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ABSTRACT

A feature enhancement technique for noise-robust speech recogni-

tion is proposed. Existing sparse exemplar-based feature enhance-

ment methods use clean speech and pure noise Mel-spectral exem-

plars, or clean and noisy speech log-Mel-spectral exemplar-pairs, in

their dictionaries. In contrast, the proposed technique constructs its

dictionaries using reference soft-mask (SMref) and estimated soft-

mask (SMest) exemplar-pairs derived from the training data. The

sparse linear combination of SMest dictionary exemplars that best

represents the test utterance’s SMest is obtained by solving an L1-

minimization problem. This sparse linear combination is applied to

the SMref exemplar dictionary to generate an enhanced soft-mask

for denoising the utterance’s Mel-spectra before MFCC extraction.

On the Aurora-2 noisy speech recognition task, the proposed algo-

rithm outperforms other sparse Mel-spectral exemplar-based feature

enhancement schemes when mismatch exists between the dictionary

exemplars and the test set. A preliminary experiment on Aurora-4

shows similar trends.

Index Terms— Feature enhancement, soft mask estimation,

noisy speech recognition, sparse exemplar, joint dictionary.

1. INTRODUCTION

Although good speech recognition performance has been achieved

for clean speech, automatic speech recognition (ASR) in noise is

still a challenging problem. Both front-end and back-end processing

techniques have been proposed to tackle this problem. Front-end

processing involves the extraction of noise-robust speech repre-

sentations or features which are more invariant in noise. This

can be done using speech or feature enhancement / denoising

techniques (e.g. spectral subtraction [1] and soft-mask estima-

tion [2, 3]), or extracting speech salient features (e.g. multi-scale

spectro-temporal features [4] and normalized modulation cepstral

coefficients (NMCC) [5]). Back-end processing involves model

adaptation to reduce the mismatch between the trained models and

the test conditions [6, 7]. With robust performance reported using

compressive sensing / sparsity-based techniques in image process-

ing applications [8, 9], the use of sparse spectral representations

for feature enhancement has also been developed [10–13] in recent

years. In [10] and [11], unreliable Mel-spectral components of noisy

speech are imputed using a sparse linear combination of dictionary

entries, and this sparse linear combination is computed based on

reliable spectral components. The dictionary used in [10] is the

discrete Haar transform basis; while in [11], the dictionary is made

up of clean speech log-Mel-spectral training exemplars spanning

several frames. The ASR performance using these missing data

imputation techniques are found to be highly dependent on the ac-

curacy of the binary mask that is used to decide the reliability of the
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spectral components. In [12], a dictionary containing clean speech

and pure noise Mel-magnitude-spectral training exemplars are ex-

tracted from clean and noisy versions of the training data. Using all

spectral components (both reliable and unreliable), the sparse linear

combination of these Mel-spectral exemplars that best represents the

test Mel-spectra, is derived by solving an L1-minimization problem.

Subsequently, a soft-mask is estimated from exemplar-reconstructed

clean and noisy spectra, which is used to denoise the test Mel-spectra

prior to cepstral feature extraction. This feature enhancement tech-

nique outperforms the previous missing data imputation (with an

estimated binary mask) scheme when evaluated on the Aurora-2

noisy digit speech recognition [14]. More recently in [13], another

feature enhancement scheme is proposed using clean and noisy log-

Mel-spectral exemplar-pairs that are extracted from clean and noisy

utterance-pairs in the training data. The sparse linear combination

of the noisy log-Mel dictionary exemplars that best approximates

the log-Mel spectra of the noisy test speech is computed, and this

sparse linear activation weighting vector is applied to the corre-

sponding clean speech log-Mel dictionary exemplars to reconstruct

the denoised log-Mel spectra. This technique reported a better ASR

performance compared to the feature enhancement scheme in [12]

on a small vocabulary, in-car noisy speech recognition task [15].

In this paper, feature enhancement for noisy speech recognition

is performed using reference soft-mask (SMref) and estimated soft-

mask (SMest) exemplar-pairs. The SMref and SMest exemplar-pairs

are computed from clean and noisy utterance-pairs in the training

data and stored in two separate dictionaries, Dr and De, respec-

tively. The sparse linear combination of exemplars in De that best

approximates the estimated soft-mask of the test utterance is com-

puted by solving an L1-minimization problem. This sparse linear

combination is then applied to the exemplars in Dr to generate an

enhanced soft-mask, which is used to denoise the Mel-spectra be-

fore cepstral features are computed. The ASR performance of the

proposed “Mask-2dict” technique on the Aurora-2 database is eval-

uated against existing sparse-exemplar-based feature enhancement

techniques, which we abbreviate as “Mask-Mel-dict”, “KL-Mask-

Mel-dict” [12] and “LgMel-2dict” [13].

2. PROPOSED MASK-2DICT METHOD

2.1. Soft-mask exemplar dictionary generation

The joint SMref and SMest exemplars dictionary generation scheme

is shown in Fig. 1. The SMref of each time-frequency (T-F) unit is

denoted by Mr[k, t], where k and t are the Mel-frequency bin and

time frame indices, respectively. In Eq (1), Mr[k, t] is computed

by taking the ratio of the clean Mel-frequency magnitude spectrum

(Mel-spectrum), Yc[k, t], to the noisy Mel-spectrum, Yn[k, t], which

is derived from the clean and noisy versions of the same training

utterance, respectively. These Mel-spectra are computed by apply-
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and estimated soft-mask exemplar-pair dictionaries (during MFCC

extraction in both training and testing phases)

ing Mel-filter weighting on the respective pre-emphasized short-time

FFT magnitude spectra. The SMest, denoted by Me, is computed as

shown in Eq. (2), by taking the ratio of Z to Yn, and flooring the

resulting mask values to 0.05. Z is a denoised Mel-spectrum cal-

culated by subtracting the estimated noise Mel-spectrum, N̂ from

Yn, and negative values are set to 0 (Eq. (3)). N̂ is obtained by ap-

plying Mel-filter weighting on the short-time FFT noise magnitude

spectrum estimated from the pre-emphasized speech signal with the

minimum statistics noise estimation technique [16] implemented in

the “estnoisem” function of Voicebox [17]. Note that clean and noisy

training utterance-pairs required for such exemplar-pairs extraction

can be easily generated by introducing various noise or channel char-

acteristics to clean training data.

Mr[k, t] = Yc[k, t]/Yn[k, t] (1)

Me[k, t] = max(Z[k, t]/Yn[k, t], 0.05) (2)

Z[k, t] = max(Yn[k, t]− N̂ [k, t], 0) (3)

The SMref and SMest are extracted from all clean and noisy training

utterance-pairs in the Aurora-2 database. To select a subset of the

exemplars to build the dictionaries, we followed a similar random

selection scheme described in [12]. We also tried the joint dic-

tionary learning scheme in [13] with the referenced sparse coding

toolbox [18] instead of the random selection scheme, but an insuf-

ficient memory issue arose during joint dictionary learning using an

initial exemplar subset. Each exemplar-pair (mr, me) is extracted

from the same T-F region, and four exemplar-pairs are randomly

selected from each clean and noisy training utterance-pair, where

m∗∈R
KT×1 is a column vector obtained by concatenating the

columns in the respective mask T-F region M∗[1:K, (t̃+1):(t̃+T )]

that contains K × T elements, where K=23 is the total number of

Mel-frequency bins, T=11 is the number of consecutive frames in

the Mel-spectrum (which approximately spans a phoneme interval),

and t̃ ∈ [0, total frames - T ] is a randomly generated frame index.

The notation a:b represents the range of integers {a, a+1, ... , b}.

T=11 is also used in [13], and good ASR performance is achieved

by the feature enhancement scheme in [12] using T=10. From this

initial subset, 4000 exemplar-pairs (m̃i
r,m̃i

e), i = 1, 2, ... , 4000, are

randomly selected to form the dictionary. We selected 4000 pairs

because 8000 dictionary exemplars (4000 from clean speech, 4000

from pure noise) are found to be sufficient in [12] for the Aurora-2

noisy digit ASR task. The L2 norm, Li
e, of each m̃i

e exemplar is cal-

culated, which is then used to normalize both m̃i
e and m̃i

r exemplars

to form the respective SMest and SMref dictionaries, De and Dr , as

shown in Eqs. (4) and (5).

De = [d1e, d
2

e, ..., d
4000

e ], where die = m̃i
e/L

i
e (4)

Dr = [d1r, d
2

r, ..., d
4000

r ], where dir = m̃i
r/L

i
e (5)

2.2. Feature enhancement

Fig. 2 summarizes the proposed feature enhancement scheme that

uses the joint SMref and SMest dictionaries. The SMest of the input

speech utterance, Me, is computed in the same way as described in

Section 2.1. Me is divided into overlapping (K × T ) T-F regions,

at 1 frame shift apart. The soft-mask vector starting from frame j
is denoted by mj

e, which is obtained by concatenating columns in

Me[1:K, j:(j+T -1)]. The sparse linear combination of De exem-

plars that best reconstructs each mj
e is computed by solving the L1-

minimization problem in Eq. (6), known as Lasso [19]. The sparse

vector xj is calculated via the SolveLasso function in the Sparse-

Lab toolbox [20]. The value of λ in Eq. (6) is iteratively updated

in SparseLab’s Lasso implementation. The “nnlasso” (non-negative

Lasso) algorithm is used, and maximum number of iterations is set to

50. Default values are used for other input parameters to the Solve-

Lasso function. The enhanced soft-mask vector, m̂j is obtained by

multiplying the same sparse vector, xj to Dr (Eq. (7)).

min
xj

λ||xj ||1 + 0.5||mj
e −Dex

j ||22 s.t. xj ≥ 0 (6)

m̂j = Dr x
j

(7)

After m̂j are obtained for all frames, they are shaped back into rect-

angular T-F regions at their original frame positions, i.e. M̃ [1:K,

j:(j+T -1)]. Overlapping T-F units are averaged [12] to obtain the

enhanced soft-mask of the entire test utterance M̂ [k, t]. The en-

hanced Mel-spectrum of the test utterance, X , is then obtained by

multiplying the derived enhanced soft-mask M̂ with the original

Mel-spectrum, Y , as shown in Eq. (8). Logarithmic magnitude

compression is applied on X , followed by discrete Cosine transform

(DCT) and liftering to obtain the first 13 cepstral coefficients (C0–

C12). These are concatenated with their deltas and double-deltas to

form the 39-dimension MFCC feature vector for ASR.

X[k, t] = M̂ [k, t]Y [k, t] (8)

3. ALGORITHMS FOR COMPARISON

3.1. LgMel-2dict

This is based on [13], in which clean and noisy speech log Mel-

spectrum dictionary exemplar-pairs are used, instead of the soft-

mask exemplars in the proposed algorithm. Dictionary construc-

tion follows the procedure described in Section 2.1, even exemplars

from the same 4000 (K × T ) T-F patches are selected to form the

clean speech dictionary (Dc), and noisy speech dictionary (Dn).

The sparse linear combination of Dn exemplars that best represents

the input speech’s log Mel-spectrum is found by solving the same

L1-minimization problem with the same SolveLasso configuration.

Similarly, this sparse solution is multiplied to Dc to reconstruct a

denoised log Mel-spectrum, from which MFCCs are extracted.

3.2. Mask-Mel-dict

This is adapted from [12], in which Mel-spectrum exemplars of clean

speech and pure noise are extracted. Noise signals are obtained

from the noisy speech utterances by subtracting the clean speech

signal (read from the clean version of the same training utterance)



from the noisy speech signal. The same 4000 (K × T ) T-F patches

are selected to form two dictionaries, Ds and Dn, which contains

4000 Mel-spectrum exemplars from clean speech and pure noise, re-

spectively. Each exemplar is normalized to have an L2 norm of 1.

These two dictionaries are combined to form D = [Ds, Dn], and

the sparse linear combination of exemplars in D that best represents

the input speech’s Mel-spectrum (Y ) is found by solving the same

L1-minimization problem. After which, the sparse weights corre-

sponding to the clean speech and noise exemplars are used to con-

struct the clean speech Mel-spectrum (S) and noise Mel-spectrum

(N ), respectively. A soft-mask is then computed by taking the ratio

S/(S + N), which is multiplied to Y to obtain the denoised Mel-

spectrum before MFCC extraction.

3.3. KL-Mask-Mel-dict

This closely follows the feature enhancement algorithm in [12] in the

computation of the soft-mask for Mel-spectrum enhancement before

MFCC extraction. The three main differences between this imple-

mentation and Mask-Mel-dict are (1) both the rows and columns of

the dictionary are normalized, (2) a higher sparsity parameter is used

for speech exemplars than noise exemplars to make the activation

weights of speech exemplars more sparse, and (3) the generalized

Kullback-Leibler (KL) divergence replaces the Euclidean distance

in Eq. (6)’s L1-minimization expression (refer to Eq. (8) in [12]),

which is run over 200 iterations. To reduce the run-time, we stop the

iterative update when ||xk - xk−1||2/||xk||2 < 0.01, where xk and

xk−1 are the sparse solutions obtained in the current and previous

iterations, respectively.

4. DATABASE AND EXPERIMENTAL SETUP

The Aurora-2 noisy digit speech recognition task is used to evaluate

the performance of the feature enhancement algorithms. Feature en-

hancement is applied to MFCC extraction during both training and

testing. The standard HMM architecture [14] is built using the HTK

software package [21]. The database contains two training sets – (1)

clean, (2) multi-conditional. The multi-conditional training set con-

tains ITU G.712-filtered [22] clean speech and noisy speech (SNRs

between 20 and 5 dB). Suburban train, babble, car, or exhibition hall

noise is artificially added to clean speech to generated each noisy

utterances in the multi-conditional training set. Since the exemplar

dictionaries are already computed with knowledge of the noisy train-

ing utterances, the HMMs are trained using the multi-conditional set.

There are three testing sets – (1) Test A, (2) Test B, and (3) Test C.

Test A and Test B contains G.712-filtered speech (SNRs between 20

to -5 dB). The noise-types in Test A are the same as those found in

the multi-conditional training set, while a different set of noise-types

(restaurant, street, airport, train-station) is found in Test B. Test C

contains ITU MIRS-filtered [22] utterances, and the noise-types in-

volved are suburban-train and street noises. The major difference

between the frequency characteristics of G.712 and MIRS filters is

that the former has a flat response in the range between 300 and 3400

Hz, while the latter has a rising response with a greater attenuation at

lower frequencies (illustrated in Fig. 1 of [14]). MIRS simulates the

telecommunication terminal input frequency response in the techni-

cal specification GSM 03.50 [23].

5. RESULTS

Tables 1 and 2 contain the word accuracy (Acc) results obtained us-

ing models trained with the multi-condition training set, where the

latter results are obtained with an additional feature mean and vari-
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Fig. 3. Log-Mel spectrograms of a test utterance corrupted by air-

port noise at 0 dB SNR. (a) Clean log-Mel spectrogram, (b) Noisy

log-Mel spectrogram, (c)–(f) Enhanced log-Mel spectrograms ob-

tained using the lgMel-2dict, Mask-Mel-dict, KL-Mask-Mel-dict,

and Mask-2dict, respectively.

ance normalization (MVN) performed on a per utterance basis. We

also include the results obtained using MFCCs for comparison.

From Tables 1 and 2, it can be observed that the Mask-Mel-

dict method has the best performance, on average, for Test A.

However, for Tests B and C, the performance of sparsity-based

methods (LgMel-2dict, Mask-Mel-dict, KL-Mask-Mel-dict) that

utilize spectral-based dictionaries decreases sharply, such that their

Accs are lower than those obtained by MFCCs in some cases -

– LgMel-2dict performance is poorer than MFCCs with/without

MVN, while Mask-Mel-dict and KL-Mask-Mel-dict achieve lower

Accs than MFCC when MVN is applied. In contrast, the proposed

Mask-2dict technique that uses joint SMref and SMest exemplars has

the best performance among the other sparsity-based methods for

Tests B and C, with significant gains in Acc over these methods at

low SNRs.

Fig. 3 plots the denoised log-Mel spectrograms obtained by the

sparse exemplar-based techniques evaluated in this study for a test

utterance corrupted by airport noise at 0 dB SNR (this noise-type is

not present in the multi-conditional training set). In this example,

the proposed technique does a better job in noise suppression at the

beginning of the utterance.

6. DISCUSSION

Comparative methods using Mel-spectral exemplars, whether with

dual (or joint) dictionaries (in the case of LgMel-2dict), or with a

combined dictionary (in the case of Mask-Mel-dict, KL-Mask-Mel-

dict), perform well when the test noise and channel frequency char-

acteristics match those present in the dictionary, as observed for

Test A. However, the performance of these methods for Tests B

and C suffers a large degradation when spectral shape mismatches

are present. On the other hand, the proposed technique using the

dual soft-mask exemplar dictionaries, is less sensitive to such spec-

tral shape mismatches, with less performance degradation observed

across the three test sets. One possible reason is that the estimated



Table 1. Acc (%) obtained on Aurora-2 using the multi-condition training set. The “Avg.” value is computed by averaging the Acc over

SNRs between 20 and 0 dB. The highest Acc among all algorithms are in bold.

Algorithm
Test A Test B Test C

20 dB 10 dB 0 dB Avg. 20 dB 10 dB 0 dB Avg. 20 dB 10 dB 0 dB Avg.

MFCC 97.73 94.50 55.71 86.27 97.12 92.89 60.18 86.08 96.82 92.95 49.69 83.73
LgMel-2dict 97.68 94.50 60.95 87.55 96.87 91.54 53.45 83.58 96.03 86.95 32.38 75.29
Mask-Mel-dict 98.22 95.88 79.22 92.46 98.15 93.36 61.13 86.63 97.96 93.04 55.60 85.02
KL-Mask-Mel-dict 98.33 95.84 77.26 92.08 98.33 92.93 60.27 86.23 97.66 92.19 53.71 84.12
Mask-2dict 98.30 95.78 71.52 90.82 98.27 94.52 67.71 89.01 97.95 94.69 64.18 88.21

Table 2. Acc (%) obtained on Aurora-2 using the multi-condition training set, with mean and variance normalization (MVN) applied.

Algorithm
Test A Test B Test C

20 dB 10 dB 0 dB Avg. 20 dB 10 dB 0 dB Avg. 20 dB 10 dB 0 dB Avg.

MFCC 98.53 95.99 72.73 91.03 98.57 96.21 73.24 91.29 98.48 95.20 72.50 90.59
LgMel-2dict 97.83 95.72 74.09 91.06 97.80 95.03 66.21 88.71 97.32 91.69 56.99 84.61
Mask-Mel-dict 98.64 96.75 80.73 93.31 98.55 95.88 69.29 90.07 98.51 94.70 64.50 88.31
KL-Mask-Mel-dict 98.53 96.38 80.19 93.03 98.50 95.65 69.72 90.05 98.33 94.90 63.60 88.21
Mask-2dict 98.70 96.57 75.25 91.95 98.56 96.54 74.34 91.74 98.28 95.84 75.37 91.50

Table 3. Avg. Acc (%) obtained on 8-kHz Aurora-4 test data using

multi-noise training and MVN

Algorithm
Seen noise-types Unseen noise-types

Babble Street F16 Pink

Mask-Mel-dict 77.66 76.48 70.05 59.89
Mask-2dict 76.65 75.81 75.55 67.98

mask is computed using a noise estimation algorithm that does not

make any assumption regarding the noise spectral shape present in

the utterance. We also ran the ASR experiment using enhanced

MFCCs obtained by directly applying the estimated soft-mask, Me,

to the noisy Mel-spectrum. The average Acc obtained with MVN

on test sets A, B, and C are 88.66%, 89.65% and 86.74%, respec-

tively, which are 3–5% worse than those achieved with the proposed

algorithm. This shows that the sparse mask reconstruction step is

essential in enhancing ASR performance, and it can potentially im-

prove with more accurate noise estimation. We are aware that sup-

plementing the dictionary with artificial noise exemplars or noise ex-

emplars extracted from the initial frames of test utterance [24], and

channel compensation [25] can improve the performance of Mask-

Mel-dict and KL-Mask-Mel-dict on mismatched noise and channel

conditions. However, in this study, we are evaluating the algorithms’

performance on exemplars extracted solely from the training data,

without performing explicit channel compensation.

To assess if similar performance trends hold in a larger vocabu-

lary setup, a preliminary experiment was run on the Aurora-4 (A4)

database [26], with dictionary exemplars derived from A4 clean and

noisy training sets. Besides evaluating on two A4 test sets (each con-

taining one of the six noise-types in the multi-noise training set), we

added two unseen noise-types from Noisex-92 [27] (not in the multi-

noise training set) to the clean A4 test set to simulate Test B scenario.

ASR is performed on 8-kHz files recorded with the Sennheiser mi-

crophone, using word-internal triphone models, multi-noise training

(same microphone) and MVN. Similar Acc trends are observed in

Table 3 – Mask-Mel-dict Acc’s are higher than Mask-2dict’s for seen

noise-types, and vice versa for unseen noise-types.

The advantage of using a soft-mask as part of feature enhance-

ment can also be observed by comparing the performance of LgMel-

2dict with the other two spectral-based dictionary methods (Mask-

Mel-dict and KL-Mask-Mel-dict). Generating denoised spectra by

applying a soft-mask on the original noisy spectra tends to be more

error-forgiving compared to reconstructing it from clean spectral ex-

emplars as done in the LgMel-2dict method. We also observe a de-

crease of 2–3 % in absolute Avg. Acc for all test sets when the

denoised Mel-spectra (S) is reconstructed directly from the sparse

linear combination of clean exemplars (results of this variant imple-

mentation are not shown in the Tables), instead of reconstructing it

indirectly via the soft-mask in the Mask-Mel-dict method.

We implemented all the sparse-exemplar-based techniques us-

ing MATLAB. LgMel-2dict takes the shortest time for feature ex-

traction at ≈4.3×real-time (RT) on a Intel Xeon 2.6 GHz processor

(parallel-core computing is not utilized), followed by the proposed

Mask-2dict at ≈4.7×RT due to the additional noise estimation step.

Mask-Mel-dict takes ≈11×RT due to double the number of dictio-

nary exemplars used to compute the sparse activation vector, and

KL-Mask-Mel-dict takes ≈28×RT due to a large number of itera-

tions (200) used to perform the KL divergence L1-minimization.

We intend to explore other dictionary training packages for con-

structing the sparse representation dictionaries. This could help in

extracting more representative exemplars over random selection for

large vocabulary ASR, and also potentially improve the performance

of joint dictionary schemes through joint dictionary training.

7. CONCLUSION

A novel feature enhancement scheme using sparse reference soft-

mask (SMref) and estimated soft-mask (SMest) exemplar-pairs is

proposed. SMref is the ratio of clean Mel-spectrum to the noisy Mel-

spectrum computed from a clean and noisy utterance-pair in the

training data, while SMest is the ratio of a denoised Mel-spectrum

to the original noisy Mel-spectrum. The denoised Mel-spectrum

is obtained by subtracting the noise spectrum (estimated using the

minimum statistics noise estimation algorithm) from the original

noisy spectrum. The sparse linear combination of SMest dictio-

nary exemplars that best approximates the SMest of the test speech

utterance is found by solving an L1-minimization problem. An

enhanced soft-mask is generated by applying the same sparse linear

combination to the SMref dictionary exemplars. This soft-mask is

used to enhance the Mel-spectra before MFCCs are extracted. Com-

pared to other existing sparse-exemplar-based feature enhancement

techniques that utilizes Mel-spectral-based dictionary exemplars,

the proposed scheme achieves higher word accuracies in the pres-

ence of spectral shape mismatch between dictionary exemplars and

the test set, when evaluated on the Aurora-2 ASR task with multi-

conditional training. Similar trends are observed in a preliminary

experiment on Aurora-4.
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