be interpreted by examining correlations between the coor-

dinates of the stimuli and acoustic (or other) measures of those stimuli: a high correlation

suggests the measure might be an important cue for distinguishing talkers.

For example, Baumann and Belin [BB10] had 16 female and 16 male speakers produce

three vowels. In their experiments, F0 was found to be the main parameter accounting

for similarity judgments between both female and male voices. Nolan et al. [NMH11] had

listeners judge similarity between two excerpts of telephone conversation speech with 15

young male talkers. They tried to find acoustic correlates to the MDS dimensions by using

tokens of 6 different vowels in /hVd/ contexts in read speech from those 15 talkers. In that

study, F0 was found to correlate most strongly with similarity judgments, followed by mean
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F3, mean F2, and mean F1 across the different vowels.

1.2.3 Acoustic Features for ASV

The most widely-used acoustic feature set in automatic speech processing systems is the mel-

frequency cepstral coefficients (MFCCs). MFCCs represent the smoothed spectral envelope

of the speech signal, by applying an approach of deconvolution to speech [OS68]. To extract

these coefficients from an audio recording, the audio samples are first divided into short (e.g.,

25 msec) overlapping segments, or frames. The signal in this frame is often multiplied by

a window function. Then, the Fourier power spectrum is calculated from the (windowed)

speech excerpt. To the power spectrum, a mel-frequency filter bank is then applied, which has

higher resolution in the lower frequency bands to reflect human speech recognition [DM80].

At each mel frequency, a logarithm is computed for the filtered spectrum. Finally, the discrete

cosine transform is performed on the sequence of mel log powers. In the resulting sequence,

the components near the origin reflect the overall envelope of the mel log power sequence,

and the components far from the origin reflect the fine structure of that sequence. Thus, the

information for overall spectral envelope can be represented by taking the coefficients near the

origin. Recalling that the spectral envelope reflects the vocal tract shape of the talker, this

representation may contain physical information of the talker identity. In addition, because

the spectral envelope changes by each phone, a specific pattern of a talker’s pronunciation

can be reflected in this representation. For ASV applications, 20 or 24-order MFCCs are

typically used, along with their first and second time derivatives.

In text-independent ASV tasks, however, the sensitivity of MFCCs to phonetic content

might be a major cause of performance degradation [DP18]. Hence, various features that

are thought to be less sensitive to such variability were proposed to improve system perfor-

mance. For example, [DP16] used features derived from the linear prediction residual signal

to represent voice source characteristics. These features improved the system performance by

providing additional or complementary information to conventional cepstral features on text-

independent tasks when the talkers were modeled with 2.5-min-long utterances and tested
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with short utterances (2–10 sec). Other studies have shown that the phase components of the

speech signal are important for talker identity [VRS16], and such information could be used

for text-independent long-utterance ASV. Approaches to capturing talker-specific prosody

have also been proposed [RAC03, SFK05, DDK07].

1.3 Voice Discrimination by Humans and Machines

1.3.1 Voice Discrimination by Humans

For humans, discriminating unfamiliar voices is a separate decision-making process from

recognizing familiar voices [VK87]. While familiar talker recognition can be thought of as a

gestalt-matching task, unfamiliar voice discrimination additionally involves acoustic feature

comparisons. Several studies have shown that the perception of an unfamiliar voice requires

both a generic talker pattern that acts as a mental reference and a talker-specific pattern

that deviates from that reference [KS11, Chap. 5.3.4,]. Such a standard pattern, acquired

over a lifetime, includes both how human voices generally sound and what aspects of speech

are related to the talker’s identity.

Internal response: the decision space

In human voice discrimination experiments, binary decisions (same versus different talker)

of human listeners are collected. Resulting human responses can be evaluated and analyzed

with signal detection theory (e.g., [MC05]). Signal detection theory assumes that a listener

in the voice discrimination experiment is judging a single stimulus attribute; talker similar-

ity between two utterances. A distribution of similarity values can be obtained by repeated

presentations. A listener’s internal response can be represented with such distribution, al-

though it is not yet clear which and how acoustic features are used to construct a mental

talker model, and how the similarity between voices is assessed.

The top panel of Figure 1.2 presents the probability density of similarity values between

utterances in same-talker stimulus pairs (target trials, or ST ). On average, target trials are
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Table 1.1: Stimulus-response matrix. A correct “same talker” response is termed a hit,

while an incorrect such response is a false alarm. A correct rejection and a miss are defined

similarly for a “different talker” response.

Response

Stimulus class “Same talker” “Different talker”

Same-talker pair (target trial; ST ) hits misses

Different-talker pair (non-target trial; SN) false alarms correct rejections

more similar within a pair than non-target trials. Thus, the distribution of similarity for

different-talker stimulus pairs (non-target trials, or SN) is displaced to the left of target

trials. Unless a listener show perfect performance, there must be some similarity values that

the listener finds ambiguous, that could have arisen either from an target or a non-target

trial. The two distributions together compose the decision space – the listener’s internal or

underlying response. The listener can assess similarity between the utterances in a pair, but

does not know which distribution led to that value.

A listener can make a same versus different talker decision by applying a decision thresh-

old θ on the assessed similarity value. A similarity value greater than θ will result in a “same

talker” response; otherwise a “different talker” response. The probability that a similarity

value above θ will occur is the proportion of the area under the curve above θ, which is

indicated as shaded area in Figure 1.2. Correctly identifying a same-talker pair is termed

a hit, and failing to do so is a miss. Incorrect “same talker” decision is a false alarm, and

correct “different talker” decision is a correct rejection (see Table 1.1).

Performance evaluation metric: sensitivity

Listener performance can be analyzed in terms of the hit and false alarm rates. The hit

rate is the proportion of “same talker” responses to target trials (ST ), and the false-alarm

rate is the proportion of incorrect “same talker” responses to non-target trials (SN). That
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is, the hit and false alarm rates can be written as probabilities of “same talker” responses

conditional on the possible stimulus event:

hit rate = P (“same talker” response|ST )

false alarm rate = P (“same talker” response|SN)
(1.1)

In signal detection theory, the listener’s ability to discriminate is assessed in terms of

sensitivity. The sensitivity measure, d′ (d-prime), is defined in terms of Z, the inverse of the

normal distribution function:

d′ = Z(hit rate)− Z(false alarm rate) (1.2)

Listeners are assumed, by detection theory, to have fixed sensitivity when asked to dis-

criminate a stimulus pair. One aspect of responding, however, is their response bias, which

is their willingness to say “same talker” rather than “different talkers”. The locus of possible

hit and false alarm rates pairs that yield a constant sensitivity is called receiver operating

characteristics or relative operating characteristics (ROC, [Swets,1973]). Figure 1.3 shows

ROCs associated with d′. The horizontal axis corresponds to the false alarm rate, and the

vertical axis to the hit rate. If a listener is highly sensitive, (e.g., d′ = 3), the curve ap-

proaches the upper left corner. On the other hand, a wild guess (e.g., d′ = 0) is represented

by a straight line between the origin and the upper right corner. The area under the ROC

curve (AUC) can be also used as a performance metric: the larger this value is, the more

sensitive (or accurate) the listener is.

Duration and phonetic content effects on human performance

Even though results vary widely depending on the experimental protocol used, humans are

reasonably accurate at distinguishing unfamiliar talkers even with short utterances. For ex-

ample, [KP91] found that humans had a hit rate of 88.6% and a false alarm rate of 19.7%

(d′ = 2.02) in a voice discrimination task with single-sentence (≈ 2 sec) pairs. Human perfor-

mance generally improves as the utterance length increases until it plateaus with utterances

longer than 60 seconds [BP66, LGP84]. Authors disagree on why longer stimuli produce bet-

ter results. [RW93] found evidence supporting the hypothesis that the advantage of longer
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stimuli is in broader coverage of phonetic content. However, [CW97] argued that the critical

factor was not the number of different sounds heard, but rather the duration of the utter-

ances due to talker-specific prosody, speaking rate, and other non-phonemic aspects of the

speech signal that are more pronounced in longer utterances [KS11, Chap. 7.3.1,].

Speaking style and emotion effects on human performance

The effect of speaking style variability on human voice discrimination has not been stud-

ied extensively. Studies in forensic talker identification note that speaking style mismatch

between a criminal’s voice heard at a crime scene and speech samples collected in a voice

lineup (e.g., shouting versus reading) might confuse earwitnesses (see [Jes08]). In a voice

discrimination context, we expect such speaking style variability to cause a significant per-

formance degradation based on results from a few studies dealing with emotion variability

(e.g., [SY80]). In that study, when a target voice changed tone (related to emotion or affect),

mean ‘hit-miss’ and ‘false alarm-correct rejection’ scores decreased significantly.
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1.3.2 Voice Discrimination by Machines

For machines, automatic speaker verification (ASV) is a task of “enrolling” a talker with

one or more utterances from that talker, and “testing” whether a new utterance is from the

same talker as the enrolled one or not. Automatic voice discrimination can be thought of as

a special case of ASV where the talkers are enrolled with one utterance. In this dissertation,

the term ASV is used to refer to automatic voice discrimination unless otherwise specified.

Talker representation: i-vector

Standard ASV systems are typically pre-trained with large amounts of data from a large

number of talkers. Hundreds of hours of recordings are used to train a statistical model

for human speech, called a universal background model (UBM, [RQD00]). A new utterance

can be thought of as a deviation from the UBM. The nature and extent of the deviation,

however, will be influenced by both talker-specific and utterance-specific information. Thus,

these systems need to minimize within-talker variability while maximizing between-talker

variability. Hundreds of additional hours of recordings are used to train a subspace onto

which the deviation is projected. The projected low-dimensional vector, referred to as an

i-vector [DKD11], is thought to represent talker identity. When the system receives a pair

of speech samples as inputs, an i-vector is found for each utterance. Then, the likelihood

that the i-vectors represent the same talker is calculated based on the pre-trained model

and subspaces. Probabilistic linear discriminant analysis (PLDA, [KSO13]) is often used to

calculate this likelihood. The system then applies a threshold to the likelihood to make a

same versus different talker decision.

Automatic voice discrimination can be viewed as analogous to perceptual voice discrim-

ination, although the latter is much more complicated than statistical pattern recognition

based on frame-level features. That is, the pre-trained UBM and subspaces are analogous

to a human’s pre-existing idea of the average talker model and the manner in which a new

voice differs from it. Such a model represents the life-long experience of the listener with

voices and internal structuring that is not yet understood. Despite this analogy, however,
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differences presumably exist between the talker-distinguishing strategies used by humans

and machines as evidenced from their different performances for various challenging tasks.

Challenging conditions include very short utterances (≈ 2 sec), text-independent tasks, and

speech spoken in different styles.

Evaluation metrics

There are mainly two types or errors in ASV. They are false acceptance (granting access

to an imposter talker) and false rejection (denying access to a legitimate talker). These

are equivalent to false alarm and miss, respectively, in the context of human performance

evaluation discussed earlier. ASV systems generally yield a scalar output (e.g., PLDA score).

This scalar variable represents the similarity between the enrollment and test utterances. To

make a binary decision, the system applies a threshold (θ) to the similarity score.

Similar to the perception case, an ROC curve can be derived from the computed similarity

score. That is, the pairs of false alarm and hit rates for different threshold values can be

calculated, and in an ROC curve that represents the system’s sensitivity or accuracy. A

widely-used measure for ASV systems is the equal error rate (EER). The EER is defined as

the false acceptance or false rejection rate value resulting from the threshold which makes

the two rates equal.

Duration and phonetic content effects:

On very short utterances, machine performance degrades substantially, but humans are

more robust than machines. For example, a state-of-the-art ASV system had an EER of

22.31% with 2-sec-long pairs, while its EER was 3.38% for 20-sec-log pairs [DJP16]. Human

listeners, for single sentence (≈ 2 sec) pairs, showed 11.4% miss and 19.7% false alarm rates

[KP91]. As mentioned earlier, one reason for the degradation with shorter utterances could

be that there is insufficient phonetic coverage for the machines to infer appropriate statistics.

Text dependency also affects machine performance. For example, when utterances are short

(< 10 sec), matching phonetic content by using same-text pairs yields error rates that are
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approximately half those of the text-independent pairs [DP16, PYK17]. One exception occurs

when short digit sequences (< 2 sec) are used. In that limited-vocabulary case, performance

can reach 95% accuracy or higher [LLM14].

Speaking style and emotion effects:

Although the effect of speaking style on ASV mismatch has not yet been studied extensively,

some studies on emotion variability are available. For example, [PZH17] reported that an

emotion mismatch between utterances degraded ASV system performance, which worsened

as the utterance length decreased from 11 to 2.75 seconds for naturalistic (not acted) ex-

pressive voices. However, because that study did not compare matched emotion conditions,

the amount of degradation that can be attributed to emotion variability is not clear. In

[NB01], it was noted that the performance of a talker identification system degrades when

trained with spontaneous speech and tested on read speech, compared to when spontaneous

speech was used for both training and testing, even though the utterances were long (29 sec).

The system was a closed-set talker identification task, which is not directly comparable to

talker verification tasks, but it is expected that ASV performance might also decrease due

to speaking style differences.

1.3.3 Comparison between Humans and Machines

In order to precisely understand which strategies are shared by and/or differentiate voice

discrimination by humans and machines, a direct comparison between them using the same

stimuli pair is needed. Due to the fact that evaluating human listeners with a large number

of utterances demands much time and cost, making a direct comparison between humans

and machines in a statistically significant manner has been challenging. Nonetheless, efforts

have been made to make such comparisons in the past.

In 2010, the National Institute of Standards and Technology (NIST) presented the human

assisted speaker recognition (HASR) task for evaluating systems that combined humans and

machines [GMB10]. The task was designed in a way such that the most difficult test samples
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are selected for the evaluation (channel mismatch, noise, same/different talker that sound

highly dissmimilar/similar, etc.). However, the total number of trials in these experiments

was low (15 trials for HASR1 and 150 trials for HASR2) compared to evaluations designed

for automatic systems. The HASR study was repeated during the 2012 NIST SRE where

both noisy and channel degraded speech data were encountered.

In the NIST HASR tasks, machines were able to perform better than human-assisted

approaches [HKN10, SCS11a, RFG11, KAR11, GMD11]. In [GHR13], it was shown that

human and machine decisions were complementary, meaning that in some cases the humans

correctly identified a talker where the automatic system failed, and vice versa. However, the

HASR tasks were exceptionally difficult for human listeners because of the severe channel

mismatch, unfamiliarity with the talkers, noise, and other factors. Another important factor

to note is that the trials consisted of long utterances (2.5 min). Because humans do not

need such long utterances, and they even could become tired while listening to the stimuli,

some studies presented human listeners shorter stimuli than those given to machines. In

[KAR11], for example, human listeners were given 6-sec long excerpts while machines were

given the full utterances. Considering that machine performance considerably degrades with

short utterances, as noted above, the results could be very different if short utterances were

used for the comparison.

In the forensic voice comparison literature, attempts to integrate human and machine

responses exist. In [HHF17], authors analyzed falsely accepted (1 pair) and falsely rejected

pairs (13 pairs), and found that forensic experts were able to resolve the classified pairs.

However, to our knowledge, a direct and detailed comparison between human and ma-

chine voice discrimination under various conditions of intrinsic within-talker variability has

not yet been made, in part because a proper database was not available to undertake such

studies. In this dissertation, the recently developed UCLA database enabled detailed anal-

yses of the effects of intrinsic within-talker variability.
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1.4 Psychoacoustic Model of Voice Quality

1.4.1 Previously Proposed Acoustic Features for Voice Quality

Voice quality (or timbre) is often understood, in a broad sense, as perceptual responses to a

voice. Note that, although it is often related only to laryngeal activities, both laryngeal and

supralaryngeal features contribute to quality. Voice quality has been frequently associated

with identity, as “physical, psychological, and social characteristics [Lav80]” of a voice. For

example, in an international survey on forensic speaker comparison practices, voice quality

was reported most often (33%) as the most useful feature within linguistic, phonetic, and

acoustic domains [GF11].

Despite its potential effectiveness, applying voice quality features to automatic speech

processing applications has been difficult. One of the difficulties is that voice quality is of-

ten described with impressionistic terms, such as tense, harsh, and breathy. These terms

can be interpreted differently based on the the researcher’s understanding. In addition, it

is difficult to automatically extract voice quality attributes directly from the speech signal.

Numerous studies to automatically represent voice quality with acoustic feature vectors have

been proposed (see [MRD09] for review). Yet, the reliability of automatic algorithms to ex-

tract voice quality attributes directly from the speech signal is still limited. One approach

involves inverse-filtering, to identify the voice source characteristics, which is based on the

assumption that voice quality can be measured by estimating the glottal source signal. Other

techniques have been developed to estimate parameters that represent voice quality directly

from temporal fluctuations of the signal’s periodicity (e.g., jitter and shimmer [LTJ07]), but

the relationship between such parameters and perceptual responses is questionable [KG05].

Other researchers proposed spectral features, such as the amplitude difference in dB between

the first and second harmonic (H∗1 -H∗2 ), between the first harmonic and first formant am-

plitude (H∗1 -A∗1), and between the first harmonic and third formant (H∗1 -A3*), where the

asterisks (*) indicate the effects of formants were corrected [Han97, HC99]. In addition,

cepstral peak prominence (CPP, [HCE94]) and harmonic-to-noise ratio (HNR, [Kro93]) that

measure signal periodicity in the cepstral domain have also been proposed, and are often
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related to breathiness.

The above mentioned acoustic features to quantify voice quality could be utilized in some

applications for speech signal analysis and for automatic speech processing tasks. However,

it is not clear if these features can represent all aspects of voice quality.

1.4.2 Development of the Psychoacoustic Model of Voice Quality

Although a number of acoustic features has been proposed to represent voice quality, studies

of voice quality had limited explanatory power in terms of the relationship to voice production

and perception. Kreiman et al. proposed a psychoacoustic model of voice quality [KGG14,

GSG16]. They aimed at constructing an acoustic model that bridges the gap between voice

production and perception. They noted that listeners perceive voice quality as an integral

pattern, rather than a bundle of separate features [SHS97]. For example, the perceptual

importance of a given feature depends on the values of other attributes of the pattern, and

not solely on the value of the feature itself [VKE85, VKW85].

In order to quantify the entire voice pattern, that study applied analysis-by-synthesis to

completely recreate the perceived voice pattern. Through an extensive series of perception

experiments [KGA07, KG10, KG12, GKE13, GSK13], the authors showed that listeners are

perceptually sensitive at six parameters, and that, as a set, the parameters are sufficient

to quantify source contributions to normal and most pathological voice quality. They were

harmonic source spectrum (4 parameters), inharmonic (noise) source, and temporal source

frequency (F0). For the harmonic source spectrum, four acoustic parameters of the voice

source spectral model are proposed (see Figure 1.4): the differences in dB between the

amplitudes of the first two harmonics (H1-H2), the second and fourth harmonics (H2-H4),

the fourth harmonic and the harmonic nearest to 2 kHz, and the harmonic nearest 2 kHz

and that nearest 5 kHz (H2k-H5k). The inharmonic source can be measured in terms of

harmonic-to-noise ratio (HNR), which measures harmonic energy normalized by the shaped

noise spectrum level [Kro93].

This approach provided a perceptually valid acoustic model using a rather small set of

17



frequency

am
p

li
tu

d
e 

(d
B

)

Figure 1.4: A schematic for the source spectral model for the voice quality.

parameters. The model can be represented with quantitative measures that can be directly

extracted from speech signals, which in turn facilitates applications in automatic signal

processing.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows:

In Chapter 2, the databases used in the experiments reported in this dissertation are

presented. A new database developed at UCLA to systematically study between- and within-

talker variability is described in this chapter.

In Chapter 3, results from an initial set of experiments are reported. Those experiments

aim at exploring the role of voice quality features, based on the psychoacoustic model, in

predicting human voice discrimination responses and in improving automatic voice discrim-

ination performance.

In Chapter 4, a modified voice quality feature set is introduced that was determined

using continuous speech samples and with different speaking styles. Then, ASV experiments

with a larger number of talkers are presented to analyze how much each type of variability
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impact system performance.

In Chapter 5, our approaches to finding relevant acoustic information of talker identity

and the way it is used by humans for continuous speech are discussed.

Additionally, inspired by the observations suggesting that voice quality features vary

according to the talkers’ emotional status, the features were applied to an emotion recognition

task (Chapter 6).

In Chapter 7, key results of all studies are summarized, and directions for future work

are suggested.
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CHAPTER 2

Databases

Two databases were used in this dissertation. The first is the UCLA Speaker Variability

Database, which was recently developed to analyze between- and within-speaker variability.

The recordings in this database were used for perceptual voice discrimination experiments

and automatic speaker verification (ASV) experiments. The second database was from the

National Institute of Standards and Technology (NIST), and was used to pre-train ASV

systems.

2.1 The UCLA Speaker Variability Database

In order to systematically study both between- and within-talker variability, a multi-talker

speech database including multiple speech tasks per talker is needed. To our knowledge, none

of the existing multi-talker speech databases offers the desired combination of a large number

of talkers (both female and male), multiple recording sessions per talker, multiple speech

tasks per talker, and very high quality audio (controlled recording conditions, good quality

microphone, high sampling rate, etc). Thus, we developed the UCLA Speaker Variability

Database [KPK15, KKA18] including multiple recordings of talkers recorded in a variety of

speaking tasks and on multiple occasions.

Parts of this chapter were published in [KPK15].
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2.1.1 Equipment

Audio recordings were made in a sound-attenuated booth using a 1/2” Brüel & Kjær mi-

crophone with a sampling rate of 22 kHz. The microphone was suspended from a baseball

cap worn by the talker for a fixed mouth-to-microphone distance. All speech was elicited via

on-screen displays.

2.1.2 Subjects

More than 100 female and 100 male UCLA undergraduate students were recorded across

different recording sessions. None of the participants had diagnosed speech or hearing prob-

lems.

2.1.3 Materials

Talkers were recorded in three separate sessions on different days and in different speech

styles. Note that the goal of recording speech from different conditions was to sample

normal, daily-life voice variation. We did not try to elicit voice disguises, impersonations,

acted emotions, or other dramatic acting. Instead, we focused on normal variability in real-

life situations, to the extent that these could be elicited in a sound booth. The point of the

different conditions was not to study them as such, but simply to enhance the likelihood of

sampling realistic amounts of within-talker variability in voice quality.

At the beginning of each session, talkers repeated the sustained vowel /a/ (as in the

word “spa”) three times and read ten sentences. These tasks allow cross-section comparison.

The vowel /a/ was chosen because its high F1 reduces errors when estimating voice source

parameters. Read sentences consisted of 2 repetitions of 5 Harvard sentences [IEE69], read

in all three recording sessions for a total of 6 repetitions of each sentence and 30 sentences

overall. The sentences were “The boy was there when the sun rose.”, “Kick the ball straight

and follow through.”, “Help the woman get back to her feet.”, “A pot of tea helps to pass

the evening.”, and “The soft cushion broke the man’s fall.” These sentences were used to
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study phonetic content variability.

Each session then included two further speech tasks, different in each session, for a total

of six one-time-only speech tasks. In the first session, participants were instructed to talk to

the research assistant (RA) who was outside the booth, giving her either directions on how

to go somewhere, or instructions on how to do something. Some suggestions about what to

talk about were provided on printed sheets (see Appendix A for examples). Talkers were

told to speak for at least 30 seconds, and an on-screen display counted out 30 seconds. This

task provided a sample of clear but unscripted speech. Next, participants were instructed

to repeat to the RA a conversation they had recently that wasn’t important – not exciting,

nor upsetting, just normal. Again, some possible topics were provided, and again, the on-

screen display prompted for 30 seconds of speech. This task provided a sample of unscripted

low-affect speech.

In the second session, participants were instructed to repeat to the RA a conversation they

had recently about something exciting that made them really happy. As before, some possible

topics were provided and the on-screen display prompted for 30 seconds of speech. This task

provided a sample of positive-affect speech. Next, participants used their cell phones to call

a friend or relative and talked for at least two minutes. Only the participant’s side of the

conversation was recorded. This task provided a sample of unscripted conversational speech.

In the third session, participants were instructed to repeat to the RA a conversation

they had recently about something that really annoyed them. As before, some possible

topics were provided and the on-screen display prompted for 30 seconds of speech. This task

provided a sample of negative-affect speech. Finally, a sample of pet-directed speech was

collected. Talkers were instructed to talk to pets displayed in a video. They could choose

between a kitten video (2 min 36 sec) and a puppy video (1 min 51 sec). Resulting utterances

were often (but not always) characterized by exaggerated prosody, similar to infant-directed

speech [BKV02]. The speech tasks in each session and the resulting amount of speech are

summarized in Table 2.1.

22



T
ab

le
2.

1:
S
u
m

m
ar

y
of

th
e

U
C

L
A

S
p

ea
ke

r
V

ar
ia

b
il
it

y
D

at
ab

as
e.

T
h
e

la
st

co
lu

m
n

sh
ow

s
th

e
to

ta
l

am
ou

n
t

of
sp

ee
ch

fo
r

al
l

3

se
ss

io
n
s

fo
r

ea
ch

sp
ee

ch
ta

sk
p

er
sp

ea
ke

r.

S
es

si
on

A
S

es
si

o
n

B
S

es
si

o
n

C
T

o
ta

l
a
m

o
u

n
t

S
u

st
ai

n
ed

vo
w

el
s

3
to

ke
n

s
(3

se
c)

3
to

ke
n

s
(3

se
c)

3
to

ke
n

s
(3

se
c)

≈
1
0

se
c

R
ea

d
se

n
te

n
ce

s
10

se
n
te

n
ce

s
(≈

25
se

c)
1
0

se
n
te

n
ce

s
(≈

2
5

se
c)

1
0

se
n
te

n
ce

s
(≈

2
5

se
c)

≈
7
5

se
c

O
th

er
sp

ee
ch

ta
sk

(u
n

sc
ri

p
te

d
)

in
st

ru
ct

io
n

s
(2

5–
30

se
c)

p
h

o
n

ec
a
ll

(6
0
–
1
2
0

se
c)

ta
lk

to
p

et
v
id

eo
(6

0
–
1
2
0

se
c)

≈
1
4
5
–
2
7
0

se
c

R
ep

or
te

d
co

n
ve

rs
at

io
n
s

(u
n

sc
ri

p
te

d
)

n
eu

tr
al

(2
5–

30
se

c)
h

a
p

p
y

(2
5
–
3
0

se
c)

a
n

n
oy

ed
(2

5
–
3
0

se
c)

≈
7
5
–
9
0

se
c

T
ot

al
≈

75
–9

0
se

c

p
er

sp
ea

ke
r

≈
1
1
0
–
1
8
0

se
c

p
er

sp
ea

ke
r

≈
1
1
0
–
1
8
0

se
c

p
er

sp
ea

ke
r

≈
3
0
0
–
4
5
0

se
c

p
er

sp
ea

ke
r

23



2.2 NIST SRE Database

The Speaker Recognition Evaluation (SRE) databases developed by NIST are often used

to train a universal background model (UBM) and speaker variability subspaces. We used

the NIST SRE04, 05, 06, and 08 databases [PM04, PML06, MG09] for this purpose. These

databases provide more than 3,000 hours of speech samples from 2,692 female and 1,115 male

talkers, over a variety of channels including telephone speech, microphone, and “interview”

speech.

Note that although the SRE databases offer many recordings from a large number of

talkers with multiple speech tasks, they do not provide multiple speech tasks per talker

under controlled recording environments. Thus, the UCLA Speaker Variability Database

is more suitable for detailed performance analyses in terms of within- and between-speaker

variability.
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CHAPTER 3

Initial Experiments Based on

the Psychoacoustic Model of Voice Quality

The first set of experiments evaluated voice discrimination abilities for humans and ma-

chines using the UCLA Speaker Variability Database. The main focus was on exploring

the role of psychoacoustically-valid acoustic features of voice quality in predicting human

responses and in improving automatic speaker verification (ASV) performance.

3.1 Voice Quality Feature Selection Using Sustained Vowels

3.1.1 Stimuli

The voices of five female talkers were selected at random from the UCLA Speaker Variability

Database. In this section, only the 9 tokens of the sustained vowel /a/ were studied, given

the explanatory nature of this study.

3.1.2 Selection of Measures and Data Reduction

Based on a series of psychoacoustic studies of voice quality [KG12, GSG16] described in

Chapter 1, six parameters for the spectral model of the voice source were found to be most

effective. They are F0, H∗1 -H∗2 , H∗2 -H∗4 , H∗4 -H∗2k, H∗2k-H5k, and the harmonic-to-noise ratio

(HNR). Here, H∗N denotes the N -th source spectral harmonic magnitude, and the asterisk

Parts of this chapter were published in [KPK15] and [PSK16].
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(*) indicates a correction for the influence of vocal tract resonances using the formula given

in [ISA07]. Other measures proposed in the literature on voice quality were included for

the sake of completeness. These included measures of HNR in 4 discrete frequency ranges,

the root-mean-squared energy, and cepstral peak prominence (CPP), H∗1 -A∗1, H∗1 -A∗2, and

H∗1 -A∗3, where AN denotes the amplitude of the harmonic closest in frequency to the N -th

formant. Finally, measures of F1, F2, and F3 were included because vowel quality differed

substantially across (and occasionally within) talkers.

Measures for all parameters were made using a 25-msec Hamming window with a 1-msec

frame interval across the entire duration of each vowel token. The parameters were moving-

averaged over a 100-msec span and then were sampled every 100 msec. Source measures were

extracted with the VoiceSauce toolkit [SKV11], and formant frequencies were measured using

the Snack algorithm [Sjo04] which was included in the toolkit. Measures were screened for

outliers (which were treated as missing values), and source spectral measures were validated

using analysis-by-synthesis [KAG10].

Correlation and canonical correlation were used to examine patterns of association among

the various acoustic variables along with F0. The 4 HNR measures were significantly and

substantially intercorrelated with each other and with CPP (mean r = 0.95, p < .001), so

only CPP was retained for subsequent analyses. Similarly, canonical correlation indicated

that a set comprised of H∗1 -H∗2 , H∗2 -H∗4 , H∗4 -H∗2k, and H∗2k-H5k was highly correlated with

another set of H∗1 -A∗1, H∗1 -A∗2, H∗1 -A∗3, and energy (R2 = 0.88), so only the first set of variables

were retained. Finally, F0 and the first three formant frequencies were retained in the final set

of measures. Note that the final set of 9 acoustic measures is equivalent to the psychoacoustic

model; the observed correlations between model parameters and other variables suggest that

adding parameters to the model would not increase its explanatory power.

All nine measures were normalized to a 0–1 scale using a range for each variable for

females’ vowel /a/ sounds as observed in previous studies [KG12, BO00, HGC95]. The

measures and their normalization ranges are shown in Table 3.1. This initial feature set was

denoted as VQual1.
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Table 3.1: Normalization ranges for the parameters for females’ vowel /a/ sounds from

[KG12, BO00, HGC95].

F0 CPP H∗1 -H∗2 H∗2 -H∗4 H∗4 -H∗2k H∗2k-H5k F1 F2 F3

Min 93 15 -2.64 -0.39 0 0 522 963 2138

Max 275 32 21.6 29.2 37.7 46.87 1163 2701 3490

3.2 Perceptual Voice Discrimination Experiments

3.2.1 Stimuli

Speech samples from the five female talkers selected in the previous section were used for

analysis. The sustained /a/ sounds from the 5 talkers and read sentences from 3 talkers,

among the 5 talkers, were studied. All vowel tokens from the 3 sessions were used, for a total

of 9 vowels per talker. Read sentences were chosen from different sessions and with different

content. Two sessions per talker were selected, with 2 repetitions of 2 different sentences per

session, for a total of 8 sentences per talker. The selected sentences were “A pot of tea helps

to pass the evening,” and “The soft cushion broke the man’s fall”. Note that all samples are

at most 3-sec long.

3.2.2 Method

Two sets of experiments, one with sustained vowels and the other with read sentences, were

conducted. For the first set of experiments using the sustained vowel /a/ sounds, the full

unedited vowel samples were used to ensure that idiosyncratic vocal features like final creak

or pitch declination were represented. Given nine recordings from five talkers, the stimulus

set included a total of 180 “same talker” pairs and 450 “different talker” pairs, for a total

of 630 possible comparisons among stimuli. Two different randomizations of this set were

created, each of which was divided into thirds to create 6 subsets of 210 listening trials.

Listeners were normal-hearing UCLA students and staff members. They received pay-
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ment or class credit for their participation. Ten listeners were assigned at random to each

subset, for a total of 60 listeners in 6 groups; but across groups, each pair of stimuli was

judged by 20 listeners. Listeners heard the pairs of stimuli over Etymotic insert earphones

(model ER-1) at a comfortable constant listening level (interstimulus interval = 250 msec).

Each pair could be played only once in each presentation order (AB/BA). Listeners were

not told how many talkers were represented in the trials. For each pair of stimuli, listeners

judged whether the voices represented one talker or two different talkers, and reported their

confidence in their response on a scale from 1 (positive) to 5 (wild guess). The experiment

was self-paced and listeners were encouraged to take as many breaks as needed. Testing

lasted, on average, about 45 minutes per listener.

The second set of experiments was conducted with read sentences from 3 female talkers.

From a total of 24 tokens, 30 same-talker pairs and 48 different-talker pairs were created. For

the sentence listening experiments, 15 normal-hearing UCLA students and staff members

participated. As in the vowel listening experiments, the experiments were self-paced and

listeners were encouraged to take breaks as needed.

3.2.3 Human Listener Performance

Results of the perceptual experiments, in terms of accuracy (hits & correct rejections), are

shown in Figure 3.1. For sustained vowels, listeners averaged 69.0% accuracy (sd: 10.43%,

range: 38.6% – 84.8%). In comparison, using sentence stimuli resulted in higher accuracy

ranging from 65.4% to 97.4%, with a mean of 89.0% (sd: 8.21%).

The dissimilarity score δ from an individual listener was calculated from the listener’s

same/different talker response and the uncertainty u which was reported on a 1 (positive)

to 5 (wild guess) scale in the following way:

δ =


u , for “same talker” response

11− u , for “different talker” response.

(3.1)

The resulting dissimilarity δ ranged from 1 to 10. It can be inferred that the same versus
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Figure 3.1: Listener performance (accuracy) in identifying same/different talker pairs with

sustained vowel /a/ sounds and 60 listeners (top), and read sentences and 15 listeners (bot-

tom). The mean value of accuracy of individual listeners is indicated with a solid line, and

the recalculated accuracy from averaged voice dissimilarity score across listeners is indicated

with a dashed line.
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different speaker decision threshold was at 5.5. For example, if a listener responded that

she/he was positive that the two tokens were from the same talker (u = 1), then δ is low

(< 5.5). On the other hand, if the response was “positive these are different talkers”, then

δ is high (> 5.5). The δ scores for each stimuli pair were then averaged across listeners,

and the averaged dissimilarity was denoted as δ̄. For identical token pairs, which were not

included in the perception experiment, δ̄ = 0 was assigned.

It was observed that when the same/different talker decision was re-calculated based

on the ensemble score δ̄, accuracy increased substantially for both vowels and sentences, as

shown in Figure 3.1. The accuracy gain was more obvious in the vowel case, for which ensem-

ble accuracy reached 86.4% (compared to 69.0% for averaged individual listener accuracy),

which was higher than the score of the best individual listener. For sentences, the ensemble

accuracy increased to 97.4% versus 89.0% for average data. These results are consistent with

the finding that although individual näıve listeners vary in their performance, an aggregation

of their responses was more accurate than the best performing listener [SCS11b]. Therefore,

it should be noted that the accuracy of combined listener responses does not represent the

accuracy of an average listener, and the former can be substantially higher than the latter.

3.3 Modeling Human Responses

3.3.1 Method

Multi-dimensional scaling (MDS, [KW78]) was used to compute the distance between tokens

in a perceptual space. Here, the objective of using MDS was to obtain a perceptual distance,

and not to reduce dimensionality. Therefore, a higher dimensional MDS than usual was used

to represent the dissimilarity between stimuli [JAA07, MNH15]. The averaged dissimilarity

score δ̄ was normalized to have a value between 0 and 1, and the normalized score was ana-

lyzed using a 6-dimensional non-metric MDS (vowels: stress= 0.058, R2 = 0.8813; sentences:

stress= 0.0004, R2 = 0.9806). The Euclidean distances between token pairs of all possible

combinations were calculated in the MDS space. The resulting token distance had a 0 to 1
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range.

Two sets of features were used separately and in combination to predict human responses.

The first set consisted of 20-order MFCCs along with their first- and second-order derivatives

(60-dim in total). This set is a standard feature set for ASV systems and was used as a

baseline in this study. The second set was the 9-dim voice quality feature set (VQual1,

described in Section 3.1.2) with their first- and second-order derivatives (27-dim in total).

The mean and standard deviation of each feature, including derivatives, within a token were

calculated, resulting in 120-dim for MFCCs and 54-dim for VQual1. The absolute differences

in the feature means and standard deviations were then found between tokens. Perceptual

dissimilarities were predicted with a linear regression framework. Here, the variable being

predicted was the Euclidean distance between two tokens in the MDS perceptual space,

and the predictors were the differences in means and standard deviations between the two

tokens. MFCCs and VQual1 were used individually or combined by concatenating them

together before linear regression.

3.3.2 Results and Discussion

The human response prediction results in terms of root-mean-squared error (RMSE) between

the predicted value and the token distance in the MDS space, either with only the mean or

with the mean and standard deviation of every feature, are summarized in Table 3.2.

Both the mean and standard deviation were important in modeling human responses.

For instance, the perceptual distance best predicted by MFCC feature vectors consisted of

the mean and standard deviation of each feature and its derivatives. The resulting RMSE

were 0.140 for sentences and 0.121 for vowels, compared to 0.143 and 0.123 when only means

were used.

VQual1 improved the performance for all conditions by providing complementary infor-

mation to MFCCs, although the gain was rather small. For vowels, when VQual1 features

were combined with MFCCs, the RMSE performance was improved by 4.07% and 3.14%

for the mean only case and for the mean and standard deviation case, respectively. For
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Table 3.2: Perceptual dissimilarity prediction performance, in terms of root-mean-squared

error, using MFCCs, VQual1, and the combination of the two feature sets. Relative im-

provements by combining MFCCs and VQual1 features compared to the performance with

only MFCCs are shown in parentheses.

Vowels Sentences

Mean Mean&sd Mean Mean&sd

MFCC 0.123 0.121 0.143 0.140

VQual1 0.128 0.128 0.156 0.140

MFCC+VQual1
0.118 0.117 0.140 0.123

(4.07%) (3.14%) (2.24%) (11.80%)

sentences, using only the means improved by 2.24%. Interestingly, when both mean and

standard deviation were used, the performance gain was notable (11.80%). This is possi-

bly because sentences vary more within a token than vowels do, and the deviation contains

information related to perceived speaker identity.

Note that human listeners had higher accuracy on read sentences than on sustained

vowels, but the acoustic features did less well in predicting human performance for the

sentences. This might be because there are many other sources of information in connected

speech that are not represented well by the current feature set.

Score-level fusion was tried as well, but no improvement was found over concatenating

the features.

3.4 Automatic Voice Discrimination Experiments

In the previous analyses, the voice quality feature set provided valuable information to model

perceived speaker identity. This led to a hypothesis that the feature set might be useful for

automatically identifying talkers. Specifically, we were interested in investigating the effect
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of several types of within-speaker variability on machine performance, and analyzing how the

voice quality feature set contributes to system performance. In this section, standard ASV

system performance is analyzed under recording session, speaking-style and affect variabili-

ties. Because we were interested in evaluating the voice quality feature set on standard ASV

system performance, an i-vector/PLDA framework was used instead of the method used for

human response modeling in the previous section.

3.4.1 Stimuli

From the UCLA Speaker Variability Database, 25 female and 25 male talkers were randomly

selected, and their read sentences in all 3 sessions and unscripted speech with different affect

(affective speech) at each session were used. In each session per talker, there are ten read

sentences, each 2–3 sec long, and an affective speech recording lasting 30–60 sec. Because

ASV systems are sensitive to the utterance length of the enrollment and test data, it is

important to balance the amount of data for a fair comparison. In order to balance the

amount of data between read sentences and affective speech, we clipped a 30-sec segment

in the middle of the affective speech and divided the segment into ten 3-sec segments. The

resulting amount of data to enroll each talker was approximately 60 sec for session and affect

variability experiments, and approximately 90 sec for style variability experiments. All test

utterances were shorter than 3 sec.

3.4.2 Method

The effect of within-speaker variability was observed by comparing results from two different

conditions. One was to enroll the talkers with data containing variability and test with

known variability (matched condition), and the other was to test with unseen variability

(mismatched condition). For example, in the session-matched condition, each talker was

enrolled with randomly selected samples from all three sessions and tested on the remaining

tokens. In the session-mismatched condition, the talkers were enrolled using only data from

two sessions and tested on the third. Affect- and style-matched and mismatched conditions
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were defined in a similar way.

Performance of a standard ASV system was evaluated under the conditions described

above. The 20-order MFCCs along with their first- and second-order derivatives were used

as baseline features. An i-vector [DKD11]/PLDA [KSO13] speaker verification system was

implemented with the Kaldi toolkit [PGB11]. The variability matrices for the i-vector and

PLDA were trained using the NIST SRE databases. The system was developed gender-

dependently.

In order to examine the effect of using voice quality features on ASV performance, another

system with the same back-end but with voice quality features was implemented. The

measure H∗2k-H5k could not be used, because it requires access to harmonic components

close to 5 kHz, and the development data (NIST SRE) were band-limited to 4 kHz. Thus,

the feature set used in this task excluded H∗2k-H5k from the VQual1 set, and was referred to

as VQual1*. The resulting feature vector dimension was 60 for MFCCs and 24 for VQual1*.

The two systems were fused at the score level to obtain final results. The score-level fusion

is analogous to averaging human listeners’ dissimilarity scores (i.e., δ̄) and making a new

decision based on the average score.

3.4.3 Results and Discussion

The baseline ASV system performance is reported in terms of equal error rates (EER) in

Table 3.3. Session variability did not effect system performance much, but affect variability

and speaking-style variability caused a notable degradation in system performance, both

for female and male talkers. Affect variability among neutral, happy, and annoyed speech

by female talkers caused the most degradation, more than doubling the error rate. Note

that the affective speech recordings in the database also had session variability because they

were recorded in different sessions. However, since the effect of the session variability was

negligible, as mentioned earlier, the affect variability is most likely the main reason for the

performance degradation.

It is possible that these results were influenced by phonetic content. Read sentences were
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Table 3.3: Equal error rate (EER) for the ASV system, using only MFCC features, for the

different conditions. The relative error increase in the mismatched compared to the matched

conditions is shown in parentheses.

Female Male

Session-matched 2.81% 1.78%

Session-mismatched
2.73% 2.19%

(−2.85%) (23.03%)

Affect-matched 3.64% 2.67%

Affect-mismatched
7.49% 4.00%

(105.68%) (50.00%)

Style-matched 5.07% 2.37%

Style-mismatched
6.87% 3.64%

(35.64%) (53.91%)
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Table 3.4: Equal error rate (EER) for the fusion of MFCC and VQual1* systems. The

relative error increase in the mismatched compared to the matched conditions is shown in

parentheses, and the relative improvements over using only MFCCs are shown in separate

columns.

Female Male

EER % improvement EER % improvement

Affect-matched 3.22% 11.60% 2.16% 19.11%

Affect-mismatched
6.70% 10.49% 3.60% 9.89%

(108.27%) - (67.10%) -

Style-matched 4.65% 8.26% 2.16% 8.78%

Style-mismatched
6.90% −0.37% 3.38% 7.25%

(48.40%) - (56.50%) -

distributed evenly into enrollment and test sets so that the system was enrolled with all 5

different sentences. For affective speech, however, phonetic imbalance could occur between

enrollment and test data because phonetic content was not controlled for.

The performance of the ASV system with fused MFCC and VQual1* systems is sum-

marized in Table 3.4. Results showed that voice quality features provided complementary

information to MFCCs. In the affect-matched condition, fusing voice quality features notably

improved the system performance for both genders. The improvement was 11.60% for female

voices and 19.11% for males. A similar trend was observed for the affect-mismatched cases

and style-matched conditions. However, the style-mismatched condition degraded slightly

for female talkers when VQual1* was fused. It might be the case that the female speakers

had larger differences in voice quality between read sentences and unscripted speech than

male speakers did, resulting in larger within-speaker variability in VQual1*.

Even though system performance improved by adding the voice quality features, differ-

ences in EERs between matched and mismatched conditions widened. This suggests that
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voice quality may be varying significantly according to the emotional status and speaking-

style of the talker. Further analysis is needed with orthographic transcriptions and acoustic

measures to check whether the degradation was due to VQual1* changes or to phonetic

mismatch. Nevertheless, it was apparent that voice quality features provided talker-specific

information which might not be sufficiently represented by MFCCs.

3.5 General Discussion

In this chapter, the first set of experiments was conducted to study human and machine

abilities in discriminating different talkers. Our interest was to assess voice quality features

in modeling human responses and in improving ASV performance. The voice quality feature

set (VQual1) was determined using sustained vowel /a/ sounds, and the resulting set was

equivalent to the psychoacoustic model of voice quality.

Human listeners were reasonably accurate in voice discrimination tasks. Not surprisingly,

listeners were less accurate for vowels than for sentences (69.0% versus 89.0% accuracy). This

was expected because sustained vowel sounds have much less information about talkers’

identity than connected speech.

In modeling perceived talker dissimilarities, the voice quality feature set provided comple-

mentary information to MFCCs. The root-mean-squared error decreased as much as 3.14%

for vowels and 11.80% for read sentences by combining the means and standard deviations

of the voice quality features with MFCCs. Interestingly, human responses for vowels were

better modeled than those for sentences. This can be partly explained by that the acoustic

features used in this study might insufficiently represent the information human listeners are

using in connected speech.

For machines, a standard ASV system (with MFCCs) was evaluated when there were

session, affect, and speaking-style variability for both female and male voices. It was shown

that the system performed worse when there was affect or speaking-style variability for the

short test utterances used (≤ 3 sec). However, it was not clear how much each variability

contributes to performance degradation. For example, affect variability degrades the sys-
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tem performance significantly, but the content mismatch between the enrollment and test

utterances might also be an important factor.

The voice quality features (without H∗2k-H5k) were then applied to the ASV system, and

they improved ASV system performance in 7 out of 8 conditions, by providing complementary

information to MFCCs. For example, the relative error rate decrease was as much as 19.11%

for affect-matched condition for male voices. There was one condition where fusing voice

quality information with MFCCs slightly degraded system performance. That was when the

speaking style was mismatched between the enrollment and test utterance for female voices.

It suggests the voice quality features vary significantly between different speaking styles,

especially for female voices.

In conclusion, the first set of experiments showed that psychoacoustically-valid voice

quality features are promising both for modeling human responses and for improving ASV

performance. Further studies were conducted based on the results of these initial experiments

and reported in the following chapters.
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CHAPTER 4

Improving ASV Performance Using

Voice Quality Features

As shown in Chapter 3, voice quality features were effective for human response modeling

and automatic speaker verification (ASV). The study presented in this chapter extends the

analysis using a larger number of talkers. Specifically, the extent to which features can

automatically separate different talkers is investigated for continuous speech when content

and speaking-style vary considerably. A method to modify the voice quality feature set so

that it can better separate different talkers is presented. The performance of ASV systems

using the modified feature set was evaluated on the UCLA database under content and style

variability, and on the NIST SRE evaluation data to verify its effectiveness on general ASV

tasks.

4.1 Development of the VQual2 Feature Set

In Chapter 3, acoustic features inspired by a psychoacoustic model of voice quality [GSG16]

were introduced. The feature set, VQual1*, consisted of F0, F1, F2, F3, H∗1 -H∗2 , H∗2 -H∗4 , H∗4 -

H∗2k and CPP. This feature set was effective for modeling human responses, and it improved

automatic speaker verification performance, except for one condition where speaking style

was mismatched between enrollment and test utterances for female talkers. This section

describes the method used to modify the feature set to better represent talker identity under

Parts of this chapter were published in [PYK17].
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contrasting speaking styles.

4.1.1 Stimuli

Speech samples from 100 female and 100 male talkers in the UCLA Speaker Variability

Database were used in this study. Among the various speaking styles included in the

database, sustained vowel /a/ sounds, read sentences and pet-directed speech were used.

Vowel sounds were used for a preliminary analysis. Read sentences are text-constrained

clear speech, while pet-directed speech is spontaneous and includes exaggerated prosody.

These two speaking styles differ the most in the database.

The set of read sentences contains 6 repetitions of 5 different sentences per speaker and

has been transcribed, so that the effect of content variability can be assessed. Since the read

sentences and pet-directed speech represent contrasting speaking styles, using them together

was suitable for examining the effect of speaking style variability.

All utterances were downsampled to 8 kHz for consistency with the development databases

(NIST SRE databases).

4.1.2 Method

4.1.2.1 Candidate features

The main purpose of analyzing talker separability of features under within-talker variability

was to improve the voice quality feature set to better differentiate between talkers. Candidate

features were selected based on two considerations. The first consideration was whether for-

mant correction should be performed when estimating harmonic amplitude differences. It was

noted that formant correction without formant bandwidth information can be more erratic

than no correction at all [ISA07]. Because it is difficult to accurately estimate bandwidths

directly from the signal [HC99], bandwidths calculated with formant frequency information

were used as in [IA04]. However, pilot experiments showed that over-correction may occur

when formants are close to a harmonic. For example, the first formant of the vowel /i/ (mean
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F1 = 437 Hz [HGC95]) can be close to the second harmonic for a female talker. In that case,

the effect of the formant on H2 is overly corrected, resulting in unreliable H∗1 -H∗2 and H∗2 -H∗4

values. Such inaccuracies may weaken the ability of the features to separate talkers.

The second consideration was which form of the formant amplitudes should be added.

Formant amplitudes are frequently used to represent voice quality, and they may have im-

portant talker-specific information. Frequently-used features include H∗1 -A∗1, H∗1 -A∗2, and

H∗1 -A∗3 [Han97, VS14] where A1, A2, and A3 are the amplitudes for the first, second, and

third formants. Although these features were excluded because they were highly correlated

to other measures for the vowel /a/ sounds (Section 3.1), they might be important for con-

tinuous speech. All features mentioned above, as well as A1, A2, and A3, were chosen as

candidate features.

The features were extracted pitch-synchronously every 10 msec using Voice Sauce soft-

ware [SKV11], with Praat [BW17] chosen as the method for extracting pitch and formant

frequencies. All features were automatically extracted, and no manual refinements were

made.

4.1.2.2 Feature separability measures

The ability of each candidate feature to separate talkers was examined using the f -ratio

[NMC97, LD08] separability measure. This criterion is widely used to measure how well an

individual feature separates classes of stimuli. It implies that if the spread of class means

increases, or if the clusters themselves become narrower, then the separability will increase.

In this sense, the f -ratio identifies features which have large between-class variance and small

within-class variance:

f =
between class variance

within class variance
=

∑M
i=1 Pi(µi − µ)2∑M

i=1 Piσ2
i

, (4.1)

where M is the number of classes, µi is the within-class mean of the i-th class, µ is the

global mean, Pi is the a priori probability of the class, and σ2
i is the within-class variance

of a single feature.

Note that the f -ratio only measures the class separability of individual features. To
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evaluate an entire feature set, an extension to the f -ratio for a multi-dimensional feature set

is needed. The between-class variance and the within-class variances can be extended to the

between-class scatter (Sb) and within-class scatter (Sw), respectively [TK09, pp. 280–283].

Sb =
M∑
i=1

Pi(µi − µ)(µi − µ)T (4.2)

Sw =
M∑
i=1

PiΣi (4.3)

where Σi is the covariance matrix for the i-th class. Note that the traces of Sb and Sw,

Tr{Sb} and Tr{Sw}, are measures of the average distance, over all classes, of the mean

of each individual class from the global mean, and the average variance of the features,

respectively.

The mixed scatter matrix Sm is defined to be the covariance matrix of the feature vector

x with respect to the global mean:

Sm = E
[
(x− µ)(x− µ)T

]
= Sw + Sb. (4.4)

Its trace, Tr{Sm}, is the sum of the average, over the classes, variance of the features

around their respective global mean. Using these extensions of between- and within-class

variances, the class separability of a multi-dimensional feature set can be defined as:

J = Tr{S−1
w Sm}. (4.5)

This measure is called the J-measure, and is often used for evaluating class separability

of a feature set (e.g., [NMC97]). Note that the J-measure is large when samples in the

feature space are well clustered around their mean, within each class, and the clusters of

the different classes are well separated. Thus, it can be used as a separability measure for

multi-dimensional feature sets.

4.1.2.3 Preliminary analysis with vowel sounds

Vowel /a/ sounds were used to preliminarily analyze the effects of formant correction on

talker separability of voice quality features. This vowel has a high first formant frequency
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Table 4.1: f -ratio values for individual harmonic amplitude difference features and J-measure

values for sets of the three features with and without formant correction. Vowel /a/ sounds

were used to calculate f -ratios and J-measures.

With correction Without correction

H∗1 -H∗2 H∗2 -H∗4 H∗4 -H∗2k J H1-H2 H2-H4 H4-H2k J

Female 0.27 0.21 0.24 3.86 0.32 0.50 0.33 4.15

Male 0.93 0.57 0.44 5.00 0.90 1.31 0.39 5.67

(mean F1 = 936 Hz for female talkers [HGC95]), and thus it is expected that there is little

effects of formants on harmonics, compared to other sounds. In this context, if formant

correction yields worse f -ratios for vowel /a/ sounds than no correction does, it is likely that

formant correction decreases f -ratios for other sounds.

The f -ratio values for individual harmonic amplitude difference features with or without

formant correction, and J-measure values for a set of the features with or without formant

correction are shown in Table 4.1. In most cases, not using formant correction resulted in a

higher f -ratio values, and J-measures were higher without correction for both genders than

with correction. These results indicate that automatic formant correction rather decreases

talker separability of the harmonic amplitude difference features.

Unfortunately, it is difficult to find why correction resulted in decreased f -ratio and J-

measure values. Over-correction and other inaccuracies in automatic correction might be a

reason. However, correction accuracy could not be measured without the “ground truth”

voice source spectrum from given data. The effects of formant correction needs to be further

analyzed.

Even though formant correction was less effective for vowel sounds than no correction,

it might still be effective for high phonetic content variability, by compensating for the

phonetic effects. Therefore, experiments were continued using continuous speech samples:

read sentences and pet-directed speech.
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4.1.2.4 Experimental conditions

Phonetic content and speaking-style variability were considered in designing experimental

conditions. For content variability, a large content difference condition and a small content

difference condition were created for comparison. The f -ratios for the two conditions can be

used to analyze the effect of content variability on talker separability. First, all repetitions of

the 5 sentences (from all 100 talkers for each gender) were randomly divided into 5 subsets,

and the mean and standard deviation of the f -ratio were found across those subsets. Each

subset in this condition represented a high phonetic content variability case. This condition

is denoted as the multiple text condition. Second, 5 subsets were made so that each subset

included the same sentence. The f -ratios were calculated again for these 5 subsets and the

mean and standard deviation were computed across the subsets. In this case, each subset

represented a dataset with low phonetic content variability. This condition is denoted as the

single text condition.

Other conditions were created analogously for speaking style variability. In the multiple

style condition, read sentences and pet-directed speech were distributed randomly into 2

subsets, and the mean and standard deviation of the f -ratio were calculated across the sub-

sets. These subsets represented high speaking style variability. In the single style condition,

speech samples from the two speaking styles formed separate subsets (read and pet). These

represented low style variability within the data subsets.

4.1.3 Results and Discussion

The f -ratios calculated for each experimental condition for females and males are shown in

Figure 4.1 and Figure 4.2, respectively. The top panels represent the mean and standard

deviation of f -ratio across the 5 subsets of the multiple text condition, and those of the

single text condition. The bottom panels represent the mean of f -ratio across the 2 subsets

of the multiple style condition, and the f -ratios of read and pet-directed style conditions.

For phonetic content variability conditions for female talkers, the standard deviations

for the single text condition were larger than those for the multiple text condition. For
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Figure 4.1: Computed f -ratios of various voice quality features using the female voices in the

UCLA Speaker Variability Database for phonetic content (top) and speaking-style (bottom)

variability. “Single text” in the top panel indicates that the f -ratios were computed for data

subsets containing the same sentence, and “multiple text” indicates the subsets contained

5 different sentences. “Read” and “pet” in the bottom panel indicate the subsets only

contained read sentences or pet-directed speech, and “multiple style” indicates that the

subsets contained both speaking styles.
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Figure 4.2: Computed f -ratios of various voice quality features using the male voices in the

UCLA Speaker Variability Database for phonetic content (top) and speaking-style (bottom)

variability. “Single text” in the top panel indicates that the f -ratios were computed for data

subsets containing the same sentence, and “multiple text” indicates the subsets contained

5 different sentences. “Read” and “pet” in the bottom panel indicate the subsets only

contained read sentences or pet-directed speech, and “multiple style” indicates that the

subsets contained both speaking styles.
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example, the standard deviations of F0, F3, and H1-H2 for the single texts were notably

larger than those for multiple texts. Considering that the single text condition consisted

of different sentences across subsets, while the multiple text condition contained similar

text distributions, a higher standard deviation across subsets for the single text condition

indicates that the features’ talker separability depends on the phonetic content. In addition,

single text subsets had higher overall mean f -ratios than multiple text subsets, although the

differences were not overwhelming. This implies that the acoustic features vary according

to phonetic content, and such phonetic content variability increases within-talker variability

more than between-talker variability for most features. However, CPP, A1, A2, and A3 had

higher mean f -ratios for the multiple text condition. Those four features could be capturing

idiosyncratic information related to phonetic content, and/or talker separability was not

influenced much by phonetic content. Similar trends were observed for male talkers.

The features with the highest f -ratio were similar across the genders and content vari-

ability conditions, although they had different ranks. For the multiple text condition, the

features with the highest f -ratio were F3, A3, A2, H1-A3 and H1-H2 for females, and those

for males were H∗1 -H∗2 , A3, H1-H2, H1-A3, and F3. For the single text condition, they were

F3, A3, H1-H2, F0, and H1-A3 for female talkers, and H1-H2, H∗1 -H∗2 , A3, H1-A3, and F3

for males. Note that F3, A3, H1-A3, and H1-H2 always appear in the top 5 highly-ranked

features.

Interestingly, the f -ratios in the pet-directed subset were higher then for the read sen-

tences subset. This suggests that each talker had her or his own unique style of talking to

pets, making talkers more distinct, increasing between-talker variability. This uniqueness in

speaking style between talkers will likely result in decent performance in same-style ASV

experiments which will be discussed in Section 4.2.

The most effective features were also similar for each gender and for each style variabil-

ity condition. For female talkers, the features with the highest f -ratios for multiple style

condition were F0, A3, F3, A2 and H1-A3, those for read sentences were F3, A3, H1-A3, F0,

and H1-H2, and those for pet-directed speech were F0, A3, A2, A1, and H1-A3. For males,

they were A3, F0, H1-H2, H1-A3, and H∗1 -H∗2 for multiple style condition, H∗1 -H∗2 , H1-H2,
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A3, H1-A3, F3 for read sentences, and A3, A2, F0, A1, H1-A3 for for pet-directed speech.

Here, F0, A3, and H1-A3 appear in the top 5 features, except for read sentences from male

voices, where F0 had the 6th highest f -ratio.

To select features, two sets of harmonic amplitude difference features were compared:

with formant correction (H∗x-H∗y ) and without formant correction (Hx-Hy). Formant am-

plitude features were compared among three sets: raw amplitudes A1, A2, and A3 (Az),

differences between H1 and formant amplitudes H1-A1, H1-A2, and H1-A3 (H1-Az), and

differences between H1 and formant amplitudes with formant correction H∗1 -A∗1, H∗1 -A∗2, and

H∗1 -A∗3 (H∗1 -A∗z). For all conditions, the f -ratios of harmonic amplitude differences were

higher for Hx-Hy than H∗x-H∗y , and Az had highest f -ratios among formant amplitude fea-

tures. Thus, Hx-Hy and Az features can be thought to have higher talker separability than

their variants.

However, even if individual features have high f -ratios, their talker separability as a

set might not be high. For example, if they are highly intercorrelated with each other, the

talker separability might be lower than another set of independent features with lower f -ratio

values. Thus, the J-measures were calculated using the read sentences in the UCLA database

to analyze talker separability of a feature set. All six possible combinations between two

harmonic amplitude difference features (Hx-Hy and H∗x-H∗y ) and three formant amplitude

features (Az, H1-Az, and H∗1 -A∗z) were made.

J-measures were calculated on the combined sets and shown in Table 4.2. Here, the

highest J-measure value was obtained by combining harmonic amplitude differences without

formant correction, and raw formant amplitudes for each gender. For instance, if Hx-Hy

features were combined with Az, the J-measure value was 6.326 for female talkers, while

combining with H1-Az result in a J-measure of 6.245. Including formant-corrected features

resulted in lower J-measures than including their formant-uncorrected counterparts. These

results are consistent with the f -ratio results.

The final feature set included F0, F1, F2, F3, H1-H2, H2-H4, H4-H2k, CPP, A1, A2, and

A3. These features will be called the VQaul2 features. We then hypothesized that VQual2
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Table 4.2: J-measures for sets of features that combining the features in the top row and

the features in the second row. Hx-Hy indicates H1-H2, H2-H4, and H4-H2k; Az indicates

A1, A2, and A3. The highest J-measure values were boldfaced for each gender.

Hx-Hy H∗x-H∗y

Az H∗1 -A∗z H1-Az Az H∗1 -A∗z H1-Az

Female 6.326 6.231 6.245 6.230 6.160 6.177

Male 6.532 6.396 6.453 6.438 6.327 6.381

features would better separate talkers than VQual1* features, and would further improve

ASV system performance. Recall that the original VQual1* feature set was generated from

a psychoacoustic model of voice quality, and evaluated on sustained vowel sounds. The

modified VQual2 set, on the other hand, was chosen to automatically separate different

speakers, and was evaluated on continuous speech signals.

The J-measure value were computed for MFCCs and subsets of VQual2 features, using

the read sentences, and are shown in Figure 4.3. As the voice quality features are added

to MFCCs, the J-measure increases. Thus, we expect that VQual2 features to provide

complementary information to MFCCs in ASV tasks. This will be evaluated in the following

sections.

4.2 ASV Performance Analysis Under Content and Speaking-Style

Variability

Recall that the compounded effect of content and style variability made ASV system per-

formance degrade in the first set of experiments of Chapter 3. In this section, the impact

of content and style variability were further investigated, and the VQual2 feature set was

applied to verify its effectiveness.
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Figure 4.3: Computed J-measures of VQual2 and MFCC features using read sentences (solid

line). Each point on the chart is the J-measure of all features below and to the left of that

point. The dashed line shows VQual2 features without MFCCs for comparison. The J-

measure was computed for both female and male talkers.
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4.2.1 Method

4.2.1.1 Experimental conditions and data

ASV systems were evaluated using recordings from 100 female and 100 male talkers from

the UCLA database. For content variability, the effect of varying phonetic content was

analyzed with five sentences. Two different conditions were compared: same-text trials and

different-text trials. In both conditions, one sentence was chosen to enroll talkers, and one

sentence was chosen to test the system. In the same-text trials, the same sentence was

used for enrollment and testing, but from different speakers or different repetitions from the

same speaker. In the different-text trials, the sentences used for enrollment and testing were

different. Each talker had 6 repetitions per sentence, resulting in a total of 100×5×6 = 3000

sentences for each gender. All possible combinations of enrollment–test utterance pairs were

used except for the case when the enrollment and test utterances were identical (in terms of

speaker and repetition number).

The effect of varying speaking style was examined with both read sentences and pet-

directed utterances. The read sentences were randomly concatenated together for each talker

until 5 seconds of speech were collected. This was done twice to create enrollment and testing

sets for every talker. No utterance was used for both enrollment and testing. Note that this

task can be regarded as a text-constrained task. Pet-directed speech samples were cut into

two non-overlapping segments containing 5 seconds of speech for enrollment and testing.

One female and six male talkers were removed due to poor recording quality or low amounts

of speech in the pet-directed recordings. The total number of speech samples was 396 and

376 for females and males, respectively. Again, all possible combinations of enrollment-test

utterance pairs were used except for the pairs of identical samples.

Four types of trials were designed, denoted as “enrollment data–testing data”: read–read,

read–pet, pet–read, and pet–pet. In the read–read and pet–pet trials, the same speaking

style was chosen for both enrollment and testing. In the read–pet trial, read sentences were

used for enrollment and pet-directed speech was used for testing, and in the pet–read trial,

the reverse was true.
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4.2.1.2 ASV system setup

Performance of ASV systems depends, in part, on the use of appropriate features to distin-

guish speakers. MFCCs of dimension 20, along with first derivatives, were used as baseline

features. The second derivatives were not used because they did not provide significant per-

formance gain. VQual1* and VQual2 features, along with first and second derivatives, were

used as alternative feature sets.

A standard i-vector [DKD11]/PLDA [KSO13] ASV system was used for the experiments.1

Three systems using MFCCs, VQual1*, or VQual2 were developed, and were pre-trained on

the NIST SRE04, 05, 06, and 08 databases. The i-vector dimension was 600 and it was

reduced to 200 after PLDA. The UBM (modeled with 2048 Gaussians) and subspaces were

trained using the NIST SRE training databases.

After obtaining the PLDA scores from each system, score fusion was used for further

improvements [RFR02]. Since VQual2 features performed better than VQual1* features in

most cases, only fusion performance with MFCCs and VQual2 features is reported. The

fusion system outputs were linearly combined using the following equation:

s = αsv + (1− α)sm (4.6)

where sm is the PLDA score using MFCCs, sv is the PLDA score using VQual2 features, and

α is the coefficient of sv chosen from the range of 0 to 1. PLDA scores using both MFCCs

and VQual2 features were first scaled to have zero-mean and unit-variance before fusion was

performed.

4.2.2 Results and Discussion

The overall performance in terms of equal error rate (EER) is shown in Table 4.3. Relative

improvement by a score-level fusion between MFCC- and VQaul2-based system over using

only MFCCs is also shown in the table. The p values of the improvement were computed using

1The i-vector/PLDA system and computational resources were provided by the Johns Hopkins University
Human Language Technology Center of Excellence.

52



T
ab

le
4.

3:
A

S
V

sy
st

em
p

er
fo

rm
an

ce
in

te
rm

s
of

E
E

R
(%

)
w

it
h

co
n
te

n
t

an
d

st
y
le

va
ri

ab
il
it

y
u
si

n
g

th
e

U
C

L
A

d
at

ab
as

e.
T

h
e

fu
si

on
p

er
fo

rm
an

ce
is

ob
ta

in
ed

b
y

fu
si

n
g

th
e

P
L

D
A

sc
or

es
fr

om
th

e
M

F
C

C
-

an
d

V
Q

u
al

2-
b
as

ed
sy

st
em

s.
R

el
at

iv
e

im
p
ro

ve
m

en
t

b
y

fu
si

on
co

m
p
ar

ed
to

M
F

C
C

s
is

d
en

ot
ed

al
on

g
w

it
h

it
s
p

va
lu

e
in

p
ar

en
th

es
es

.
H

u
m

an
vo

ic
e

d
is

cr
im

in
at

io
n

re
su

lt
s

re
p

or
te

d

in
C

h
ap

te
r

3,
ar

e
ad

d
ed

in
th

e
la

st
co

lu
m

n
fo

r
co

m
p
ar

is
on

.

U
tt

er
an

ce
le

n
gt

h
M

F
C

C
V

Q
u
al

1*
V

Q
u
al

2
F

u
si

on
%

im
p
.

H
u
m

an

F
em

al
e

S
am

e
te

x
t

2–
3

se
c

7.
71

15
.6

6
12

.6
7

6.
22

19
.3

3
(p
<

0.
01

)
10

.0
0

D
iff

er
en

t
te

x
t

2–
3

se
c

28
.1

4
31

.4
8

28
.2

3
24

.4
1

13
.9

7
(p
<

0.
01

)
12

.2
2

M
al

e
S
am

e
te

x
t

2–
3

se
c

5.
97

15
.1

5
13

.6
3

4.
93

17
.4

2
(p
<

0.
01

)
-

D
iff

er
en

t
te

x
t

2–
3

se
c

28
.3

3
28

.3
3

27
.7

3
23

.0
7

16
.8

0
(p
<

0.
01

)
-

F
em

al
e

R
ea

d
–r

ea
d

5
se

c
3.

65
10

.1
0

6.
40

3.
03

16
.9

9
(p
<

0.
01

)
-

P
et

–p
et

5
se

c
19

.1
9

18
.1

8
18

.1
8

12
.7

9
33

.3
5

(p
<

0.
01

)
-

R
ea

d
–p

et
5

se
c

30
.3

0
36

.7
7

35
.0

6
29

.2
9

3.
33

(p
<

0.
01

)
-

M
al

e

R
ea

d
–r

ea
d

5
se

c
2.

13
5.

48
3.

19
1.

06
50

.2
3

(p
<

0.
01

)
-

P
et

–p
et

5
se

c
6.

38
12

.7
2

11
.7

0
4.

25
33

.3
9

(p
<

0.
01

)
-

R
ea

d
–p

et
5

se
c

19
.3

0
30

.8
5

28
.7

2
19

.1
5

0.
78

(p
=

0.
59

)
-

53



McNemar’s test [McN47]. For comparison, the table includes results from human perceptual

voice discrimination experiments presented in Chapter 3, where the listeners were asked to

determine if a given pair of read sentences was spoken by the same talker or two different

talkers. The results from pet–read trials are omitted as they were almost identical to those

from read–pet trials.

4.2.2.1 Phonetic content variability

ASV performance degraded severely when the enrollment and test utterances had different

texts compared to when they had the same text. Using MFCCs, error rates increased

dramatically when comparing same and different-text trials. For male talkers, for example,

the EER was 5.97% in the same-text condition, and it increased to 28.33% in the different-

text condition. A similar pattern was observed for female talkers. Note that human listeners

were not affected by the content difference as much as the ASV systems were. These results

suggest that by understanding human listeners’ strategies to discriminate different talkers,

ASV robustness to content variability might be improved.

Although VQual2 features did not perform as well as MFCCs in the same-text trials, in

the different-text trials, they performed almost as well as MFCCs for females and even better

than MFCCs for males. This indicates the effectiveness of VQual2 for text-independent ASV

tasks.

In all trials designed for phonetic content variability, fusion with the VQual2 scores pro-

vided relative improvements of at least 13.97% (p < 0.01), suggesting that VQual2 features

contain complementary information to MFCCs.

4.2.2.2 Speaking style variability

The EER from using MFCCs increased dramatically both for female and male talkers in the

style-mismatched condition (read–pet) compared to the read–read and pet–pet trials. For

example, the EER for female talkers increased from 3.65% in the read–read case to 30.30% in

the read–pet case. This might be due to signal processing errors as an effect of exaggerated
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prosody. Another issue for these pairs might have been the limited phonetic content of the

pet-directed speech excerpts. While the read sentences were phonetically rich, pet-directed

speech was largely limited to phrases such as “Awww, cute,” with stereotyped intonation

contours that lacked the idiosyncrasies of the read–read pairs. However, the amount of

performance degradation is greater than the text variability conditions, suggesting that style

variability was another important factor that significantly degraded ASV performance.

Score fusion with the VQual2 features showed decent improvements for the style-matched

conditions, notably 33% (p < 0.01) improvement for the pet–pet trials, and both for female

and male talkers. However, there was little improvement for the style-mismatched condition

(3.33%, p < 0.01 for female and 0.78%, p = 0.593 for male talkers). This is expected since

VQual2 features themselves partially reflect the speaking style of a talker and are susceptible

to style changes.

4.3 ASV Performance on Short Utterances

For long utterances, phonetic overlap between enrollment and test utterance can be large, but

for short utterances, it is more likely that the phonetic content does not match well between

enrollment and test utterances. If the voice quality feature set is helpful when phonetic

content mismatch occurs between enrollment and test utterances, as shown in the previous

section, the feature set might be especially effective for text-independent short utterance

ASV. As an attempt to test this possibility, the voice quality feature set was evaluated on

standard ASV evaluation data with different utterance lengths.

4.3.1 Method

The ASV system described in Section 4.2.1 was used. Here, the NIST SRE10 database con-

dition 5 extended task [MG10], which consisted of telephone-channel speech, was employed

to evaluate the ASV system.

In addition to the full utterance (approximately 5 min) evaluation, new enrollment and
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testing datasets were created using the SRE10 data by cutting the utterances to 10, 5, and 2

seconds of speech, in order to investigate the impact of various utterance lengths on system

performance.

4.3.2 Results and Discussion

System performance in terms of EER is shown in Table 4.4. The fusion system is the linear

score fusion between the MFCC and VQual2 systems as described before. The optimal choice

of α is also shown in the table, where α is the weight of the VQual2 scores in the linear score

fusion as in Eqn. (4.6).

As predicted, ASV systems performed worse as utterances became shorter. This is con-

sistent with literature that measured performance of systems with MFCCs. For example,

in a study using the SRE 2003 database, the EER degraded from 2.48% for full-length ut-

terances to 22.31% for 2-sec utterances [DJP16]. Similarly, VQual1* and VQual2 system

performance degraded with short utterances.

VQual2 features showed 1.05–2.37% absolute improvement compared to the VQual1*

features in all conditions. When only VQual2 was used, the performance was worse than

MFCCs, but the VQual2 features were able to improve the performance of the system through

score fusion by providing complementary information to MFCCs. The weight of the VQual2

scores in the fusion (α) increased as utterances became shorter, suggesting that the system

relied more on the VQual2 scores as the amount of speech decreased.

4.4 General Discussion

This study analyzed ASV system performance when content and style variability were large,

especially when utterances were short. The VQual2 feature set was chosen for its effectiveness

in separating talkers in these large variability conditions using the f -ratio and J-measure.

System performance according to content and speaking-style variability with the UCLA

Speaker Variability Database was analyzed. ASV experiments using an i-vector/PLDA sys-
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Table 4.4: ASV system performance in terms of EER (%) with the NIST SRE10 database.

The relative improvement by fusion (MFCC+VQual2) is noted in parentheses. The coeffi-

cient α is the optimal weight of the VQual2 scores in the fusion. The utterance length in

seconds for enrollment and test utterances is denoted in an enrollment–test form.

Utterance length MFCC VQual1* VQual2 Fusion (% imp.) α

Full 2.89 8.96 7.91 2.80 (3.11 %) .10

10–10 10.88 19.60 17.23 9.53 (12.41 %) .29

5–5 16.90 25.18 22.82 14.91 (11.78 %) .35

2–2 28.47 32.95 30.92 25.95 (8.85 %) .46

tem with MFCCs and VQual2 features were conducted, along with linear score fusion. It

was found that when content and/or style conditions were mismatched, the system error

rate increased significantly. Thus, approaches that minimize the effect of content variability

are worth exploring.

VQual2 features might be useful for high-content variability cases. In the mismatched

content conditions, score fusion with VQual2 features improved performance. But unlike

humans, there was still a large difference in performance between matched and mismatched

content conditions. This suggests that understanding human listeners’ strategies to discrim-

inate speakers might provide insights to improve machine performance.

For style variability experiments, VQual2 showed notable performance gain in the pet–pet

trials. This suggests that voice quality features might be able to capture talkers’ idiosyncratic

way of exaggerating prosody. However, in the mismatched style conditions, score fusion did

not improve performance much.

To examine the effects of using voice quality features with a larger set of utterances and

talkers, ASV experiments were conducted using the NIST SRE10 telephone speech database.

Results suggest that short utterances (< 10 sec) benefit from using VQual2 features more

than long utterances (about 5 min).
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In conclusion, the voice quality feature set was modified to better separate different talk-

ers. This feature set was especially effective for text-mismatched trials, and style-matched

trials. It also successfully improved general telephone channel ASV performance on a stan-

dard NIST SRE evaluation database. The application of this feature set will be presented

in later chapters, including human response analysis and emotion recognition.
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CHAPTER 5

Comparing Human and Machine Abilities in

Voice Discrimination for Short Utterances

In Chapter 3, the voice quality feature set VQual1, which was derived from a psycho-

acoustic model, was promising in modeling human responses. The feature set also improved

automatic speaker verification (ASV) performance for short test utterances when read sen-

tences and affective speech were used. The feature set was modified in Chapter 4, denoted

as VQual2, to further improve ASV performance. It was noted that speaking style mismatch

(read sentences versus pet-directed speech) degrades ASV performance significantly for 5-

second speech segments, both with MFCCs and VQual2. However, ASV performance anal-

ysis under phonetic content variability showed that VQual2 could improve short-utterance

text-independent ASV performance. VQual2 was also effective at standard telephone con-

versation ASV tasks, especially when utterances were short. Experimental setups and key

results are summarized in Table 5.1.

The results suggested that humans are more accurate than machines for short-utterance,

text-independent voice discrimination tasks. Hence, comparing responses from humans and

machines might provide insights to further improve machine performance. However, a direct

comparison between humans and machines cannot be made with the experiments presented

in Chapters 3 and 4 because the experimental designs and resulting stimuli pairs for humans

were different from those for machines. In addition, humans’ ability to distinguish talkers

under style variability was not tested in those previous experiments. Thus, in this chapter,

Parts of this chapter were published in [PYV18] and [PAK19].
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a new set of perception experiments were conducted to investigate comparative effects of

within-talker variability in phonetic content and speaking style on human and machine per-

formance. Speech samples from a larger number of talkers were used, and high speaking-style

variability between read sentences and pet-directed speech was employed.

5.1 Perception Experiments

Human listeners’ ability to discriminate among talkers across the two speaking styles (read

sentences and pet-directed speech) was investigated. The most contrasting speaking styles

were chosen in the UCLA database to probe the limits of human perception with high

within-talker variability.

5.1.1 Stimuli

Fifty female self-reported native speakers of English were randomly selected from the UCLA

database. Female talkers were chosen because they used more prosodic exaggeration when

talking to pets than did male talkers, leading to larger differences between the read sentences

and the pet-directed speech. Post hoc listening by two linguists indicated that utterances

from nine talkers were perceptually “marked” by a non-American dialect, overly-precise

articulation and/or unusual dysfluencies in reading. The remaining 41 talkers lacked such

personal idiosyncrasies and will be referred as “unmarked”.

For each talker, three read sentences were selected from each of the three recording

sessions. Each speech sample lasted less than 2 seconds. Two excerpts were taken from the

pet-directed speech, matched in length to the average duration of the sentences. Stimuli

were downsampled to 8 kHz to match the bandwidth of the NIST SRE databases.

5.1.2 Method

Stimuli were assembled into 100 pairs of voices in which both voice samples came from the

same person (50 pairs of read sentences and 50 pairs where a read sentence was paired with
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Table 5.1: Summary of experiments (Ex.) reported in Chapters 3 and 4. The VQual1*

feature set contains the features in VQual1, except H∗2k-H5k. Fusion indicates a weighted

combination of the scalar responses from individual systems. Speech samples were drawn

from the UCLA database unless otherwise specified. Utterance lengths for ASV experiments

are denoted as the length of enrollment and test utterances in seconds.

Chapter 3 Chapter 4

Perception

Speaking style Ex.1: vowel /a/ (1–3 sec)

Ex.2: read (≈ 2 sec)

N/A

No. talkers Ex.1: 5 females

Ex.2: 3 females

N/A

No. listeners Ex.1: 60

Ex.2: 15

N/A

Feature

selection

Stimuli vowels read, pet-directed

No. talkers 5 females 100 females, 100 males

Resulting

feature set

VQual1 (F0, F1, F2, F3, CPP, H∗
1 -H∗

2 ,

H∗
2 -H∗

4 , H∗
4 -H∗

2k, H∗
2k-H5k)

VQual2 (F0, F1, F2, F3, CPP, H1-H2,

H2-H4, H4-H2k, A1, A2, A3)

ASV

Speaking style Ex.1: read

Ex.2: affective

Ex.3: read, affective

Ex.1: read

Ex.2: read, pet-directed

Ex.3: phonecall (SRE database)

Utterance length Ex.1: 60sec–3sec

Ex.2: 60sec–3sec

Ex.3: 90sec–3sec

Ex.1: 2sec–2sec

Ex.2: 5sec–5sec

Ex.3: various

No. talkers 25 females, 25 males Ex.1: 100 females, 100 males

Ex.2: 100 females, 100 males

Ex.3: � 200 (SRE database)

Systems MFCCs, VQual1*, fusion MFCCs, VQual1*, VQual2, fusion

Predicting

human responses

Features MFCCs, VQual1 N/A

Method linear regression N/A

Key results VQual1 was promising for predicting

human responses (vowels, read sen-

tences) and ASV (read sentences and

affective speech).

VQual2 was developed, and it was ef-

fective for text-independent short ut-

terance ASV.
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pet-directed speech), and 2,450 pairs where the two talkers were different (half including two

read sentences and half including one read sentence and one pet-directed speech sample), for

a total of 2,550 pairs of stimuli. Stimuli were always drawn from different recording sessions,

and each pair included two different read sentences. Thus, this task was always text- and

recording session-mismatched.

To minimize listener fatigue, stimuli were divided at random into 12 subsets of 200 pairs of

voices and 1 subset of 150 pairs. Thirteen groups of five normal-hearing UCLA students and

staff members (aged 18–28; mean age 19.91; standard deviation 2.28; 65 listeners total) were

recruited, of whom 30 considered themselves L1 English speakers. Participants listened to

the pairs of stimuli over Etymotic insert earphones (model ER-1) at a comfortable constant

listening level. Each pair could be played only once in each presentation order (AB/BA).

Listeners were asked whether the two speech samples were produced by the same talker or

by two different talkers. They also reported their confidence in their responses on a 1–5 scale

(1 = positive, 5 = wild guess). They were not told how many talkers were represented in

the trials. The experiment was self-paced, and listeners were encouraged to take breaks as

needed. Total testing time was less than one hour per listener.

5.1.3 Evaluation Metric

Hit rates and false alarm rates were calculated by defining a hit as a correct “same talker”

response and a false alarm as an incorrect “same talker” response. Additionally, listeners’

same versus different responses were combined with their confidence ratings to create a

scale ranging from “positive, same talker” (= 1) to “positive, different talkers” (= 10) as

in Eqn. 3.1. These scalar responses were used to derive receiver operating characteristic

(ROC) curves using SYSTAT software [Sys]. d′ (d-prime, e.g., [MC05]) and the area under

the receiver operating characteristic curve (AUC) were calculated for each ROC curve. Note

that d′ values calculated from ROC curves can differ from values directly calculated from

hit and false alarm rates. The metric used for ASV in Chapters 3 and 4, the EER, was also

computed from ROC curves.
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Note that the AUC and EER measures are not always correlated because the two mea-

sures reflect different properties of the curve. The AUC is calculated from the entire ROC

curve, and it reflects overall accuracy regardless of a specific decision threshold. On the

other hand, the EER only focuses on the point where the false rejection rate and the false

acceptance rate are equal, and it summarizes the system performance in terms of the error

rate. These measures can differ especially when the ROC curves are skewed. Skewed ROC

curves can result when the variance of the distribution in the decision space of same-talker

pairs is different from that of the different-talker pairs [MC05].

5.1.4 Results

Hit rates, false alarm rates, d′ (from the ROC curve), AUC, and EER are shown in Table 5.2.

Because listener performance could be influenced by the talkers’ perceptual markedness,

results when the stimuli were pairs from the 41 unmarked talkers, pairs from the 9 marked

talkers, pairs consisting of one marked and one unmarked talker, and pairs from all 50 talkers

are shown separately in the table. The pairs of read sentences are denoted as read–read and

the pairs of one read sentence and one pet-directed speech excerpt are denoted as read–pet.

Human listeners were reasonably accurate in distinguishing unmarked talkers when stim-

uli were pairs of read sentences (d′ = 1.81). As expected, accuracy decreased when listeners

heard read speech paired with pet-directed speech (d′ = 0.50). The decrease in the hit rate

(33.2%) was greater than the increase in the false alarm rate (9.4%), suggesting that the

responses for read–pet pairs were biased to “different talker” responses. Because there were

many more unmarked talkers than marked talkers, the “all talker pairs” results are very

similar to those for the unmarked talkers for the read–read pairs.

Although the marked talkers had idiosyncrasies in their speech, they were in fact harder

to discriminate. d′ equaled 1.48 for read–read pairs (compared to 1.81 for unmarked talkers),

and 0.16 for read–pet pairs (compared to 0.50). In addition to a decrease in sensitivity, the

performance degradation reflected a large decrease in the hit rate and a smaller decrease in

the false alarm rate, suggesting a stricter response criterion. For trials including one marked
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talker and one unmarked talker, only false alarm rates could be calculated because stimuli

always came from different talkers. Those marked/unmarked pairs had the lowest observed

false alarm rate: 20.7% for read–read pairs and 32.1% for read–pet pairs.

5.1.5 Discussion

Humans were reasonably accurate in distinguishing talkers from read–read pairs, consistent

with results from other studies (e.g., [KP91]). In contrast, human voice discrimination accu-

racy decreased considerably for read–pet pairs, with d′ less than 1.0 for all such comparisons.

One reason for the low accuracy for read–pet pairs might be related to limited phonetic con-

tent in pet-directed speech, as noted in Chapter 4. A perceptual speaker identification study

supports this view, by showing a greater variety in vowel sound in a speech sample improves

identification accuracy [RW93]. Another study claimed that speech sample duration was

more important than phonetic variety to accurately remember a voice ([CW97]). This sug-

gests that speaker-specific prosodic characteristics (e.g., pitch, loudness, and speaking rate),

pauses between words, and other non-phonemic aspects of voice signal might play a crucial

role to assess voice similarity. These cues might sound different between read sentences

and pet-directed speech, leading to a bias toward “different talker” responses. For example,

there is a significant difference in F0 between the read sentences and pet-directed speech.

The mean F0 for the read sentences was 221.23 Hz, while that of pet-directed speech was

313.02 Hz [F (1, 548) = 575.2, p < 0.01]. The extraordinarily high F0 of the pet-directed

speech might have confused listeners, who typically rely heavily on F0 when assessing talker

identity [NMH11, BB10].

Differences in perception when listening to marked versus unmarked talkers emphasize

the importance listeners place on specific cues, such as an unfamiliar accent or disfluency,

even when stimuli are short (≈ 2 sec). Note that talkers’ word choice was not a cue in this

experiment, because the sentences were given and the pet-directed speech did not include

much lexical variety. Out of the 9 marked talkers, 5 were perceived to have a non-American

dialect. In this context, decreases in performance when talkers were perceptually marked, in
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part, is consistent with previous findings that accented talkers are more difficult to identify

than unaccented talkers, especially when the utterances are short (< 1 sec) [GKB81], and

that listeners are better at discriminating among talkers when they are familiar with the

phonetic inventory used by particular talkers [KS11, Chap. 7.2.3].

Responses to the speech of the marked talkers were not only less accurate, but may also

have been biased to “different talker” decisions, suggesting a stricter criterion was applied

by listeners. This is possibly related to that listeners are worse in remembering accented

talkers than unaccented talkers as reported by Goldstein et al. [GKB81].

5.2 ASV Experiments

This section describes application of an i-vector/PLDA ASV system to the stimuli described

in Section 5.1.1. The same tasks presented to the human listeners were given to the ASV

system, permitting a fair comparison between humans and machines.

5.2.1 Method

An i-vector/PLDA ASV system described in Section 4.2.1.2 was used to analyze machine

performance. Here, only the recordings from female talkers were used to train the UBM and

subspaces because the evaluation utterances were all from female talkers.

Two feature sets, MFCCs and VQual2, were used in the experiments. Second deriva-

tives were not used because they did not provide notable performance gain in preliminary

experiments.

We tried to match the utterance duration between the training data and evaluation data

for i-vector and PLDA training by truncating the 2.5-minute long original recordings to 2-

second segments. However, it did not show any notable performance differences, possibly due

to decreased phonetic coverage. Thus, the original recordings were retained. After obtaining

PLDA scores from each system, score fusion was performed as described in Section 4.2.1.2.

The AUC and the EER were calculated to measure system performance. AUC values
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were estimated, using SYSTAT software, to facilitate comparisons with human performance.

5.2.2 Results and Discussion

Machine and human results are shown in Table 5.3. Similar to results in other studies that

improved ASV performance by fusing complementary features (e.g., [DP18]), score fusion

generally improved machine performance in the present study. For read–read pairs using all

talkers, for example, the AUC for the MFCC feature set, VQual2 feature set, and for the

fusion of the two were 0.776, 0.683, and 0.791, respectively. Thus, while the performance of

VQual2 alone does not exceed the performance of MFCCs, fusing the two systems seemingly

provided complementary information that improved performance. This pattern was observed

in most of the other comparisons.

The decrease in performance of the VQual2 features due to style mismatches was smaller

than that observed for MFCCs, although overall performance was generally worse for VQual2

features. For unmarked talkers, the EER for VQual2 increased from 36.08% for read–read

pairs to 44.09% for read–pet pairs (for a 22.20% relative decrease in performance), while

the EER for MFCCs increased from 30.31% to 44.17% (for a 45.73% relative decrease in

performance). For marked talkers, the VQual2 EER increased from 41.58% to 44.91% (a

8.01% relative decrease in performance), while the MFCC EER increased from 32.03% to

39.31% (a 22.73% relative decrease in performance).

Robustness to style variability suggests that voice quality features might be useful for

conditions that are challenging to conventional cepstral features. Note, however, that exper-

imental results reported in Chapter 4 showed that performance degradation of the VQual2

features due to style mismatches was similar to or worse than that of MFCCs. Unfortunately,

a direct comparison with that study is not appropriate because the speech samples used in

that study were 5-sec long while the speech samples in this study were about 2-sec long.

Since longer utterances benefit both MFCC and VQual2 systems, especially if the phonetic

content is richer, it might be the case that the advantage of having more phonetic content,

especially in read sentences, outweighed the within-talker variability in speaking style. Thus,
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Table 5.3: ASV performance evaluated using the same stimuli as in the perception exper-

iments. The AUC was measured, and the EER (%) was calculated from the ROC curve.

Human perception results in terms of AUC and EER are repeated from Table 5.2 in the last

column for comparison. The best performance for each condition is boldfaced.

MFCC VQual2 Fusion Human

AUC EER AUC EER AUC EER AUC EER

Read–read, unmarked talker pairs 0.765 30.31 0.679 36.08 0.780 29.21 0.885 19.02

Read–pet, unmarked talker pairs 0.587 44.17 0.581 44.09 0.601 47.54 0.644 39.23

Read–read, marked talker pairs 0.687 32.03 0.657 41.58 0.683 31.78 0.844 24.86

Read–pet, marked talker pairs 0.593 39.31 0.531 44.91 0.601 37.35 0.538 46.23

Read–read, all talker pairs 0.776 29.17 0.683 36.18 0.791 28.71 0.876 20.19

Read–pet, all talker pairs 0.594 43.44 0.587 43.55 0.615 42.79 0.628 40.34

All pairs 0.716 35.97 0.627 43.18 0.714 36.52 0.766 30.58

the compounded effect of utterance length, phonetic content and style variability requires

further analysis both for humans and machines. In addition, the experiments in Chapter 4

did not consider talker markedness, which might also have been a factor impacting system

performance.

Unexpectedly, MFCC performance for read–pet, marked talker pairs (EER = 39.31%)

was better than that for unmarked talkers (EER = 44.17%). For VQual2, the performance

degraded, but the difference was small (from 44.09% to 44.91%). These results suggest that

machines might be somewhat more robust to talkers’ markedness than humans are. In that

case, machines might play an important role to supplement human decisions when human

listeners are confused by markedness. Thus, the effect of markedness on human and machine

performance is worth further analysis with a larger number of talkers.

5.3 A Comparison between Human and Machine Performance

This section compares the human and machine voice discrimination results in the face of

within-talker variability as presented in Section 5.1.4 and Section 5.2.2. The purpose of the
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comparison is to investigate performance differences between humans and machines when

large within-talker variability makes the task difficult for both, and to analyze the factors

that affect performance. Recall that all tasks are text- and recording-session-mismatched.

For humans, although the EER could be computed from the ROC curve derived from lis-

teners’ confidence ratings, this metric might be misleading because humans cannot precisely

adjust their decision threshold to make the miss and false alarm rates equal. Additionally, as

noted earlier, because EER only focuses on a specific decision threshold, it might not repre-

sent overall accuracy. Thus, the AUC is used to compare human and machine performance,

and the EER is used only to compare machine performance in different conditions in the

rest of the paper.

As shown in Table 5.3, humans performed better than machines in most conditions. For

instance, with unmarked talkers, the AUC for ASV score fusion was 0.780 for read–read

pairs, compared to AUC = 0.885 for humans. Performance differences between humans

and machines could be due to many factors. First, humans can utilize multiple levels of

information from the audio signal, but machines rely on frame-level features. For example,

humans routinely attend to individual talkers’ unique prosody, idiosyncrasies in voice onset

time, and so on, but ASV systems consider the distribution of features extracted from 25-

msec frames and at most their time derivatives. Second, it is likely that even when humans

and machines use similar acoustic information, they process the information in different ways

to make same versus different talker decisions.

For read–read pairs, machines were less robust to markedness than humans were. Fusion

performance on read–read pairs from unmarked talkers resulted in an AUC of 0.780, while

the AUC for marked talkers equaled 0.683 (12.44% relative decrease in performance). Human

performance resulted in AUCs of 0.885 and 0.844 (1.24% relative decrease in performance)

for the unmarked and marked talkers, respectively. Because the UBM represents the overall

smoothed distribution of the acoustic features from a large number of talkers, idiosyncrasies

due to talker markedness might not be well-represented with this model. In addition, if

similar idiosyncrasies are not well-represented in the pre-training data, the machine will fail

to model the between-talker variability from these idiosyncratic differences, leading in turn
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to performance degradation.

On the other hand, machines performed better than humans for read–pet pairs from

marked talkers. Fusion AUCs for read–pet pairs from unmarked talkers and from marked

talkers were both 0.601. However, the AUC for human listeners decreased from 0.644 (un-

marked talkers) to 0.538 (marked talkers), a 16.46% relative decrease in performance. These

results imply that machines are less sensitive to talker markedness than humans are when

the acoustic characteristics of the speech change due to prosody exaggeration. However, it

might be difficult to generalize because there were only 9 marked talkers, and the effects

of talker markedness on pet-directed speech is not clear. The compounded effect of talker

markedness and speaking style on human and machine performance can be explored in the

future by including recordings from L2 English speakers.

It was consistently observed that the performance gap between humans and machines

was smaller for mismatched speaking styles. For instance, with read–pet, unmarked pairs,

the AUC for fusion was 0.601 and the AUC for humans was 0.644, while the AUCs for the

read–read, unmarked pairs was 0.780 for fusion and 0.885 for humans. The interesting small

performance gap between humans and machines for the read–pet condition will be analyzed

in detail in future studies.

5.4 Relationship between Human and Machine Decision Spaces

If humans are more accurate in discriminating different talkers, understanding how humans

make decisions might provide insights to improve machine performance. In this section,

human and machine performance were investigated with their decision spaces inferred using

multi-dimensional scaling (MDS). The relationship between human and machine decision

spaces and the relationship between the decision spaces and VQual2 features are analyzed.
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5.4.1 Performance Analysis for Subsets with a Smaller Number of Talkers

Previous studies [KG96] have shown that listener performance in discrimination tasks is

characterized by flexible, idiosyncratic perceptual strategies, such that a feature may be

important for distinguishing some pairs of talkers but not others. Given this situation,

combining too many talkers in a single analysis obscures the strategies used by listeners,

because relations in the “perceptual talker space” become too complicated to summarize

even with a large number of parameters. For this reason, we conducted analyses using small

(n = 15) subsets of the original set of 41 unmarked talkers in this section. The analyses

were restricted to read–read sentence pairs, because the main purpose is to investigate the

difference in decision strategies between humans and machines, and performance between

humans and machines differed most for these pairs. With 15 talkers, each subset had 15

same-talker pairs and 105 different-talker pairs. Ten sets of 15 talkers were randomly selected

from the 41 unmarked talkers. Three of the ten subsets (RAND1, RAND2, and RAND3)

were chosen for multi-dimensional scaling (MDS) analysis so that each unmarked talker was

included in at least one of the subsets. Discrimination data for the read sentence pairs used

in the perception experiment were extracted, and the performances of humans and machines

were calculated for each subset.

As shown in Table 5.4, the AUC for humans varied between 0.851 and 0.909, and the

EER varied between 16.10% and 21.53%. MFCC performance was worse than humans’ and

more variable across subsets: its AUC varied between 0.679 and 0.772, and the EER varied

between 26.61% and 40.57%. The AUC for score fusion varied between 0.713 and 0.792,

and the EER varied between 24.18% and 34.02%. VQual2 performance was most consistent

(although not the best) among the three ASV systems; its AUC ranged from 0.678 to 0.684

and its EER ranged from 34.44% to 36.75%.

The three subsets showed different rankings of the three ASV systems. In RAND1,

the MFCC system had a much better EER (26.61%) than VQual2 (36.75%), and fusion

showed the best performance (24.18%). In RAND2, MFCC performance (30.50%) was better

than that of VQual2 (34.44%), and was similar to fusion (30.31%). In RAND3, VQual2
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Table 5.4: Human and machine performance in terms of EER (%) and AUC. Performance

is measured for ten subsets of 15 randomly selected talkers reading sentences. The mean and

standard deviation (std) across the ten subsets are shown in the first two rows. Performance

on three of the ten subsets (RAND 1, RAND2, and RAND3) used for MDS analysis is shown

in the bottom three rows. There were 15 same-talker pairs and 105 different-talker pairs in

each subset. Fusion indicates that a linear score fusion is used between the MFCC and

VQual2 systems. Performance of the best performing ASV system, is boldfaced for each

subset.

MFCC VQual2 Fusion Human

AUC EER AUC EER AUC EER AUC EER

Mean 0.726 32.99 0.680 35.87 0.744 29.82 0.890 18.49

Std 0.056 6.21 0.040 2.65 0.039 3.80 0.021 2.42

RAND1 0.772 26.61 0.680 36.75 0.792 24.18 0.851 21.53

RAND2 0.703 30.50 0.678 34.44 0.722 30.31 0.898 17.61

RAND3 0.679 40.57 0.684 36.35 0.713 34.02 0.909 16.10
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performance (36.35%) exceeded MFCC (40.57%), and was improved by fusion (34.02%).

5.4.2 Method

Nonmetric MDS [KW78] was applied to provide insight into the differences in the information

utilized by humans and machines. MDS is often used in forensic studies to objectively

measure perceived talker similarity to construct fair voice lineups [McD13]. The MDS space

can be thought of as a “(perceptual) talker space” where the stimuli are close if they are

perceived as similar. The MDS axes can be interpreted by examining correlations between the

coordinates of the stimuli and acoustic or other measures of those stimuli: a high correlation

suggests the measure might be an important cue for distinguishing talkers.

5.4.2.1 MDS space determination

For each 15-talker subset, confidence ratings from human listening data were combined with

same versus different judgements, such that a value of 1 (positive, same talker) was assumed

to mean the voices were very similar, and a value of 10 (positive, different talkers) meant they

were maximally dissimilar. These scores were averaged across listeners and assembled into

lower-half dissimilarity matrices. For the three ASV systems (MFCC, VQual2, and fusion),

the dissimilarity between a pair was calculated as the negated PLDA score. Nonmetric MDS

was then performed on the human data and on ASV systems for each talker subset. MDS

solutions were calculated in 2–5 dimensions for each subset of the data, and solutions were

chosen by reference to plots of the number of dimensions extracted versus R2 and stress

([KW78, pp. 48–60]). R2 measures the variance in dissimilarities explained by the MDS

solution, and stress measures the overall fit of the scaling model to the data. Solutions

were chosen based on elbows in plots of stress and R2 versus the number of dimensions

(Fig. 5.1). A four-dimensional solution best fits human data for RAND1, while the solutions

are three-dimensional for RAND2 and RAND3.
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Table 5.5: R2 scores of the CCA between the MDS space from the three ASV systems

(MFCC, VQual2, and fusion) and human MDS space in each talker subset (RAND 1–3).

MFCC VQual2 Fusion

RAND1 0.295 0.300 0.563

RAND2 0.151 -0.099 0.220

RAND3 0.503 0.125 0.284

5.4.2.2 Relationship between human and machine decision spaces

Canonical correlation analysis (CCA, e.g., [TF13]) was used to evaluate the extent to which

human and machine talker spaces were related. Here, one set of the variables consists of

the MDS coordinates from each of the three ASV systems (MFCC, VQual2, and fusion) for

a talker subset, and the other is the MDS coordinates from human responses for the same

subset. The R2 values were calculated in a sense that one set of the variables were predicted

by a CCA model from another set of variables. If the first set of variables can be predicted

perfectly by the model, the R2 value is 1. A constant model, which always predicts same

values regardless of the input, would get an R2 value of 0. If a model is worse than the

constant model, then the variance of residuals can be larger than the total variance of the

data, resulting in a negative R2.

5.4.2.3 Acoustic correlates of MDS axes

We analyzed how the 11 VQual2 acoustic measures were correlated with MDS spaces for

both sets of similarity data. The mean value of each of the 11 acoustic measures was

calculated for each utterance from all 50 talkers, and a factor analysis of dimension 5 was

undertaken to reduce the number of predictor variables. A similar procedure was applied to

the standard deviations of the acoustic measures. The absolute factor loadings, which reflect

the correlations between the acoustic measures and factors, are shown in Fig. 5.2.

For the acoustic means, factor 1 was mostly related to the formant amplitudes (A1, A2,
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and A3), CPP, and F2, and factor 2 was related to F2, and A3. Factor 3 was highly correlated

with H2-H4 and F1, and factor 4 showed a strong relationship with F0. Factor 5 was related

to F3. For the standard deviations, factor 1 was highly correlated with formant amplitudes

(especially A2) followed by H4-H2k and CPP, and factor 2 was related to F0, and to the first

and the second formant frequencies. No feature was correlated with factor loading magnitude

greater than 0.5 for factors 3, 4, and 5.

Next, factor scores calculated at the utterance level were averaged within each talker,

after which we constructed 5-dimensional acoustic talker spaces for each subset. Finally, the

relationship between the acoustic space and the MDS spaces was analyzed using multiple

regression.

5.4.3 Results

5.4.3.1 Relationship between human and machine decision spaces

The resulting R2 score using 3-component CCA is shown in Table 5.5. Dimensions of the

machine MDS spaces were insufficiently interpretable in terms of the dimensions of the

human perceptual space, suggesting that machines and humans used different strategies to

discriminate talkers. For RAND1, at most 56.3% of the variance in the ASV talker space was

explainable using the dimensions from the speaker space derived from perceptual data. For

RAND2/VQual2, the negative R2 value indicates that the estimated model was worse than

the constant model. The overall low R2 values suggested that there was little relationship

between human and machine talker spaces, at least when a linear model was used.

If we compare the CCA results in Table 5.5 with the EER performance in Table 5.4,

we notice that the relationship between the model fit and system performance was weak.

For example, the best performing ASV system in Table 5.4 was fusion for all subsets. In

Table 5.5, however, fusion showed the highest R2 value for RAND1 and RAND2, but not for

RAND3. In addition, even though the R2 value of RAND3 MFCC was the second highest

(R2 = 0.503), its performance was the worst (EER = 40.57%) among all three subsets. The

weak relation between human and machine talker spaces suggests that acoustic information
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Figure 5.2: Absolute values of the factor loadings for acoustic measures. Darker color in-

dicates greater factor loadings. A 5-dimensional factor analysis was performed using the

means (top) and standard deviations (bottom) of the acoustic measures for each utterance

for dimensionality reduction.
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might be used differently by humans versus machines.

5.4.3.2 Acoustic correlates of MDS axes

Multiple regression results between the MDS spaces and acoustic factors are shown in Ta-

ble 5.6. Interestingly, factors estimated from the means of the acoustic measures were related

to the most important dimension (D1) of the perceptual talker spaces for all subsets, and

the factors from the standard deviations, which can be related to the within-utterance vari-

ability, were related to D1 of the MFCC talker spaces for all subsets. For humans, factors 4

and 5, derived from mean acoustic measures, were statistically significant (p < 0.05) for the

multiple regression model in RAND1 and RAND2, and RAND1 and RAND3, respectively.

Recall that factor 4 was highly related to F0 and factor 5 was related to F3. These results are

consistent with previous studies that reported F0 and F3 being the most important acoustic

predictors of human judgements (e.g., [BB10, NMH11]). In RAND2, factor 2 from the mean

data, which was related to F2, F3 and A3, was significantly related to human D1. For the

standard deviations, RAND3, factor 1 was related to formant amplitudes, and was signif-

icantly related to human D1. These results suggest that formant amplitudes might also

provide important information for human decision making.

For MFCCs, factor 5 from the standard deviation data was significantly related to D1

for subsets RAND1 and RAND3. For VQual2, which was derived from a psychoacoustic

model of voice quality, none of the MDS dimensions was significantly associated with any

factor(s), even though the factors were estimated using voice quality features. R2 values

in linear regression only reflect the linear part of the decision-making process, but there

are other parts that are not linear. Thus, even though the VQual2 system makes decisions

based on the VQual2 feature set, its decision space might not be fully interpretable as a

linear combination of those features.
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5.4.4 Discussion

Across all three subsets of the read–read, unmarked stimuli, humans were more accurate

and consistent at voice discrimination than were machines. However, subsets differed in

how difficult they were for humans versus machines, and human and machine talker spaces

were not strongly related in terms of the features that explained stimulus confusability.

Differences between humans and machines could have occurred because humans utilized

information that was not explicitly given to machines, such as spectro-temporal information

and linguistic knowledge, and/or they used similar acoustic features but processed them

differently.

The present results do not allow us to evaluate these possibilities. To evaluate the first

possibility, an automatic system that can process supra-segmental information is needed.

The widely used, frame-level feature based ASV system used in the current study is not

explicitly given such information. Other systems that utilize prosodic information to model

talkers (e.g.,[DDK07]) need to be developed. Evaluating the second possibility would require

a more complex model of how features are processed and used in decision making. For

example, even though the VQual2 system made decisions based on voice quality features,

the decisions did not appear to depend on the linear combination of the means and standard

deviations of the features that explained human and MFCC system performance.

Instead, the results highlight differences in human and machine decision making. For

example, the most important dimensions underlying human responses were highly related

to the means of voice quality features, while MFCC responses were more closely related to

standard deviations of the same features. This might indicate that humans perform best with

the talkers whose voices are separated apart in mean values, while MFCC-based systems work

best when the within-utterance variance is large so that the acoustic information coverage

in an utterance is sufficient to model the talker.
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5.5 Comparison between Human and Machine Responses and Re-

liability

In the previous section, talker spaces inferred from the human and machine responses were

compared using MDS. Here, we analyze a different aspect of human and machine responses,

focusing on the direct relationship between them and the responses’ reliability. Neurologi-

cal data showed that speaker recognition and discrimination are separate abilities [VK87].

Considering that, perceptual strategies to identify similarity might be different from those to

detect dissimilarity between talkers. For example, a talker clustering experiment showed that

human listeners’ performance for ‘telling people together’ and ‘telling people apart’ differed

significantly [LBG18]. In this context, we relate responses by humans and the ASV systems

for target (same-talker pairs) and non-target trials (different-talker pairs), separately.

5.5.1 Method

The human and machine voice discrimination results presented in Section 5.1.4 and Sec-

tion 5.2.2 were used. In this study, read sentence pairs from all 50 female speakers were

investigated. Read sentence pairs were selected because the main focus was to analyze the

difference in responses and reliability between human and machine, and performance between

them differed more for these pairs than read–pet pairs.

5.5.1.1 Evaluation metric

Although EER and AUC are widely-accepted metrics for evaluation, they are not suitable

for analyzing target and non-target trials separately. Thus, in this study, the detection cost

function (Cdet), commonly known as DCF, and the log-likelihood-ratio cost function (Cllr)

were used for performance evaluation [LB07]. The dissimilarity scores δ for human responses

were calculated as defined in Eqn. 3.1, and these scores were averaged across listeners. For

the ASV systems, the PLDA score, which represents the ratio of the likelihood that the

given pair of utterances are from the same talker to the likelihood that the pair is from two
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different talkers, was used. After obtaining the dissimilarity scores from human listeners and

PLDA scores from each of the automatic systems, the scores were calibrated using standard

logistic regression. The resulting calibrated log-likelihood-ratio (LLR or L) represents the

scalar responses by humans and the two automatic systems.

Cdet is defined as the expected cost of detection errors. It is a measure of discrimination

suitable for evaluating application-dependent performance. For our application, Cdet was

obtained with cost of misses set at 25 and cost of false alarms set at 1 (25 was the ratio

between non-target and target trials).

On the other hand, Cllr is defined as an integral over a spectrum of operating points of

Cdet. Thus, Cllr is an application-independent measure for evaluating scalar responses. It

can be interpreted as a measure of loss of information, thus the lower the Cllr, the more the

average information per trial (in bits) increases by applying the system. Cllr has an analytic

solution as shown in [LB07]:

Cllr =
1

2

(∑
t∈tar

log2(1 + e−Lt)

Ntar

+
∑
t∈non

log2(1 + eLt)

Nnon

)
(5.1)

where Lt is the log-likelihood-ratio for trial t; ‘tar’ is a set of Ntar target trials and ‘non’ is a

set of Nnon non-target trials. The two normalized summation terms represent expectations

of ‘log costs’ for target trials (first term) and for non-target trials (second term), respectively.

For example, consider a trial t1. If it is a target trial, the cost is Ctar
llr = log2(1 + e−Lt1 ).

If a system correctly gives a high degree of support for the target hypothesis, i.e. Lt � 1,

then the cost is close to zero (Ctar
llr ≈ 0). On the other hand, if the system incorrectly gives

a high degree of support for the non-target hypothesis (Lt � −1), then the cost becomes

high (Ctar
llr ≈ |Lt|). The cost for non-target trials, Cnon

llr = log2(1 + eLt), can be understood

in a similar way. For a neutral log-likelihood ratio (Lt = 0), Ctar
llr = Cnon

llr = 1. That is,

the reference system, which does not process speech and simply outputs Lt = 0 for every

trial, will have a cost of Cllr = 1. A poor system might result in Cllr > 1, indicating a worse

performance than the reference system.

The Bosaris toolkit [BD11] was used to calibrate the raw scores and for calculating Cdet

and Cllr. As limited amount of data were analyzed, and as the main purpose of the study
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was to analyze calibration-independent performance, the calibration was trained and used

on the same dataset.

5.5.1.2 System fusion

Systems were fused based on the logistic regression method [BBC07] using the Bosaris

toolkit [BD11]. The fusion trains combination weights to fuse multiple systems providing

a calibrated set of log likelihood ratios. Note that human and machine responses were

all converted to L scores. This consistency in metrics enabled fusion between human and

machine responses.

5.5.1.3 Talker-level analysis

The L and Cllr values were analyzed at the talker level. In this way, we investigated how

responses by humans and machines as well as their reliability differ talker-by-talker. Lt is a

measure of how much the system considers the pair in the trial t to be from a single talker.

That is, this score has a larger value if the voices in the pair sound “similar” to the system.

For each of the 50 talkers, the Lt values for the trials including that talker were computed.

Then, mean values of Lt for target and non-target trials were calculated separately, denoted

as Ltar and Lnon, respectively. If Ltar is large for a talker, this indicates that the talker has

small within-talker variability. Similarly, if Lnon is large for a talker, it indicates that the

talker has small between-talker variability, and it is difficult for the system to distinguish

her from others.

Ctar
llr and Cnon

llr , at the talker level, were calculated in a similar manner. Cllr can be

representative of the reliability of the L score. The lower the Cllr, the more reliable the

system responses are for the talker.

83



5.5.2 Results and Discussion

5.5.2.1 Human and machine performance

Human and machine performances are summarized in Table 5.7. Consistent with the previous

results using EER and AUC, humans performed better than machines. For example, for

humans Cdet was as low as 0.273, while values for the MFCC-based system and VQual-based

system were 0.500 and 0.682, respectively. Humans performed even better than fusion of the

two automatic systems, which had Cdet = 0.513. In addition, fusing human responses with

any automatic system improved the performance, consistent with [GHR13]. This trend was

preserved with different false alarm cost values, and for the Cllr values.

Fusion between systems improved the performance, suggesting complementarity among

systems. VQual2 contributed to decreasing different types of cost when fused with another

system. For example, when MFCC was fused with VQual, the Cnon
llr decreased from 0.739

to 0.721, without changing Ctar
llr . On the other hand, when humans’ scores were fused with

VQual2, the Cnon
llr was not affected while the Ctar

llr decreased from 0.417 to 0.405. MFCCs

provided more complementary information to human responses than VQual2 features did;

they reduced Ctar
llr and Cnon

llr from 0.417 to 0.342 and from 0.434 to 0.368, respectively.

5.5.2.2 Log-likelihood-ratio analysis

Talker-level Ltar and Lnon are shown in Fig. 5.3. For humans, the target trial distribution

had a smaller variance compared to that of the ASV systems. Additionally, the Ltar and

Lnon distribution for humans were well-separated. This explains higher human accuracy

compared to machines.

Interestingly, the distributions of human responses were non-Gaussian and skewed to-

wards correct responses. This tendency was more evident for the Ltar than Lnon. That is,

humans were quite sure when they made decisions, and they were more positive when they

made “same talker” responses than “different talker” responses. Listeners were more con-

servative in making “different talker” responses, and the responses had more Gaussian-like
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Table 5.7: ASV performance for all 50 talkers in terms of detection cost functions (Cdet), log-

likelihood-ratio cost (Cllr), log-likelihood-ratio cost for target trials (Ctar
llr ), and log-likelihood-

ratio cost for non-target trials (Cnon
llr ). The plus (‘+’) symbol indicates a fusion between

the systems. Best performance among individual systems and among fused systems are

boldfaced.

Cdet Cllr Ctar
llr Cnon

llr

MFCC (M) 0.500 0.737 0.736 0.739

VQual2 (V) 0.682 0.884 0.897 0.872

Human (H) 0.273 0.425 0.417 0.434

M+V 0.513 0.728 0.736 0.721

H+M 0.216 0.355 0.342 0.368

H+V 0.273 0.419 0.405 0.434

H+M+V 0.231 0.353 0.341 0.365

distribution than that of “same talker” responses.

Next, the correlations between the Lnon for humans and the two ASV systems were

analyzed to understand which acoustic information was related to human responses (see

Table 5.8). Compared to MFCCs, VQual2 had a higher correlation with the human re-

sponses for Lnon (r = 0.610). This might be related to the finding that human experts’

decisions based on voice quality information could resolve false acceptance by an MFCC-

based system [HHF17]. Interestingly, for the 9 marked talkers, the correlation was even

Table 5.8: Correlation coefficients of Ltar and Lnon per speaker between each of the two ASV

systems (MFCC and VQual) and humans.

MFCC VQual2

Ltar 0.127 0.216

Lnon 0.273 0.610
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Figure 5.3: Scatterplots of Ltar and Lnon per talker comparing MFCC vs humans (top) and

VQual2 vs humans (bottom). Ltars are denoted with discs (‘◦’), and Lnons are denoted with

crosses (‘×’). Dots (‘·’) indicate the talkers are perceptually marked.
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higher (r = 0.912). This might be related to findings that when linguistic cues are limited

in the stimuli, human listeners assess talker similarity of non-target pairs by relying on voice

quality [SFH16]. These results suggest that the VQual2 features are related to human re-

sponses for non-target trials, especially when the talker has perceptual markedness. This

hypothesis will be tested in a follow-up study including more marked talkers.

This tendency was not apparent for Ltar. It is possible that humans’ “same talker”

decisions involve more information than “different talker” decisions. It can be hypothesized

that humans make a “same talker” decision only when all (or most) aspects of the voices

match, while they make a “different talker” decision when any aspect does not match.

Unfortunately, because only one target trial per talker was made in this experiment, as

opposed to 25 for the non-target trials, it is difficult to analyze what acoustic information

was correlated with human responses for target trials.

5.5.2.3 Log-likelihood-cost analysis

In Section 5.1.4, it was noted that human performance degraded when talkers were percep-

tually marked. To analyze the relationship between talker markedness and system reliability

in terms of the information loss, Cllr values were analyzed. Table 5.9 shows Cllr, C
tar
llr , and

Cnon
llr values for the 9 perceptually marked talkers, 4 marked talkers who were monolingual

English speakers, and 5 marked talkers who had non-American accents. The 4 monolingual

marked talkers did not have non-American accents, but they had unusual dysfluencies in

reading.

For humans, the mean Ctar
llr among the marked talkers was 0.784 compared to 0.417 for

all talkers. For MFCCs, the mean Ctar
llr among the marked talkers was 0.574 compared to

0.736 for all talkers. VQual2 showed no significant difference between the marked talkers

and all talkers (0.909 and 0.897). That is, the MFCC-based system could take advantage of

acoustic information for “same talker” decisions from talker markedness, while humans and

VQual2-based system could not.

Moreover, when selecting the 4 monolingual English speakers among those marked talk-
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Table 5.9: Cllr, C
tar
llr , and Cnon

llr values for perceptually marked talkers (n = 9), monolingual

marked talkers (n = 4), and marked talkers with non-American accents (n = 5). Values for

all 50 talkers are reported in Table 5.7.

Marked Monolingual Accent

Cllr Ctar
llr Cnon

llr Cllr Ctar
llr Cnon

llr Cllr Ctar
llr Cnon

llr

MFCC 0.671 0.574 0.767 0.746 0.664 0.828 0.611 0.503 0.718

VQual2 0.883 0.909 0.856 1.015 1.121 0.919 0.777 0.740 0.814

Human 0.576 0.784 0.368 0.996 1.445 0.548 0.240 0.256 0.224

ers, human Ctar
llr increased to 1.445. The other 5 talkers’ Cllr was much lower (0.256). This

suggests that humans were not able to detect a consistent pattern in dysfluencies, but they

could detect patterns for making “same talker” decisions for the 5 talkers with non-American

dialects. This hypothesis will be tested in future studies by including more target trials and

marked talkers.

5.6 General Discussion

Experiments reported in this chapter and key results are summarized in Table 5.10. Human

and machine voice discrimination performance on short-utterance, text-independent stimulus

pairs were investigated in this study. Read sentences, about 2-sec long, were used to evaluate

performance with clear speech, and excerpts from pet-directed speech of similar duration

were used to investigate the effect of exaggerated prosody. Analyses compared performance

when pairs matched (read–read) or mismatched (read–pet) for speaking style.

Results showed that human listeners were reasonably accurate at discriminating voices

based on read–read pairs, but performance degraded significantly with style-mismatched

pairs. Contrary to expectations, humans performed worse when discriminating between two

marked talkers than when discriminating between two unmarked speakers both for read–read

pairs and read–pet pairs. The effect of talker markedness on voice discrimination is worth
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exploring in detail in the future. The UCLA Speaker Variability Database includes many

non-native speakers of English whose speech could be useful for this purpose.

The machines tested here were less accurate than humans for read–read pairs, which is

consistent with previous studies that reported poor ASV performance with short-utterance

text-independent tasks. Performance degraded even more with pet-directed speech for un-

marked talkers, especially for MFCC- and VQual2-based systems, either because prosody

exaggeration distorted acoustic features or because the databases used for the pre-training

did not have a similar speaking style. Score-level fusion of the two systems improved per-

formance, suggesting that VQual2 provides information that is complementary to MFCCs.

This feature set may be especially valuable when within-talker variability is large. Interest-

ingly, with style-mismatched pairs, talker markedness had little effect on VQual2 features,

and MFCC and fusion performance even improved for these pairs, to such an extent that

machines outperformed human listeners. Unfortunately, the number of marked talkers in

this study was not large enough to ensure that this result is robust. A follow-up study will

analyze what advantage machines have when human performance is critically affected, and

how to utilize that advantage in speaker verification tasks.

Human and machine performance on read–read pairs of unmarked talkers was further

investigated with MDS on smaller subsets of talkers. CCA results between human and

machine talker spaces showed a weak relationship between the human and machine spaces.

Further, better machine performance did not lead to an increase in the strength of this

association. These results suggest that humans and machines use different strategies to

distinguish talkers. Multiple regression between acoustic feature factors and MDS spaces for

humans and machines found that human MDS axes were reasonably well-modeled as linear

combinations of means of voice quality features. On the other hand, neither MFCC nor

VQual2 MDS spaces could be well-modeled using mean values. These findings suggest that

investigating how voice quality feature means are related to human responses might provide

valuable insights into perceived talker identity. The knowledge could also prove useful for

improving machine performance, by exploring how to process acoustic features effectively.

Different aspects of voice discrimination decisions by humans and machines were inves-
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tigated, focusing on analyzing their responses and reliability. System responses were re-

evalutated in terms of the log-likelihood-ratio, and the reliability was calculated in terms of

the log-likelihood-ratio cost function. Target and non-target trials were analyzed separately.

Consistent with previous results, human listeners were considerably more accurate than

machines. Higher confidence for correct target decisions compared to correct non-target de-

cision was observed in human response distribution. For non-target trials, system responses

per talker were highly correlated between humans and VQual2, especially when the talkers

were perceptually marked. In addition, when humans are distinguishing between talkers,

they seem to use an approach similar to the VQual2 system.

For target trials, humans response reliability decreased for marked speakers compared

to when all the speakers were considered. However, MFCC response reliability was higher

for marked talkers than all talkers. This suggests that MFCCs could extract information

from talker markedness for target trials, while VQual2 response reliability was not affected

by talker markedness. Results suggest that machines might be able to supplement human

listeners in such conditions.

In future studies, perception experiments will include more target trials, as well as more

marked talkers. In addition, machine performance can be examined by varying the training

data conditions, such as talkers’ language background, gender, and/or recording conditions.

Modeling prosodic features might also be a promising research direction for ASV, as is

examining how effectively human and machine decisions can be combined.
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Table 5.10: Summary of experiments (Ex.) reported in Chapter 5. Fusion indicates a

weighted combination of the scalar responses from individual systems.

Perception

Speaking style read sentences, pet-directed (both ≈ 2 sec)

No. talkers 50 females

No. listeners 65

ASV

Speaking style read sentences, pet-directed (both ≈ 2 sec)

No. talkers 50 females

Systems MFCCs, VQual2, fusion

Human vs. machine

comparison

Speaking style read sentences

Method Ex.1: decision spaces inferred with multidimensional scaling

Ex.2: log-likelihood-ratio cost function (Cllr)

Key results Human and machine decision spaces were weakly correlated.

VQual2 system responses were most related to human responses

for non-target pairs.
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CHAPTER 6

Applications of Voice Quality Features in

Affect Recognition

In Chapters 3 through 5, the effectiveness of voice quality features for improving au-

tomatic speaker discrimination performance and for predicting human speaker discrimina-

tion responses was shown. In this chapter, the application of the voice quality feature set

(VQual2) is extended to affect recognition. Voice quality has been frequently associated with

affect [Sch86, MA93], and a strong relationship between voice quality and perceived affect

was found through experimental studies with human listeners [GN03]. Thus, we expect the

VQual2 feature set to be correlated with perceived affect, and hence may improve auto-

matic classification of it. The study presented here aims to automatically classify perceived

affect from speech samples spoken by mentally, neurologically, and/or physically disabled

individuals, as a participation in the Interspeech 2018 Atypical Affect subchallenge [SSB18].

6.1 Data

The Atypical Affect challenge provided speech samples from the EmotAsS (EMOTional

Sensitivity ASsistance System for people with disabilities) database [HSC17]. The database

consists of spontaneous speech samples from 8 female and 7 male German talkers with

mental, neurological, and/or physical disorders. Among the 15 talkers, 12 had mental, 2

had neurological, and 1 had multiple disabilities. No further details on the disabilities was

Parts of this chapter were published in [PAC18].
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Table 6.1: Number of utterances per class in training/development/testing subsets for the

Atypical Affect challenge [SSB18].

Training Development Test

Angry 125 50 272

Happy 743 2,287 650

Neutral 2,287 2,842 2,024

Sad 187 329 153

Total 3,342 4,186 3,099

provided, due to strict privacy restrictions. The talkers were recorded in a familiar room at

their workplace while speaking about their personal and health issues. Recordings were made

with a ZoomH6 and a Jabra Speak 510 microphone, both at a sampling rate of 44.1 kHz.

A total of 10,627 segments of speech (9.2 hours) were collected, and they were annotated

by, on average, 12 volunteering human listeners through a gamified crowdsourcing platform

iHEARuPLAY [HSC17]. The annotators were asked to choose among 6 emotions (anger,

disgust, fear, happiness, sadness, and surprise) and neutral. Because only a few samples were

annotated as disgust, fear, and surprise, these samples were discarded, resulting in 4 classes:

anger, happiness, sadness, and neutral. The data split into training/development/test sub-

sets is shown in Table 6.1. This dataset is denoted as the Atypical Affect dataset.

In order to cope with the limited amount of data in the Atypical Affect dataset, sup-

plemental data for training were collected from the dataset for the Self-Assessed Affect

subchallenge [SSB18]. This corpus was chosen because it contained German spontaneous

speech, consistent with the Atypical Affect dataset. The Self-Assessed Affect dataset in-

cluded recordings from 100 talkers (85 females, 15 males), who told two negative and two

positive stories, each with a duration of about 5 minutes. The sampling rate was 44.1 kHz.
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6.2 Method

6.2.1 Acoustic Features

The computational paralinguistics challenge provided a baseline feature set [SSB16, WES13]

that can be extracted using the OpenSMILE toolkit [EWS10]. The set consists of F0, energy,

spectral, cepstral coefficients and voicing-related frame-level features which are referred to

as low-level descriptors. They also include the zero-crossing rate, jitter, shimmer, harmonic-

to-noise ratio, spectral harmonicity and psychoacoustic spectral sharpness. The complete

feature set had a dimension of 65. This feature set is denoted as the ComParE16 feature set.

Mel-frequency cepstral coefficients (MFCCs) of dimension 20, including the zeroth coef-

ficient, were extracted using a 25 msec window and a 10 msec frame shift. VQual2 features

of dimension 11 were extracted as described in Chapter 4. The first and second derivatives

were also computed for MFCCs and VQual2. The complete feature set had dimensions of

60 and 33 for MFCCs and VQual2, respectively.

6.2.2 Utterance Representation

The baseline system provided by the challenge calculated various statistics within an utter-

ance, such as the mean and standard deviation, of the ComPareE16 feature set representing

each utterance. We propose to use the supervector framework [CSR06] to model the dis-

tribution of acoustic features within an utterance. The utterance-level representations were

then used for affect classification.

Compensating for the effect of a particular disorder on speech signals was not explicitly

attempted in this study because the available metadata did not include information to per-

form such analysis. Instead, we focused on predicting perceived affect regardless of the kind

of disorder.
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6.2.2.1 Supervector construction

In the supervector framework [KMD03], each utterance is represented with a single vec-

tor that is constructed by concatenating the mean vectors of a Gaussian mixture model

(GMM) representing the feature distribution within an utterance. The mixture model is

often adapted from the universal background model (UBM), which is a statistical model for

average speech sounds, usually trained with a large amount of recordings from a large num-

ber of speakers. The supervector summarizes the feature distribution within an utterance,

and thus can be used as an utterance representation. A further process can be made using

the i-vector framework. In that framework, the supervector is projected to a low-dimensional

subspace in order to efficiently represent the utterance-specific characteristics [HH15]. The

i-vector approach is most effective when a large database including a wide range of affect and

speaker variability is available. Considering that the available amount of data was limited

to train both the UBM and the i-vector subspaces, we decided to directly use supervectors

for this task.

A UBM was constructed using the ‘neutral’ class of the Atypical Affect dataset, and

the data provided for the Self-Assesed Affect subchallenge. After the UBM was trained, the

feature distribution of each utterance was modeled with a GMM adapted from the UBM using

the maximum a posteriori criterion [CSR06]. The supervector, which is the concatenated

mean vectors of the GMM, was used to represent each utterance.

6.2.2.2 Utterance clustering based on F0

F0 distributions for the training and development datasets were bimodal, as shown in the

first column of Figure 6.1. The bimodal distribution suggests the possible effect of gender

differences (females having, on average, a higher F0 than males). It was also observed

that the F0 distribution for the training and development datasets were not similar. For

example, there were two peaks in the F0 distribution of the ‘happy’ class in the training

dataset, while the F0 distribution of the same class in the development dataset did not show

a clear second peak. The mismatch in the F0 distribution between the datasets suggests
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that the gender distribution in the datasets might differ significantly. Considering that

affect representation can be different across gender [VA06], gender distribution mismatch

could degrade classification performance. For example, if the majority of the training data

were from males while the development data had more females than males, the statistical

model built on the features extracted from the training data might not be able to accurately

predict the affect for the development data.

One possible approach to alleviate the mismatch problem is gender-dependent modeling,

but gender labels were not available. Hence, we used F0 to group the utterances into two

clusters. A Gaussian mixture model with two mixtures was used for clustering, based on the

median value of F0 within each utterance. The resulting cluster size differed significantly

across datasets. For example, in the training dataset, the number of utterances for the

‘happy’ class was 165 and 578 in low-F0 cluster and high-F0 cluster, respectively, while in

the development dataset, the corresponding numbers were 632 and 333.

Example feature distributions (F0 and H4-H2k) without and with clustering are shown

in Figure 6.1. Note that clustering was performed at the utterance level, while the feature

distribution is computed at the frame level. Because utterances can have low-F0 frames while

the utterance F0 median value is high, frame-level F0 distribution might not show a clear

separation between clusters. Clustering resulted in a more matched distribution between the

training and development datasets, especially for ‘happy’ and ‘angry’ F0 distributions, and

for the H4-H2k distribution in the ‘happy’ class.

However, this clustering inevitably results in a reduced amount of data for training within

each cluster, which might introduce limitations to classification performance.

6.2.3 Affect Classification

6.2.3.1 The Gaussian mixture model classifier

Because the number of utterances in each affect class is limited, training the Gaussian mix-

ture models (GMMs) directly from the samples within each class is prone to overfitting.

In order to mitigate the overfitting problem, a GMM was trained using the ‘neutral’ class,
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Figure 6.1: Example feature distributions without and with unsupervised clustering. The

distribution for the training dataset (solid line) and the development dataset (dashed line) are

shown separately. Blue and green curves show the distribution of features from utterances

in the first cluster, while read and orange curves show those in the second cluster. The

distributions within clustered subsets match better between the training and development

datasets compared to the non-clustered distributions.
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not only because it is the class with the highest number of samples, but also because emo-

tional speech could be regarded as a variation of neutral speech [YBL04]. The models for

the remaining three classes (‘sad’, ‘angry’, and ‘happy’) were adapted from the ‘neutral’

model. The classification decision, based on the log-likelihood criteria, dictated whether a

test supervector was drawn from each class.

6.2.3.2 The support vector machine classifier

A standard support vector machine (SVM) using a linear kernel implemented in the Weka

toolkit [HFH09] was used. The supervector configuration that performed the best for each

feature set was used for the SVM classification. The complexity parameter C was chosen

between the values 10−1, 10−2, 10−3, 10−4, 10−5, and 10−6, so that it maximizes the system

performance on the development dataset for each feature set. Data upsampling was carried

out for the under-represented classes to address the data imbalance problem.

6.2.3.3 System fusion

The best performing configuration for each feature set/classifier combination on the devel-

opment dataset was selected as the representative system for that combination. The system

fusion was performed on the n-best performing representative systems.

In order to fuse the results from the GMM and SVM classifiers, the log-likelihood output

from the GMM classifier was converted into the confidence score so that it was consistent

with the baseline SVM classifier results. The SVM classifier’s confidence score was the

probability that the test utterance belonged to a class, and it was calculated so that scores

for the classes added up to one. On the other hand, the GMM likelihood was calculated for

each class independently, hence, there was no guarantee that the likelihoods for the classes

added up to one. Thus, the confidence for the i-th class, ci, was calculated as follows:

ci =
exp (li − µ)∑M
i=1 exp (li − µ)

(6.1)

where li is the log-likelihood for the i-th class, M is the number of classes, and µ =
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1/M
∑M

i=1 li is the mean of the log-likelihoods across the classes. The confidence scores

from the classifiers were averaged and used for the combined class decision.

6.2.4 Evaluation Metric

The evaluation measure for the challenge was unweighted average recall (UAR). Unweighted

average recall was used instead of a weighted one, since it is commonly used where there

are highly unbalanced distributions of speech samples among classes. Using this metric, no

matter how imbalanced the data is, the chance-level performance is 100
M

%, where M is the

number of classes. Therefore, making a random guess among the 4 emotion classes in this

task will result in a UAR of 25%.

Note that the metrics used in the previous chapters (e.g., EER) are not appropriate for

this task, because those metrics evaluate binary decisions while this task is a multi-class

classification one.

6.3 Results and Discussion

6.3.1 Individual Supervector-Based System Performance

The performances of individual systems in terms of UAR are summarized in Table 6.2.

VQual2 performed better than both MFCCs and the baseline ComParE16 feature set in all

conditions.

Contrary to expectation, clustering did not provide a performance gain. For the MFCC

feature set, the performance degraded from 41.37% UAR to 36.78%. The degradation might

be due to overfitting because of insufficient amount of data to train within each cluster.

Because MFCCs had 60-dim features while VQual2 had 33-dim features, the shortage of

data points might have affected the MFCC-based system more critically.

It is interesting to note that the ComParE16 feature set performance was improved

to 40.7% UAR by using the supervector, compared to the OpenSMILE baseline system

with a UAR of 37.8%; recall that the baseline system uses a statistics vector for utterance
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Table 6.2: Individual system performance in terms of unweighted average recall (UAR, %).

The performance was measured on the development dataset. The system configurations

chosen for fusion are denoted with asterisks (*), and the ranking among them is shown in

the last column. The SVM parameter C = 10−6, 10−5, and 10−3 was used for the VQual2,

MFCCs and ComParE16 features, respectively.

Feature set Clustering Classifier UAR Ranking

VQual2 Yes GMM 39.40 -

VQual2 No GMM *41.37 2

VQual2 No SVM *41.92 1

MFCC Yes GMM 36.78 -

MFCC No GMM *41.21 3

MFCC No SVM *40.95 4

ComParE16 Yes GMM 36.19 -

ComParE16 No GMM *40.21 6

ComParE16 No SVM *40.71 5

representation. Because both systems used the same acoustic feature set, these results can

be used to compare the effect of different methods in modeling the utterances.

6.3.2 Fused System Performance

The configurations selected for each feature set/classifier combination are denoted with as-

terisks (*), and their performance ranking is shown in Table 6.2. The two best systems were

both VQual2-based systems, one with an SVM and the other with a GMM classifier. The

n-best system fusion performance is shown in the second column of Table 6.3. Note that

a fusion of the two best systems did not improve performance (from 41.92% to 41.71%).

This might be due to fact that both systems used the same acoustic information. Adding
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Table 6.3: Fused system performance on the development dataset, in terms of unweighted

average recall (UAR, %). The best performing fusion is boldfaced.

+ baseline

2-best (VQual2/SVM, VQual2/GMM) 41.71 42.24

3-best (2-best, MFCC/GMM) 42.60 43.92

4-best (3-best, MFCC/SVM) 43.89 43.78

5-best (4-best, ComParE16/SVM) 44.42 42.96

6-best (5-best, ComParE16/GMM) 42.69 41.04

the third and the forth best systems, which were based on MFCCs, the UAR improved by

2.18%, providing complementary information to VQual2-based systems. The 5-best system

combination, by adding the ComParE16/SVM system, performed the best (UAR= 44.42%).

The OpenSMILE baseline system, with a UAR of 37.8%, used different utterance rep-

resentation from the supervector framework. Even though the performance was lower than

the systems introduced in this study, the baseline system might be complementary. Thus,

the fusion of the baseline system in addition to the n-best systems was investigated. The

performance with the baseline system is shown in the second column of Table 6.3. Fusing

the baseline system with the 2 and 3 best systems improved the performance, suggesting

a complementary effect. However, fusing it with the 4, 5 and 6 best systems degraded the

system performance.

6.3.3 System Performance Evaluation on the Test Dataset

The complete system block diagram is shown in Figure 6.2 and its performance on the

development and test dataset is reported in Table 6.4. As the number of evaluation trials

reached the limit, the best performing system on the development dataset could not be

evaluated on the test dataset. However, the evaluation result on the test dataset is available

for the second best system, which was the fusion of OpenSMILE baseline and the 3 best
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Figure 6.2: The complete system block diagram. The 3-best systems and the OpenSMILE

baseline system were fused.

systems.

The proposed system notably outperformed OpenSMILE baseline system on the develop-

ment dataset: the system performance improved from 37.8% to 43.9%. On the test dataset,

the proposed system did not show similar trends: its UAR was 41.0%, while the baseline

was at 43.1%.

Confusion matrices of the proposed system for the development and test datasets are

Table 6.4: System performance in terms of unweighted average recall (UAR, %) on the

development and test datasets.

Development Test

OpenSMILE baseline 37.8 43.1

OpenSMILE + 3-best 43.9 41.0
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shown in Figure 6.3. For the development dataset, the recall improvement was evident for

the ‘angry’ and ‘sad’ classes compared to the OpenSMILE baseline. The ‘angry’ and ‘sad’

recalls improved from 30.00% to 46.00%, and from 43.16% to 61.40%, respectively. The

precisions for those classes showed small difference between the baseline and the proposed

systems compared to the recall improvements: the ‘angry’ class precision slightly increased

from 4.35% to 4.91%, whereas the ‘sad’ class precision decreased from 17.77% to 16.81%.

The performance pattern, unfortunately, was not consistent in the test dataset. For the

test dataset, the ‘angry’ recall and precision increased to 77.94% and 21.74%, respectively.

However, the ‘sad’ recall and precision decreased to 16.34% and 5.13%, respectively. Because

those two had the least amount of data in the training dataset, overfitting might have yielded

these results. For example, there were only 125 ‘angry’ voices and 187 ‘sad’ voices while there

were 2,287 ‘neutral’ voices in the training dataset. Thus, it is likely that the two classes did

not have sufficient data to construct reliable models.

For both datasets, the ‘happy’ class was the least recalled class. One possible explanation

for this confusion is the mismatch across the training and development datasets, which was

observed in Section 6.2.2.2.

6.4 Conclusion

The VQual2 feature set was applied to affect classification on the recordings collected from

individuals with mental, neurological, and/or physical disorders. No explicit compensation

for the effects of a particular disorder on speech signal was attempted in this study. Instead,

perceived affects were classified regardless of the kind of disorder.

Compared to the baseline ComParE16 feature set, VQual2 showed better affect classifica-

tion performance in all experimental configurations. The VQual2 feature set also performed

equivalently well, or better in some configurations, compared to MFCCs. It is noteworthy

that the proposed VQual2 feature set had lower dimension than the MFCCs and the base-

line ComParE16 feature set, but it could outperform those feature sets. As noted earlier,

perceived affects are known to strongly related with voice quality. The efficiency of VQual2
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Figure 6.3: Confusion matrices for the results from the (a) OpenSMILE baseline system

on the development dataset and the proposed system on (b) the development dataset and

(c) the test dataset. Numbers in each cell represents the number of speech samples and

corresponding recall values (%).
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might be in providing information that is directly related to perception.

The supervector approach used in this study showed its effectiveness in representing the

utterances. The utterance-level distribution of VQual2 features and MFCCs was effectively

modeled with this approach, resulting in a system which outperformed the OpenSMILE

baseline system on the development dataset. Additionally, using a supervector derived from

ComParE16 feature set resulted in a better performance than the baseline system which used

the statistics vector for the same feature set. These results suggest that in the cases when

the amount of data is insufficient to apply the i-vector framework, the supervector approach

can be a viable alternative to represent the local feature distribution within an utterance.

The confidence score that an utterance was drawn from a class was used for system

fusion. When the systems using different features were fused, the performance improved,

suggesting complementary effect between feature sets. The system fusion configuration was

finalized based on the single system performance, and the complete system performance was

analyzed based on confusion matrices. The performance gain was obtained by improving the

recall for ‘sad’ and ‘angry’ classes. However, the proposed system was less effective on the

test dataset, suggesting overfitting due to insufficient amounts of data especially in the ‘sad’

and ‘angry’ classes.

In conclusion, VQual2 was effective in representing perceived affect, in addition to repre-

senting acoustic and perceived talker identity. Analysis of the system performance suggests

that further improvements could be made by better modeling the classes with limited training

data. Addressing acoustic mismatch across datasets would be another important direction

for future studies.
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CHAPTER 7

Summary and Future Work

Voice discrimination abilities of humans and machines under text, affect, and speaking-style

variabilities were discussed in this dissertation. A new speech database including a large

number of talkers and multiple speech tasks per talker was developed at UCLA to study

the effects of within- and between-talker variability systematically. Specifically, the role of a

feature set, which was based on a psychoacoustic model of voice quality [KGG14, GSG16],

in representing perceptual and acoustic talker identity was explored.

7.1 Summary

Experimental setups and key results presented in Chapters 3 through 5 are summarized in

Table 7.1.

Ch. 3: Voice quality features were promising for representing talker identity

Preliminary experiments were conducted using sustained vowel /a/ sounds from 5 female

talkers and read sentences from 3 female talkers. The initial voice quality feature set

(VQual1) was determined based on correlation and canonical component analysis, using

the selected vowel sounds. The resulting set was equivalent to the psychoacoustic model of

voice quality, and it contained F0, F1, F2, F3, harmonic amplitude differences with formant

correction (H∗1 -H∗2 , H∗2 -H∗4 , H∗4 -H∗2k, and H∗2k-H5k), and cepstral peak prominence (CPP).

Human voice discrimination experimental results showed that humans were reasonably ac-

curate in distinguishing talkers.

In predicting human responses to voice discrimination tasks, VQual1 features provided
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complementary information to MFCCs. The root-mean-squared error decreased as much as

3.14% for vowels and 11.80% for read sentences. Human responses for vowels were better

predicted than those for sentences. It may be that the acoustic features used in this study,

or the way they were used, might insufficiently represent the information human listeners are

using in connected speech. For example, because the prediction was based on the mean and

standard deviation of the acoustic features over an utterance, spectro-temporal information

and/or prosodic information might be insufficiently represented. A more sophisticated model

for prediction including such information is worth exploring.

The voice quality features (without H∗2k-H5k; VQual1*) were also applied to a standard

i-vector/PLDA ASV system. First, an ASV system was evaluated using MFCCs under

session, affect, and speaking-style variabilities for both female and male voices. As expected,

the system performed worse with affect or speaking-style mismatch between enrollment and

test utterances with the short test utterances (≤ 3 sec). The VQual1* improved ASV system

performance in 7 out of 8 conditions, by providing complementary information to MFCCs.

One condition when fusing VQual1* slightly degraded system performance was when the

speaking style was mismatched between the enrollment and test utterances for female voices.

This might indicate that voice quality features vary significantly between different speaking

styles, especially for female voices.

Ch. 4: The modified voice quality feature set improved ASV performance for

short utterance text-independent tasks

To better represent talker identity for ASV, VQual1 was modified to another set (VQual2).

Speech samples with two different speaking styles (read sentences and pet-directed speech)

from 100 female and 100 male talkers were taken from the UCLA database.

Based on the f -ratio criterion, harmonic amplitudes without formant corrections were

more effective in differentiating talkers than with correction. This might be due to over-

correction which can occur when harmonics are close to a formant frequency. However, this

possibility was not fully explained with the present study, and further analysis is needed.
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Formant amplitudes (A1, A2, A3) were included because they showed high f -ratio across

gender and speaking style. The resulting modified feature set included F0, F1, F2, F3,

harmonic amplitude differences without formant correction (H1-H2, H2-H4, H4-H2k), A1,

A2, A3, and CPP.

In preliminary experiments presented in Chapter 3, ASV performance degradation was

observed under within-talker variability, but it was not clear how much each kind of vari-

ability contributes to performance degradation. For example, the degradation for affect

mismatch might as well be influenced by text mismatch between enrollment and test utter-

ances. Thus, the effect of text mismatch was analyzed by comparing same-text pairs and

different-text pairs. The effect of style variability was also analyzed by including pet-directed

speech as well as read sentences. Results showed that when content variability was large and

utterances were short (≈ 2 sec), MFCC-based system performance degrades substantially.

The VQual2-based system outperformed the VQual1*-based system in all conditions,

and it outperformed MFCC-based system in some conditions. The system performance im-

proved 14–19% by fusing the two systems in all conditions, compared to using only MFCCs.

These results indicate that VQual2 can be effective for ASV tasks under high text vari-

ability. However, unlike humans, there was a still a large performance gap between same-

and different-text conditions for the 2-sec utterance pairs. This suggests that understanding

human listeners’ strategies to discriminate voices might provide insights to improve ASV

performance.

Not surprisingly, the improvement by fusion was not significant with high style variability

for 5-sec utterance pairs. This again suggests that voice quality features vary significantly

across speaking styles. However, if a consistent pattern of voice quality for each speaking

style can be found, voice quality features could be utilized to detect style differences and/or

to normalize these effects for better ASV or automatic speech recognition performance. This

can be a direction for future studies.

The effectiveness of VQual2 were evaluated on a standard ASV database (NIST SRE10),

with various utterance lengths. Results suggests that utterances shorter than 10 sec benefit
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from using VQual2 features more than long utterances do.

Ch. 5: Human and machine talker spaces were weakly correlated, but human

responses for different-talker pairs were strongly correlated with voice quality-

based system responses

Voice discrimination abilities of humans and machines for very short utterances (≈ 2 sec)

under text and style variability were analyzed. Read sentences and pet-directed speech from

50 female talkers were used for perceptual and automatic voice discrimination experiments.

As expected, humans were more accurate than machines for read sentence pairs, but the

performance difference became small for style-mismatched pairs and for perceptually marked

talkers.

Although not every marked talker were accented, human performance degradation with

marked talkers might be at least in part related to the finding that accented talkers are

more difficult to identify than unaccented talkers [GKB81]. For machines, the effects of a

non-native accent or other markedness on voice discrimination have not yet been extensively

studied, but results in this study suggests that machine performance might degrade with

talker markedness. Therefore, the effects of markedness on voice discrimination are worth

exploring in detail in the future. The UCLA database includes many non-native speakers of

English whose speech could be useful for this purpose.

Using read sentence pairs, the talker spaces were inferred from human and machine re-

sponses. Talker spaces were weakly correlated, indicating a weak or non-linear relationship

between talker representations by humans and machines. Moreover, a high correlation be-

tween them was not related to better machine performance, suggesting disparity between

human and machine strategies used in discriminating between talkers. Interestingly, human

talker spaces were reasonably well-modeled as linear combinations of means of voice quality

features, while machine talker spaces were not. These findings suggest that investigating how

voice quality feature means are related to human responses might provide valuable insights

into perceived talker identity.
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Results were further analyzed based on the log-likelihood ratio and response reliabil-

ity. Same-talker and different-talker pairs were analyzed separately based on an assumption

that perceptual strategies to identify similarity might be different from those to detect dis-

similarity between talkers. For different-talker pairs, the VQual2-based system responses

were highly correlated with human responses. Results also suggested that machines could

supplement human decisions for perceptually marked talkers.

Ch. 6: Voice quality features were effective in affect recognition

VQual2 was effective in representing perceived affect recognition, in addition to representing

acoustic and perceived talker identity. VQual2 was the most effective feature set among

three sets of features, and fusion provided further performance improvements. This suggests

another application where voice quality features can contribute to predict human decisions.

Another successful application in a similar direction was depression detection [AGP18].

7.2 Future Work

When the voice quality feature set was modified, formant correction was omitted. Although

the modification was effective for improving ASV performance, where the advantage comes

from is not clear. In fact, formant correction is expected to benefit text-independent tasks

by attenuating the effect of phonetic variaiblity. This unexpected result might be related to

inaccuracies in measurement due to over-correction as noted before. However, this possibility

could not be evaluated because the accuracy could not be measured without the “ground

truth” voice source spectrum, which is unattainable from natural speech signal. Detailed

analysis on advantages and disadvantages of formant correction using synthetic speech is

worth considering for future studies.

Comparison between human and machine responses showed that human responses for

different-talker pairs were highly correlated with VQual2-based system responses. However,

acoustic correlates to human responses for same-talker pairs were insufficiently analyzed

because only a few such pairs were included in the experiments. Another interesting finding
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was that human performance was highly influenced by perceptual markedness of talkers.

However, it was difficult to generalize these results because the number of talkers was small.

A new set of experiments including more same-talker pairs and/or marked talkers might

provide better understanding about human responses.

It was also noted that one dimension of information that is used by humans but not

by machines might be spectro-temporal information. Considering that standard ASV sys-

tems used in this dissertation make decisions based on the distribution of static features

and at most their time derivatives, temporal information might be insufficiently utilized by

machines. Thus, a spectro-temporal talker representation for machine might bring about

further improvements in performance.

Another possible approach for further improvement is using voice quality features to

normalize style and/or affect variability. It was noted that the voice quality features varied

across speaking styles, and the features were effective to represent different affect. If machines

can learn how acoustic features change across style and/or affect, they can be more robust

to within-talker variability.
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APPENDIX A

Examples of Topics Used to Elicit Speech (Chapter 2)

A.1 Session A

Imagine you are talking to someone you don’t know, like the RA. Give her either

directions on how to go somewhere, or instructions on how to do something (your

choice – anything you like). For example:

• A tourist on campus stops you near here, and asks you how to get to the

Bruin Bear

• You’re in a classroom building (pick one), and someone asks you how to get

to one at the other end of campus (pick one)

• Someone asks you about options for printing out an assignment in the cam-

pus computer labs

• Tell someone how a Bruin Card works

Think of a conversation you’ve had recently about something that wasn’t impor-

tant – not exciting, not upsetting, just normal. Repeat that conversation to the

RA as best you can, in a “First he said..., then I said ...” style. Some possible

topics:

• Ordering food, where the server had to ask you about your choices (like what

you wanted for protein, and sides, and condiments; or for build-your-own

pizza)

• Describing your day to someone at home – nothing really interesting hap-

pened, but they want to hear all about it
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• Deciding with a friend about where to go out – which restaurant, or which

movie

A.2 Session B

Think of a CONVERSATION you’ve had about something exciting, that made

you really happy. Repeat that conversation to the RA as best you can, in a

“FIRST SHE SAID...THEN I SAID” style. Some possible topics:

• You interviewed really well for a great internship or job or summer program

• A close friend or relative got engaged and talked to you about wedding plans

• You were planning a special vacation trip with someone

A.3 Session C

Think of a CONVERSATION you’ve had about something that really annoyed

you. Repeat that conversation to the RA as best you can, in a “FIRST HE

SAID..., THEN I SAID ...” style. Some possible topics:

• Talking to a friend about something another friend insisted on doing despite

your objections

• Talking to a roommate about a housekeeping disagreement (e.g. everyone

is supposed to do their own dishes)

• A time-wasting conversation with someone working in a store or business,

e.g. a billing dispute, or cable service

114



REFERENCES

[AGP18] Amber Afshan, Jinxi Guo, Soo Jin Park, Vijay Ravi, Jonathan Flint, and Abeer
Alwan. “Effectiveness of Voice Quality Features in Detecting Depression.” In
Proc. Interspeech, pp. 1676–1680, Hyderabad, India, sep 2018. ISCA.

[BB10] Oliver Baumann and Pascal Belin. “Perceptual Scaling of Voice Identity: Com-
mon Dimensions for Different Vowels and Speakers.” Psychological Research,
74(1):110–120, 2010.
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