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Abstract
In this paper, regression-tree based spectral peak alignment is
proposed for rapid speaker adaptation using the linearization of
VTLN. Two different regression classes are investigated: phonetic
classes (using combined knowledge and data-driven techniques)
and mixture classes. Compared to MLLR and VTLN, improved
performance can be obtained for both supervised and unsuper-
vised adaptations on both medium vocabulary and connected dig-
its recognition tasks. To further improve the performance, MLLR
was integrated into this regression-tree based peak alignment. Ex-
perimental results show that the performance improvements can be
achieved even with limited adaptation data.
Index Terms: speaker adaptation, peak alignment, regression tree

1. Introduction
Spectral mismatch caused by inter-speaker variation of vocal tract
length is a major cause of performance degradation in automatic
speech recognition. To maintain robust recognition accuracy, vo-
cal tract length normalization (VTLN) is usually applied in speaker
adaptation. For computational efficiency, several studies have pro-
posed the possibility of directly performing VTLN in the back-end
model space. In [1] and [2], the authors show that VTLN is equiv-
alent to linear transformation in the cepstral domain in the contin-
uous frequency space; in [3], [4] and [5], this VTLN linearization
is shown to also hold in the discrete domain under certain approx-
imations. This paper focuses on the method proposed by Cui and
Alwan in [5], and develops it into a rapid speaker adaptation algo-
rithm using regression-tree based spectral peaks alignment.

Here we briefly review the approach in [5]: Under the approx-
imation that only central peak values are used to represent each
triangular Mel-filter, VTLN warping can be implemented as a lin-
ear transformation in the cepstral domain, i.e.,

X̃c = A · Xc (1)
where

A = C · FB · W · F∗
B · C−1 (2)

X̃c are the warped cepstral coefficients, Xc are the unwarped
ones, C is the DCT matrix, FB is the approximated Mel-frequency
filter bank matrix, W is the frequency warping matrix, and F∗

B is
the transformation matrix from Mel-frequency space to the linear
frequency space such that F∗

B · FB = I, and C−1 is the IDCT
matrix. This linearity can be used to perform rapid speaker adap-
tations in an MLLR-like manner [6]:

µ̂ = Aµ + b (3)

Σ̂ = LHLT (4)
where µ̂ and Σ̂ are the transformed mean vector and variance ma-
trix, L is the Cholesky factorization of the original variance Σ.
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The mean transform A is determined based on Eq. 2. The bias
vector b and the covariance transform H are statistically estimated
from the adaptation data under the maximum likelihood criterion:
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where T is the number of frames of the adaptation data, and i and
k are the indices of state and mixture sets, respectively. γik(t)
is the posterior probability of being at state i mixture k at time t
given the observation o(t).

2. Speaker adaptation algorithm
2.1. Regression-tree based peak alignment
The frequency warping matrix W in Eq. 2 is defined as

wij =

(
1, if i=round(gα(j))
0, otherwise

(7)

where gα(·) is a linear or piece-wise linear warping function to
align the formant-like peaks [7] in the spectrum space. It was
shown in [5] that aligning only the third formant (F3) offers the
best performance, that is

gα(j) = α · j (8)

α =
F3,new speaker

F3,standard speaker
(9)

The standard speaker, chosen to represent the acoustic character-
istics of the entire training set, is one of the training speakers who
yields the highest likelihood in the training stage.

Several different approaches can be applied to perform this
formant-like peak alignment. In [5], speaker adaptation was em-
ployed as a global peak alignment, i.e. to estimate the average F3

over all the adaptation data and generate the transformation ma-
trix A according to Eq. 2 with the same scaling factor α for all
phonemes. When performing adaptation, all means of the HMM
parameters share the same transformation A. Since there is only
one parameter α to be estimated, this global method has the po-
tential of good performance for limited adaptation data. It can not,
however, take advantage of increasing adaptation data.

Another approach is the regression-tree based peak alignment,
i.e. to align model parameters within the same class in a simi-
lar way. This extension from global to regression-tree based peak
alignment is very similar to the expansion of MLLR from a global
transform to many transforms especially when adaptation data in-
crease.



In this paper, two methods were considered to define re-
gression classes: phoneme-based and mixture-based. In the first
method, phonemic units are classified based on phonetic knowl-
edge and/or data-driven methods. For example, phonemes can first
be categorized into vowels and consonants, and then consonants
can be further classified as voiced or unvoiced, and vowels can be
clustered according to their F3 values. Preliminary experiments
showed that phonetic knowledge offers better performance when
adaptation data are limited to less than 5 utterances, while the data
driven approach is superior when more data are available. There-
fore, we chose to combine the two techniques. During adaptation,
the number of base classes is dynamically created depending on
the amount of adaptation data. Since unvoiced consonants have no
clear formant structure in their spectra, the transformation matrix
A for unvoiced consonants is determined by the average F3 over
all voiced consonants in the adaptation data.

In the second method, the mixture-based classification ap-
proach, Gaussian mixture components are clustered into classes
based on a measure of likelihood. In each class, F3 is estimated
and averaged, and peaks are aligned with the same warping factor.

In the following sections, we will evaluate and compare the
performances of these different approaches of peak alignment
adaptation (PAA).

2.2. Integration of peak alignment with MLLR
As we will show in the next section, when adaptation data are very
limited, both approaches of PAA, phoneme-class and mixture-
class based, work very well. With few parameters to be esti-
mated, PAA can handle one of the limitations of MLLR: the un-
reliable parameter estimation for limited data. The performance
of PAA, however, tends to saturate when more adaptation data be-
come available. To some extent, this problem can be alleviated
by increasing the number of regression classes. Since MLLR is
able to offer better performance when more data are available, we
try to integrate peak alignment with MLLR, i.e. to perform peak
alignment first, followed by standard MLLR.

Given the peak alignment matrix A and the additive bias vec-
tor b, the Gaussian mixture components of the speaker specific
models are re-estimated using the EM algorithm [9]. The auxil-
iary function is defined as

QN (λ, λ̄) =
X
i,k

TX
t=1

γik(t) logN (o(t);Aµ̄ik + b; Σ̄ik) (10)

where N (o(t);Aµ̄ik + b; Σ̄ik) is the k th Gaussian mixture of
state i. The maximum likelihood estimation of µ̄ik and Σ̄ik can
be derived from
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respectively, which give
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where
µ̃ik = Aµ̄ik + b (15)

µ̃ik represents the adapted speaker-specific Gaussian means.
The integration with MLLR, denoted as PSAT in the following

experiments, can be applied to global or regression-tree based peak
alignment.

3. Experiments
3.1. Experimental set-up
Two different recognition tasks were carried out to evaluate the
performance of the proposed adaptation algorithm. One task is
tested on the DARPA Resource Management RM1 database, and
the other is on the connected digits TIDIGITS database. For the
two databases, speech signals were firstly downsampled to 8kHz,
and then segmented into 25ms frames, with 15ms overlap. Each
frame was parameterized by a 39-dimensional feature vector con-
sisting of 12 static MFCCs plus log energy, and their first-order
and second-order derivatives.

On the RM1 database, triphone acoustic models were trained
on the speaker independent (SI) portion of the database (72 speak-
ers, 2880 utterances).This set of SI models produced a baseline
performance of 83.8% word recognition rate on the SI test set (8
speakers, 320 utterances). The adaptation data consisted of 1, 4,
7, 10, 15, 20, 25 or 30 utterances for each speaker, and they were
randomly chosen from the speaker dependent (SD) portion of the
database.

For the TIDIGITS task, monophone acoustic models were
trained on 55 adult male speakers and then tested on 10 children (5
boys and 5 girls). The baseline performance on TIDIGITS was a
38.9% word recognition rate. For each child, the adaptation data,
which consisted of 1, 5, 10, 15, 20, 25, 30 or 35 digits, were ran-
domly chosen from the test set and not used in the test.

In all adaptation experiments, a forward-backward alignment
of the adaptation data was first implemented to assign each frame
to a regression class. Depending on the amount of the adaptation
data available, different numbers of regression classes were ex-
perimentally tested, and the best performances were selected for
comparison. Formant-like peaks were estimated using Gaussian
mixture models [7]. In the 4 kHz frequency range, adult speak-
ers were observed to typically have four formants, while children
had only three. Therefore, in the peak alignment procedure, four
Gaussian mixtures were used for adults and three for children.

For comparison, speaker-specific VTLN is implemented based
on a grid search over [0.7, 1.2] with a stepsize of 0.05. The scaling
factor producing maximal average likelihood was used to warp the
frequency axis [10].

3.2. Comparison of global and regression-classes based PAA
First, experiments were conducted to compare the performance
of global (GPAA), phoneme-class (PPAA) and mixture-class
(MPAA) based PAA with different numbers of adaptation utter-
ances (or digits). The block-diagonal MLLR adaptation with the
optimal number of transforms was also done for comparison. Fig-
ures 1 and 2 illustrate the performance of PAA, VTLN and MLLR
on the RM1 database and the TIDIGITS database, respectively.

From Figure 1, we can see that PAA can greatly improve
the performance over the baseline and VTLN in all cases even
with only one adaptation utterance; MLLR, however, may produce
worse performance than the baseline when only a small amount of
adaptation data is available. Compared to MLLR, PAA performs
significantly better for limited adaptation data, with 17.0% reduc-
tion of word error rate (WER) over MLLR for 1 or 4 adaptation
utterances. With increasing adaptation data, MLLR offers better
results than GPAA when the adaptation data is more than 15 ut-
terances, while MPAA can outperform MLLR for 1-25 adaptation
utterances.

Among the three PAA methods, MPAA performs the best, and
great improvements can be achieved when using regression-tree
based over global PAA. As to the two kinds of regression-tree
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Figure 1: Performances of VTLN, MLLR and PAA on RM1 (base-
line accuracy: 83.8%)
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Figure 2: Performances of VTLN, MLLR and PAA on TIDIGITS
(baseline accuracy: 38.9%)

based PAA, it can be found that MPAA performs slightly better
than the PPAA in all cases. In the discussion below, MPAA will
be taken as representatives for regression-tree based PAA.

Experimental results demonstrate similar trends on TIDIG-
ITS as shown in Figure 2. This similarity shows that the perfor-
mance improvements achieved by PAA are consistent across dif-
ferent tasks. Comparing the results in Figures 1 and 2, we can
find, however, the performance improvements on TIDIGITS to be
more significant than that on RM1 database: for only one adap-
tation digit (or utterance), more than 81.2% WER reduction over
baseline was achieved on TIDIGITS, while on RM1 the WER re-
duction was about 10.5% . This difference can be explained as
follows. The basic idea for PAA is to reduce spectral mismatch
by aligning formant-like peaks using estimated F3. The perfor-
mance improvement will be more obvious if the F3 difference be-
tween the new speaker and the standard speaker is great, which
is the case on TIDIGITS: for adult males the typical F3 is about
2500Hz, and for children it’s 3100 Hz. On the other hand, if the
F3 of the new speaker is very close to that of the standard speaker
as on RM1 database, the effect of peak alignment will be small. A
limiting case is when the new speaker has exactly the same F3 as
the standard speaker. In this condition peak alignment will have
no effect on spectral mismatch, resulting in marginal performance
improvement.

3.3. Comparison of PAA and PSAT
The performances of PAA and PSAT are compared in Figures 3
and 4 for RM1 and TIDIGITS databases, respectively. Here we
take mixture-classes based peak alignment as the reference which
gives the best performance among the three PAA methods. Com-
pared to MPAA, PSAT shows similar performance for a small
amount of adaptation data, but better results as the adaptation data
increase. The achievable improvements seem to be slight with
about 0.5% absolute improvement. The trends of the improve-
ments, however, are obvious and consistent in all cases especially
with more adaptation data.
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Figure 3: Performances of PAA, MLLR and PSAT on RM1
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Figure 4: Performances of PAA, MLLR and PSAT on TIDIGITS

Compared to MLLR, the performance of PSAT is superior in
all experiments, though the difference becomes small as adapta-
tion data increase. Significance analysis shows that for the p-level
less than 0.05, the improvement of PSAT over MLLR is statisti-
cally significant. This indicates that PSAT can take advantage of
PAA for accurate parameter estimations with limited adaptation
data, and of MLLR for statistical parameter estimations with suf-
ficient adaptation data. Another advantage of PSAT is that it can
still work even when there is no difference of F3 between the new
speaker and the standard speaker, in which case PSAT can become
equivalent to MLLR.

3.4. Comparison of supervised and unsupervised adaptation
The previous adaptation experiments are implemented in a super-
vised way with the true transcription being known. Unsupervised
adaptation can be performed by first generating the transcription
through an initial recognition pass. Before this initial recognition,
global peak alignment (without adaptation of bias and variance)
is conducted to reduce spectral mismatch. For each test speaker,



formant-like peaks are estimated from the voiced segments of the
adaptation utterance, which are detected using the traditional cep-
strum peak analysis technique [8]. Peaks are then aligned with
the average F3, i.e. means are adapted according to the following
equation:

µ̂ = Aµ (16)
The performances of supervised and unsupervised adaptation are
shown in Tables 1, 2 and 3, 4 for RM1 database and TIDIGITS,
respectively. It should be noted that the performances listed here
for supervised and unsupervised adaptation were based on differ-
ent numbers of regression classes: in all cases, the number of
classes for unsupervised adaptation was smaller than that of the
corresponding supervised case.

Number of adaptation utterances
1 4 7 10 15 20 25 30

MLLR 82.6 85.3 86.4 87.7 89.6 90.5 91.5 92.9
GPAA 85.2 86.3 87.3 88.2 89.1 89.8 90.2 90.6
MPAA 85.3 87.4 88.2 89.3 90.4 91.2 92.0 92.3
PSAT 85.5 87.8 88.3 89.5 90.7 91.6 92.2 93.3

Table 1: Word recognition accuracy on RM1 (supervised)

Number of adaptation utterances
1 4 7 10 15 20 25 30

MLLR 80.9 84.0 85.1 86.3 87.9 89.9 90.6 91.6
GPAA 85.0 86.2 87.1 88.0 88.9 89.6 89.9 90.4
MPAA 83.7 85.8 86.7 88.7 89.6 90.2 91.2 91.6
PSAT 84.0 86.4 87.3 89.1 90.4 91.0 91.5 92.5

Table 2: Word recognition accuracy on RM1 (unsupervised)

Number of adaptation digits
1 5 10 15 20 25 30 35

MLLR 40.5 57.0 88.9 92.8 94.6 95.7 96.6 96.9
GPAA 87.9 93.3 93.5 93.9 94.2 94.4 94.2 94.4
MPAA 88.5 93.9 94.1 94.7 94.9 95.8 95.9 96.3
PSAT 88.5 94.0 94.3 94.7 95.0 96.0 96.8 97.4

Table 3: Word recognition accuracy on TIDIGITS (supervised)

From the tables, compared to supervised adaptation, unsuper-
vised adaptation performs a little worse in all experimental cases,
but the difference is not large: 0.4% and 0.8% absolute WER in-
crease for PSAT on RM1 with 10 and 30 adaptation utterances,
respectively; 0.2% and 0.7% absolute WER increase for PSAT
on TIDIGITS with 10 and 35 adaptation digits. There are two
possible reasons for this small difference. One is that after the
global peak alignment, the partly adapted models produce a high
recognition accuracy and thus an acceptable labeling of the adap-
tation data. The other is that with a smaller number of classes, it
is more likely for unsupervised adaptation to reduce the effect of
misclassified frames (due to the initial recognition errors) and thus
to generate robust estimation for the adaptation parameters. This
explains why the unsupervised GPAA performs almost the same as
the supervised case, especially for the highly mismatched TIDIG-
ITS database: the differences being less than 0.2% in all cases.

4. Summary and Conclusion
A rapid speaker adaptation method was investigated in an MLLR-
like manner with the transformation for means being generated de-
terministically by aligning formant-like peaks. The performance
of this peak alignment approach was evaluated on both medium
vocabulary and connected digits recognition tasks. In both tasks,

Number of adaptation digits
1 5 10 15 20 25 30 35

MLLR 38.9 55.3 88.2 92.3 94.5 95.1 95.9 96.1
GPAA 87.7 93.2 93.4 93.8 94.1 94.3 94.2 94.4
MPAA 86.4 92.3 94.0 94.1 94.5 95.3 95.1 95.2
PSAT 86.4 92.3 94.1 94.2 94.7 95.6 96.2 96.7

Table 4: Word recognition accuracy on TIDIGITS (unsupervised)

experimental results show that through peak alignment adapta-
tion significant performance improvements can be achieved even
for very limited adaptation data, with mixture-classes based peak
alignment performing the best. When sufficient adaptation data are
available, peak alignment adaptation offers results similar to or a
little worse than MLLR. The PSAT method which integrates peak
alignment with MLLR, however, shows better performance than
MLLR in all cases. Another merit of this regression-tree based
spectral peak alignment is that when implementing adaptation in
an unsupervised way, only a slight performance degradation is ob-
served compared to supervised adaptation.
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