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Abstract
To automatically assess young children’s reading skills as
demonstrated by isolated words read aloud, we propose a novel
structure for a Bayesian Network classifier. Our network mod-
els the generative story among speech recognition-based fea-
tures, treating pronunciation variants and reading mistakes as
distinct but not independent cues to a qualitative perception of
reading ability. This Bayesian approach allows us to estimate
the probabilistic dependencies among many highly-correlated
features, and to calculate soft decision scores based on the pos-
terior probabilities for each class. With all proposed features,
the best version of our network outperforms the C4.5 decision
tree classifier by 17% and a Naive Bayes classifier by 8%, in
terms of correlation with speaker-level reading scores on the
Tball data set. This best correlation of 0.92 approaches the ex-
pert inter-evaluator correlation, 0.95.
Index Terms: Bayesian network, reading assessment, pronun-
ciation evaluation, children’s speech

1. Introduction
To accurately assess a child’s reading skills by the pronuncia-
tion of the words they read out loud, a teacher must first know to
distinguish between simple variants in pronunciation and “true”
reading mistakes that betray a lapse in comprehension. Prior
knowledge of the child’s age, native language, or regional di-
alect may influence what one believes to constitute an accept-
able pronunciation, from a literacy assessment point-of-view
[1], and this assessment should be fair regardless of the child’s
background. Expertise regarding the errors typically made by
young readers can similarly affect a teacher’s judgment. They
may also interpret the present pronunciation in light of its con-
text, or compare it with past readings by this same child, to
assess the student’s degree of consistency or improvement. All
these factors and more serve to inform a teacher’s perception of
a student’s reading ability.

The complexity of the task and the need to incorporate ad-
equate contextual cues accounts for the fact that the majority
of past work in the use of automatic speech recognition for tu-
toring reading has focused on utterance-level assessment [2].
However, for younger children (ages 4-6), eliciting paragraph-
or sentence-level reading is not always feasible or informative.
Teachers will often measure a young child’s reading ability by
calculating the speed and accuracy of isolated words read from
a list - an important component in early literacy assessment that
helps teachers understand how reading skills are developing [3].
The aim of this study was to automatically judge this aspect of
a new reader’s literacy, in the case of word-level elicitation.

We have previously addressed this task by formulating it as
a traditional pronunciation verification problem: given a speech
observation, we compare the likelihood that it was drawn from
some target model’s distribution to the likelihood that it comes
from a filler model of expected reading mistakes [4]. Advances
along these lines involve creative ways of training or defining
the filler model so as to discriminate best between pronuncia-
tion classes [5]. Though this method is useful in pronunciation
evaluation, it is not always appropriate for reading assessment,
which is strictly-speaking not merely a pronunciation evalua-
tion problem. In a more complex machine-learning framework
such as a decision tree classifier, the addition of features be-
yond likelihood scores - including features derived from recog-
nition n-best lists and speaker demographics - has been shown
to provide some limited improvement [4]. However, correla-
tions between representative features used in this study are as
high as 0.8 or 0.9; this indicates that by simply adding more
recognition-based features we should not expect much improve-
ment in machine discrimination between target and filler.

A likelihood ratio threshold or pruned decision tree will
normally not consider all available cues in making an automatic
reading assessment decision. The class decisions themselves
are not definitive so much as they are perceptual and open to
dispute on a continuous scale, but a decision tree classifier can-
not return a true continuous posterior score for a class given
a set of features. And the high inter-feature correlation makes
many of the features redundant unless their probabilistic depen-
dencies are trained as model parameters. Here, we argue that
these conditions lend themselves to modeling this task under a
Bayesian Network framework.

Bayesian Networks have recently been used for many
speech-related applications, including pronunciation modeling
and speech recognition [6]. Given a discrete class variableQ
and a vector of featuresX1, X2, . . . , Xn, a Bayesian Network
classifier defines the joint probability

P (Q, X1, X2, . . . , Xn) = P (Q)

n∏
i=1

P (Xi|Pa(Xi)) (1)

wherePa(Xi) - the “parents” of featureXi - refers to all fea-
tures which, if known, we would expect to influence the distri-
bution ofXi - all other features we assume to be independent
[7]. To use Eqn. (1) as a classifier forQ, every featureXi must
have at leastQ as one of its parents (i.e.Q is the network’s
“root node”), and a classification decision is made by choos-
ing a value forQ that maximizes this expression. In the case
that each feature has onlyQ as a parent, then all features are
assumed to be independent - this is the Naive Bayes case. In



our study,Q is a binary assessment of word-level reading qual-
ity: either acceptable or unacceptable, though the posteriors for
each class can be used to calculate softer decision scores.

A correlation between features may or may not betray a
causative relationship between them, but if we have reason to
believe that one feature in a sense “generates” another, then we
can model the former feature as the latter’s parent, and knowl-
edge of the parent feature’s value will influence our expecta-
tions of its child’s probability. We propose a new structure
for a Bayesian Network classifier that can tease apart the var-
ious factors that contribute to perception of word-level reading
errors and model the probabilistic dependencies among these
highly-correlated features, allowing for a final reading assess-
ment score that reflects all available cues and their interactions.

2. Corpus
The speech recordings used in this study come from data col-
lected in Los Angeles schools as part of the Technology-Based
Assessment of Language and Literacy (Tball) project [3]. In
a classroom environment with close-talking microphones, chil-
dren in Kindergarten through Grade 2 were asked to read aloud
isolated words elicited by an animated user interface. Our test
set’s targets were comprised of words appropriate for Kinder-
garten and Grade 1 students in order of increasing difficulty,
and test conditions were as close as possible to those of a school
teacher’s ordinary literacy assessment of this type.

Because many of the children were of Mexican background,
we also collected demographic information regarding each stu-
dent’s native language. Of the 29 students that made up our test
set, 11 of them were native English speakers, 11 were nonna-
tive, and for the remaining 7 this statistic was missing, possibly
because these children’s parents chose not to answer our survey.

3. Choice of Features
Our choice of features reflects the desire to model true reading
mistakes and simple pronunciation variants as distinct, though
not independent, entities. Both may contribute to a teacher’s
perception of a child’s reading skills, though often the exact re-
lationship is unclear [1]. We began by constructing a lexicon
of pronunciation variants spanning four classes: the set of ex-
pected variants of the target word for this data set,TA ; the set
of expected reading mistakes and guesses,RD; the set of ex-
pected variants given the possible influence of nonnative letter-
to-sound rules from the child’s first language (in this case, Mex-
ican Spanish),L1; and a background or silence set to detect
when the child is unable to produce the target and offers no re-
sponse,SIL . For example, for the target word “Can,”TA vari-
ants include /kæn/ and /kEn/, while for anL1-influenced pro-
nunciation we would expect /kan/, and a commonRD mistake
would be to make the vowel say its name - /keIn/. The selection
of these pronunciations was based on a previous study in com-
mon substitutions made by children in the Tball corpus [8], and
with extensive guidance from experts in literacy and phonetics.
With our lexicon augmented with tags related to each of these
pronunciation classes, we calculated the following features: the
likelihood of the observed speech given each class,P (O|Ci),
whereCi is defined as an unweighted network of all pronunci-
ations within classi andi can take values{TA , RD, L1, SIL},
and four binary features that encode the pronunciation class or
classes of the best recognition hypothesis,argmaxi P (O|Ci),
accounting for pronunciations common to more than one class.

In the end, recognition of any one of these pronunciations
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Figure 1: Part of our proposed Bayes Net structure, with four
tiers of recognition features parameterized into four pronuncia-
tion classes. Rectangles and ovals denote discrete and continu-
ous nodes, respectively.

cannot reliably inform a categorical reading assessment, since
many of the variants are so close as to be be practically indistin-
guishable with HMM models. So, in addition to the best recog-
nition hypothesis among these pronunciation classes, a more re-
liable set of recognition-based features for a target item would
be the percentage of tokens in the n-best recognition results that
match each of the four pronunciation classes, referred to here-
after as our four “n-best scores.” Due to variants in exact frame-
level model alignment and the multiple pronunciations within
each class, we would expect the same class tag to appear multi-
ple times on a list of recognition hypotheses.

Along this same line of thinking, even if we could reliably
discriminate between close pronunciations, we are not always
able to declare with certainty that a particular pronunciation al-
ways indicates satisfactory or poor reading skills (except in the
case ofSIL ). In some cases, reading “Can” as /kEn/ will indicate
satisfactory reading skills, in others it will not, and many fac-
tors besides segment-level pronunciation influence this percep-
tion of acceptability. A word in isolation is usually not enough
evidence to judge a speaker’s pronunciation [9], much less as-
sess their literacy. However, an individual item’s assessment
can be informed by features indicative of the child’s pronun-
ciation overall. To this end, for each child we calculated four
global n-best scores - one for each of the pronunciation classes -
by taking the mean of all single-item n-best scores for that child,
1
k

∑
k ni(k) whereni(k) is classi’s n-best score for this child’s

kth target word. In a sense the algorithm becomes non-causal
at this point, because it can take into account future pronun-
ciations in the present item’s assessment. Additional features
include the following: the recognized target’s estimated dura-
tion, as a cue to fluency; the target word’s length (in characters)
and order in the list, as measures of difficulty; and the child’s
grade and native language as discrete variables, though the lat-
ter is missing for some of the speakers. Further discussion of
some of these features can be found in [4].

4. Network Structure
Though the Naive Bayes classifier has been shown to perform
well under many experimental conditions [7], modeling prob-
abilistic dependencies among the features can improve per-
formance. However, finding the best network structure for a
given set of features can be a computationally intractable prob-
lem, because it requires comparing all directed acyclic graphs



for which Q is the root. One proposed solution is the Tree-
Augmented Naive Bayesian (or TAN) algorithm, which restricts
the search such that each feature is allowed only one parent be-
sides the root node [7], but this did not seem appropriate here.

In terms of a “generative story” that unites our features de-
rived from speech recognition results, we conceive of them dis-
tributed over four cascaded “tiers” representative of the steps
in the feature extraction procedure, each tier parameterized into
the four pronunciation classes outlined in Section 3. Initially,
likelihood scores across each class are compared to select the
best hypothesis from among those classes - a first tier of like-
lihoods clearly can be modeled as parents of a second tier of
best hypothesis features. Then, a third tier comprised of n-best
scores is calculated from all available recognition hypotheses,
including the best one encoded in the second tier - again there
is clearly a generative relationship from the second to third tiers.
Finally, a fourth tier of speaker-level n-best scores can be mod-
eled as children of the third tier’s item n-best scores, since it is
the third tier’s features that contribute to calculating the fourth
tier. A graphical depiction of this part of our proposed network
is shown in Figure 1. Additional generative relationships were
made by modeling the item’s duration as another parent of the
second tier, the target word length as a parent of theRD item
n-best score, and the child’s grade and native language as pre-
dictors of speaker-levelRD andL1 n-best scores, respectively.

One evident drawback of this structure is, with the many
child-parent relationships hypothesized, a large amount of train-
ing data may be necessary to reliably estimate the number of
model parameters. Because our model uses both continuous
and discrete features in all parent/child combinations, we chose
to model many of our discrete features - in particular the sec-
ond tier described above - as multinomial logistic (or softmax)
distributions [10]. In a Bayesian network, a discrete node with
discrete parents is typically parameterized as a table of condi-
tional probabilities over all combinations of the parents. For the
case of discrete nodes with continuous parents, one option is to
artificially discretize all the features, though this usually results
in poor parameter estimates and is sometimes computationally
unfeasible. If we instead model these nodes as a continuous
multinomial logistic distribution, it will behave like a soft de-
cision threshold. In the absence of a large amount of training
data, this type of distribution can avoid defining discrete nodes
in terms of possibly inaccurate conditional probability tables.
Additionally, this distribution requires iterative estimation of all
model parameters (EM training), which can also help offset a
relatively small number of training instances or the case of miss-
ing features, both of which apply in this study.

5. Perceptual Evaluations
For training and testing the Bayesian Network classifier, the set
of 29 students mentioned in Section 2 were judged acceptable
or unacceptable on the item level by one expert listener - 442
target words in all, averaging about 15 per speaker. To assess
inter-evaluator agreement as an upper-bound for classifier per-
formance, a different set of Tball recordings from 13 speakers
were judged acceptable or unacceptable on the item level by 14
listeners who rated all items from each child. We also calculated
an overall score for each child/listener pair as the percentage of
items judged acceptable for that speaker. Agreement and cor-
relation results, sorted by type of evaluator, are given in Table
1.

We found that, though the teachers had better item-level
Kappa agreement than the non-teachers, both groups had high

teachers non-teachers all

# of evaluators 5 9 14

Kappa agreement 0.847 0.753 0.788

corr.: % acceptable 0.951 0.923 0.934

Table 1: Mean inter-evaluator agreement and correlation as
judged by teachers and non-teachers.

inter-evaluator correlation in the percentage-based speaker-
level scores, which we argue are more important than item-
level assessments, and this result indicates that the percentage
of items judged as acceptable is a reliable indicator of overall
speaker-level reading ability. Many studies such as in [9] have
asserted the ambiguity of pronunciation perception when based
on isolated words, and we would not necessarily expect an auto-
matic classifier to make robust item-level judgments for reasons
stated in Section 3.

6. Experiments

With about 19 hours of classroom recordings taken from both
native and nonnative speakers, we trained context-dependent
phone models from this corpus. Annotated on the word level,
we used canonical pronunciation expansions and the Baum-
Welch algorithm to estimate three-state HMM parameters with
16 Gaussian mixtures per state. Generic models for the back-
ground classroom noise were trained by cutting background
segments out of the recordings and estimating their parameters
separately - here 256 mixtures per state proved necessary for
adequate target word endpointing performance.

From the set of 29 speakers described in Section 2, we ex-
tracted all item- and speaker-level features explained in Sec-
tion 3. All n-best scores were calculated with n equal to 20.
This set was partitioned by speaker into ten folds for cross-
validation. For purposes of comparing our Bayesian Network
classifier’s performance with that of others, we trained four dif-
ferent classifiers over eleven feature sets. The four classifiers
we chose were the C4.5 decision tree, a Naive Bayes classifier,
our fully-connected Bayesian Network described in Section 4,
and a refined version of our network based on feature selection
(explained below). The eleven feature sets were defined by re-
moving different categories of features from the complete set
(1): each of the four tiers (2-5), each of the four pronunciation
classes (6-9), the item information features (10), and the de-
mographics features (11). For the network classifiers, when one
tier of features was omitted, the tiers immediately preceding and
succeeding it were connected. All Bayesian networks were im-
plemented in BNT [10], and the decision tree was trained with
the Weka toolkit [11]. Though these classifiers operated on the
item level, we calculated continuous speaker-level scores as the
mean of all item-level posteriors for the “acceptable” class.

The refined version of our Bayesian Network was con-
structed by disconnecting from the root node the subsets of fea-
tures which degraded the performance of the Naive Bayes and
C4.5 classifiers in terms of Kappa agreement and speaker-level
correlation. These features, though disconnected from the root,
would still be connected to the other features as outlined in Sec-
tion 4 and would exert an influence on the final classification
decision.
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Figure 2: Comparative classifier performance over 11 feature
sets, with respect to correlation with speaker-level scores.

7. Results and Discussion
Figure 2 illustrates the relative performances of the four clas-
sifiers over the eleven feature sets described in Section 6. The
refined Bayesian network outperformed the three other classi-
fiers for all feature sets, while our unrefined network outper-
formed the remaining two in the majority of cases. Table 2
reports numerical performance of all four classifiers for the set
of all features. Here overall speaker-level correlation between
automatic and human judgments approaches that of the inter-
evaluator agreement reported in Section 5.

The only subsets which never degraded Kappa agreement
or correlation when omitted were the demographics (set 11) and
those from theSIL pronunciation class (set 9), so these subsets
were the ones disconnected from the root node in our refined
structure. This indicates that perhaps theSIL features offered
only redundant information when used alongside those of the
other pronunciation classes, and that our chosen child demo-
graphics are not reliable indicators of reading ability (though
this may be due to the fact that some of these features were
missing).

In analyzing the item-level errors made by this best version
of our classifier, we found that the difference in proportions of
classifier errors for native and nonnative speakers was not sta-
tistically significant on the 95% confidence level. This suggests
that our classifier is not biased against either category of stu-
dent. However, there were statistically significant differences in
the proportions of errors seen between first graders and second
graders - suggesting that age-dependent modeling might be nec-
essary. There was also a significantly lower proportion of clas-
sifier errors on shorter target words (one or two letters long) in
comparison with longer target words (three or four letters long),
probably due to the growth in the number of expected pronun-
ciation variants as the length of the target word increases.

8. Conclusion
In conclusion, with our proposed network structure we could
assess a speaker’s reading ability with correlation approach-
ing that of expert inter-evaluator agreement. This new network
consistently outperformed the state-of-the-art C4.5 decision tree
classifier, and with all features a refined version of the network
had 8% improvement in correlation compared to a Naive Bayes
approach. Though the network structure is somewhat complex,
with EM training and the use of softmax nodes to model some

Kappa agreement obj. score corr.

C4.5 0.535 0.752

Naive Bayes 0.617 0.841

Full Bayes Net 0.641 0.844

Refined Bayes Net 0.681 0.921

Table 2: Comparative performance of our refined Bayes Net
classifier on the set of all features (set 1 in Figure 2).

discrete variables, we found that we could achieve these per-
formance improvements even with a relatively small amount of
training data. This new structure for modeling the generative
story among recognition-based features can be adapted for use
outside the domain of literacy assessment.
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