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ABSTRACT:
This study compares human speaker discrimination performance for read speech versus casual conversations and

explores differences between unfamiliar voices that are “easy” versus “hard” to “tell together” versus “tell apart.”

Thirty listeners were asked whether pairs of short style-matched or -mismatched, text-independent utterances repre-

sented the same or different speakers. Listeners performed better when stimuli were style-matched, particularly in

read speech�read speech trials (equal error rate, EER, of 6.96% versus 15.12% in conversation–conversation trials).

In contrast, the EER was 20.68% for the style-mismatched condition. When styles were matched, listeners’ confi-

dence was higher when speakers were the same versus different; however, style variation caused decreases in listen-

ers’ confidence for the “same speaker” trials, suggesting a higher dependency of this task on within-speaker

variability. The speakers who were “easy” or “hard” to “tell together” were not the same as those who were “easy”

or “hard” to “tell apart.” Analysis of speaker acoustic spaces suggested that the difference observed in human

approaches to “same speaker” and “different speaker” tasks depends primarily on listeners’ different perceptual strat-

egies when dealing with within- versus between-speaker acoustic variability. VC 2022 Acoustical Society of America.
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I. INTRODUCTION

The manner in which a speaker says an utterance can

change unintentionally from one scenario to another, for

example, due to social context (e.g., talking to a friend ver-

sus public speaking) or emotional or physiological state; or

it can change intentionally, for example, to express irony or

in an attempt to hide one’s identity (Kreiman and Sidtis,

2011). These variations introduce within-speaker variability

that strongly impacts perception of unfamiliar voices (Lavan

et al., 2019a; Lavan et al., 2019b). The effects of speaking

style variability on recognition accuracy have been studied

extensively, particularly in the forensic literature

(Blatchford and Foulkes, 2006; Gonz�alez Hautam€aki et al.,
2019; Gonz�alez Hautam€aki et al., 2015; Saslove and

Yarmey, 1980). For example, style variability confuses ear

witnesses hearing a suspect shouting versus reading aloud

during a voice lineup (Jessen, 2008). In non-forensic work,

humans consistently outperformed machines in both style-

matched and -mismatched conditions when discriminating

speakers from samples of read versus pet-directed speech

(characterized by exaggerated prosody; Park et al., 2018),

although style variations resulted in worse performance in

both humans and machines. Differences in style were

extreme in both these examples. However, knowledge about

the effects of moderate variations in speaking style (e.g.,

between read and conversational speech) on human speaker

recognition and discrimination performance is limited. In

this paper, we examine the effects of such variations in

speaking style on human speaker discrimination perfor-

mance for unfamiliar voices, using short duration (�3 s),

text-independent utterances.

Two recent studies have provided insights into the ways

in which listeners deal with moderate speaker variability.

Smith et al. (2019) compared style-matched read speech tri-

als with read versus spontaneous speech trials and found

that listeners were more accurate and confident in style-

matched trials compared to style-mismatched ones.

However, their experiments included style-matched trials

only from read speech, leaving open the question of which

kind of speech better allows listeners to extract a single

identity. A second study (Stevenage et al., 2021) addressed

this limitation by including style-matched spontaneous

speech as well. They found that performance on style-

matched trials exceeded that for mismatched trials, with per-

formance on style-matched read speech trials better than

that for style-matched spontaneous speech. Their results

also revealed a significant bias toward “same speaker” over

“different speaker” responses.

Although these studies show that acoustic variability

confuses listeners, they leave open the important questions

of why and how this occurs. Neither paper quantified the

extent of acoustic variability between the two types of trials,

nor did they examine the relationship between acoustic
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variability and how well listeners performed in “same

speaker” versus “different speaker” tasks.

Evidence from voice sorting tasks indicates that humans

do vary their perceptual strategies when “telling people

together” (i.e., assessing within-speaker variability in voice)

versus “telling people apart” (i.e., assessing between-

speaker variability in voice) (Johnson et al., 2020; Lavan

et al., 2019b). However, we do not know how or why listen-

ers vary their perceptual strategies in trials where speakers

are the same (a “same speaker” task) versus trials in which

speakers are different (a “different speaker” task). In “same

speaker” trials, differences between stimuli reflect within-

talker acoustic variability, while in “different speaker” trials

differences largely reflect between-speaker variability. The

nature and extent of differences in listener performance in

these two trial types should follow from differences in the

nature and extent of these two kinds of variability. Thus,

three major questions arise: (i) How does human speaker

discrimination performance vary with speaking style? (ii) Is

there a difference in how speaking style variations affect tri-

als where speakers are the same versus different? (iii) How

does human speaker perception relate to the nature and

extent of acoustic variability that occurs within- versus

between-speakers?

Recent studies (Lee et al., 2019; Lee and Kreiman,

2019) showed that the most important principal components

describing acoustic variability for individual speakers were

shared by all the speakers, but the majority of the principal

components were idiosyncratic. Moreover, individual speak-

ers’ acoustic spaces (within-speaker variability) and spaces

for whole populations of speakers (between-speaker vari-

ability) shared a similar structure. This shared structure was

mainly computed over the balance of higher-frequency har-

monic versus inharmonic energy in the voice and over for-

mant dispersion in read speech. In conversational speech,

the structure corresponded to variability in source spectral

shape, in spectral noise, in F0, and in higher formant fre-

quencies. However, little is known about the relationships

among within- and between-speaker acoustic variability and

listener performance, particularly in the context of differ-

ences in speaking style. In this study, we examined these

relationships by asking listeners to discriminate among

speakers with moderate speaking style variations. Listener

performance for individual speakers was interpreted with

respect to the speakers’ acoustic spaces, with separate analy-

ses for “same speaker” and “different speaker” trials. We

hypothesized that speaking style variability would have a

large effect on performance in the case of unfamiliar

speaker discrimination because the “same speaker” task

largely relies on within-speaker variability. Moreover,

casual conversations have a higher degree of variation in

comparison to read speech (Lavan et al., 2019c), suggesting

that the “same speaker” task may be more difficult for con-

versational speech. Performance on “different speaker”

tasks theoretically relies on the relative positions of voices

in a shared acoustic structure (between-speaker variability).

Previous research (Laan, 1992) has shown that there are

inconsistencies between listeners when classifying read and

conversational speech, indicating that the moderate differ-

ences between these styles have minor perceptual effects,

and suggesting that moderate speaking style variations result

in small within-speaker variability. Based on this work and

on the studies just reviewed, we hypothesized that moderate

speaking style variability would have a smaller effect on

speaker discrimination performance for “different speaker”

trials as they primarily rely on between-speaker variability.

This study extends our previous work (Afshan et al.,
2020) and the studies by Stevenage et al. (2021) and Smith

et al. (2019), which compared human and machine speaker

discrimination. Using the perceptual data reported in more

detail here, Afshan et al. (2020) compared human and

machine results both at the system-level and speaker-level

for style-matched and -mismatched trials, while the present

study focuses entirely on the factors governing human voice

discrimination.

II. METHODS

A. Perceptual speaker discrimination

1. Stimuli

Voice samples from 40 female speakers (also used in

Park et al., 2018; Park et al., 2019) were drawn from the

UCLA Speaker Variability Database (Keating et al., 2019;

Keating et al., 2021; Kreiman et al., 2015), which incorpo-

rates commonly-occurring variations in voice deriving from

phonetic content, speaking style, and affect conditions. This

database includes speech from 101 female and 101 male

speakers, recorded with a 1/2 in. Br€uel & Kjær microphone

in a sound-attenuated booth at a sampling rate of 22 kHz.

Forty speakers were studied to balance concerns about test-

ing duration versus sampling considerations and to provide

continuity with our previous perception experiments using

this dataset (Park et al., 2018; Park et al., 2019). Samples

were restricted to female speakers to avoid any gender-

dependent cues, and because females produced clearer con-

trasts between speaking styles than male speakers did (as

judged by the authors). All speakers were self-reported

native speakers of American English (confirmed post hoc by

two linguists). Two sets of voice samples were selected for

each speaker. The first (clear read speech) included five

phonetically-rich Harvard sentences (IEEE Subcommittee

on Subjective Measurements, 1969), read twice in random

order. The second (casual conversational speech) consisted

of the speakers’ side of a 2-min telephone conversation with

a family member or friend. The recordings were post-

processed to remove any long preceding or trailing silences

and all non-speech vocalizations (laughing, giggling, sigh-

ing). Six �3 s clips were taken from each recording.

Selections were carefully made to ensure that semantic cues

would not bias responses. For instance, stimuli were chosen

from different topics in the conversation. All chosen stimuli

were recorded on the same day.

1394 J. Acoust. Soc. Am. 151 (2), February 2022 Afshan et al.

https://doi.org/10.1121/10.0009585

https://doi.org/10.1121/10.0009585


2. Listeners and listening task

All experimental procedures were approved by the

UCLA Institutional Review Board. Thirty normal-hearing

listeners including 24 native speakers of English (22 female,

8 male) participated in this experiment.1 The sample size

was determined such that there are 12–15 listeners per set of

voices.

Each listener undertook three kinds of comparisons, in

random order. In one they heard two different read senten-

ces; in another, they compared two different clips excerpted

from a conversation; and in the third, they compared one

read sentence and one conversational sentence. Equal num-

bers of “same speaker” and “different speaker” trials were

included for each of these three trial types, resulting in six

different kinds of trials per experiment. Care was taken to

make sure that a listener never heard the same stimulus

twice. As only five different sentences had been recorded in

the case of read speech, we randomly chose a second record-

ing of one of the five sentences to repeat for the sixth trial.

Listeners were tested individually in a sound-attenuated

booth. Stimulus pairs were played in random order over

Etymotic insert earphones (model ER-1) at a constant com-

fortable listening level. To minimize fatigue, listeners heard

one of two subsets of speakers (15 listeners per subset).

Each subset included 24 speakers selected at random from

the pool of 40, for a total of 144 trials per listener (6 trial

types � 24 speakers). On “different speaker” trials, two

speakers were paired at random, such that each was com-

pared with every other speaker an equal number of times.

Each listener heard the stimulus pairs in a unique random

order and was asked (i) “Did the two voices represent the

same speaker or two different speakers?, and (ii) “How con-

fident are you in your response on a scale of 0 to 5 (0¼wild

guess and 5¼ very confident)?” Pairs of stimuli could be

heard twice, once in each presentation order (AB/BA).

Listeners were not aware of the number of speakers included

in the experiment. They were encouraged to complete the

experiments at their own pace, taking breaks as necessary.

Testing time averaged about 45 min.

B. Evaluation metric

1. Calculation of scores

Same/different responses were combined with confi-

dence ratings to create an unfolded similarity score for each

stimulus pair. Confidence ratings (0 to 5) were multiplied by

the decision (different ¼ �1 and the same¼ 1) to provide

continuous scores ranging from �5 (highly confident that

the voices are different) to 5 (highly confident that the voi-

ces are the same). This ensured that the similarity score

reflected listeners’ confidence as well as their same/different

decisions.

Similarity scores were used to calculate calibrated log-

likelihood ratios (LLRs), denoted as L. LLRs are used in

this work instead of similarity scores by themselves, as they

provide reliable probabilistic interpretations of the

comparisons of the two hypotheses (“same speaker” or

“different speaker”). Thus, LLRs provide a single identifica-

tion score that can be meaningfully interpreted. In other

words, calibrated LLRs provide numerical representations

of listeners’ degree of support for either hypothesis in each

trial. This allows us to measure not only their discriminating

power but also the strength of the trials evaluated by them

(Ramos et al., 2011). Moreover, the calibrated LLRs are

needed to obtain the log-likelihood-ratio cost function in

Sec. II B 2, which unlike the standard measures is

application-independent. This provides a universal probabil-

istic interpretation in the analysis. A calibration system

based on a standard logistic regression solution (Br€ummer

and De Villiers, 2011a) was used to estimate the LLRs by

optimizing the following mapping:

Lt ¼ aþ bst; (1)

where Lt is the calibrated output log-likelihood-ratio for trial

t and st is the similarity score for trial t. Offset parameter a
and the weight b are optimized with logistic regression

(Br€ummer, 2010).

2. Analysis of performance errors

Speaker discrimination performance was evaluated in

terms of equal error rates (EER) and the log-likelihood-ratio

cost function (Cllr) (Van Leeuwen and Br€ummer, 2007).

While the EER is a widely-used measure, it does not mea-

sure ability to set good decision thresholds. Hence, Cllr, an

application-independent measure for evaluating soft deci-

sions, was also used. It can be interpreted as a measure of

insufficiency of information: The lower the Cllr, the more

the average information per trial (in bits) increases. In Van

Leeuwen and Br€ummer (2007), a closed-form solution for

Cllr is provided,

CllrðLtÞ ¼
1

2

X
t2same

log2ð1þ e�LtÞ
Nsame

þ
X
t2diff

log2ð1þ eLtÞ
Ndiff

 !
;

(2)

where Lt is the log-likelihood-ratio for trial t, “same” is a set

of Nsame “same speaker” trials and “diff” is a set of Ndiff

“different speaker” trials. These two normalized terms rep-

resent the costs for “same speaker” (first term) and

“different speaker” (second term) trials.

We used the Bosaris toolkit (Br€ummer and De Villiers,

2011b) to perform calibration and to calculate the evaluation

measures. As data were limited, the calibration parameters

were trained on and applied to the same set of scores.

3. Speaker-level analysis

This section describes speaker-level equivalents of the

measures described in the previous sections. The LLR, Lt,

which represents listeners’ scalar responses to each given

trial, was obtained for each trial t, as outlined in Sec. II B 1.

To compare the scores for “same speaker” and “different
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speaker” trials involving each speaker, Lsame for “same

speaker,” and Ldiff for “different speaker” trials were calcu-

lated separately. Lsame for a speaker was obtained by averag-

ing the Lt values over the “same speaker” trials that included

that particular speaker. It measures within-speaker variabil-

ity across the stimuli as perceived by the listeners: a large

Lsame means small perceived within-speaker variability (i.e.,

these “same speaker” trials are easy). Ldiff for a given

speaker was calculated by averaging the Lt values over the

“different speaker” trials that included a given speaker; it

represents between-speaker variability across the stimuli as

perceived by the listeners. A large Ldiff value indicates that

the speaker has small perceived between-speaker variability,

making it difficult for listeners to distinguish her from

others.

A speaker-level aggregation of the log-likelihood-ratio

cost function (Cllr; Sec. II B 2) was also computed by calcu-

lating the mean across listeners over all the trials that

included that particular speaker. The speaker-level Cllr rep-

resents the confidence listeners had when identifying that

speaker. Speaker-level Cllr values for “same speaker” trials

(Csame
llr ) and “different speaker” trials (Cdiff

llr ) were also com-

puted by calculating the average of their respective Cllr val-

ues across listeners.

For the speaker-level analysis, the trials were combined

across conditions due to the limited number of trials per

speaker (nine trials � number of listeners). Although col-

lapsing conditions in this way precludes examination of fac-

tors other than speaker, these analyses focus primarily on

the main effect of differences among speakers, so we felt

adding power to tests of this main effect outweighed other

considerations. Note that the system-level values are

denoted by using a (0), i.e., C0llr; C0same
llr ; C0diff

llr ; L0; L0same, and

L0diff .

C. Speaker acoustic variability

1. Feature extraction and data processing

Acoustic measures were extracted for 25 ms frames,

with a 5 ms frame-shift, from utterances of vowels and

approximants (i.e., /l/, /r/, /w/) in the stimuli using

VoiceSauce (Shue et al., 2011). Feature selection was moti-

vated by a psychoacoustic model of voice quality (Garellek

et al., 2016; Kreiman et al., 2021). The set comprised funda-

mental frequency (F0), the first four formants

(F1;F2;F3;F4), cepstral peak prominence (CPP; Hillenbrand

et al., 1994), and the amplitude differences between the first

(H�1), second (H�2), and fourth (H�4) harmonics, and the har-

monics nearest 2 kHz (H�2k) and 5 kHz (H5k), denoted as

H�1 � H�2; H�2 � H�4; H�4 � H�2k, and H�2k � H5k. These mea-

sures quantified the harmonic source spectral shape.

Harmonic values marked with * were corrected for the influ-

ence of formants on harmonic amplitudes (Hanson and

Chuang, 1999; Iseli and Alwan, 2004). Following Lee et al.
(2019) and Lee and Kreiman (2019), we also included for-

mant dispersion (FD, calculated as the average difference in

the frequency between each adjacent pair of formants),

energy (a measure of amplitude given by root mean square

energy calculated over five pitch pulses), and the ratio of

amplitudes of subharmonics to harmonics (SHR; Sun, 2002;

Herbst, 2021) as a measure of period doubling, for a total of

13 features for every analysis frame.

Frames with missing or unrealistic values were

removed, after which features were normalized with refer-

ence to global maxima and minima, for a range across

speakers of 0–1. We then calculated the moving average

and the moving coefficient of variation (moving CoV

¼ moving standard deviation/moving average) over a 25 ms

window (commonly used in speech feature extraction,

equivalent to five observations) for each of the 13 features.

This resulted in a total of 26 acoustic features (13 moving

averages and 13 moving CoVs). These 26 features were

used for subsequent analysis.

2. Principal component analysis

Figure 1 represents the block diagram of the speaker

variability analysis. Following Lee et al. (2019) and Lee and

Kreiman (2019), we applied principal component analysis

(PCA) to characterize acoustic variability in the voices of

individual speakers. Utterances from each speaker were

used to calculate the within-speaker PCA representing that

individual’s acoustic space. We retained only the principal

components with eigenvalues greater than one so that each

represented an interpretable amount of variance in the data

(Kaiser, 1960).

The analytical approach proposed by Krzanowski (1979)

was used to compare PCA spaces, to avoid reliance on sub-

jective criteria associated with visual examination. In this

approach, let g be the number of speakers being compared

with nt observations for the tth speaker (t ¼ 1; 2;…; g), with

the same set of p variables measured for each speaker. Let us

assume that for each speaker, kt principal components repre-

sent that speaker’s acoustic variability. Next, let b be an arbi-

trary vector in the original p-dimensional data-space and let

dt be the angle between b and the vector most parallel to it in

the space generated by the kt principal components of speaker

t (t ¼ 1; 2;…; g). We represent the loadings using the matrix

Lt where the element l
ðtÞ
ij represents the loading of the jth vari-

able on the ith principal component of the tth speaker. Then

the value of b that minimizes V ¼
Pg

t¼1 cos dt
2 is given by

the eigenvector b1, corresponding to the largest eigenvalue l1

of H ¼
Pg

t¼1 Lt
0Lt.

The eigenvector b2, corresponding to the second largest

eigenvalue of H, satisfies the criterion for the next largest

value of V and is orthogonal to b1. When kt different compo-

nents have been obtained for the tth speaker (t ¼ 1; 2;…; g)

and k ¼ minðk1; k2;…; kgÞ, then only a k-dimensional com-

parison will be useful. Any further dimension will be

orthogonal to at least one of the speaker spaces. Using this

transformation thus allows us to compare different principal

component subspaces, because the eigenvalues li [alterna-

tively, the minimum angles cos�1ðliÞ1=2
] can provide a

measure of the extent to which the subspaces differ, and the
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eigenvectors bi can describe the nature of their similarities

or differences. The smaller the angles between the subspa-

ces, the higher the similarity. The Appendix provides an

overview of the Krzanowski analysis implementation for

one set of speakers.

Krzanowski analysis was performed over the within-

speaker PCAs for all the speakers in a set, to obtain the

dimensions common to the different speaker acoustic

spaces. The earlier (lower) dimensions represent the compo-

nents that are similar for speakers with similar acoustic

spaces and which are thus suitable for comparing within-

speaker variability across speakers. The speakers diverge

from each other in later (higher) dimensions. Hence, the

components in these dimensions highlight the differences

between speakers’ acoustic spaces, making them appropriate

indices of between-speaker variability.

III. RESULTS

Table I shows speaker discrimination performance for

the three speaking-style conditions (read speech–read

speech, conversation–conversation, and read speech–conver-

sation). Statistical significance was evaluated using a two-

sample Kolmogorov-Smirnov test (Smirnov, 1948). All

reported comparisons are statistically significant at the

p< 0.05 level. EER values in this table indicate that listeners

performed best when voice samples were style-matched read

speech (EER¼ 6.96%). Performance decreased for conver-

sation–conversation trials (EER¼ 15.12%; p ¼ 0:035;

D ¼ 0:059;N ¼ 2304), even though these were also style-

matched. This decrease in performance is likely due to addi-

tional variability in casual conversations (formal/informal,

happy/sad/angry/neutral, etc.; Lavan et al., 2019c). The

style-mismatched read speech � conversation trials resulted

in performance that was significantly worse than in either

style-matched condition (read speech: p ¼ 4:95� 10�14;
D ¼ 0:164;N ¼ 2304; conversation: p ¼ 4:61� 10�7;
D ¼ 0:115;N ¼ 2304).

A comparison of the log-likelihood-ratio cost functions

(see Sec. II B 2), C0same
llr , and C0diff

llr values in Table I indicates

that “same speaker” trials were easier than “different speak-

er” trials in all conditions (read speech–read speech:

p ¼ 1:4� 10�101;D ¼ 0:88;N ¼ 1152; conversation–con-

versation: p ¼ 4:76� 10�73;D ¼ 0:72;N ¼ 1152; read

speech–conversation: p¼ 9:07�10�74;D¼ 0:59;N¼ 1152).

Differences in difficulty between the two tasks depended on

speaking style, with style-matched read speech � read

speech trials showing the best performance overall (0.210

and 0.318 for C0same
llr and C0diff

llr , respectively) and the most

difference between the same and different speaker tasks.

A. Speaker-level log-likelihood-ratio analysis

Figure 2 compares the distribution kernel density plots

overlaid onto histograms of speaker-level log-likelihood-

ratios (see Sec. II B 3) for “same speaker” (Lsame) and

“different speaker” (Ldiff ) trials for the three style condi-

tions. Recall that the positive end of this scale represents

FIG. 1. (Color online) Block diagram representing the analysis of variability in speaker acoustic spaces using PCA and Krzanowski analysis.

TABLE I. Speaker discrimination performance in terms of EER (%) and LLR cost function for combined (C0llr), “same speaker” trials (C0same
llr ), and “different

speaker” trials (C0diff
llr ). The better (lower cost) value for “same speaker” versus “different speaker” trials in each condition is underlined. All reported com-

parisons are statistically significant at the p< 0.05 level.

read–read conversation–conversation read–conversation

EER % C0llr C0same
llr C0diff

llr EER % C0llr C0same
llr C0diff

llr EER % C0llr C0same
llr C0diff

llr

6.96 0.264 0.210 0.318 15.12 0.529 0.501 0.557 20.68 0.691 0.690 0.692
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highly confident “same” responses, and the negative end

represents highly confident “different” responses. The

means of Lsame and Ldiff are shifted towards correct

responses in the read speech � read speech conditions. This

increased separation of “same speaker” and “different

speaker” trial distributions indicates that discrimination was

easier and resulted in better performance in the read

speech–read speech condition compared to the other two

conditions. For example, compare discrimination perfor-

mance from the distributions in Figs. 2(a) (read speech–read

speech) and 2(c) (read speech–conversational speech)

(EERs¼ 6.96% versus 20.68%, respectively). The read

speech–read speech trials resulted in an Lsame distribution

with small variance (variance¼ 0.05) confined to the posi-

tive response region. This was not the case with Ldiff (var-
iance¼ 0.57), indicating that listeners were more confident

when classifying “same speaker” pairs than “different

speaker” pairs.

In comparison, in the conversation � conversation con-

dition [Fig. 2(b)] variance in the Lsame distribution increased

(variance¼ 0.34), and this distribution overlapped with the

Ldiff distribution (variance¼ 0.70), suggesting that listeners’

confidence decreased overall with a change in style from

read to conversational speech. Finally, in the read speech

� conversation condition [Fig. 2(c)] the variance in the

Lsame distribution increased further (variance¼ 0.75),

while it decreased slightly in the Ldiff distribution (var-
iance¼ 0.55). This overall pattern suggests that style

affected the listeners’ confidence in “same speaker” tasks,

but not in “different speaker” tasks.

Given the multimodal shape of the distributions for con-

versation and style-mismatched tasks, the findings in terms

of variances of LLRs were helpful. We evaluated the differ-

ences between the distributions across styles. The speaker-

level log-likelihood-ratios for “same speaker” (Lsame) tasks

for the three style conditions differed significantly from one

another, with means of 1:8915; 1:4131 and 0.9475 for style-

matched read speech, style-matched conversation, and style-

mismatched tasks, respectively (read speech–read speech

versus conversation–conversation: h ¼ 1; p ¼ 3:57� 10�5;
D ¼ 0:45;N ¼ 80, read speech–read speech versus read

speech–conversation: h ¼ 1; p ¼ 7:34� 10�9;D ¼ 0:68;
N ¼ 80, and conversation–conversation versus read

speech–conversation: h ¼ 1; p ¼ 0:04;D ¼ 0:30;N ¼ 80).

In contrast, the speaker-level LLRs for “different speaker”

(Ldiff ) tasks for the three style conditions did not differ sig-

nificantly (means ¼ �1:4891;�1:3433, and �1.2165 for

style-matched read speech, style-matched conversation and

style-mismatched tasks, respectively; read speech–read

speech versus conversation–conversation: h ¼ 0; p ¼ 0:14;
D ¼ 0:25;N ¼ 80, read speech–read speech versus read

speech–conversation: h ¼ 0; p ¼ 0:08;D ¼ 0:28;N ¼ 80,

and conversation–conversation versus read speech–conver-

sation: h ¼ 0; p ¼ 0:72;D ¼ 0:15;N ¼ 80). This result is

consistent with our hypothesis that the effect of speaking

style-variability is greater in “same speaker” tasks than in

“different speaker” tasks.

B. Speaker-level log-likelihood-ratio cost analysis

Recall that the speaker-level log-likelihood-ratio cost

function, Cllr, denotes the overall speaker information avail-

able when the listener is performing speaker discrimination.

It is calculated by averaging the values for “same speaker”

trials (Csame
llr ) and “different speaker” trials (Cdiff

llr ) for a given

speaker. A higher Cllr indicates less information available to

the listener for the speaker discrimination task, hence more

difficulty. For “same” and “different” trials, speaker-level

Cllr values from LLR scores were used to group speakers

into three subsets.2 We classified the 13 speakers with the

lowest Cllr values (“same speaker” task: mean¼ 0.251;

range¼ 0.169–0.361, “different-speaker” task: mean-

¼ 0.243; range¼ 0.127–0.367) into an “easy” subset and the

13 speakers with the highest Cllr values (“same speaker”

task: mean¼ 0.964; range¼ 0.669–1.434, “different-

speaker” task: mean¼ 1.076; range¼ 0.741–1.582) as “hard”

(difficult to distinguish speakers). The remaining fourteen

speakers were referred to as “average” (“same speaker” task:

mean¼ 0.508; range¼ 0.368–0.647, “different-speaker”

task: mean¼ 0.538; range¼ 0.370–0.708).

The joint distribution of speakers across the three sub-

sets for the “same speaker” versus “different speaker” tasks

FIG. 2. (Color online) Distribution kernel density plots overlaid onto histo-

grams of speaker-level LLRs for “same speaker” (Lsame) and “different

speaker” (Ldiff ) trials represented as probability density functions. Lsame and

Ldiff are denoted with solid (“–”) and dotted (“.”) lines, respectively. (a)

read speech–read speech; (b) conversational speech–conversational speech;

(c) read speech–conversational speech.
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is shown in Fig. 3. An entry countmi;hj
denotes the number of

speakers from subset i of the “different speaker” task over-

lapping with subset j of the “same speaker” task. For example,

in the first column, six samples were “easy” in both the “same

speaker” and “different speaker” tasks, whereas two samples

that were “easy” in the “same speaker” task were “hard” in

the “different speaker” task. More observations falloff diago-

nal (speakers are not equally “easy” to “tell together” and “tell

apart”) than on diagonal (the tasks are equally “easy” for that

speaker), consistent with findings that humans rely on different

information when performing the two tasks (Johnson et al.,
2020; Lavan et al., 2019b).

C. Variability in the speaker acoustic spaces

Because the acoustic signal is the input to human percep-

tual processes, examination of acoustic variability may pro-

vide insight into the perceptual strategies listeners use when

performing “same speaker” and “different speaker” tasks. To

address this, we used PCA to generate principal component

subspaces and applied Krzanowski analysis (Sec. II C 2) to

compare acoustic variability for speakers who were “easy,”

“average,” or “hard” to discriminate. As noted above,

Krzanowski analysis provides a means of quantifying the

similarity of the acoustic spaces for different talkers, by gen-

erating loadings of the directions in the acoustic spaces that

are closest to the PCs for the speakers in each subset.

Figures 4 and 5 show each orthogonal direction as a

separate subplot. “Same speaker” trials are shown in Fig. 4

and “different speaker” trials are shown in Fig. 5. The angles

listed at the top of each subplot quantify the degree of simi-

larity between all speakers in the set. For ease of compari-

son, each subplot shows the same dimension for all three

subsets of speakers (“easy,” “average,” and “hard” to dis-

criminate). Speaking styles are combined, however, because

speaker Cllr values were calculated across all conditions.

Plots are additionally restricted to the absolute values of the

top three contributing factor loadings to focus attention on

the most important contributors to similarity and differences

in the acoustic space. Finally, we restricted the number of

orthogonal directions to a dimension of k¼ 7, which is the

minimum number of principal components extracted per

speaker.

1. “Same speaker” task

As Fig. 4 shows, “easy,” “average,” and “hard” speak-

ers were acoustically similar along the first two dimensions

(as indicated by small mean angular separations), but they

increasingly diverged after this, with the maximum variation

along the 7th dimension. The mean angular separations

quantify the extent to which the dimensions represent the

similarity between speakers for each subset. Within-speaker

variations can be compared along dimension 1, which is

associated with CoVs of F1, F2, and FD. F2 and FD contrib-

ute to separating voices on the second dimension; H�4 � H�2k

also contributed for “easy” speakers, and F1 for the

“average” and “hard” speakers.

Examination of dimension 7 shows that different features

underlie acoustic differences for each group of speakers, with

mean angular separations of 33:35�; 28:11�, and 29:97� for

“easy,” “average,” and “hard” speakers, respectively. For

“easy” speakers, this dimension is related to Energy, Energy
CoV, and F2 CoV, suggesting that differences between speak-

ers in these factors have little effect on listeners’ ability to tell

voices together. For “average” speakers, this dimension is

related to CoVs of F0, F2, and FD, while voices that were

hardest to tell together varied along F3, Energy, and its CoV.

Dimensions 3–6 explained a mixture of similarities and differ-

ences, with some speakers closer to each other along those

dimensions and others farther apart.

2. “Different speaker” task

Figure 5 compares the principal components describing

acoustic variability for speakers classified as “easy,”

“average,” or “hard” to “tell apart” in “different speaker” tri-

als. The coefficients of variation (CoVs) for F1 and FD con-

tributed to separating voices based on their within-speaker

variability on the first dimension for all three groups; F2

CoV also contributed for “easy” and “hard” speakers, while

CPP CoV contributed for “average” speakers. The second

dimension is related primarily to moving averages of F2 and

FD. Telling voices apart in the “easy” and “hard” subsets

also depended on F1. Similarity for “average” speakers was

also related to H�4 � H�2k, and “average” speakers were more

similar to one another along the second dimension (7:83�)
compared to “easy” and “hard” subsets (12:83� and 9:43�,
respectively). These results suggest that the means of for-

mant frequencies contribute little to making voices “easy”

or “hard” to distinguish in a “different speaker” task.

FIG. 3. The number of speakers that were “easy” versus “average” or

“hard,” as indexed by overall accuracy, for “different speaker” versus

“same speaker” tasks. Columns show the number of speakers who were

easy, average, or hard to “tell together” on the “same speaker” trials, while

rows show how difficult the same voices were to “tell apart” on the

“different speaker” trials.
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Dimension 7 describes the majority of the between-speaker

variability across subsets, with mean angular separations of

28:38�; 31:49�, and 29:75� for “easy,” “average,” and “hard”

speakers, respectively. Speakers who are “easy” to tell apart

differed from each other primarily in F0 CoV, followed by

CoVs of H�4 � H�2k and H�2k � H5k. In comparison, “average”

speakers varied almost equally in terms of F0, F2 CoV,

and FD CoV, while most variation in “hard” speakers was

attributable to F0, followed by smaller contributions from

H�1 � H�2 and Energy. In other words, for the “different

speaker” task, discrimination is best for talkers whose

speech acoustics are mainly separated by the three CoVs (F0

CoV, H�4 � H�2k CoV and H�2k � H5kCoV), less efficient for

“average” talkers whose acoustics differed mainly in mean

F0 and two formant-variable CoVs (extent of variability in

relation to the average), and is the worst for talkers whose

speech is distinguished only by moving averages.

IV. DISCUSSION

In this paper, we examined the effects of moderate

speaking style variations (read speech versus casual

conversations) and of within- versus between-speaker

acoustic variability on human speaker discrimination perfor-

mance. The stimuli comprised short text-independent utter-

ances from speakers who were not familiar to the listeners.

The first objective of this work was to identify the
effects of speaking style variations on human speaker dis-
crimination performance. Listeners performed better in
style-matched cases (EER¼ 6.96% when both stimuli were
read sentences and EER¼ 15.12% when both stimuli were
excerpts from conversations) than in the style-mismatched
case (EER¼ 20.68%). Moderate speaking style variations
affected speaker discrimination performance when stimuli
were style-mismatched and also when they were style-
matched i.e., read speech trials were easier than conversa-
tion trials.

In comparison to our previous findings based on read

and pet-directed speech from the same speakers (Park et al.,
2018) the performance gap between the style-matched and

style-mismatched conditions appears to depend at least

partly on the extent of the mismatch (moderate in the pre-

sent study and extreme in the previous study). For example,

the EER in Park et al. (2018) for the style-matched read

FIG. 4. For the “same speaker” task, the absolute loadings/coefficients of the directions that are closest to the principal components of all speakers in a sub-

set. The mean angular separation between groups and each direction is shown above each subplot. The features are represented along the x axis. F0, funda-

mental frequency; F1;F2;F3;F4, the first four formants; CPP, cepstral peak prominence, H�1 � H�2 ; H�2 � H�4 ; H�4 � H�2k , and H�2k � H5k; the amplitude

differences of the harmonics, FD, formant dispersion; SHR, subharmonics to harmonics ratio; CoV, coefficient of variation.

1400 J. Acoust. Soc. Am. 151 (2), February 2022 Afshan et al.

https://doi.org/10.1121/10.0009585

https://doi.org/10.1121/10.0009585


speech–read speech condition was 19.02%, while for the

style-mismatched condition it was 39.23%, versus 6.96%

and 20.68%, respectively, in the present study.3

Another objective of this research was to determine

the differences in how speaking style variations affect

“same speaker” and “different speaker” trials. The

speaker-level LLR distribution (see Fig. 2) skewed heavily

toward the positive region with small variance in “same

speaker” trials, indicating that listeners were more accu-

rate and more confident in the “same speaker” trials.

Confidence on these trials was highest for read speech–

read speech and worst for read speech–conversation; this

pattern did not occur for “different speaker” trials. The

changes in listeners’ confidence in “same speaker” trials

seem to follow the same pattern as did overall perfor-

mance. Listeners were highly confident for the style-

matched read speech trials, but confidence decreased

substantially for the other two conditions. Taken together,

these results are consistent with our hypotheses that the

“same speaker” task largely relies on within-speaker

variability, and that moderate style variations impact

human performance. However, no such confidence differ-

ences arose from style variability in the “different speak-

er” trials. This suggests that between-speaker variability in

the “different speaker” task has greater influence on

human performance compared to the effects of moderate

speaking style variability.

We also found that which voices listeners judged most

accurately depended not only on the voices but also on the

task: “telling speakers together” was easier for some voices,

while “telling speakers apart” was easier for others. This

suggests that listeners rely on different acoustic information

when performing these two tasks. In the “same speaker”

task, the “easy” speakers varied widely along F2 CoV,

Energy, and its CoV, while “average” speakers varied the

most along CoVs of F0, F2, and FD. Finally, “hard” speak-

ers varied mainly along F3, Energy, and its CoV in this task.

The features that made the “same speaker” task easier (F2

CoV, Energy, and its CoV) were the ones that appeared in

later dimensions (dimension 3 or higher), i.e., the ones that

FIG. 5. For the “different speaker” task, the absolute loadings/coefficients of the directions that are closest to the principal components of all speakers in a

subset. The mean angular separation between groups and each direction is shown above each subplot. The features are represented along the x axis. F0, fun-

damental frequency; F1;F2;F3;F4, the first four formants; CPP, cepstral peak prominence; H�1 �H�2 ; H�2 � H�4 ; H�4 � H�2k , and H�2k � H5k , the amplitude dif-

ferences of the harmonics; FD, formant dispersion; SHR, subharmonics to harmonics ratio; CoV, coefficient of variation.
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contributed to speaker idiosyncrasies in Lee et al. (2019)

and the acoustic voice space model of Lee and Kreiman

(2019). This further suggests that listeners rely on speaker

idiosyncrasies for the “same speaker” task. Note that in this

task, formant CoVs (F2 CoV for “easy” speakers and CoVs

of F2 and FD for “average” speakers) played a critical role

in assisting listeners in “telling speakers together.” Forensic

studies (McDougall, 2004) argue that formant frequency

variations have relevant speaker identification information

as they are determined not only by the shape and size of the

vocal tract but also by the speaker’s style of configuring

articulators for speech.

In the “different speaker” task, “easy” speakers dif-

fered in the CoVs of amplitude differences of the higher

harmonics (H�4 � H�2k;H
�
2k � H5k) and F0. These were some

of the variability features that described the shared acous-

tic structure across speakers in Lee et al. (2019) and Lee

and Kreiman (2019). These results provide further evi-

dence in support of our hypothesis that the distance along

the shared acoustic structure is critical for speaker dis-

crimination in the “different speaker” task. Voices that dif-

fered in static acoustic properties, including a combination

of mean F0, lower harmonic amplitudes (H�1 � H�2), and

energy, were difficult for listeners to distinguish.

Moreover, average voices were distinguished by both

moving average and variability (CoVs) features, implying

that variations between speakers along static acoustic

properties could be insufficient for listeners to tell them

apart, while variations along feature CoVs assisted listen-

ers in this task.4

In summary, it seems that listeners find it easier to “tell

speakers together” using speaker-specific idiosyncrasies,

i.e., we can best explain the performance on the “same

speaker” task by the nature and extent of within-speaker

variability. In contrast, listeners “tell speakers apart” based

on differences in features (alternatively, relative positions)

within a shared acoustic structure rather than speaker-

specific features. This implies that “telling speakers apart”

relies more on the nature and extent of between-speaker

variability as the differences here are across acoustic fea-

tures representing shared variability. Therefore, it should be

possible to perform acoustic-based predictions of which

voices will be “easy” or “hard” to “tell apart” using the rela-

tive positions in the shared acoustic structure. However,

similar acoustic-based predictions about “telling together”

different samples of a speaker’s voice might be challenging,

as this would require finding the speaker-specific

idiosyncrasies.

One limitation of this work must be noted. The percep-

tion experiments used a homogenous panel of listeners (22

female out of 30 listeners with an age range of 17–21 years

old). Hence, these findings may not fully generalize to other

populations. The results presented nevertheless provide a

means of investigating the question of the effects of moder-

ate style-variability on speaker discrimination performance.

In the future, a heterogeneous population will be used for

the listeners’ panel.

V. CONCLUSION

This study examined speaker discrimination perfor-

mance and the effects of speaking style variations (read

speech versus conversational speech) on voice discrimina-

tion accuracy. Our results showed that the difficulty of the

discrimination task changed with style: the style-matched

read speech–read speech condition was easiest, followed

by conversation–conversation. The style-mismatched con-

dition resulted in the worst performance. Moderate speak-

ing style variability has more effect on the “same speaker”

task than on the “different speaker” task. The same

speakers were not “easy” or “hard” to distinguish in the

“same speaker” and “different speaker” tasks. Analysis of

acoustic variability suggested that the listeners found it

easier to “tell speakers together” when they rely on

speaker-specific idiosyncrasies and that they “tell speakers

apart” based on their relative positions within a shared

acoustic space. The study contributes to our understanding

of the relationship between human speaker perception and

the nature and extent of acoustic variability. The results of

this study indicate that we can make acoustic-based predic-

tions of voices that will be “easy” or “hard” to “tell apart,”

but such predictions cannot be made for “telling speakers

together.” Hence, further work is needed to model the per-

ception of speaker-specific idiosyncrasies and their relation

to speaker identity. A further study could assess how the

present results extend in terms of higher variability in

speaking styles.
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APPENDIX: KRZANOWSKI ANALYSIS

ALGORITHM 1: Krwazonski analysis for set with g speakers.

k min(k1;…; kg) // k-dimensional comparison

for speaker t in set do

Lt  normalized loadings of speaker t

H  H þ L0tLt

end

V  Eigenvectors(H) /* Loadings of the directions
closest to the speakers in the set */

for variable j in set of p variables do

b Vj // Eigenvector corresponding to variable j

for speaker t in set do

c b0 � L0t � Lt � b

dj;t  arccos
ffiffiffi
c
p

// Angle between speaker t
and direction j

end

end
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1An additional six speakers (three were native speakers of Spanish, two of

Mandarin, and one of Hindi) were also tested, but were later deleted from

the data set because preliminary analyses suggested effects of native lan-

guage on listener performance. There were not enough data to explore

these effects in detail.
2The correlation between the speaker-level Csame

llr and Cdiff
llr is weak

ðr ¼ �0:0892Þ, hence, our preference for the categorical approach used

here, versus treating difficulty as a continuous variable.
3Note that the sampling rate was higher in the present study than in our

previous work (22 kHz, versus 8 kHz in Park et al., 2018).
4In general, the measures characterizing hard-to-distinguish voices are

known to be important for speaker characterization [e.g., fundamental fre-

quency and H�1 � H�2 correlate with perceived breathiness (Wayland and

Jongman, 2003)], but challenges arise in this task given that it involves

female-only comparisons. In a female-only comparison, there are smaller

variations in F0 and influence of nasality on H�1 � H�2 (Simpson, 2012).
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