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Little is known about human and machine speaker discrimination ability when utterances are
very short, and the speaking style is variable. This study compares text-independent speaker
discrimination ability of humans and machines based on utterances shorter than 2 seconds in
two different speaking styles (read sentences and speech directed towards pets, characterized
by exaggerated prosody). Recordings of 50 female speakers drawn from the UCLA Speaker
Variability Database were used as stimuli. Performance of 65 human listeners was com-
pared to i-vector/PLDA-based automatic speaker verification systems using mel-frequency
cepstral coefficients, voice quality features which were inspired by a psychoacoustic model of
voice perception, or their combination by score-level fusion. Humans always outperformed
machines, except in the case of style-mismatched pairs from perceptually-marked speakers.
Speaker representations by humans and machines were compared using multi-dimensional
scaling (MDS). Canonical correlation analysis showed a weak correlation between machine
and human MDS spaces. Multiple regression showed that means of voice quality features
could represent the most important human MDS dimension well, but not the dimensions
from machines. These results suggest that speaker representations by humans and machines
are different, and machine performance might be improved by better understanding how
different acoustic features relate to perceived speaker identity.
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I. INTRODUCTION

The human voice acts as a biometric that distin-
guishes individuals from one another, but it is a be-
havioral biometric, which makes it prone to variability.
For example, various factors such as the speaker’s mood,
health condition, and speaking style influence the acous-
tic characteristics of speech sounds. This can lead to
confusions for both humans and machines when distin-
guishing one individual from another (Hansen and Hasan,
2015; Kreiman and Sidtis, 2011; Schweinberger et al.,
2014). Thus, it is important to analyze human and ma-
chine performance in distinguishing speakers under such
conditions of variability. This study investigates one of
the most basic tasks in distinguishing speakers: deciding
whether two speech samples came from a single speaker
or from two different speakers. This task is referred to

aThis article appeared in the Journal of the Acoustical Society
of America and may be found at [https://doi.org/10.1121/1.
5045323]. This article may be downloaded for personal use only.
Any other use requires prior permission of the author and the
Acoustical Society of America.
b)Electronic mail: sj.park@ucla.edu

as speaker discrimination in human perception studies
and as speaker verification in automatic speech process-
ing studies. In particular, we focus on comparative ef-
fects of within-speaker variability in phonetic content and
speaking style when utterances are very short (< 2 sec),
and on the differences between perceptual and compu-
tational strategies that might account for performance
differences.

Human Speaker Discrimination

For humans, discriminating unfamiliar voices is a
separate decision-making process from recognizing famil-
iar voices (Van Lancker and Kreiman, 1987). While fa-
miliar speaker recognition can be thought of as a gestalt-
matching task, unfamiliar speaker discrimination ad-
ditionally involves acoustic feature comparisons. This
study uses unfamiliar speaker discrimination in order to
analyze the acoustic features related to speaker identity.
Several studies have shown that the perception of an un-
familiar voice requires both a generic speaker pattern
that acts as a mental reference and a speaker-specific
pattern that deviates from that reference (Kreiman and
Sidtis, 2011, Chap. 5.3.4). Such a standard pattern, ac-
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quired over a lifetime, includes both how human voices
generally sound and what aspects of speech are related
to the speaker’s identity.

Even though results vary widely depending on the
experimental protocol used, humans are reasonably accu-
rate at distinguishing unfamiliar speakers even with short
utterances. For example, Kreiman and Papcun (1991)
found that humans were 82.36% accurate in a speaker
discrimination task with single-sentence (≈ 2 sec) pairs.
Human performance generally improves as the utterance
length increases until it plateaus with utterances longer
than 60 seconds (Bricker and Pruzansky, 1966; Legge
et al., 1984). Authors disagree on why longer stimuli pro-
duce better results. Roebuck and Wilding (1993) found
evidence supporting the hypothesis that the advantage of
longer stimuli is in broader coverage of phonetic content.
However, Cook and Wilding (1997) argued that the crit-
ical factor was not the number of different sounds heard,
but rather the duration of the utterances due to speaker-
specific prosody, speaking rate, and other non-phonemic
aspects of the speech signal that are present in longer
utterances (Kreiman and Sidtis, 2011, Chap. 7.3.1).

The effect of speaking style variability on human
speaker discrimination has not been studied extensively.
Studies in forensic speaker identification note that speak-
ing style mismatch between a criminal’s voice heard at a
crime scene and speech samples collected in a voice lineup
(e.g. shouting versus reading) might confuse earwitnesses
(see Jessen, 2008). In a speaker discrimination context,
we expect such speaking style variability to cause a sig-
nificant performance degradation based on results from a
few studies dealing with emotion variability (e.g. Saslove
and Yarmey, 1980). In that study, when a target voice
changed tone (related to emotion or affect), mean ‘hit-
miss’ and ‘false alarm-correct rejection’ scores decreased
significantly.

Machine Speaker Verification and How It Compares to Hu-

man Speaker Discrimination

State-of-the-art automatic speaker verification
(ASV) systems are typically pre-trained with large
amounts of data from a large number of speakers.
Hundreds of hours of recordings are used to train a
statistical model for human speech, called a universal
background model (UBM, Reynolds et al., 2000). A
widely-used feature set for the statistical modeling is
based on mel-frequency cepstral coefficients (MFCCs),
which approximate the spectral envelope of the speech
signal. A new utterance can be thought of as a deviation
from the UBM. The nature and extent of the deviation,
however, will be influenced by both speaker-specific and
utterance-specific information. Thus, these systems need
to minimize within-speaker variability while maximizing
between-speaker variability. Hundreds of additional
hours of recordings are used to train a subspace onto
which the deviation is projected. The projected low-
dimensional vector, referred to as an i-vector (Dehak
et al., 2011), is thought to represent speaker identity.

When the system receives a pair of speech samples as
inputs, an i-vector is found for each utterance. Then,
the likelihood that the i-vectors represent the same
speaker is calculated based on the pre-trained model
and subspaces. Probabilistic linear discriminant analysis
(PLDA, Kenny et al., 2013) is often used to calculate
this likelihood. The system then applies a threshold to
the likelihood to make a same versus different speaker
decision.

Automatic speaker discrimination procedure can be
viewed as analogous to perceptual speaker discrimina-
tion, although the latter is much more complicated than
statistical pattern recognition based on frame-level fea-
tures. That is, the pre-trained UBM and subspaces are
analogous to a human’s pre-existing idea of the average
speaker model and the manner in which a new voice dif-
fers from it. Such a model represents the life-long experi-
ence of the listener with voices, with internal structuring
that is not yet understood. Despite this analogy, how-
ever, differences presumably exist between the speaker-
distinguishing strategies used by humans and machines
as evidenced from poor machine performance for diffi-
cult tasks. Challenging conditions include very short ut-
terances (< 2 sec), text-independent tasks, and speech
spoken in different styles.

Although machines outperform humans on long ut-
terances in certain conditions (e.g. Hautamäki et al.,
2010; Kahn et al., 2011), their performance on short ut-
terances is seemingly worse than that of humans. For
example, a state-of-the-art text-independent ASV sys-
tem using MFCCs was 97.60% accurate at discriminating
speakers with 2.5-min-long pairs, but it was only 89.48%
accurate with 5-sec-long pairs, and performance wors-
ened to 77.69% accuracy with 2-sec-long pairs on the
National Institute of Standards and Technology (NIST)
speaker recognition evaluation (SRE) 2003 database (Das
et al., 2016), compared to 82.36% for humans hearing
short utterances, as noted earlier. Similar performance
degradation was observed in our previous study on the
SRE 2010 database, which showed 97.11%, 83.10%, and
71.53% accuracy for 2.5-min, 5-sec, and 2-sec-long pairs,
respectively (Park et al., 2017). As mentioned above con-
cerning human performance, one reason for the degrada-
tion with shorter utterances could be that there is insuf-
ficient phonetic coverage for the machines to infer appro-
priate statistics. Text dependency also affects machine
performance. For example, when utterances are short
(< 10 sec), matching phonetic content by using same-
text pairs yields error rates that are approximately half
those of the text-independent pairs (Das and Prasanna,
2016; Park et al., 2017). One exception occurs when
short digit sequences (< 2 sec) are used. In that limited-
vocabulary case, performance can reach 95% accuracy or
higher (Larcher et al., 2014).

Although the effect of speaking style mismatch has
not yet been studied extensively in ASV communities,
some studies on emotion variability are available. For
example, Parthasarathy et al. (2017) reported that an
emotion mismatch between utterances degraded ASV
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system performance, which worsened as the utterance
length decreased from 11 to 2.75 seconds for naturalis-
tic (not acted) expressive voices. However, because that
study did not compare matched emotion conditions, the
amount of degradation that can be attributed to emotion
variability is not clear. In Nakasone and Beck (2001),
it was noted that the performance of a speaker identifi-
cation system degrades when trained with spontaneous
speech and tested on reading, compared to when spon-
taneous speech was used for both training and testing,
even though the utterances were long (29 sec). The sys-
tem was a closed-set speaker identification task, which is
not directly comparable to speaker verification tasks, but
it is expected that ASV performance might also decrease
due to speaking style differences.

Considering that performance degrades in text-
independent ASVmainly due to the sensitivity of MFCCs
to phonetic content, various features that are thought to
be less sensitive to such variability might improve sys-
tem performance (Das and Prasanna, 2017). For ex-
ample, Das and Prasanna (2016) used features derived
from the linear prediction residual signal to represent
voice source characteristics. These features improved the
system performance by providing additional or comple-
mentary information to conventional cepstral features on
text-independent tasks when the speakers were modeled
with 2.5-min-long utterances and tested with short ut-
terances (2–10 sec). Other studies have shown that the
phase components of the speech signal are important for
speaker identity (Vijayan et al., 2015), and such informa-
tion could be used for text-independent long-utterance
ASV. Approaches to capturing speaker-specific prosody
have been proposed (Dehak et al., 2007; Reynolds et al.,
2003; Shriberg et al., 2005). The effectiveness of phase
and prosodic features evaluated on long-utterances (> 1
min) text-independent ASV in these studies suggests that
they might provide additional speaker information for
short-utterance tasks as well.

In our recent work (Park et al., 2016, 2017), we used
voice quality features inspired by a psychoacoustic model
of voice perception that accounts for perceived voice qual-
ity (Kreiman et al., 2014). This set of features was ap-
plied to short-utterance (< 2 sec) text-independent ASV,
and it successfully improved system performance by pro-
viding complementary information to conventional cep-
stral features.

If humans are more accurate than machines in dis-
tinguishing speakers from short utterances that include
large phonetic variability, understanding speaker percep-
tion strategies might help improve machine performance.
The above-mentioned studies provide general ideas about
how well humans and machines perform under various
conditions. However, to our knowledge a direct and de-
tailed comparison between human and machine speaker
discrimination under conditions of within-speaker text-
and speaking-style variability and using very short utter-
ances has not yet been made, in part because we lack
proper databases to undertake such studies. Recently,
a database was developed at the University of Califor-

nia, Los Angeles (UCLA) to represent both within- and
between-speaker variability and recording session vari-
ability (see Keating et al., 2018; Kreiman et al., 2015).
The UCLA Speaker Variablity Database includes a large
number of speakers (currently 103 female and 105 male
students at UCLA, aged 18–37; mean age 20), with mul-
tiple recording sessions and varying phonetic content,
speaking style, and affect conditions per speaker, reflect-
ing normal, daily-life variations in voice quality. For the
present study, very short speech samples (< 2 sec) with
high cross-task variability were selected to probe the lim-
its of both humans and machines when confronted with
high within-speaker variability.

This study addresses the following questions: (1)
how much do human and machine performance degrade
when utterances are short (< 2 sec), phonetic con-
tent varies and style variability is large? (2) What is
the performance gap between humans and machines in
such conditions? (3) What is the difference in the fea-
tures and strategies used by humans and by machines?
The main focus is on exploring the effect of including
psychoacoustically-valid acoustic indices of voice quality
in ASV, given that these features specify voice quality
for human listeners.

The rest of the paper is organized as follows. In
Sec. II, we describe the databases used in this study. In
Sec. III, we present human speaker discrimination results,
while in Sec. IV we describe analyses of the performance
of ASV systems on the same stimuli given to human lis-
teners. In Sec. V, human and machine performances are
compared, and the differences between human speaker
discrimination and machine speaker verification are ana-
lyzed. The paper concludes with a summary and conclu-
sion in Sec. VI.

II. DATABASES

A. Voice Samples from the UCLA Speaker Variability

Database

Voice samples were drawn from the UCLA Speaker
Variability Database (see Keating et al., 2018; Kreiman
et al., 2015, for more information). Speakers were
recorded in a sound-attenuated booth on three different
days. All speech was elicited via on-screen displays and
recorded using a 1/2” Brüel & Kjær microphone with a
sampling rate of 22 kHz and a fixed mouth-to-microphone
distance. The speech samples used in this study were
later resampled to an 8 kHz sampling rate so that speech
bandwidth would equal that of the SRE databases used
for training the ASV systems.

The present study used speech from two of the tasks
in the database: read sentences and pet-directed speech.
These two speaking styles are the most distinct styles
in the database. Read sentences are text-constrained
clear speech, while pet-directed speech is spontaneous
and includes exaggerated prosody. Speakers pronounced
two repetitions of five Harvard sentences (IEEE Subcom-
mittee on Subjective Measurements, 1969) in all three
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recording sessions, for a total of six repetitions of each
sentence and 30 sentences overall. The sentences were
“The boy was there when the sun rose,” “Kick the ball
straight and follow through,” “Help the woman get back
to her feet,” “A pot of tea helps to pass the evening,” and
“The soft cushion broke the man’s fall.” For pet-directed
speech, speakers were instructed to talk to pets displayed
in a video. They could choose between a kitten video (2
min 36 sec) and a puppy video (1 min 51 sec). Result-
ing utterances were often (but not always) characterized
by exaggerated prosody, similar to infant-directed speech
(Burnham et al., 2002).

Fifty female self-reported native speakers of English
were randomly selected from the database for use in
the experiments reported in this study. Female speak-
ers were chosen because they used more prosodic exag-
geration when talking to pets than did male speakers,
leading to larger differences between the read sentences
and the pet-directed speech. Post hoc listening by two of
the authors indicated that utterances from nine speakers
were perceptually “marked” by a non-American dialect,
overly-precise articulation and/or unusual disfluencies in
reading. The remaining 41 speakers lacked such personal
idiosyncrasies and will be referred as “unmarked”.

B. NIST SRE Database

While the UCLA Speaker Variability Database pro-
vided all the evaluation utterances for the present study,
separate speech databases were used to pre-train the ASV
systems tested here. The SRE databases developed by
NIST are often used to train a UBM and speaker vari-
ability subspaces. We used the NIST SRE04, 05, 06, and
08 databases (Martin and Greenberg, 2009; Przybocki
and Martin, 2004; Przybocki et al., 2006) for this pur-
pose. These databases provide more than 3,000 hours of
speech samples from 2,692 female and 1,115 male speak-
ers, and have a variety of channels including telephone
speech, microphone, and “interview” speech.

Because the evaluation utterances were all from fe-
male speakers, only the recordings from female speakers
were used to train the UBM and subspaces. In addi-
tion, evaluation recordings were downsampled to 8 kHz
to match the bandwidth of the SRE databases.

III. HUMAN PERCEPTION EXPERIMENTS

We first tested human listeners’ ability to discrimi-
nate among the speakers across the two speaking styles
(read sentences and pet-directed speech). Recall that
we employed this high cross-task variability to probe the
limits of performance for humans and machines.

A.Method

For each speaker, three read sentences were selected
from each of the three recording sessions. Each speech
sample lasted less than 2 seconds. Two excerpts were
taken from the pet-directed speech, matched in length

to the average duration of the sentences. These stimuli,
downsampled as described above, were assembled into
100 pairs of voices in which both voice samples came
from the same person (50 pairs of read sentences and 50
pairs where a read sentence was paired with pet-directed
speech), and 2,450 pairs where the two speakers were
different (half including two read sentences and half in-
cluding one read sentence and one pet-directed speech
sample), for a total of 2,550 pairs of stimuli. Stimuli were
always drawn from different recording sessions, and each
pair included two different read sentences. Thus, this
task was always text- and recording session-independent.

To minimize listener fatigue, stimuli were divided at
random into 12 subsets of 200 pairs of voices and 1 sub-
set of 150 pairs. Thirteen groups of five normal-hearing
UCLA students and staff members (aged 18–28; mean
age 19.91; standard deviation 2.28; 65 listeners total)
were recruited, of whom 30 considered themselves L1 En-
glish speakers. The participants listened to the pairs of
stimuli over Etymotic insert earphones (model ER-1) at
a comfortable constant listening level. Each pair could
be played only once in each presentation order (AB/BA).
The listeners were asked whether the two speech samples
were produced by the same speaker or by two different
speakers. They also reported their confidence in their
responses on a 1–5 scale (1 = positive, 5 = wild guess).
They were not told how many speakers were represented
in the trials. The experiment was self-paced, and lis-
teners were encouraged to take breaks as needed. Total
testing time was less than one hour per listener.

B. Results

Hit rates (HRs) and false alarm (FA) rates were cal-
culated by defining a hit as a correct “same speaker” re-
sponse and a false alarm as an incorrect “same speaker”
response. Additionally, listeners’ same versus different
responses were combined with their confidence ratings
to create a scale ranging from “positive, same speaker”
(= 1) to “positive, different speakers” (= 10). These
scalar responses were used to derive receiver operating
characteristic (ROC) curves using SYSTAT software (Sy-
stat Software Inc.). d′ (d-prime, e.g. Macmillan and
Creelman, 2005) and the area under the receiver operat-
ing characteristic curve (AUC) were calculated for each
ROC curve. Note that the d′ values calculated from ROC
curves can differ from values directly calculated from hit
and false alarm rates. The equal error rate (EER) was
computed from the ROC curve derived from listeners’
confidence ratings, because humans do not have full con-
trol of their decision threshold and their EERs cannot be
calculated directly.

Hit rates, false alarm rates, d′ (from the ROC curve),
AUC, and EER are shown in Table I. Because listener
performance could be affected by the speakers’ percep-
tual markedness, results when the stimuli were pairs
from the 41 unmarked speakers, pairs from the 9 marked
speakers, pairs consisting of one marked and one un-
marked speaker, and pairs from all 50 speakers are shown
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TABLE I. Composite human speaker discrimination performance for the 41 perceptually-unmarked speakers, 9 perceptually-

marked speakers, pairs consisting of one marked and one unmarked speaker, and all 50 speakers in terms of HR (%), FA (%),

d′, the AUC, and the EER (%). Read–read and read–pet indicate that the token pair presented to the listener was composed

of two different read sentences or one read sentence and one pet-directed speech segment, respectively. Note that there were

no “same speaker” pairs when listeners compared one marked speaker to one unmarked speaker, so that the hit rate could not

be calculated.

No. same speaker pairs No. different speaker pairs HR FA d
′ AUC EER

read–read, unmarked speaker pairs 41 820 87.3 25.8 1.81 0.885 19.02

read–pet, unmarked speaker pairs 41 820 54.1 35.2 0.50 0.644 39.23

read–read, marked speaker pairs 9 36 68.9 21.7 1.48 0.844 24.86

read–pet, marked speaker pairs 9 36 37.8 34.4 0.16 0.538 46.23

read–read, marked/unmarked pairs N/A 369 N/A 20.7 N/A N/A N/A

read–pet, marked/unmarked pairs N/A 369 N/A 32.1 N/A N/A N/A

read–read, all speaker pairs 50 1,225 84.0 24.2 1.73 0.876 20.19

read–pet, all speaker pairs 50 1,225 51.2 34.2 0.46 0.628 40.34

all pairs 100 2,450 67.6 29.2 1.11 0.766 30.58

separately in the table. The pairs of read sentences are
denoted as “read–read” and the pairs of one read sen-
tence and one pet-directed speech excerpt are denoted as
“read–pet”.

Human listeners were reasonably accurate in distin-
guishing unmarked speakers when stimuli were pairs of
read sentences (d′ = 1.81). As expected, accuracy de-
creased when listeners heard read speech paired with
pet-directed speech (d′ = 0.50). Changes in hit and
false alarm rates were similar in magnitude (38.03% and
36.43%, respectively), suggesting that results reflect a
difference in discriminability without an accompanying
change in response biases. Because there were many
more unmarked speakers than marked speakers, the “all
speaker pairs” results are very similar to those for the
unmarked speakers for the read–read pairs.

Although the marked speakers had idiosyncrasies in
their speech, they were in fact harder to discriminate.
d′ equaled 1.48 for read–read pairs (compared to 1.81
for the unmarked speakers), and 0.16 for read–pet pairs
(compared to 0.50). The performance degradation re-
flected a large decrease in the hit rate and a smaller de-
crease in the false alarm rate, suggesting a stricter re-
sponse criterion. For trials including one marked speaker
and one unmarked speaker, only false alarm rates could
be calculated because stimuli always came from different
speakers. Those marked/unmarked pairs had the lowest
observed false alarm rate: 20.7% for read–read pairs and
32.1% for read–pet pairs.

C. Discussion

Humans were reasonably accurate in distinguishing
speakers from read–read pairs, consistent with results
from other studies (e.g., Kreiman and Papcun, 1991).
In contrast, human speaker discrimination accuracy de-
creased considerably for read–pet pairs, with d′ less than
1.0 for all such comparisons. One issue for these pairs
might have been the limited phonetic content of the pet-

directed speech excerpts. While the read sentences were
phonetically rich, pet-directed speech was largely limited
to phrases such as “Awww, cute,” with stereotyped in-
tonation contours that lacked the idiosyncrasies of the
read–read pairs.

Moreover, there is a significant difference in F0 be-
tween the read sentences and pet-directed speech. The
mean F0 for the read sentences was 221.23 Hz, while that
of pet-directed speech was 313.02 Hz [F (1, 548) = 575.2,
p < 0.01]. The extraordinarily high F0 of the pet-directed
speech might have confused listeners, who typically rely
heavily on F0 when assessing speaker identity (Baumann
and Belin, 2010; Nolan et al., 2011). Additionally, ex-
aggerated prosody makes other cues, such as pauses be-
tween words and speaking rate, sound different from read
sentences.

Differences in perception when listening to marked
versus unmarked speakers emphasize the importance lis-
teners place on specific cues, such as an unfamiliar ac-
cent or disfluency, even when stimuli are short (< 2 sec).
Note that speakers’ word choice was not a cue in this
experiment, because the sentences were given and the
pet-directed speech did not include much lexical variety.
In this context, decreases in performance when speak-
ers were perceptually marked is consistent with previous
findings that accented speakers are more difficult to iden-
tify than unaccented speakers, especially when the utter-
ances are short (< 1 sec) (Goldstein et al., 1981), and
that listeners are better at discriminating among speakers
when they are familiar with the phonetic inventory used
by particular speakers (Kreiman and Sidtis, 2011, Chap.
7.2.3). Responses to the speech of the marked speak-
ers were not only less accurate, but may also have been
biased to “different speaker” decisions, possibly because
listeners had difficulty distinguishing features specific to
the speaker from features that characterized differences
in phonetic content or speaking style between utterances.
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IV. ASV EXPERIMENTS

This section describes application of an i-
vector/PLDA ASV system to the stimuli just described.
The same tasks presented to the human listeners were
given to the ASV system, permitting a fair comparison
between humans and machines.

A. Feature Extraction

Performance of ASV systems depends, in part, on the
use of appropriate features to distinguish speakers. The
feature sets used in the ASV experiments are discussed
in this subsection. All features were automatically ex-
tracted, and no manual refinements were made.

1.MFCCs

MFCCs of dimension 20 were calculated every 10
msec using a 25-msec-long window. The coefficients and
their first derivatives were used as a feature set. Second
derivatives were not used because they did not provide
notable performance gain in our preliminary work.

2. VQual2: Voice Quality Features

In this section, we describe a novel set of features
inspired by a psychoacoustic model of voice quality
(Garellek et al., 2016). This feature set comprised F0,
F1, F2, F3, cepstral peak prominence (CPP, Hillenbrand
et al., 1994), and three measures of source spectral slope.
The slope features were generated by estimating the am-
plitudes of the first, second, and fourth harmonics, and
the harmonic nearest to 2 kHz (denoted H1, H2, H4

and H2k) and then calculating the differences between
them. Amplitude difference features were denoted as
H∗

1 -H
∗

2 , H
∗

2 -H
∗

4 andH∗

4 -H
∗

2k, where the asterisks (*) indi-
cate that harmonic amplitudes were corrected for the ef-
fects of formant frequencies on amplitude (Hanson, 1997;
Iseli et al., 2007). 1 The features were extracted pitch-
synchronously every 10 msec. The effectiveness of this
initial feature set, referred to as VQual1, on ASV was
tested in our previous study (Park et al., 2016). The fea-
ture set was later modified to better represent speaker
identity for ASV (Park et al., 2017). The modification
was based on the f -ratio criterion (Lu and Dang, 2008;
Nicholson et al., 1997), which measures how well an in-
dividual feature separates classes of stimuli. This crite-
rion is widely used to identify features which have large
between-class variance and small within-class variance:

f =
between class variance

within class variance
=

1
M

∑
M

i=1 (µi − µ)2

1
M

∑
M

i=1 σ
2
i

, (1)

where M is the number of classes, µi is the within-class
mean, µ is the global mean, and σ2

i is the within-class
variance of a single feature.

In Park et al. (2017), read sentences and pet-directed
speech samples from 100 female and 100 male speakers
in the UCLA database were analyzed using the f -ratio

with a large number of features. Although the f -ratio
results were different between the two speaking styles,
feature ranks were similar. Thus, a modified feature set
denoted as VQual2 was constructed, including F0, F1,
F2, F3, H1-H2, H2-H4, H4-H2k (without formant correc-
tion2), formant amplitudes A1, A2, A3, and CPP. Note
that the original VQual1 feature set was generated from
a psychoacoustic model of voice quality, but the modified
VQual2 set was chosen to maximize ASV performance.
The variation in the feature set might be partly due to
the difficulties in automatic measurement and/or large
within-speaker variance. It might also be due to the fact
that VQual1 was evaluated on sustained vowel sounds
while the new feature set was evaluated on continuous
speech signals.

B.Method

An i-vector/PLDA ASV system was used to analyze
machine performance. The i-vector size was 600 and it
was reduced to 200 after the PLDA. The UBM (modeled
with 2048 Gaussians) and subspaces were trained with
female voices using the NIST SRE databases. The two
feature sets described above, MFCCs and VQual2, were
used in the experiments. 3

After obtaining the PLDA scores from each system,
score fusion was performed to test for further improve-
ments (Ramachandran et al., 2002). Fusion is analo-
gous to averaging human listeners’ dissimilarity scores
and making a new decision based on the average score.
The fusion system outputs were linearly combined using
the following equation:

s = αsv + (1− α)sm, (2)

where sm is the PLDA score using MFCCs, sv is the
PLDA score using VQual2 features, and α, the coeffi-
cient of sv, ranges from 0 to 1. PLDA scores using
both MFCCs and VQual2 features were scaled to have
zero-mean and unit-variance before the linear combina-
tion was performed. The coefficient α was set to 0.452 so
that it yields the lowest EER for the condition composed
of all possible pairs.

C. Results and Discussion

The AUC and the EER were calculated to mea-
sure system performance. AUC values were estimated
using SYSTAT software to facilitate comparisons with
human performance. Machine and human results are
shown in Table II. In general, score fusion improved ma-
chine performance. For read–read pairs using all speak-
ers, for example, the AUC for the MFCC feature set,
VQual2 feature set, and for the fusion of the two were
0.776, 0.683, and 0.791, respectively. Thus, while perfor-
mance of VQual2 alone does not exceed the performance
of MFCCs, fusing the two systems seemingly provided
complementary information that improved performance.
Other studies have also shown that fusing complementary
features improves ASV performance for 10-sec utterances
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(Das and Prasanna, 2017). This pattern was observed in
most of the other comparisons. The exceptions where
the fusion resulted in a slight performance degradation
were for read–read pairs from marked speaker pairs (from
0.687 to 0.683), and when and all pairs were combined
(from 0.716 to 0.714).

The decrease in performance of the VQual2 features
due to style mismatches was smaller than that observed
for MFCCs, although overall performance was generally
worse for VQual2 features. For unmarked speakers, the
EER for VQual2 increased from 36.08% for read–read
pairs to 44.09% for read–pet pairs (22.20% relative de-
crase in performance), where the EER for MFCCs in-
creased from 30.31% to 44.17% (45.73% relative decrease
in performance). For marked speakers, the VQual2 EER
increased from 41.58% to 44.91% (8.01% relative decrease
in performance), while the MFCC EER increased from
32.03% to 39.31% (22.73% relative decrease in perfor-
mance).

The robustness to larger style variability suggests
that voice quality features might be effective for condi-
tions that are challenging to conventional cepstral fea-
tures. Note, however, that our previous study (Park
et al., 2017) found that the performance degradation of
the VQual2 features due to style mismatches was similar
to or worse than that of MFCCs. Unfortunately, a direct
comparison with that study is not appropriate because
the speech samples used in that study were 5-sec long
while the speech samples in this study were less than 2-
sec long. Since longer utterances benefit both MFCC and
VQual2 feature sets, especially if the phonetic content is
richer, it might be the case that the advantage of having
more phonetic content in read sentences outweighed the
within-speaker variability in speaking style. Thus, the
compounded effect of utterance length, phonetic content
and style variability requires further analysis both for hu-
mans and machines. In addition, Park et al. (2017) did
not consider speaker markedness, which might also have
been a factor impacting system performance.

Unexpectedly, MFCC performance for read–pet,
marked speaker pairs (EER=39.31%) was better than
that for unmarked speakers (EER=44.17%). For
VQual2, the performance degraded, but the difference
was small (from 44.09% to 44.91%). The effect of
markedness on machine performance will be analyzed
with a larger number of speakers in a follow-up study.

Note that the AUC and EER measures are not al-
ways correlated because the two measures reflect different
properties of the curve. The AUC is calculated from the
entire ROC curve, and it reflects overall accuracy regard-
less of a specific decision threshold. On the other hand,
the EER only focuses on the point where the false rejec-
tion rate and the false acceptance rate are equal, and it
summarizes the system performance in terms of the er-
ror rate. These measures can differ especially when the
ROC curves are skewed. Skewed ROC curves can re-
sult when the variance of the distribution in the decision
space of same-speaker pairs is different from that of the
different-speaker pairs (Macmillan and Creelman, 2005).

While the EER is a widely used metric for machines, for
humans this metric might be misleading because humans
cannot consciously adjust their decision threshold. Thus,
in the rest of the paper, the AUC is used to compare hu-
man and machine performance, and the EER is used only
to compare machine performance in different conditions.

V. COMPARING HUMAN AND MACHINE SPEAKER

DISCRIMINATION

This section compares the human and machine
speaker discrimination results in the face of within-
speaker variability as presented in Sec. III B and
Sec. IVC. The purpose of the comparison is to inves-
tigate performance differences between humans and ma-
chines when large within-speaker variability makes the
task difficult for both, and to analyze the factors that
affect performance. Recall that all tasks are text- and
recording-session-independent.

A. Overall Performance Comparison

Human and machine performances are compared in
Table II. Humans performed better than machines in
most conditions. For instance, with unmarked speakers,
the AUC for ASV score fusion was 0.780 for read–read
pairs, compared to AUC = 0.885 for humans.

Performance differences between humans and ma-
chines could be due to many factors. First, humans can
utilize multiple levels of information from the audio sig-
nal, but machines rely on frame-level features. For ex-
ample, humans routinely attend to individual speakers’
unique prosody, idiosyncrasies in voice onset time, and
so on, but ASV systems consider the distribution of fea-
tures extracted from 25-msec frames and at most their
time derivatives. Second, it is likely that even when hu-
mans and machines use similar acoustic information, they
process the information in different ways to make their
same versus different speaker decisions.

For read–read pairs, machines were less robust to
markedness than humans were. Fusion performance
on read–read pairs from unmarked speakers resulted in
an AUC of 0.780, while the AUC for marked speak-
ers equaled 0.683 (12.44% relative decrease in perfor-
mance). Human performance resulted in AUCs of 0.885
and 0.844 (1.24% relative decrease in performance) for
the unmarked and marked speakers, respectively. Be-
cause the UBM represents the overall smoothed distri-
bution of the acoustic features from a large number of
speakers, idiosyncrasies due to speaker markedness might
not be well-represented with this model. In addition, if
similar idiosyncrasies are not well-represented in the pre-
training data, the machine will fail to model the between-
speaker variability from these idiosyncratic differences,
leading in turn to performance degradation.

On the other hand, machines were more robust to
markedness for read–pet pairs than were humans. Fu-
sion AUCs for read–pet pairs from unmarked speakers
and from marked speakers were both 0.601. However,
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TABLE II. ASV performance evaluated using the same stimuli as in the human perception experiments. The AUC was

measured, and the EER (%) was calculated from the ROC curve. Human perception results in terms of AUC and EER are

repeated from Table I in the last column for comparison. The best performance for each condition is boldfaced.

MFCC VQual2 fusion human

AUC EER AUC EER AUC EER AUC EER

read–read, unmarked speaker pairs 0.765 30.31 0.679 36.08 0.780 29.21 0.885 19.02

read–pet, unmarked speaker pairs 0.587 44.17 0.581 44.09 0.601 47.54 0.644 39.23

read–read, marked speaker pairs 0.687 32.03 0.657 41.58 0.683 31.78 0.844 24.86

read–pet, marked speaker pairs 0.593 39.31 0.531 44.91 0.601 37.35 0.538 46.23

read–read, all speaker pairs 0.776 29.17 0.683 36.18 0.791 28.71 0.876 20.19

read–pet, all speaker pairs 0.594 43.44 0.587 43.55 0.615 42.79 0.628 40.34

all pairs 0.716 35.97 0.627 43.18 0.714 36.52 0.766 30.58

the AUC for human listeners decreased from 0.644 (un-
marked speakers) to 0.538 (marked speakers), a 16.46%
relative decrease in performance. Even though it might
be difficult to generalize because there were only 9
marked speakers, these results imply that machines are
less sensitive to speaker markedness than humans are
when the acoustic characteristics of the speech change
due to prosody exaggeration. The compound effect of
speaker markedness and speaking style on human and
machine performance can be explored in the future by
including recordings from L2 English speakers.

It was consistently observed that the performance
gap between humans and machines was smaller for mis-
matched speaking styles. For instance, with read–pet,
unmarked pairs, the AUC for fusion was 0.601 and the
AUC for humans was 0.644, while the AUCs for the read–
read, unmarked pairs was 0.780 for fusion and 0.885 for
humans. The interesting small performance gap between
humans and machines for the read–pet condition will be
analyzed in detail in future studies.

B. Performance Analysis for Subsets of a Smaller Number of

Speakers

Previous studies (Kreiman and Gerratt, 1996) have
shown that listener performance in discrimination tasks
is characterized by flexible, idiosyncratic perceptual
strategies, such that a feature may be important for dis-
tinguishing some pairs of speakers but not others. Given
this situation, combining too many speakers in a sin-
gle analysis obscures the strategies used by listeners, be-
cause relations in the “perceptual speaker space” become
too complicated to summarize even with a large number
of parameters. For this reason, we conducted further
analyses using small (n = 15) subsets of the original set
of 41 unmarked speakers. The analyses were restricted
to read–read sentence pairs, because the main purpose
is to investigate the difference in decision strategies be-
tween humans and machines, and performance between
humans and machines differed most for these pairs. With
15 speakers, each subset had 15 same-speaker pairs and
105 different-speaker pairs. Ten sets of 15 speakers were
randomly selected from the 41 unmarked speakers. Three

of the ten subsets (RAND1, RAND2, and RAND3) were
chosen for multi-dimensional scaling (MDS) analysis so
that each unmarked speaker was included in at least one
of the subsets. Discrimination data for the read sentence
pairs used in the perception experiment were extracted,
and the performances of humans and machines were cal-
culated for each subset.

As shown in Table III, the AUC for human varied
between 0.851 and 0.909, and the EER varied between
16.10% and 21.53%. MFCC performance was worse than
humans’ and more variable across subsets: its AUC var-
ied between 0.679 and 0.772, and the EER varied between
26.61% and 40.57%. The AUC for score fusion varied
between 0.713 and 0.792, and the EER varied between
24.18% and 34.02%. VQual2 performance was most con-
sistent (although not best) among the three ASV sys-
tems; its AUC ranged from 0.678 to 0.684 and its EER
ranged from 34.44% to 36.75%.

The three subsets showed different rankings of the
three ASV systems. In RAND1, the MFCC system had
a much better EER (26.61%) than VQual2 (36.75%),
and fusion showed the best performance (24.18%). In

TABLE III. Human and machine performance in terms of

EER (%) and the AUC. The performance is measured within

the ten subsets of 15 randomly selected speakers reading sen-

tences. The mean and standard deviation across the ten sub-

sets are shown in the firs two rows. Performance on three

of the ten subsets (RAND 1, RAND2, and RAND3) used

for MDS analysis is shown in the rest of rows. There were

15 same-speaker pairs and 105 different-speaker pairs in each

subset. Fusion indicates that a linear score fusion is used

between the MFCC and VQual2 systems.

MFCC VQual2 fusion human

AUC EER AUC EER AUC EER AUC EER

mean 0.726 32.99 0.680 35.87 0.744 29.82 0.890 18.49

std 0.056 6.21 0.040 2.65 0.039 3.80 0.021 2.42

RAND1 0.706 36.09 0.676 37.59 0.733 32.48 0.920 14.96

RAND2 0.736 28.36 0.690 35.86 0.707 28.52 0.912 17.41

RAND3 0.651 41.46 0.660 33.61 0.694 38.04 0.907 16.74
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TABLE V. Multiple regression results on human and machine MDS coordinates (dependent variables) with acoustic speaker

spaces (independent variables). The first three columns show R2, F-statistics, and p-values of the multiple regression models.

Only the MDS dimensions which can be modeled with p < 0.05 are shown in the table. SE, T and p, which indicate the

standard error, t-statistics, and p-values of the independent variables, are shown for each of the factors. The independent

variables with p < 0.05 are boldfaced.

model factor 1 factor 2 factor 3 factor 4 factor 5

R2 F(5,9) p SE T p SE T p SE T p SE T p SE T p

means

RAND1
human D1

0.76 5.82 0.01 0.25 -0.48 0.64 0.31 -0.96 0.36 0.32 -2.05 0.07 0.22 -2.74 0.02 0.15 -3.77 0.00

RAND2
MFCC D2

0.74 5.13 0.02 0.41 2.17 0.06 0.35 3.21 0.01 0.28 -2.23 0.05 0.19 0.54 0.60 0.26 0.50 0.63

RAND2
fusion D1

0.70 4.18 0.03 0.42 2.22 0.05 0.36 1.49 0.17 0.29 1.10 0.30 0.19 2.66 0.03 0.27 -0.39 0.71

RAND2
human D1

0.86 11.44 0.00 0.35 -1.44 0.19 0.30 -3.25 0.01 0.24 -0.17 0.87 0.16 -4.30 0.00 0.22 -2.01 0.08

RAND3
human D1

0.90 15.66 0.00 0.19 -0.13 0.90 0.22 -1.93 0.09 0.15 0.88 0.40 0.15 -0.29 0.78 0.13 -5.18 0.00

standard deviations

RAND1
MFCC D1

0.71 4.36 0.03 0.31 0.38 0.71 0.27 1.72 0.12 0.28 0.40 0.70 0.34 1.71 0.12 0.35 -3.23 0.01

RAND2
MFCC D1

0.78 6.44 0.01 0.30 -0.20 0.85 0.25 -2.25 0.05 0.28 -3.03 0.01 0.26 2.34 0.04 0.26 -0.70 0.50

RAND3
MFCC D1

0.67 3.64 0.04 0.33 -0.59 0.57 0.32 -0.49 0.64 0.36 1.18 0.27 0.28 -1.37 0.20 0.38 -3.27 0.01

RAND3
MFCC D2

0.92 19.81 0.00 0.15 -5.32 0.00 0.15 0.49 0.64 0.17 -3.76 0.00 0.13 -2.19 0.06 0.18 -1.74 0.12

RAND3
fusion D1

0.78 6.43 0.01 0.30 2.39 0.04 0.29 -0.73 0.48 0.33 1.37 0.20 0.26 1.57 0.15 0.34 -1.49 0.17

RAND3
human D1

0.66 3.51 0.05 0.40 2.30 0.05 0.39 0.20 0.84 0.44 0.63 0.54 0.34 0.72 0.49 0.46 -1.64 0.14

plicitly given such information. Other systems that uti-
lize prosodic information to model speakers (e.g., Dehak
et al., 2007) need to be developed. Evaluating the second
possibility would require a more complex model of how
features are processed and used in decision making. For
example, even though the VQual2 system made decisions
based on voice quality features, the decisions did not ap-
pear to depend on the linear combination of the means
and standard deviations of the features that explained
human and MFCC system performance.

Instead, the results highlight differences in human
and machine decision making. For example, the most
important dimensions underlying human responses were
highly related to the means of acoustic features, while
MFCC responses were more closely related to standard
deviations of the same features. This might indicate that
humans perform best with the speakers whose speech
varies widely in mean values, while MFCC-based systems
work best when the within-utterance (voice quality) vari-
ance is large so that the acoustic information coverage in
an utterance is sufficient to model the speaker.

VI. CONCLUSION

Human and machine speaker discrimination per-
formance on short-utterance, text-independent stimulus
pairs were investigated in this study. Read sentences
shorter than 2 seconds were used to evaluate performance

with clear speech, and excerpts from pet-directed speech
of similar duration were used to investigate the effect of
exaggerated prosody. Analyses compared performance
when pairs matched (read–read) or mismatched (read–
pet) for speaking style.

Results showed that human listeners were reason-
ably accurate at discriminating voices based on read–
read pairs, but performance degraded significantly with
style-mismatched pairs. Contrary to expectations, hu-
mans performed worse when discriminating between two
marked speakers than when discriminating between two
unmarked speakers both for read–read pairs and read–
pet pairs. The effect of speaker markedness on speaker
discrimination is worth exploring in detail in the future.
The UCLA Speaker Variability Database includes many
non-native speakers of English whose speech could be
useful for this purpose.

The machines tested here were less accurate than
humans for read–read pairs, which is consistent with
previous studies that reported poor ASV performance
with short-utterance text-independent tasks. Perfor-
mance degraded even more with pet-directed speech for
unmarked speakers, especially for MFCC- and VQual2-
based systems, either because prosody exaggeration dis-
torted acoustic features or because the databases used
for the pre-training did not have a similar speaking style.
Score-level fusion of the two systems improved perfor-
mance, suggesting that VQual2 features provide informa-
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tion that is complementary to MFCCs. These features
may be especially valuable when within-speaker variabil-
ity is large. Interestingly, with style-mismatched pairs,
speaker markedness had little effect on VQual2 features,
and MFCC and fusion performance even improved for
these pairs, to such an extent that machines outper-
formed human listeners. Unfortunately, the number of
marked speakers in this study was not large enough to
ensure that this result is robust. A follow-up study will
analyze what advantage machines have when human per-
formance is critically affected, and how to utilize that
advantage in speaker verification tasks.

Human and machine performance on read–read pairs
of unmarked speakers was further investigated with MDS
on smaller subsets of speakers. CCA results between hu-
man and machine speaker spaces showed a weak relation-
ship between the human and machine spaces. Further,
better machine performance did not lead to an increase
in the strength of this association. These results sug-
gest that humans and machines use different strategies to
distinguish speakers. Multiple regression between acous-
tic feature factors and MDS spaces for humans and ma-
chines found that human MDS axes were reasonably well-
modeled as linear combinations of means of voice quality
features. On the other hand, neither MFCC nor VQual2
MDS spaces could be well-modeled using mean values.
These findings suggest that investigating how voice qual-
ity feature means are related to human responses might
provide valuable insights into perceived speaker identity.
The knowledge could also prove useful for improving ma-
chine performance, by exploring how to process acoustic
feature means effectively.

In future studies, we will examine human and ma-
chine performance differences in detail. Machine per-
formance, for example, can be examined by varying the
training data conditions, such as the speakers’ language
background, gender, and/or recording conditions. Mod-
eling prosodic features and developing duration compen-
sation techniques for very short utterances (2 sec) might
also be a promising research direction for ASV, as is ex-
amining how effectively human and machine decisions
can be combined. Finally, using professional voice mim-
ics or synthetic voices will allow for a more systematic
evaluation of several acoustic factors.
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